0% found this document useful (0 votes)
146 views4 pages

Linear System Course PDF

Uploaded by

dnow4p
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
146 views4 pages

Linear System Course PDF

Uploaded by

dnow4p
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

ELE 313 Linear Systems  SYLLABUS  Spring 2009 

Course Description  ELE 313 Linear Systems (3)
 
Fourier series, Fourier transforms, transfer functions of continuous and discrete‐time 
systems, transient and steady‐state response, natural response and stability, convolution. 
(Lec. 3)  
 
Pre: ELE 212, MTH 362 and EGR 106. 
   
Instructor  Dr. Harold Vincent
Research Associate Professor of Ocean Engineering 
bud@oce.uri.edu 
(401) 874‐6814 
   
Time and Location  Fridays  2 ‐ 3:50 pm Kelley Hall,  Room 203 (Lecture)
 
Tuesdays 5 ‐ 5:50 pm in Crawford Hall, Room 222 (Recitation) 
  
Office Hours by Appointment 
   
Course pre‐requisites:  Junior standing in ELE
 
To enroll in ELE 313, you must have successfully completed MTH 141, 142, 362 (may be 
taken concurrently), EGR 106; ELE 201 and 212. 
 
This course is a pre‐requisite either directly or indirectly for ELE 314, 401, 423, 427, 432, 
436, 444, 457, 458, 480, 481 and 482. 
   
Required Textbook:  Signals, Systems and Transforms, by Prof. L. Jackson, Chapters 1‐4. 
 
This textbook has been used for both ELE 313‐314 for several years, so you may be able to 
obtain an inexpensive, used copy from a senior or graduate student. 
   
Expected Workload:  You are expected to attend all lectures, participate in class group work, turn in all 
homework assignments, and take all quizzes and exams. For this 3 credit course, you 
should expect to spend an average 6‐9 hours per week outside of class reading the 
pertinent sections in the textbook before lecture, reviewing and updating your notes from 
textbook and lectures, doing homework problems and reviewing provided solutions, 
working practice problems at the end of the chapter, and studying for exams. It is also 
helpful to review your notes from calculus. 
   
Grading:  Homework (every week)   15% 
10 minute Quizzes (~ 2 weeks)           10% 
Exam #1 – Chapters 1 & 2  (Tue., Feb. 24th )       20% 
Exam #2 – Chapters 2 & 3  (Tue., March 31st )      20% 
Final Exam – Chapters 1‐4  (Mon., May 11th, 7‐10 pm)    35% 
 
The class is graded on a 10 point per letter grade scale, e.g. 80% ‐ 89.99% corresponds to a 
B‐, B or B+ grade. Historically, the class average is usually between 75 ‐ 80%. 
 
Your homework should be neatly written and stapled in order of assigned problems. A 
cover page is not necessary. I select homework problems from the text to help you achieve 
a deeper understanding of course material and to help you prepare for the exams. After 
the due date, solutions are posted on the bulletin board outside my office. 

1
ELE 313 Linear Systems  SYLLABUS  Spring 2009 
 
Homework may be done individually or in groups as long as everyone in the group actively 
contributes. Some students find working alone to be a more focused and efficient use of 
their time; others find that talking through potential solutions with people in a study group 
helps them see how a given problem could be solved using different approaches, thereby 
gaining greater insight into the course material. Simply copying someone else’s homework 
ends up hurting your grade in the long run. 
 
I grade all assigned homework problems. Homework is to be turned in at the beginning of 
class on the given due date. For every day that a problem is late, you will lose 20% of its 
earned points. For example, if you scored 8 points on a problem that you turned in 3 days 
late, you will be penalized 8(pts)*3(days)*0.20(%/day) = 4.8 points; your final score will be 
3.2. No points will be given for homework problems turned in after the solutions have 
been provided. 
 
All exams and quizzes are closed book, closed notes, in‐class tests. Quizzes typically have 
one problem from material covered in the previous couple of weeks; they last 
approximately 10 minutes. Exams cover one or more chapters and last the entire class 
period. The final exam is a 3 hour, comprehensive test. Helpful study strategies for quizzes 
and exams include reviewing class notes, pertinent material in the textbook, the assigned 
homework problems, problems at the end of the chapter and working through several of 
the previous semesters’ exams without looking at the available solutions until after you’ve 
completed each practice test. The goal is to check your understanding and to improve your 
accuracy and speed. Ineffective study strategies include simply memorizing questions from 
one exam or immediately looking at the solutions as soon as you read or get stuck on a 
problem. Since the class period is so short, no one exam covers all potential questions 
 
No programmable calculators are allowed during quizzes and exams. Typically, exams do 
not require calculators. If you would prefer to have a calculator with you, make sure that 
you bring a basic, inexpensive calculator that performs only basic math operations, e.g. 
add, multiply, etc. 
 
Make‐up exams will only be given with a valid, documented excuse. Barring circumstances 
outside your control, you must contact me before the missed exam to make arrangements 
for the make‐up.  
 
According to the URI University Manual, an Incomplete grade can only be given if (1) there 
is some precipitating event, e.g. accident, serious illness, etc., which interferes with or 
limits your ability to complete the course, (2) you are passing the course at the time of the 
precipitating event and (3) you make the request before finals. Please do not ask me to 
give you an I grade simply because you don’t want your current grade to go on your 
transcript. 
 
All work on your quizzes and exams must be individual work. Copying or cheating on any 
test will result in an automatic grade of zero on that test and will be reported to the 
Engineering Dean’s Office. 
   
Computer Usage:  MATLAB™  ‐  MATLAB is the acronym for Matrix Laboratory programming language, 
covered in EGR 106. MATLAB mathematical functions, graphics utilities and signal 
processing commands will be used on homework and exams.  MATLAB is available free of 
charge on the computers in either the ELE computer Center across the hall or in the 
Engineering Computer Center (ECC) in the Kirk Building, Room 203. 
   
Other Resources:  The Academic Enhancement Center, located on the 4th floor of Roosevelt Hall, houses the 
University’s Writing Center and Learning Assistance Program, as well as many other 

2
ELE 313 Linear Systems  SYLLABUS  Spring 2009 
academic support service areas such as tutoring, study groups and multiple forms of 
academic assistance workshops. The Center serves students who are seeking academic 
support as well as those with more advanced academic ability who are interested in 
helping others. In this interactive learning environment, students can enjoy a cup of coffee, 
get help or help others with schoolwork, and find individual or group assistance as needed. 
 
If you have a documented disability, please contact me early in the semester so that we 
may work out reasonable accommodations to support your success in this course.  You 
should also contact Disability Services for Students, in the Office of Student Life, Memorial 
Union, room 330, phone: 401‐874‐2098. 

Important Dates or changes in Course Schedule: 
 
              February 3      Last day to Add 
  March 10      Midterm 
  March 16‐22      Spring Break – classes do not meet 
  March 24      Drop Deadline 
  April 29      Classes End 
  April 30, May 1     Reading Days 
  May 4‐8, 11‐12     Final Exam period 
   
 
 
 
COURSE OBJECTIVES:    
 
• To Understand ‐ To understand continuous‐time and discrete‐time signals, linear systems, linearity, convolution, 
Fourier Transform and its properties. 
• To Question ‐ To question the most effective and intuitive methods for analyzing signals and systems in time 
domain vs. frequency domain. 
 
APPLICATIONS: 
 
  ELE 313 and 314 provide a good foundation in Signals and System Theory for people who want to learn more 
about any of the following topics: Digital Signal Processing, Sampled Data Systems, Image Processing, Speech 
Processing, Analog or Digital Communications, Control Systems, Coding/Quantization, Data Compression 
schemes, SONAR or  RADAR. 
 
TOPICS COVERED: 
• Concepts of systems, input and output 
• Discrete time vs. continuous time 
• Descriptions of commonly used signals, e.g., pulse, step, impulse, sinusoid, exponential 
• Running integral, running sum, first difference 
• Convolution, impulse response, step response 
• Frequency response 
• System properties including linearity, time‐invariance, stability, and invertibility 
• Cascade implementation vs. parallel implementation of systems  
• Direct form I and II flow graphs 
• Computation of Fourier Transform based on its definition 
• Fourier Transforms for some standard signals including impulse, step, rectangular, triangular, and sinusoidal 
functions 
• Fourier Transform properties such as shifting, convolution, differentiation, integration, modulation, and 
sampling theorem 
• Use of Matlab's elementary commands,  graphing functions, and digital signal processing toolbox  
 

3
ELE 313 Linear Systems  SYLLABUS  Spring 2009 
ABET PROGRAM OUTCOMES A – L COVERD IN THIS COURSE: 
            (ABET ~ Accreditation Board of Engineering and Technology)  
 
A.  an ability to apply knowledge of mathematics, science, and engineering 
• Analyze systems using the concept of input and output 
• Perform convolutions and running integrals 
• Obtain and interpret frequency response  
• Understand and apply system properties including linearity, time‐invariance, and stability 
• Compute Fourier Transform from its definition and for some standard signals. 
 
K.  an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice 
• Apply Fourier Transform properties such as shifting, convolution, differentiation, integration, 
modulation, and sampling theorem 
• Ability to use Matlab's elementary commands, graphic functions, and digital signal processing 
toolbox 
 
L.   an ability to question approaches, procedures, tradeoffs, and results related to engineering problems 
• Ability to use the most effective and intuitive methods for analyzing signals and systems in time 
domain vs. frequency domain 

You might also like