0% found this document useful (0 votes)
43 views16 pages

Mathematics: Mr. Ghassan

The document discusses parametric equations and polar coordinates. It provides examples of using parametric equations to define and graph curves, including using parametric equations to define circles and astroids. It also covers finding the tangent lines and calculating the area and length of curves defined parametrically.

Uploaded by

Zayto Saeed
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
43 views16 pages

Mathematics: Mr. Ghassan

The document discusses parametric equations and polar coordinates. It provides examples of using parametric equations to define and graph curves, including using parametric equations to define circles and astroids. It also covers finding the tangent lines and calculating the area and length of curves defined parametrically.

Uploaded by

Zayto Saeed
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 16

Mathematics II

Mr. Ghassan
Lecture 6
PARAMETRIC EQUATIONS AND POLAR COORDINATES
In previous study, we have studied curves as the graphs of functions or
equations involving the two variables x and y. We are now going to
introduce another way to describe a curve by expressing both coordinates
as functions of a third variable t.
𝒚 = 𝒇(𝒙)

𝒙 = 𝒇(𝒕) 𝒚 = 𝒈(𝒕)

[𝒙, 𝒚] = [𝒇 𝒕 , 𝒈(𝒕)]
The set of (x,y) produce Parametric Curve

https://www.geogebra.org/m/cAsHbXEU
Parametric Equations Plotter link
SIE dept, Mathematics 2019-2020, Mr. Ghassan
Parametric Equations
42
Example 1: Sketch the curve defined by the parametric equations
𝒙 = 𝒕𝟐 𝒚=𝒕+𝟏

• Create t Table.
• Find x,y according to their
parametric equation.
• Each point has x,y,t values
• Identify geometrically the
curve, by finding y(x), or
x(y).
𝒙, 𝒚 = 𝒇 𝒕 , 𝒈 𝒕 = [(𝒕𝟐 ), (𝒕 + 𝟏)]
𝒙 = (𝒚 − 𝟏)𝟐
SIE dept, Mathematics 2019-2020, Mr. Ghassan 43
Example 2: Graph the parametric equations
𝒙 = 𝒄𝒐𝒔(𝒕) 𝒚 = 𝒔𝒊𝒏(𝒕)

𝒘𝒉𝒆𝒓𝒆 𝟎 ≤ 𝒕 ≤ 𝟐𝞹
𝟐 𝟐
𝒄𝒐𝒔 𝒕 + 𝒔𝒊𝒏 𝒕 =𝟏

𝒙𝟐 + 𝒚𝟐 = 𝒄𝒐𝒔 𝒕 𝟐
+ 𝒔𝒊𝒏 𝒕 𝟐
=1

𝒙𝟐 + 𝒚𝟐 = 1

H.W.) Graph the Parametric Equations


𝒙 = 𝒂 · 𝒄𝒐𝒔(𝒕) 𝒚 = 𝒂 · 𝒔𝒊𝒏(𝒕) 𝒘𝒉𝒆𝒓𝒆 𝒂 > 𝟏
SIE dept, Mathematics 2019-2020, Mr. Ghassan 44
Example 3: Sketch the curve defined by the parametric equations
Case 1 𝒙=𝒕 𝒚 = 𝒕𝟐 Case 2 𝒙= 𝒕 𝒚=𝒕

SIE dept, Mathematics 2019-2020, Mr. Ghassan 45


Example 4: Sketch the curve defined by the parametric equations,
does this graph intersect x-axis, or y-axis?
𝟏
𝒙=𝒕+
𝒕
𝟏
𝒚=𝒕−
𝒕
𝒘𝒉𝒆𝒓𝒆 𝒕 > 𝟎

𝟏 𝟏 𝟐
𝒙 − 𝒚 =? 𝟏 𝒙 − 𝒚 = (𝒕 + ) − (𝒕 − ) 𝒙−𝒚=
𝒕 𝒕 𝒕
𝟏 𝟏
𝒙 + 𝒚 =? (𝟐) 𝒙 + 𝒚 = (𝒕 + ) + (𝒕 − ) 𝒙 + 𝒚 = 𝟐𝒕
𝒕 𝒕
𝟐
𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒚 𝟏 , 𝟐  (𝒙 − 𝒚)(𝒙 + 𝒚) = · 𝟐𝒕 𝒙𝟐 − 𝒚𝟐 = 𝟒
𝒕

SIE dept, Mathematics 2019-2020, Mr. Ghassan 46


Problems: Finding Cartesian from Parametric Equations

SIE dept, Mathematics 2019-2020, Mr. Ghassan 47


Tangents and Areas
𝒅𝒚 𝒚 = 𝒈(𝒕) 𝒅𝒚 = 𝒈`(𝒕) ∙ 𝒅𝒕
𝑻𝒂𝒏𝒈𝒆𝒏𝒕 𝒎𝒆𝒂𝒏 →
𝒅𝒙 𝒙 = 𝒇(𝒕) 𝒅𝒙 = 𝒇`(𝒕) ∙ 𝒅𝒕

𝒅𝒚
𝒅𝒚 𝒈` ∙ 𝒅𝒕 𝒅𝒚 𝒅𝒚 ∙ 𝒅𝒕 𝒅𝒕 𝒅𝟐 𝒚
= = = 𝐂𝐡𝐚𝐢𝐧 𝐑𝐮𝐥𝐞 =?
𝒅𝒙 𝒇` ∙ 𝒅𝒕 𝒅𝒙 𝒅𝒙 ∙ 𝒅𝒕 𝒅𝒙 𝒅𝒙 𝟐
𝒅𝒕

𝑨𝒓𝒆𝒂 𝒎𝒆𝒂𝒏 → 𝑨 = 𝒚 ∙ 𝒅𝒙 𝑨= 𝒈(𝒕) ∙ 𝒇`(𝒕) ∙ 𝒅𝒕

SIE dept, Mathematics 2019-2020, Mr. Ghassan 48


Example 1:

𝑑𝑦 𝑑𝑦 𝑑𝑡 𝑠𝑒𝑐 2 𝑡 𝑠𝑒𝑐 𝑡
= = =
𝑑𝑥 𝑑𝑥 𝑑𝑡 𝑠𝑒𝑐 𝑡 𝑡𝑎𝑛(𝑡) 𝑡𝑎𝑛 𝑡

π
𝑑𝑦 𝑠𝑒𝑐 4 2 π π
= π = − <𝑡<
𝑑𝑥 𝑡𝑎𝑛 1 2 2
4
𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 → 𝑦 − 𝑏 = 𝑚(𝑥 − 𝑎)
𝑎= 2 ,𝑏 = 1 ,𝑚 = 2
𝑦 = 2𝑥 − 1
SIE dept, Mathematics 2019-2020, Mr. Ghassan 49
Example 2:

Be Careful it is NOT

SIE dept, Mathematics 2019-2020, Mr. Ghassan 50


Example 3: 𝑭𝒊𝒏𝒅 𝒕𝒉𝒆 𝒂𝒓𝒆𝒂 𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔:

𝒙 = 𝒄𝒐𝒔 𝒕 , 𝒚 = 𝒔𝒊𝒏 𝒕 , 𝟎 ≤ 𝒕 ≤ 𝟐𝝅
𝟏
𝑨= 𝒚 ∙ 𝒅𝒙 → 𝑨=𝟒 𝒚 ∙ 𝒅𝒙 → 𝒘𝒉𝒚?
𝟎

π
𝟐
𝑨=𝟒 𝒔𝒊𝒏(𝒕) ∙ −𝒔𝒊𝒏(𝒕) ∙ 𝒅𝒕
𝟎
π π
𝟐 𝟐𝟏 − 𝒄𝒐𝒔(𝟐𝒕)
𝑨 = −𝟒 𝒔𝒊𝒏𝟐 𝒕 ∙ 𝒅𝒕 → −𝟒 ∙ 𝒅𝒕
𝟎 𝟎 𝟐
π
𝟐
𝟐 (𝒄𝒐𝒔 𝟐𝒕 − 𝟏) ∙ 𝒅𝒕 → ???
𝟎

SIE dept, Mathematics 2019-2020, Mr. Ghassan 51


Example 4:
t x y 𝒙 = 𝒄𝒐𝒔𝟐 𝒕 , 𝒚 = 𝒔𝒊𝒏𝟐 𝒕 , 𝟎 ≤ 𝒕 ≤ 𝟐𝝅
0
π 𝒙 = 𝒄𝒐𝒔𝟐 𝒕
𝟏
𝟒 𝒚 = 𝒔𝒊𝒏𝟐 𝒕
𝟐𝝅 𝟎 ≤ 𝒕 ≤ 𝟐𝝅 𝑨= 𝒚 ∙ 𝒅𝒙 → 𝑨= 𝒚 ∙ 𝒅𝒙
𝟎
𝟒
𝟑π π
𝟒 𝟐
𝟒π 𝑨= 𝒔𝒊𝒏𝟐 (𝒕) ∙ 𝟐𝒄𝒐𝒔(𝒕) ∙ −𝒔𝒊𝒏(𝒕) ∙ 𝒅𝒕
𝟎
𝟒
𝟓π π
𝟐
𝟒 𝑨 = −𝟐 𝒔𝒊𝒏𝟑 (𝒕) ∙ 𝒄𝒐𝒔(𝒕) ∙ 𝒅𝒕
𝟔π 𝟎
𝟒
𝟕π 𝑨 =? ? ?
𝟒
𝟖π
𝟒 SIE dept, Mathematics 2019-2020, Mr. Ghassan 52
Length of a Parametrically Defined Curve
𝒙=𝒇 𝒕 ,𝒚 = 𝒈 𝒕 ,𝒂 ≤ 𝒕 ≤ 𝒃

𝑳𝒌 = 𝒅𝒙𝟐 + 𝒅𝒚𝟐

𝒃
𝑳= 𝒅𝒙𝟐 + 𝒅𝒚𝟐
𝒂

𝒃
𝑳= 𝒇` 𝒕 𝟐 + 𝒈` 𝒕 𝟐 ∙ 𝒅𝒕
𝒂

SIE dept, Mathematics 2019-2020, Mr. Ghassan 53


Example 1: Using the definition, find the length of the circle of radius r defined
parametrically by

𝒙 = 𝒓 ∙ 𝒄𝒐𝒔 𝒕 , 𝒚 = 𝒓 ∙ 𝒔𝒊𝒏 𝒕 , 𝟎 ≤ 𝒕 ≤ 𝟐𝝅
𝑟2
𝒅𝒙 = 𝒓 ∙ −𝒔𝒊𝒏 𝒕 ∙ 𝒅𝒕 , 𝒅𝒚 = 𝒓 ∙ 𝒄𝒐𝒔 𝒕 ∙ 𝒅𝒕
𝒃
𝑳= 𝒇` 𝒕 𝟐 + 𝒈` 𝒕 𝟐 ∙ 𝒅𝒕
𝒂 (𝑟, 0)
𝟐𝝅
𝑳= 𝒓 − 𝒔𝒊𝒏 𝒕 𝒅𝒕 𝟐 + 𝒓𝒄𝒐𝒔 𝒕 𝒅𝒕 𝟐
𝟎

𝟐𝝅
𝟐 𝟐
𝑳= 𝒓 𝒔𝒊𝒏 𝒕 + 𝒄𝒐𝒔 𝒕 𝒅𝒕 𝑳 =? ? ?
𝟎

SIE dept, Mathematics 2019-2020, Mr. Ghassan 54


Example 2: Find the length of astroid function
𝒙 = 𝒄𝒐𝒔𝟑 𝒕 , 𝒚 = 𝒔𝒊𝒏𝟑 𝒕 , 𝟎 ≤ 𝒕 ≤ 𝟐𝝅
𝒅𝒙 = −𝟑𝒄𝒐𝒔𝟐 𝒕 𝒔𝒊𝒏 𝒕 𝒅𝒕 , 𝒅𝒚 = 𝟑𝒔𝒊𝒏𝟐 𝒕 𝒄𝒐𝒔(𝒕)𝒅𝒕
𝒃
𝑳= 𝒇` 𝒕 𝟐 + 𝒈` 𝒕 𝟐 ∙ 𝒅𝒕
𝒂
𝟐𝝅
𝑳= 𝟗𝒄𝒐𝒔𝟒 𝒕 𝒔𝒊𝒏𝟐 (𝒕) + 𝟗𝒔𝒊𝒏𝟒 𝒕 𝒄𝒐𝒔𝟐 (𝒕) ∙ 𝒅𝒕
𝟎
𝟐𝝅
𝑳= 𝟗𝒄𝒐𝒔𝟐 𝒕 𝒔𝒊𝒏𝟐 (𝒕)(𝒄𝒐𝒔𝟐 (𝒕) + 𝒔𝒊𝒏𝟐 𝒕 ) ∙ 𝒅𝒕
𝟎
𝝅
𝟐
𝑳=𝟒 𝟑𝒄𝒐𝒔 𝒕 𝒔𝒊𝒏(𝒕) 𝒅𝒕 𝑳 =? ? ?
𝟎

SIE dept, Mathematics 2019-2020, Mr. Ghassan 55


Problems:

Find the Slope

Find the Area

Find the Length

SIE dept, Mathematics 2019-2020, Mr. Ghassan 56

You might also like