0% found this document useful (0 votes)
964 views144 pages

JPL J: Hitachi Seiki Micon 8 Maintenance Manual

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
964 views144 pages

JPL J: Hitachi Seiki Micon 8 Maintenance Manual

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 144

HITACHI SEIKI MICON 8

MAINTENANCE MANUAL

\> 4figl *=
i
I -
*

jPL;j
i
:

tL«M- .;1 i1
i


i m r1 5 T

MORISEIKI
THE MACHINE TOOL COMPANY
June. 2000-1st Edition
CONTENTS

1. MICON 8 TYPE-1- ( CODE-XX ). 1-1

2. Specification 2-1

3. Construction 3-1

4. Software 4-1

4-1. Control Program 4-1

4.1.1 Interpreter 4-1


4.1.2 Timer Control 4-2
4.1.3 Key Board Control 4-2
4.1.4 A, B Phase Control 4-2
4.1.5 D/A Converter Control. 4-2
4.1.6 Machine Function 4-2

4-2. Sequence Program Instructions 4-3

4.2.1 List of Instructions 4-3~4-4


4.2.2 Flow Chart 4-5~4-7
4.2.3 Example of Symbol 4-8
4.2.4 Example of a Flow Chart. 4-9-4-10

5. Hardware 5-1

5-1. Signal 5-1 -5-2

5-2. CPU Board 5-3

5-3. Architecture 5-4

5.3.1 General 5-4


5.3.2
5.3.3
Memory
Input
-
5-5 5-6
5-7-5-11
5.3.4 Output ( Included Digital to Analog Converter) 5-12-5-24
5.3.5 Key & Display 5-25

6. Keyboard and Display Operation 6-1

6-1. Keys and Their Uses 6-1

6-2. Display Pattern 6-2

6-3. How to Identify Alarm Indication 6-3

6-4. How to Identify Individual Signals. 6-4-6-12

6-5. MICON 8 Operation sheet 6-13

7. Main Board Replacement Procedure ( PT-CODE-xx ) 7-1


1 -1 •
1. MICON 8 TYPE-II- ( SQM8-XX )

2. Specification 2-1

3. Construction 3-1

4. Software 4-1

5. Hardware 5-1

5-1. Signal 5-1 ~ 5 - 2

5-2. CPU Board 5-3

5-3. Architecture 5-4

5.3.1 General 5-4


5.3.2 Memory 5-5~5-6
5.3.3 Input 5-7~5-8

6. Main Board Replacement Procedure ( SQM8-xx ) 6-1

APPENDEX

1. A - B Phase Control A1 -1

1. Introduction A1 - 1
2. Details of memory data A1 - 2~A1 - 5
3. Diagnostic function of A - B Phase A1 -6
4. Proximity switch A1 - 7~A1 - 9

2. Memory Data and Parameter. A2-1-A2-34

3. Example of Trouble shooting A3 - 1 ~A3 - 9


MICON -8- MANUAL

MODEL- I- TYPE ( CODE-xx )


1. MICON 8

§ MICON 8 is designed as the sequence controller for the machine

tools, especially N/C Turning center and Machining center, by


HITACHI SEIKI's Micro computer engineering.

§ CPU is Z-80 Microprocessor.

§ The diagnostic functions through key board and display are in¬
creased to assure quick and easy maintenance.

§ Sequence program described by 18 instructions are easy to under¬


stand the machine function.

§ A.T.C. controller, tool head controller and table controller are


ready in control program including 16 software timers and D/A
converter.

1 - 1
2. Specification

CPU CPU Zilog Z-80 Microprocessor


Word size 8 bits
Instructions 158
Addressable memories 64k
Clock 2.5MHz (Crystal 5MHz)
Voltage required +5V

Sequencer Type of program Flow chart


Instructions 18
Input 128
8 M function
16 S function
8 T function
12 B function
2 pairs of pulse-count inputs
Output 512 (including 96 relay connections)
Timer 16 sets software
Others D/A converter

Operation Key board and display


Construction CPU board
D/I board
Key board
Display board
Relay board

2-1
3. Construction
+5V +5V +12V Battery

PCI PC2 PC3


Analog output Spindle
j-|
U
CN8 CPU Board +/- 10V drive unit
PT.CODA - 0* CN12

Bus nn
(Optional) ULJ
CN14
CN11 !! _D/0port _ Ex.
y (Optional) Printer

CN10 CN13 CN3 CN2 CN1

ID
dl Id
Display KB3 Output

_- -_
KB 2
ID- Machine
N/C
Key Output Relay
board Board ID
{II
Id
! 7.n
+5V t
UV
: it i %in
jj
L b*

r PC4

CN9
Input Board
PT.IN - 0*

MICON 8
CONSTRUCTION
CN7 CN6 CN5 CN4

N/C Machine N/C


Input

3-1
4. Software

A machine is controlled by 2 (two) programs, named Control


program and sequence program, which are stored in the memory of
MICON 8.

The programming language of the control program is the assembler


of Z-80 Microprocessor.

The programming language of the sequence program, which is


interpreted to assembler by part of control program, is developed
by HITACHI SEIKI to make machine control program easy.

Software (memory)

Control Sequence
program program

Max. 8 k Max. 8 k

4.1 Control Program

Control program consists of following programs.

1. Interpreter (Sequence program to assembler)


2. Timer control
3. Key board and display control
4. A, B phase control
5. D/A converter control
6. Machifte function (A.T.C., Table etc.)

4. 1. 1 Interpreter

Sequence program described by 18 instructions will be


interpreted to the assembler, so that MICON 8 will perform
machine function correctly.

4-1
4.1.2 Timer Control

Timer control program makes time unit (100 msec) by


counting 50 m sec twice, starts counting on the timer which
is specified by "STT" instruction of sequence program.
After coincidence is made between time counting and time
set up amount stored through key board and display, timer
condition is confirmed as count completion by "SST" instruc-
tion of sequence program. Timer reset will be made by "RTT"
instruction.

4.1.3 Key Board and Display Control

Timer setting, diagnose function and memory writing


function can be made. under this program as the standard
function, and error display is also performed.

For the further functions, this program controls the


Key board and display as the part of operator's panel like
A.T.C. Manual operation.

4.1.4 A, B Phase Control

A.T.C. magazine, table or tool head are controlled by -


a pair rectangular waves with 90° lag".

4.1.5 D/A Converter Control


12 bits spindle speed command will be transfered to
digital/analog converter to get analog signal.

4.1.6 Machine Function

A part of A.T.C program or tool head program is described


by assembler specially.

4-2
4.2 Sequence Program Instructions

4.2. 1 List of Instructions

No. Instructions Description Remarks

1 BRU To jump to the address specified


in the sequence program

2 CALL To call the subroutine of the


sequence program

3 CLA To clear the indication of each


output signal

4 GOTO To jump to the fixed address


specified in the control program

5 JMP To jump to the address specified


in the control program

6 MCP To compare the present command


with a miscellaneous code signal
so as to skip to the next command
upon confirming that the content
of the present command is identical
(yes) with that of the miscellene-
ous code signal.

7 MCPN To compare the present command with


a miscellaneous code signal so as
to skip to the next command upon
confirming that the content of the
present command is not identical
(no) with that of the miscellaneous
code signal.

8 NOP No operation (no program execution)

9 RETN This command is applied in combina¬


tion with the CALL command so as to
return from the subroutine to the
main routine.

10 RTO To reset the ON/OFF indication of


each output signal

11 RTT To reset each timer

4-3
No. Instructions Description Remarks

12 SNI To skip the next command upon con¬


firming that the content of the
present command is identical (yes)
with that of the input signal.

13 SNIN To skip the next command upon con¬


firming that the content of the
present command is not identical
(no) with that of the input signal.

14 SNO To skip the next command upon con¬


firming that the content of the
present command is identical with
that of the output signal.

15 SNON To skip the next command upon con¬


firmation that the content of the
present command is not identical
(no) with that of the output signal.

16 SST To skip the next command upon con¬


firming that the time set on a
timer has elapsed (yes) .
17 STO To '
.set the ON/OFF indication of
each output signal

18 STT To set each timer

*N\ '•
*

4-4
4.2.2 Flow Chart

Sequence-Program is expressed by Flow-Chart. Detail of


Flow chart is explained below.

Refer to the KEYBOARD AND DISPLAY OPERATION, for details


regarding how to- identify both the input and output signals.

1) Decision

With reference to the figure


at the left, if the answer to the
N inquiry over the signal specified
in <( is yes, the sequence flow
Y initiates in Y direction. But when
the answer is no, the sequence flow
occurs in the N direction.

When the ON/OFF data of the signal concerned is 1,


a decision comes with yes but no if the ON/OFF data is 0.

As long as the miscellaneous functions are concerned


which are available with the M codes and others, if the
contents within \ y block are identical with the display
contents, the sequence flow takes place in the Y direction.

On the other hand, when the contents are not identical


with the display contents, the sequence flow comes in the N
direction .
Note : In case the ON/OFF data indecated on the display unit
is 1, it signifies that the input contact closes when
an input is on.
But with an output on, it is surmised that an output

'is available.
If the ON/OFF data shown in the display unit is 0,
the input contact opens when an input is off. However
with an output on, in the same condition as the above
it is not available.

4-5
Decision Y N
Input contact close open
M, T, B number same not same

Output on off
Timer counting finish counting
Diagnostic display 1, 0 for Timer 0, 1 for Timer

2) Process

This block is used to specify


various commands to be executed for
S setting and resetting an output and
T each timer, as well as for clearance,
program return, etc.
R Further sequence flow takes place

T downward upon completing the execu¬


tion of a command given in this
RETURN block.
The command of setting, "S" or "STO"
is specified at the upper left space
within block.

"R" or "RTO" is entered into the same space within the


block, for the command of resetting.
The command for setting is specified with "1" of the output
signal ON/OFF data. When "1" is displayed, an output is
available.
The command for resetting is specified with "0" of the output
signal ON/OFF data.
When 'I'-O” is displayed, no output is available.

As long as a timer is concerned, when "1” is displayed


with setting completed, the counter starts counting.
The counter stops counting, getting back to the initial state,
when "0" is displayed with resetting completed.

4-6
With the indication clear command executed, no output is
available. When the program return command is input to execu¬
tion, the subroutine comes to the end with a shift made to
the main program.

Process S R
Output on off
Timer count start reset

Diagnostic display 1 0

3) Subroutine

This symbol stands for a sub¬


CALL routine which is defined separately.

T The symbol is used to make a call


for or a jump to the subroutine.
JMP When the subroutine is completed,

T a shift is made to the main program

to effect the program flow further


in the down direction.

4) Non operation

NOP

4 - 7
4.2.3 Example of Symbol

i)
i Referring to the figure left,
Tool head LS15 is a symbol of a certain signal.
Y
clamp
N or N025 stands for an input and
LS15.N025
025 for input number "25".
N
U025 comes with an output of output
number "25".
"Tool Head Clamp" in the upper space within the ( ) block is
the content of the LS15 control signal.

2)
i With reference to the figure
at the left, a check is made as to
Y
MO 8 whether or not the content of the
M code (for one of the miscellaneous
f functions) specified in this block
is M08.
If the T code is specified in this
block, a check is made as to whether
or not the content is T08.
In case the S code is specified in the block, a check is
effected to make sure whether or not the content is S08.
When the content of some instruction specified in <( )>
block is identical with that of the miscellaneous function
to be effected, the data flow occurs in the Y direction.

S!
*

4-8
4.2.4 Example of a Flow Chart

Example 1 Firstly, when the signal ON/OFF


data with LSI is 0 (no), the data
flow occurs in the direction toward

Door close
N
© where resetting (0) is effected
LSI, N001 for air blow (with the signal ON/OFF
Y data being 0) with the result of no
air blowing.

Next, when the signal ON/OFF


Tool head Y data with LSI is 1 (yes) with the
unclamp
TUC, U02Q ON/OFF data with TUC is 0 (off),

N the data flow takes place in the


direction toward (a) below.
© © At this time, setting (1) is effected
S. air blow R. air blow
AIR, U003 AIR, U003 for air blow, with air blowing im¬
plemented.

Provided, even if the signal


© ON/OFF data with LSI is 1 (yes) ,
the data flow is made in the direc¬
MO 8 N
tion toward (b) below when the ON/
OFF data with TUC is 1 (yes) .
Y
At this time, resetting (0) is

effected.
© © Successively, the data flow
goes to (© . If miscellaneous
S. coolant R. coolant
CLT, U100 CLT, U100 function M08 is specified in block
©) , the data flow is made to ©
where CLT is set (1).
Thus , coolant is delivered.
©
If M08 is not specified in
block © , the data flow goes to
block © where CLT is reset (0), thus
no delivering coolant. Thereafter,

the data flow reaches block (f) .

4-9
Example 2

If there is a flow chart symbol such as


I is given below, it signifies "TIDX" subroutine
Call TIDX
(mostly, the symbol of subroutine is given
near the end of the flow chart) .
When this subroutine is executed, a shift
is made to the main program.

c
Subroutineÿ
TIDX J

Return

4-10
5. Hardware

5.1 Signal

Input signal 1

Described by Nxxx N001-N128 or N256


Signal from outside Limit switch
Push button
Relay contact
N/C etc.

Input signal 2

Described by Mxx, Txx — and Bxxx


Signal from N/C M function 2 digits
T function 2 digits
B function . 3 digits
Signal — B.C.D. (Binary Coded Decimal)
M, T function — 1,2,4,8,10,20,40,80 — 8 inputs
B function — 1,2,4,8,10,20,40,80,100,200,400,800 — 16 inputs
Note: 4 digits T function on the lathe
Last 2 digits are used for the tool offset inside N/C
unit, only first 2 digits are effective on the MIC0N 8.

Input signal 3

Described by Rxx
Signal from N/C R01 — R12 Spindle speed
Signal — 12 bits binary

Input signal 4

Described by Phase A, B 2 pairs PA1, PB1 PA2, PB2


Signalÿ from ATC, Table and Tool head.
Signal -- 2 rectangular waves with 90 deg. lag.

Output signal

Described by Uxxx
§U001
— U096 Signal to outside Solenoid
Lamp
Relay coil
N/C etc.
§U09 7 — U512 Dummy signal

5-1
Timer

Described by TRxx There are 16 timers

Setting time 0.1 25 . 5 sec. or 0 . 1 25.5 min.

Analog output

±10V for spindle speed command


Digital (12 bits binary) to analog converter

5-2
5.2 CPU Board

H
CN14 CN8

PI - P7
o PI P-ROM socket
2
u P2 P1,P2 and P7
P3 o Control (System) program
CPU
P4 P3 - P6
ic P5 Sequence program
i I O P6
I1 I u
z
CH2
P7 z CH2 - GND
I I Bridge to inhibit interruption
LJ O
i °U§ WRSW
Switch on to write parameter
rn Oxl Oxl CMSW
CJ on C\ a o
w PL, Switch on to be RAM sequencer
O X -I
sOH PCI - PC3
T Og Power source connector
2QJ
w
CN
z LED1
o
ON/ Battery low level
D/A CO
u
converter cu LED2
I > DC /DC
ON/
LED 3
Interrupt disable

Q
Oconverter
2 z
oO Oo ON/ Halt condition
CJ
zO O LED4
VR2 VR1
2 O ON/ Power source +5V

CN11
OO so =3 O
w o+g
<
Q
CN12 i
}

«$C (GND) CLOCK 2.5MHz


5V (GND) +5V
12V (GND) +12V
GND OV
BY1 (LGNft) Battery
LGND OV ]— Battery
+15V (N) +15V
-15V (N) -15V
5N (N) +5V
N OV — D/A converter
DAOUT(N) Analog output
VRl ) (
Analog output
VR2 adjustment —

5-3
5.3 Architecture

5.3.1 General

2.5MHz CLOCK
5MHz
CPU
6
Memory

r i
~
r n.n 1
I i i i y i F
-7-TC-2k~fiQM-

3TJ 1 (ÿ6Tc2kR0Mr~iÿfeROM)
4
*
fcx-ik RAM
I I T 2

Output
I (D/A
converter)

3
XI
CO
a CO
CO

C3 2
Q
-T3

<
£ fl
Input

S\ *

H I
Key & display

5-4
5. 3.2 Memory

ABO - AB10
AO - AB11
ABO 3/8 03
A15 AB15 AB12 Decoder
AB13
AB14.15 7
(enable)
MDBO - MDB7

2k ROM
f0
OOOO Control
07FF
7

0800
Control
OFFF

r-
PQ
Q
1000
Sequence
i 17FF
o
pa
a
1800 Sequence
1FFF
i--
Q
2000 Sequence
o 2 7FF
a

2800
Sequence
2FFF

4000 Control
o
ja
47FF
nS (4FFF)
3
Q 2k ROM or 4k ROM

3
i

PQ
<

5-5
Memory

MDBO - 3 ABO - 15

lk RAM 0
4 bits
MDBO - r0
MDB3 ABO - AB9
< >

3
3000
9 J I
33FF
lk RAM 0 'i
(0 4 bits
MDB4 -
MDB 7 ABO - AB9
I

U
9 J

o Timer table etc.

lk RAM 0 3400
f0 4 bits
MDBO - I I
MDB 3 ABO - AB9 37FF '

- I
I
C3
9 J

o Output, timer dummy etc.

Three RAMs are backed up by the battery.

5-6
5.3.3 Input

+24V +5V
Photo- coupler
IL1

o o-o-[ Data selecter

7/7" IL2 IDBO DBO


l
!
to data bus
I
I IL8

OV

ABO - 2
4/16 Decoder
IL9
AB3
i i

128 Inputs i
(Basic)
AB6
M 8 bits IL16
S 16 bits
T 8 bits
B 12 bits
PA1 1 bits
PB1 1 bit ABO - 2
PA2 1 bit
PB2 1 bit PH
128 Inputs
ft
CO C CO
a co o ro
(Option)
Cfl I U |
CvJ cu
P3 O HO O Kj
O P-. CO HH
co <
cn m — oo <
co n —
3

ABO - 2

5 - 7
)

v s
u
Input
Input Input N097 - N 12 8
M,S,T,B input
N001 - N048 N049 - N096 etc.

hH
CN4 CN5 CN6 CN7 o
'O
/ c
/ rr
A
CO
o
pi

Ln
I
00

o To CN8
2;
v£) on PT.CODA xx
CPU board

PC4
L j

+5V

:
<
*

£ 3 3
N09
Nil
N 12 2 3
3 ii
N09
N071
N072
N047
N048
3
1
N02 3
N024
3
3

3 3
N 11 7 N093 N069 N045 3 N021 )
N 11 8 3 N094 N070 N046 3 N022 )
3 3

I ) 3 3 3
Rll (S 34) (S44) « B34 N 115 N091 N06 7 N043
R12 (S 38) (S48)
' / B38 '
c
J
3
N116
3
3
N092 N068 ‘« N044
3
3
3
N019
N020
]

3 3 3
R09 (S31)
RIO (S32) m] : Nil
Nili
3
3
N089
N090
N
Nm N041
N042
3
3
3
N01 7 c
N018 c
3
3

3 3 3
R07(S24) T24 B 31 Nlll 3 N087 )
N063 N039 3 N015 3
R08(S2 8) T2 8 B32 N112 3
N088 N064 N040 3
N016 3
3 3
3 P 3

03 RO 5 ( S 2 1) T21 AUX1 N 109 3 N085 N061 N037 3 N01 3 p


R04(S22) T22 AUX2 N 110 3
N086 N062 N038 P N014 3
I
VO 3 3 1

R03 (S 14) T14 PA1 N107 3 N083 N059 3 N035 3 N011 3

R04 (S18) T18 PB1 N 108 3 N084 N060 NO 36 3 N012 3

3 3 3
3 3 1
ROl(Sll) Til PA2 N105 3
N081 N057 N033 3
N009 3
3
R02 (S 12) T12 PB2 N106 N082 I
N058 NO 34 N010 3

3 3 3

M2 4 B24 N12 7 N103 3 N079 N055 N031 3 N007 P


M2 8 B28 N128 N104 3 N080 N056 NO 32 3 N008 P
3 3 P P
M21 B21 N 125 N101 3
N077 N053 N029 3
N005 3

B22 N126 N102 p NO/8 N054 NO 30 N006 p


M22 3
3 3

P
M14 B14 N123 N099 3 N075 N051 N027 3 N003 3

Ml 8 B 18 N124 N100 3 N076 N052 N028 3 N004 3


a
3 C 3 7

Mil Bll N121 N09 7 3


N073 N049 N025 1 3 N001J b
p
N122 N098 P N074 N050 N026 1 N002
M12 B 12 ‘ 3
3

1 4 «
INPUT CIRCUIT

Voltage check
5V
i

Input D1-D1 78
TLP504
TOSHIBA fa Resistor
device W S' array

i
R1-R1 78 H> 1 8
10 k

r—O

«•—o
1
H1 CO To Data selectors/
Multiplexers
;

LS251
Capacitors

'V Photo v
0V + 24V coupler GND

Voltage (V)

Check point 1-2 6-5 a-OV


4-3 7-8 b-OV
(+)-(-) (+)-(-) (+)-(-)

Inp-ut ON
0.9V-1 .4V 0V 0V
Contact close t

Input
device
Input OFF
0V 5V 24V
Contact open

2
5-10
1
i
i
Input device Connection Chart

Connector CN4 Connector CN5 Connector CN6 Connector CN7


Resistor Resistor Resistor Resistor
Input Diode Input Diode Input Diode Input Diode Pin
No. No. No. No. No. No . No. No . No.
N00 1 1 N049 49 NO 9 7 97 M1 1 129 1
N002 2 NO 50 50 NO 9 8 98 M12 130 2
N003 3 NO 51 51 N099 UU M14 131 3
N004 4 N052 52 N 1 00 100 8 132 4
N005 5 NO 5 3 53 N10 1 101 M2 1 133 5
N006 6 N054 54 N102 TUT M2 2 134 6
N007 7 N055 5-5 N103 TUT M2 4 135 7
N008 8 N056 56 N104 TUT M28 136 8
NO 09 9 N057 57 N105 105 S1 1 137 9
N0 10 10 NO 5 8 58 N 1 06 TUT S12 138 10
N0 1 1 11 N059 59 N107 TUT S14 139 11
N0 12 12 N060 60 N108 108 S 18 140 12
N0 13 '
13 N06 1 61 N 1 09 TUT S21 141 13
N0 14 IT NO 6 2 62 N1 10 TTU S22 142 14
N0 15 15 NO 6 3 63 N1 1 1 TTT S24 143 15
N0 16 16 NO 6 4 64 N1 12 TiT S28 144 16
N0 17 17 N065 65 N1 13 TTT S3 1 145 17
N0 18 18 N066 66 N1 14 HT S32 1 46 18
N0 19 19 N067 67 N1 15 TTT S34 147 19
N020 20 N068 68 N 1 16 TTU S38 148 20
N02 1 21 N069 69 N1 17 TTT S41 149 21
NO 2 2 22 NO 70 70 N 1 18 TTT S42 150 22
N023 23 N071 71 N1 19 TTT S44 151 23
N024 24 NO 7 2 72 N 1 20 TTU S48 152 24
N025 25 N073 73 N1 2 1 TTT T1 1 153 25
NO 2 6 26 N074 74 N 1 22 TTT T12 154 26
N027 27 NO 7 5 75 N 1 23 TTT T14 155 27
N028 28 NO 7 6 76 N 1 24 TTT T18 156 28
N029 29 NO 7 7 77 N 1 25 TTT T21 157 29
N030 30 N078 78 N126 TTU T22 158 30
N03 1 31 NO 7 9 79 N 1 27 TTT T24 159 31
N032 32 N080 80 N 1 28 128 T28 160 32
N033 33 N08 1 81 PA1 173 B11 161 33
N034 34 N082 82 PB 1 174 B12 162 34
NO 3 5 35 N083 83 PA2 175 B14 163 35
N036 36 N084 84 PB2 176 B18 164 36
N037 •ÿ37 N085 85 AUX1 1Z7 B21 165 37
N038 38 N086 86 AUX2 178 B22 166 38
N039 39 N087 87 MSURO B24 167 39
N040 40 N088 88 MSUR1 B28 168 40
N04 1 41 N089 89 MSUR2 B31 169 41
N042 42 N090 90 .MSUR3 B32 170 42
N043 43 N09 1 91 MSUR4 B34 171 43
N044 44 N092 92 MSUR5 B38 172 44
N045 45 N093 93 MSUR6 45
N046 46 N094 94 MSUR7 46
N047 47 N095 95 (GN) 47
N048 48 N096 96 (GN) 48
+ 24V 49
+ 24V 50
5 - 11
5.3.4 Output

ABO - AB15
4/16 Decoder
AB3 -
0. .0 i
AB6 OSCÿ - OSC11
I
3- i
i
CSOP1 OSC12 - 0SC15

DBO
CSOP2 CL"X) 1
O
CSOP1 : 3400 - 34 7F
OCSjS CSOP2 : 3480 - 34FF
8 bit addressable latch
0 OLl RR
1
O O cz=! U001
ABO O0L2 OI a± U002
AB2
li 7
I I
l

0CS1
2 >0L8

OSC15

5-12
Output

Addressable latch
OLn
Ryn

ABO - AB2
OCSn

OOllOlOOOxxxxxxx
3400 - 34 7F
00 1 10 100 lxxxxxxx
AB3 - AB6
3480 - 34FF

AB 15 | 14 1 13 | 12 | 11| 10] 9 8 I 7
0 0 1 1 o 1 0
A 3 4
oTo

AB 7
r~
I
-- 1

1
AB 15 14 13 12 11 10
0 0 1 1 0 1
3
u

AB9AB8 AB10

(7
AB 15 14 13 12 11
RAMCS6 0 0 1 1 0

3/8 Decoder

AB14 , AB11 -
AB 15 AB13

5-13
i
(U097-U128)
(U001-U032) (U033-U064) (U065-U096) Output
Output Output Output (32 pcs) To Key board
(32 pcs) (32 pcs) (32 pcs) option Display board

J\
rr fr l i n

CN1 CN2 CN3 CN1 3 CN10

A -

Cl n
n -p-
2

—*
i >
Ln
i
r>

n
Analog co To CN-9
output .
on PT IN-xx
to to
Input board
Spindle
motor
d r ive PC3 PC2 PCI
unit L J L L

110V
. Battery . +5V . +5V

:
. +12V
2004

16] i5iir4ipifn mfiop


1 1

GND

£ 3 C 2 ( 3 c c 1 c D £ 2 c ] c c 2 c 3 C 3

t r* a c r* P ( r1 3 c r* C r* D c r" 3 £
r* 3 c r< 3 c t- c t- 3 C r- P C r< 3
oo

..
CO c CO 1 c C/3 C/3 c CO c C/0 3 CO > 00 c CO c CO 3 c CO 3
3 3 £ I 2

£
3
ro ro

.
M N) K3 N3 K> N) N) N) N3 to 3

.
7
on IS:
91c
On
VO 3
.95
96 81:
83c
On 3
VO .88 it
.87 75 c
On
VO
3
.80
79 6 7c
On
VO &
V7060c
159c
3

3
49ÿ On
6450t
6351c
vO
3 41c
.56 42 c
.55 43 C
On
VO 3
3

3
48 2
4735 c
On 3
VO j
>
40
39
&
2 7c
On
VO
5? IS
19c
On I
VO 3
2
0
24 1
23 11c
S On
vO
* 16ÿ
1503c
On
vO >08
>0 7
I
92 d > 94 84« >86 76‘ > 78 68c 3 6252r >54 44 c i4636 c 38 28‘ 30 20c >22 12C 1404C >06
1
c >93 c >85 .77 « 69 « 3 61 £ >53 t >45 c 2 37 c 29 c 2 21 c >13 c >05
On

c
c >
iU92
U9 3
c
c
>U85
>U86
iU78
> U 79
> U71
> U72
.•
U64
U65
c
c
U57
>
U58
>
c
c
>U50
>U51
.U43
.U44 ..
>U36 >U29 c
U37 ro >U30 c
>U22
>U23
> U15
> U16
>U08
>U09
c
c
>U01
>1302
c
fO
o i U94 c Q.U87 g»U80 NO
O > U73 ho >
O U66
c g> U59 t
O > U52
NO NO
O >U45
ho
o U38
ro
o >U31 c o >U24
ro > U17
o 3
ro >U10
o c ro
o 3U03
c o I U95 c o>U88 o >U81 o > U74 o 1 U6 7 c o> U60 1 o > U53 o > U46 o > U39 o ’U32 c o >U25 o U18 o 3 Ull c o >U04
-p- -p- -p" > -p" -p- -P" > U40 -O 3
c ) U96 « > U75 U68 c U61 " >U54 >U47 U33 cc >U26 > U19 >U12 c
>U90 >1)83 > U76 > U69 c > U62 >U55 > U48 U41 U34 >U27 3
U20 rp u13 cc
U63 ‘‘
5 2
q 2 c 1
U06
c p c
3U91 JU84 > U77 1
U70 c > 1
U56 >U49 3
U42 P
U35 c
5U28 n U21 U14 1
U07
C 1
+ 12 V1 3+12V 3+12V 3+12V +
’ 12VC 3
+12 V ’+12V >+12V 3
+12V 3+12Vc >+12V >+12V >+12Vc 2
+12 V
F14 F13 F12 Fll F10 F9 F8 F7 F6 F5 F4 F3 F2 FI

••
I

ULN2004 OUTPUT
5V TI RELAYS
(P.C.B.)
W
TiM't 1

74LS259 2
H>o tj>H
DATA/ADDRESS
BUS
T a
u-t>o o
c
H
'V
c

E-C» o b H
o
hH
73
Connection 5
-f>° tj>h 12
I
o
c

I 1
H
: refer

L/7
page 5-15
6
“t>° <
o
i

O'
7
-t>° 10,
t
I
rt
W
0Q
fS
8 8 9 o
zr
V 8-Bit V Darlington V n
V 7T
GND Addressable GND Transistor 12V 12V
Latches Arrays

Voltage (V)

a GND b - GND 12V - b


Check point
(+)-(-) (+)-(-) (+)-(-)

Output ON
5V 0V 12V
Relay ON
Output
device
Output OFF
0V 12V 0V
Relay OFF

t
SOLID STATE RELAY (S.S.R. )

1 . Block diagram

Photo
coupler
Tr iac

T
S ignai Input Zero- Trigger Load
Input c ircuit I
s/oltage
turn on
circuit M Output
eircuit
I
Snubber
circuit

2. Zero-voltage turn on circuit

S.S.R. turns on at Zero-voltage of power source and


turns off at Zero-load current.

Effect : a. Low click noise when S.S.R. turns on


b. Low rush current when S.S.R. turns on

Power
source

i
Signal
''•OFF OFF
Input •s ON

Load
current I I

5 - 17
Type of Solid State Relay

TSS 1G44S- 1 2 Toshiba


Load current : Max . 1 A .

Mark

(4) (3) (2) (1)

1
Output
J
(oHo) ( ( o)
3 ( +)

4 (-)
] Input

2 G3C-202P 1 Omron

Load current : Max. 2 A.

Mark

TT
WO)
U
(2)(1)
I
*
Output
5® ® @@
3 ( +)
4 (-)
] Input

5 - 18
Solid State Relay
Voltage check

METER

OV 1
l
--- r
INPUT SIGNAL
1

S.S.R.
1
I
LOAD
L
l

AC 100 V
I
Power source
+ 12V

i OFF-STATE LEAKAGE

Display on
Measuring equipment
Check Meter Digital Meter

INPUT WITH
0V 0V
SIGNAL LOAD

OFF
(S.S.R. WITHOUT
OV AC 100V
OFF) LOAD
* Note

INPUT WITH
AC 100 V AC 100V
SIGNAL LOAD
ON
(S.S.R. WITHOUT
AC 100 V AC 100 V
ON) LOAD

* Note

Display on the digital meter shows AC100V due to

OFF-STATE LEAKAGE (Max. 5mA on G3C-202P1 OMRON,


Max. 10mA on TSS1G44S-12 TOSHIBA) of S.S.R..

5 - 19
Type of Reed Relay

1 NT 1 -DC 12V Matsushita

•5 4
3
1 2
3
% 5 <5 1
2 O

2 G2V-2 Omron, DS2E-M-DC1 2V-R Matsushita

I r o-
1
( +)
-_oi.
•ri 1
1 3 4 5
o 0 o o
‘s
I

6"°T' A*
o o o o
2 ~8
2 6 7 8
(-)

5-20
OUTPUT RELAY BOARD
RELAY CONNECTION CHART

P.C.B Name Pt.*** Name of connector from


MICON 8
G2V NT1-A G3C TSS1-01 CN 1 CN2 CN3 CN 1 3

D1 1 D1 2 2 1 1 U001 U033 U065 U097


D2 2 D2 1 2 1 2 2 U002 U034 U066 U098
D3 3 D3 4 3 4 3 3 U003 U035 U067 U099
S D4 4 D4 3 4 3 4 4 U004 U036 U068 U100
D5 5 D5 6 5 6 5 5 U005 U037 U069 U101
D6 6 D6 5 6 5 6 6 U006 U038 U070 U 102
D7 7 D7 8 7 8 7 7 U007 U039 U07 1 U103
o D8 8 D8 7 8 7 8 8 U008 U040 U072 U104
Sa 09 , 9 D9 10 9 10 9 9 U009 U04 1 U073 U105
§ D10 , 10 D10 9 10 9 10 10 U010 U042 U074 U106
o
U-l
D1 1 , 11 Dll , 12 11 12 11 11 U01 1 U043 U075 U107
o
D12 , 12 D12, 11 12 11 12 12 U0 1 2 U044 U076 U108
o
z D13 , 13 D 13 , 14 13 14 13 13 U0 1 3 U045 U077 U 1 09
c
£ ! 014 14 D14 , 13 14 13 14 14 U0 1 4 U046 U078 U1 10
:j D15 15 D15 , 16 15 16 15 15 U0 1 5 U047 U079 U1 1 1
CQI
J ! 016 16 D16 , 15 16 15 16 16 U0 1 6 U048 U080 U1 12
j D17 , 17 D17 , 18 17 18 17 17 U0 1 7 U049 U08 1 U1 13
c i

° !: D18 . 18 D18 , 17 18 17 18 18 U0 1 8 U050 U082 U1 14


2
c
SE 019 , 19 D 19 , 20 19 ,20 19 19 U0 1 9 U05 1 U083 U1 15 z
a, i 020 , 20 D20 , 19 20 19 20 , 20 U020 U052 U084 U1 16 4-1
3
a.
co | 02 1 , 21 D21 , 22 21 22 21 21 U021 U053 U085 U1 17 4-1
D
04
D22 , 22 D22 , 21 22 , 21 22 , 22 U022 U054 U086 U1 18
D23 , 23 D23 , 24 23 , 24 23 , 23 U023 U055 U087 U1 19
D24 , 24 D24 , 23 24 , 23 24 , 24 U024 U056 U088 U 1 20

D25 , 25 D25 , 26 25 , 26 25 , 25 U025 U057 U089 U1 2 1

D26 , 26 D26 , 25 26 , 25 26 , 26 U026 U058 U090 U 1 22


D27 , 27 D27 '<28 27 , 28 27 27 U027 U059 U09 1 U 123

D28 , 28 D28 , 27 28 , 27 28 , 28 U028 U060 U092 U 1 24 i


D29 , 29 D29 , 30 29 , 30 29 , 29 U029 U06 1 U093 U 1 25

D30 , 30 D30 , 29 30 , 29 30 , 30 U030 U062 U094 U 1 26


D31 , 31 D31 , 32 31 , 32 31 ,31 U03 1 U063 U095 U 1 27

D32 , 32 D32 , 31 32 , 31 32 , 32 U032 U064 U096 U 1 28

Pin 33 and 34 + 12V

5-21
t

Photo coupler + 15V


7404 x 2
7C 1 ISAÿJ 8
9 L504 7 A
1
t>ÿ 5“C
3 R27 R28
3
{>* 12SA-*A
6B
6
H 5ÿ, D/A
€=ÿ

5V GND fO
R29
9SA 8 Converter
|16 1 8
5oÿ L504
1>
N -15V a

LS175 1° 8
2
3 6B
7
6
1
—CMSB
2
24
23
>Y
< — oo
DATA/
ADDRESS «=> *1
lAi IOSAÿA
L

8
so o
>tnVco
3
C
4 7580V
22
21 R30
it R31
+ 15V rt

BUS 7 7SA 1 5 20 rT
8C <i
CD 3- VR2 o
4 Bit 2t>ÿ-32_ÿ.L504
11 7 6 19 * >
13 6 -J7 18 R32 3
Latch 6C 4C in
8SA 11 in, "A OO 8 17 o
5V GND CO CO 16 + 1 5V
W \t 9 00
7D 5SAÿ_1 -B-H, 10 15
CO J20_tl° 2 L504
n
o
i

ro LS273 16 iO1 3
6B D
7
6
11
J-2-c LSB
14
13
>
-15V P
<
CD
ro 19 6SA A L 5-H, CO O'
CO CO 2Z7ZR33 ± 110V rr
ft)
+
DATA/
12
15
6
3SA -e 1
2 7
V
• J
ADDRESS «
9 3 6
BUS
8 Bit
8D
9
2 O8 4SA <-A
6D
H co N
V
CO CO
Latch 5 Co OJ Co vO
1 SA -«5-
1 S-,1 z CO CO CO CO CO

13
11
r>oJfi—3 2__QL504
6D
7
6 v£> o K> u> co o

2SA-—A L 5_o
to
K>
CO
Resistor
nn RB1A

J1 LO CO
<
<o
CO CO CO CO CO
>> > > >
N
\ V array

N> LD -t> CO ON
onti
Cjjco
898-1-10K
5D
o ro LJ 4> Co ON ro ON co O ro
co CO CO CO CO CO CO
RB2A
Resistor
array 898- 1 -R330
j 7B
ro U> -P- Co
P
*0

ro P- ON CO o ro
CO CO CO CO CO CO CO
J > > v> p> >>>
;*

i
Diagram S code

N/C D/A converter D/A converter Machine


controller Spindle drive
unit

MICON 8

a . Signal from N/C to D/A converter controller

Mode Address/Data
3 1 . 3 9 0 1 . *2 *3.
3 9 0 2. *1 .

Signal Address bit Data

R01 2° 1 3901 0
1 II
R02 2 2 1
*3
R03 22 4 II
2

R04 23 8 II
3

R05 24 16 3901 4

R06 25 32 tl
5
*2
R07 26 64 It
6

R08 27 128 If
7

R09 28 256 3902 0

R10
9 II
*'2- 512 1
*1
R1 1 21° 1024 ft
2
11
R12 L_1 I 2048 tf
3

There is 12-bit spindle speed signal sent from N/C unit through'
open-collector transistor. The output R01-R12 is expressed as
fo flows .
S x 4095
command
R
out
S
max .
5-23
R
out
Output in decimal number
r
Spindle speed command (S4 digit)
"’command
S Max. spindle speed of each gear range
max

When all 12 bits are on, the display of address 3901 and 3902 r
are shown below.
f
1
Mode Address/Data
3 1 . 3 9 0 1 . F F. f
I
3 9 0 2. 0 F.

b. Signal from D/A converter controller to D/A converter


and Analog output

D/A converter BECKMANN 7580V


:
i
Mode Address/Data
3 1 . i

3 0 3.
* 5 *6 .
C

0 *4.
-
3 0 C 4.

On the D/A converter 7580V, R12 is the polarity to get


i
forward- and reverse directionof rotation, therefore the data of
3901 and 3902 are shifted to loose lower bit , then the r

polarity is added in place of R12. (Data of R01 goes off.) i


* 1!
Data Polarity Data Analog
*1 *2 *3 R12 *4 *5 *6 output L
F | F | F 0 0 111 1 1 1 1 | 1 1 1 1 + 10V f
7 F F
0 1
0 , 0 0 0 0 0 0|0 0 0 0 ,0 0 0 0 + ov
0 0 0
0 0 l 0 1 1 1 1 1 I 1 1 1 1 1111 - ov
F F F
F F | F 1 0. 0 0 0000(0000 -10V
8 0 0 L
The polarity is decided by M03 or M04 .
5-24 I
5.3.5 Key & Display

8/3 Encoder
0
o.o 0

DAO - 4

'
F

DEC
INP

DO - D7 DBO - 7 Data bus


CPU C>
L<H
DIOO - 7

- DIOO - 64 bit Read-Write Memory


D>
DAO DA4
*'>S DI04
— DIDO' Display

— DID4
— DID 7

5-25
6. Keyboard and Display Operation

6.1 Keys and Their Uses

The Keyboard has the following 20 keys.

smamHEErarasHEiiiciiciiti]
[Sc] [DEC] [SF] [CLA]

The keys from 0 to F are data and address setting keys.


The CLA key is for mode clearance.-
The INC key is to e-fect an increase by 1 to both input
and output numbers, timer number, and address number.
The DEC key is to effect a decrease by 1 from each of
those numbers, contrary to the INC key.
The INP key is to designate selected input and output
numbers, timer number, address number, data number and mode
number.
The display gives 8-digit LED indications; the first two
digits stand for a mode number, and other digits denote input
or output number and data number.
For details, refer to the following.
The following are the display pattern from 0 to F of the LED
indication unit.

CLA F E D

7 8 9 C

4 X 6 B
Mode Address & Data

1 2 3 A

0 INC DEC INP Display

Keyboard

6 - 1
6.2 Display Pattern

Display pattern of the LED indication unit.

© 0

J D (13)
1 0
£ E (14)
3
(L
2 Q

3 3 03 F (15)
3. 0
O 4
0
C ss 5
3
3 6
©
o 7
0

0 8
0
Q 9
0

0
00
A (10)

Q B (11)
0

c C (12)

6-2
6.3 How to Identify Alarm Indication

" Battery alarm

For a battery alarm,


display flickers.

In case the display shown in the above figure flickers when


the power source is turned on, it signifies that the service life
of the battery has run out.

So be sure to replace the battery .within 15 minutes after


turning off the power source.

* Machine alarm ... With mode number 28 designated

2 8.

J i_

Mode Group L Alarm content


number code II
jÿl! „ Alarm
data
"0" Not alarm

First press the CLA key.

Next to the above, desgnate alarm indication mode number 28

by pressing the 2, 8, and INP keys.


With this step completed, A is displayed at the place for group
code indication.

In this case, the alarm indication following "A" is termed


group "A”.
When the INC key is pressed in regular sequence for Jb], [cj, fd~j,
and | E 1 thidse group symbols are displayed successively, with each
alarm indication to follow.

Indication of alarm depends on the model of machine.

6-3
* Machine status

2 9. F. x X X X X

5 signals will be checked.


"1" : Signal is ON.
"0" : Signal is OFF.

Contents of display depends on the model of machine.

First press the CLA key.

Next, designate machine status indicating mode number 29 by


pressing the 2, 9, and INP keys.

6.4 How to Identify Individual Signals

* Input signals (N00 1 N256)

2 1. 0 0 1.

JL

Mode Input Input signal


number number ON/OFF data
M . Closed contact
"0" : Opened contact
Note: This dot flickers when the
equipment is working normally.

First, press the CLA key.

To designate mode number 21 to identify an input signal,


press the 2 and 1 keys, followed by pressing the INP key.
Successively to the above, designate a desired input number,
001 for example, by pressing the 0 , 0 , and 1 keys, finally"
followed by pressing the INP key.

With these steps, the input signal ON/OFF data, either 1 or


0, is displayed by the last digit.

”1" denotes that the input signal is on (the input contact


closes) .
"0" indicates that the input signal is off (the input contact opens).

6-4
Successively to the above, if you want to make sure whether
or not the input signal of input number 002 is on, press the INC
key to follow.

Via these steps, input number 002 is displayed together with


the input signal ON/OFF data.
The DEC key is applied to effect a decrease by 1 from input number.

If it is necessary to confirm whether or not the input signal


with input number 100 is on or off, press the 1, 0, and 0 keys.
Finally press the INP key.

With these steps, input number 100 is displayed also with


the ON or OFF data 1 or 0 showing if the input signal with input
number 100 is on or off.

(U001 U512)
* Output signals

2 2. 0 0 1.

J L
Mode Output Output signal
number number ON/OFF data
"1" : Output ON
"0" : Output OFF

First press the CLA key.

Next to the above, press the 2, 2, and INP keys to designate


mode number 22 so as to identify the output signals.

To identify if the output signal of output number 001 is


on or off, press the 0, 0, 1 and INP keys.

With 'these procedures, the output signal ON/OFF data, either


1 or 0, is displayed by the last digit.

"1" represents that the output signal is on (the contact of

output relay closes).


"0" denotes that the output signal is off (the contact of output
relay opens ) .

6-5
Successively to the above, if you want to make sure whether or
not the output signal of output number 002 is on or off, press
the INC key.
In this way, output number 002 is displayed, simultaneously with
"1" or "0".
To identify if the output signal of some output number smaller
by 1 than that of the previous output signal, press the DEC key.

If you want to see whether ornot the output signal of out¬


put number 100 is on or off, press the 1, 0, 0, and INP keys.
With these steps , 100 is displayed, simultaneously with either
"1" or "0" presented.

M function
*
2 3.

Mode M-code
number data

First press the CLA key.

To designate mode number 23 for M-function confirmation,


press the 2, 3, and INP keys.
In this way, the number of the M code, which is read presently,
is displayed.
If the M code involved is M08, 08 is displayed within the data
area.
In case there is any possibility that the M code (which is read
presently) is changed according to the progress of program, press

the INP key again.

6-6
S function
*
2 4.

Mode S-code
number data

First press the CLA key.

Next, designate mode number 24 for S-function confirmation


by pressing the 2, 4, and INP keys.
In this way, the number of the S code, which is read presently,
is displayed within the data area.

Input from the NC unit is given with binary 12 bits.


For example, when the NC input is given with

(uppermost) (lowermost)

101000011001 , A19 is displayed.

In case there is any possibility that the S code (which is


read presently) is changed according to the progress of program,
press the INP key again.

* T function

2 5.

Mode T-code
number data

First press the CLA key.

Designate mode number 25 for T-function confirmation by


pressing t&e 2, 5, and INP keys.
In this way, the T code, which is read presently, is displayed.
If the T code involved is T10, 10 is displayed within the data
area.

In case there is any possibility that the T code (which is


read presently) is changed according to the progress of program,
press the INP key again.

6 - 7
* B function

2 6.

Mode B-code
number data

Press the CLA key.

Next to the above, designate mode number 26 for B- function


confirmation by pressing the 2, 6, and INP keys.
Thus, the B code, which is read presently, is displayed within
the data area specified above. If the B code involved is B270,
270 is displayed.

In case there is any possibility that the B code (which is


read presently) is changed according to the progress of program,
press the INP key again.

The B functions are not applied for any model of lathe


manufactred by this company.

* Timer

2 7. 0 3.

j1

Mode Timer Timer ON/OFF data


number number
"1" : Counting
"0" : Counting finish or
reset condition
U

First press the CLA key.

Next t« the above, designate mode number 27 for timer ON/OFF


confirmation by pressing the 2, 7, and INP keys.

Then, designate a desired timer number. When the desired


timer number if 03, pres the 0, 3, and INP keys.

In this way, within the data area, the lowermost part, the
timer ON/OFF data "1" or "0" is displayed.

6-8
"0" represents that the timer involved is off with the set

time elapsed.
"1" denotes that the timer is operating.

* How to set the timers

1 0. 0 4. A 0 1 0.

J L

Mode Timer
Time data
number number

Turn on the WRSW switch on the CPU printed circuit board in


advance. (Error display : 1 0.E E E E E E )

First press the CLA key.

Next, designate mode number 10 for timer setting by pressing


the 1, 0, and INP keys.

Successively, designate the timer number. If the timer


number is 04, press the 0, 4, and INP keys.

In the next step, designate a desired time; when the time


designation is implemented in the unit of seconds, press the 0
key so that 0 will be displayed by the foremost digit within
the data area.

In case the time designation is effected in the unit of


minutes, press the A key, with A displayed simultaneously by
the foremost digit within the data area.

Successively to the above, designate a desired time ranging


from 1 to 255 over the remaining three digits.

When dÿta number 10 is designated, 10 displayed in the data


area signifies 1.0. In this case, if A is displayed at the fore¬
most place within the data area, 10 denotes 1.0 minute.
When 10 follows 0 displayed in the foremost place, it denotes
1.0 second.

6-9
To designate 1 minute, for example, press the A, 0, 1, 0,
and INP keys .
To designate 12 seconds, press the 0, 1, 2, 0, and INP keys.

When the INC or DEC key is pressed with mode number 10


designated, an increase by 1 or a decrease by 1 is effected
from the previously designated timer number.

When time setting is over, turn off the WRSW switch on the
CPU printed circuit board. If this switch is kept on, the time
set on a certain timer incurs' change when an erroneous key
operation takes place.

(Note : Be sure not to set 0 on each timer.)

* How to identify the time set on each timer

1 1. 0 5. 0 0 1 0.

Mode Timer Time


number number data

First press the CLA key.

Next, designate timer setting and display mode number 11 by


pressing the 1, 1, and INP keys.
Successively, designate a desired timer number. To designate
a timer number of 0.5, press the 0, 5, and INP keys.

With these steps, the time set previously on the designated


timer is displayed within the data area.

If the foremost place within the data area remains blank,


the unit'-oj? time is second. The unit to go with a displayed
figure is minute if A is displayed in the foremost place.

The remaining three digits give the time set on each timer.

0 1 0 indication denotes 1 second. Meanwhile,


A 0 0 5 indication stands for 0.5 minute.

6-10
When the INC or DEC key is pressed with mode number 11 kept
effective, an increase by 1 or a decrease by 1 is effected from
the formerly designated timer number.

With this step, you can identify the time set on the timer
with timer number 06 or 04.

6-11
* Data write

3 0. 3 0 4 0. 3 d.

L J L J L
Mode Address Data
number number write
This function is used for writing parameter into RAM (Random
Access Memory) area.
"WRSW" switch should be turned on to write parameter, otherwise
the error display (3 0. E E E E E E.) is shown.

Data should be stored carefully according to parameter


table of MICON 8.

* Data read

3 1 . 1 2 3 4. 6 0.

L J L J
Mode Address Data
number number read
This function is used for displaying data stored in the
memory (RAM, ROM) of MICON 8, so that parameter and program can
be checked.

* Maintenance mode

F F. d 0 0 1 .
L j

Mode Operat ion


number number
Solenoid valves are driven without any safty interlocks.

A.T.C. motion which is interrupted by sudden change (Power


failure) will be recovered to the correct position.

Max. 32 outputs can be controled by this function.

6-12
6.5 MICON 8 Operation sheet

1234567890 A B C D E F
/ ~ - ~ n n
DISPLAY
i !— O ) b O I O 1O Pb L db r
8 7 6 5 4 3 2 1 CLA F E D. CLA Mode clearance
/
/ on 7 ,'-7 ,? o o 7 8 9 C INC Increase address/data
mode address/data
4 5 6 B no .
1 2 3 4
0 INCSDECIINP DEC Decrease address/data
no .
INP Input mode no . &
example of operation START
panel address/data no.
START ... Start command of the
set data on display
8 7 6 5 4 3 2 1
Timer setting . .
T ime r set T ime r no A : min . . e g 20 min .
(pt . sw. on) I
I o TRO 1 -TR1 6 0 : s ec . or
0. 1-25. 5min.
.
0 1 -25 5sec . . .Timeris set at
TR07.
T imer dis p 1ay / / 3 II 3
(pt. sw. off) I I o I 11 l_ o o 1
O70)
Input signal ~1 I
<n Nxxx L. / NOO 1 -N 1 28 * * i
/ or n JY(0
c 13
o Output s ignal
•H
U Uxxx _L I U001-U512 k k i
i or u
c
o M function 3 / Display of JU1)
k k k k
3 s ignal i 3 M function
The numbers
a S f unct ion 3 U k
* k Display of are shown on
•H
U
signa 1 _ L_ I S f unc tion the display
O
w T function 3 /_ k i: k k
Display of while the
c signal /_ _/ T function functions are
bO
B function _/ l~ Display of excut ing .
k
•H
signal L /_/ * * B function 1 : During
counting
U-)
Timer signal _/ ~l T imer no . k 0 : No t in
O
I I * * iO r u
*> counting
C
Alarm signal 3 U n bL ’1 : Alarm
a.
<n
L. U dE F i
i or n
i
i or o i
or o
i i
lorn i or o 0 : Norma 1
Q Stop code
/
_/ uI *
fMC-4-) (ÿ400) Depress INC
!o r Q
i
i or I_I I o r a ii or l_i .to check A-E.
Memory data 1 : M code
se t
(WRSW sw. on) I 13 l-F I- F I F - i -F i _c I _c output
0 : No M code
Memory data
i i I I
. output
display I I
(WRSW sw. off) 3 i l-F i
I
_c
I
I
I
_ c !-F I - F i
I ~ !
c
ATC manual
operation
w O
I
Pot no . Step Tool no . Refer to the

LI Cl * I _ oo _ __ c_ U_ i — oi n
-I
operator ' s'
/ O I I I U ! I panel
not in use
S a When the dis¬
c k k k k k k
play flickers
Maintenance the buttery
mod e C /_
* / _ * should be re-
i /_/ oo i
O 3F placed wich
.
.new one
6-13
7. For Micon8 Type-1- (PT.CODE-11) Main Board replacement procedure.

All Micon-8- 1 type board will be replaced by PT.Code-11.

Please exchange the P-ROM from original board to new board.


Please be sure to turned off power before you remove the P-ROM
from old board.

Make sure to insert P-ROM to new board as picture shows bellow.

y.;
m
*
*» /.

:•
- i
• V

*:

28
:

: '

ROM
--

V •
' •

Install P-ROM to inside of broken line You can use only 2716 or 2532 type
(leave four top pins.)

Be sure to recheck the leg of P-ROM chips after insert to socket.

7-1
Explanation of short Bar

I
\
\
\
EDO
\
\
©
\
\
: ©ÿ'
(3©ÿr)
9
/
E3
[ 4

d i

ltem(1)ROM size selection


Board setting will be shipped as 2716 and 2532.
If in case size of ROM are other than above need to be re-set short bar.

ltem(2)RAM selection
Do not change this setting pin.
If in case setting is changed, this board will not be worked properly.

Since code 11 board has 256K RAM therefor this board will shipped out with 256K RAM setting
and should keep this setting.
Most likely original board setting was not same as replacement boards (Code-11) just because
other than 11 board has only 64K RAM.

ltem(3)Setting for Micon 8 type 1 or 2


Do not change this setting pin.
If in case setting is changed board will not work properly.

Short bar is setting for Code (Type -I-) board.

7-2
MICON -8- MANUAL

MODEL- II- TYPE ( SQM8-xx )


1. MICON 8

5 MICON 8 is designed as the sequence controller for the machine


tools, especially N/C Turning center and Machining center, by
i.
HITACHI SEIKI's Micro computer engineering.

0 CPU is Z-80 Microprocessor.

§ The diagnostic functions through key board and display are in¬
creased to assure' quick and easy maintenance.

5 Sequence program described by 1 7 instructions are easy to under¬


stand the machine function.

5 A.T.C. controller, tool head controller and table controller are


ready in control program including 64 software timers and D/A
converter.

*
'\

1 - 1
2. Specification

CPU CPI' Zilog Z-80 Microprocessor


Word size 8 bits
Instructions 158
Addressable memories 64k
Clock 4 MHz (Crystal 16 MHz)
Voltage required +5V

Sequencer Type of program Flow chart


Instructions 17
Input 128(256)
8 M function
16 S function
8 T function
12 B function
2 pairs of pulse-count inputs
Output 768 (including 128/256 Relays)
Timer 64 sets software
Others D/A converter

Operation Key board and display


Construction CPU board
D/I board
Key board
Display board
Relay board

' \
1

2-1
3. Construction
+5V +5V +12V Battery

PCI PC2 PC3


g Analog output Spindle
U drive unit
CN8 CPU Board +/- 10V
PT.SQM8-02 CN12

Bus nn n

(Optional)
-tn
ULJ
CN14
CN11 !L _ Ex.
[J (Optional) Printer

CN 10 CN13 CN3 CN2 CN1

ID-
{]!
KB3
IH Output
Display
KB 2
Machine
I PT. DP-01 N/C
Key Output Relay
board Board ID-
fl ID
Ifr
+5V til

{
PC4

Ctf9
Input Board
PT.DIB-01

MICON 8
CONSTRUCTION
CN7 CN6 CN5 CN4

N/C Machine N/C


Input

3 - 1
4. Software

A machine is controlled by 2 (two) programs, named Control


program and sequence program, which are stored in the memory of
MICON 8. •.

The programming language of the control program is the assembler


of Z-80 Microprocessor.

The programming language of the sequence program, which is


interpreted to assembler by part of control program, is developed
by HITACHI SEIKI to make machine control program easy.

Software (memory)

Control Sequence
program program

Max. 16k Max. 16k

4.1 Control Program

Control program consists of following programs.

1. Interpreter (Sequence program to assembler)


2. Timer control
3. Key board and display control
4. A,*B phase control
5. D/A converter control
6. Machihe function (A.T.C. , Table etc.)

4. 1. 1 Interpreter

Sequence program described by 17 instructions will be


interpreted to the assembler, so that MICON 8 will perform
machine function correctly.

4 - 1
5. Hardware

5. 1 Signal

Input signal 1

Described by Nxxx N001-N128 or N256


Signal from outside Limit switch
Push button
Relay contact
N/C etc.

Input signal 2

Described by Mxx, Txx — and Bxxx


Signal from N/C M function 2 digits
T function 2 digits
B function 3 digits
Signal — B.C.D. (Binary Coded Decimal)
M, T function — 1,2,4,8,10,20,40,80 — 8 inputs
B function — 1,2,4,8,10,20,40,80,100,200,400,800 — 16 inputs
Note: 4 digits T function on the lathe
Last 2 digits are used for the tool offset inside N/C
unit, only first 2 digits are effective on the MICON 8.

Input signal 3

Described by Rxx
Signal from N/C R01 — R12 Spindle speed
Signal — 12 bits binary

Input signal 4

*
Described by Phase A, B 2 pairs PA1, PB1 PA2 , PB2
Signafÿfrom ATC, Table and Tool head.
Signal — 2 rectangular waves with 90 deg. lag.

Output signal

Described by Uxxx
$U001 — U 1 28 Signal to outside Solenoid
Lamp
(U256) Relay coil
N/C etc.
Dummy signal
$U 1 29
(U257) —U768
5 - 1
Timer

Described by TRxx There are 64 timers


Setting time 0.1 — 25.6 sec. or 0.1 25.6 min.

Analog output

ilOV for spindle speed command


Digital (12 bits binary) to analog converter

*
1

5 2
5.2 CPU Board

tt'i
CN14 CN8
PI - P4
o P-ROM socket
z P1 P1,P2
u
P2 u Control (System) program
CPU PH
P3

£
I I m
O
P4
P3 ,P4
Sequence program

I1 I u
2
CH2 CH2 - GND
Bridge to inhibit interruption
L.J O
1 WRSW
Switch on to write parameter

ro C-J CMSW
u O22 Switch on to be RAM sequencer
SoJ
J Y H PCI - PC3
T 02 Power source connector
SOJ
W
CN rJ LED1
CJ
ON/ Battery low level
D/A ro
o LED2
converter
I
Cn
ON/ Interrupt disable
> DC/DC > _
m
Q
oconverter OQM LED3
z 2 O Ocj ON/ Halt condition
C_> -3>-l
VR2 VR1 2 O o >-
sa LED4
u~l
Z O og ON/ Power source +5V

CN11
OO 5
=>
o O
w 0+g
< CN12 i

j$C (GND) CLOCK 4 MHz


5V (G$D) +5V
12V (LGND) +12V
GND OV
BY1 (GND) Battery Battery
LGND OV
+15V (N) +15V
-15V (N) -15V
5N (N) +5V
N OV — D/A converter
DAOUT(N) Analog output
VRl ) (
Analog output
VR2 adjustment —

5-3
5.3 Architecture
5.3.1 General

4 MHz
CPU CLOCK
1 1 6MHz

Memory

y_
i

T ~\
l
4 x 8k P-ROM
ji (2764)
l
1 x 2k RAM
(5517)
-e-

OUTPUT

+ i D/A Converter
Latch
c/5
a
pO
C/5 Driver i
3 C/5
C/5
0)

3CO T3 Relay
TO I i
Q <

i
FH
To 6o

INPUT

--Buffer
Data selecter
-
i

Photo-coupler

J5 I
Key and Display i

5-4
5.3.2 Memory
ABO AB6
/ /
AB5 AB 1 2 AB13 AB14 AB15

*.

3-8
Decoder
8 k ROM
0000
-5*-
/
1 FFF o

X
X
m
X
4000 x
X X
/ X
x
5FFF
X
X
X
vO
6000
x x


/ x X
X
i 7FFF Ol ro
CQ
X X
X
I X X
o 8000 CO CM
CQ
n /
s 9FFF

t o
H
CQ
a
o
CQ
Q

r-.
Q
o
a

5-5
RAM

AB0-AB5
2 k RAM
3000
AB6-AB1 2 / MDB0-MDB7
37FF.

30xx-37xx

+5V
r

T 30xx-33xx
34xx-37xx

7fr

X o
X
X CO CO CO
m
i
<<<
X
X
X
OJ

co tn

co CO CO
< < <

5-6
5.3.3 Input

A +5V
+24V
Data selector
DB0-DB7
IL1 - IDBO 245
( 251
+
i
*ÿ; i
1
—O —6—|
Q \ IL8

Photo-coupLers i
i
i i TTU

4-16 Decoder
I
AB3
/
AB6

N001-N128
O
o IDB0-IDB7
NT29-N256

Photo-couplers
f+5V
|"|
II 258
(

?
(
I l
I
I
o
u ( 258
t
M,S,T, i
1
B Functijon * \

Y i
ov

5 - 7
JJ-
Input Input
Input
N097 - N 12 8 JJ-
M,S,T,B input
N001 N048 N049 - NO 96 etc.

<
CN4 CN5 CN6 CN 7 a
C
rt

DO
O

a.

Ln

I
oo

n —\ To CN 8
v£> on PT. SQM8-02
CPU board

PC4
L

+5V
6. For Micon8 Type-ll- (SQM8-11) Main Board replacement procedure.

All Micon-8- type II board will be replaced by SQM8-11.

Please exchange the P-ROM from original board to new board.


Please be sure to turned off power before you remove the P-ROM
from old board.

Insert P-ROM to new board.


Be sure to recheck the leg of P-ROM chips after insert to socket.

Explanation of short Bar

I Ti
\
\
m \0 \
CD
\
\
- ©•ÿ
9
4
0
[ jt
i
d

ltem(1)ROM size selection


Board setting will be shipped as 2764.
If in case size of ROM are other than above need to be re-set short bar.

ltem(2)RAM selection
Do not change this setting pin.
If in case setting is changed, this board will not be worked properly.
Since code 11 board has 256K RAM therefor this board will shipped out with 256K RAM setting
and should keep this setting.
Most likely original board setting was not same as replacement boards just because other than 11
board has only 64K RAM.

ltem(3)Setting for Micon 8 type 1 or 2


Do not change this setting pin.
If in case setting is changed board will not work properly.

There is no short bar setting for SQM-8 (Type-ll-) board.

6-1
APPENDIX

*T
APPENDIX 1 A-B PHASE CONTROL

1 . Introduction

Turret head indexing and A.T.C. magazine indexing are controlled


by A-B PHASE CONTROL program with a couple of proximity switches.

Referring to the figure below, these two proximity switches are


mounted with a certain distance each other on movement of detectable
object.

Proximity
switch A
Li
A A
:
| i i rr[
:
Proximity
switch B
Phase A ; PA Phase B ; PB

Detectable object

Reverse direction Forward direction


<L ->

When the movement takes place on the detectable object, the


electric signals from these proximity switches and these losic (same
as the input condition to MICON 8) will be shown below.

1 Cycle
Electric signal
PA I
I 1 I
I
l
l
«

L
I
I I 1 I I
PB I e

l
Logic I
PA
* OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF

PB OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON

REVERSE -<ÿ FORWARD

ON : Proximity switch is ON with the detectable object.


OFF : Proximity switch is OFF without the detectable object.

As two signals make four conditions, four different positions


are made by ON-OFF state of two proximity switches.

A1 - 1
2. Details of memory data

2.1 Move direction of detectable object and condition of proximity


switch

Address 30AD and Address 30AE

The address 30AD is for A.T.C. on the machining center or for


turret head on the turning center, and the address 30AE is for
table on the machining center.

Mode Address Data


0 3 0 A D
3 or *1 *2
1
•_2 0 A E « ©

Display *1 ; Move direction


1 ; Forward direction

Display *1 is set to "1" when the display *2 is


changing 1 - 2 - 4 - 8 - 1 .

0 ; Reverse direction

Display *1 is set to "0" when the display *2 is


changing 1 - 8 - 4 - 2 - 1 .

Display *2 ; Condition of proximity switch

PA PB Display *2
OFF OFF 1

•'N ON OFF 2
ON ON 4
OFF ON 8

Data *1 and data *2 should be set at the correct stop position


of each equipment (A.T.C. magazine, Turret head etc.) on initial
stage, but data *1 is set automatically by correct operation.

A1 - 2
2.2 Capacity of ring counter

Address 30B6 and 30B7 ; A.T.C., Turret head


Address 30B8 and 30B9 ; Table (Display only.)

These data show the number of tools and the number of faces on
turret head.

Data are described by hexadecimal number.

Mode Address Data


3 0
or
3
3
0
0
B
B
6
7
. *4
1
3 0 B 8 . *5
3 0 B 9 . *6

Examp 1 1 . NE-H or NF with 12 faces turret head

Data is the number of detectable objects.

60 detectable objects makes 00(as data *4) and 3C(as data *3)
in hexadecimal number.

Example 2. MN-E

Data is the number of magazine pots.

24 pots makes 00(as data *4) and 18(as data *3),

Example 3. VA series

Data is the number of magazine pots.

VA35 18 pots 0 0 (as data *4), 1 2 (as data *3)


VA40 25 pots 0 0 (as data *4), 1 9 (as data *3)
VA50 20 pots 0 0 (as data *4) , 1 4 (as data *3)

A1 - 3
In Che case of Che table, Che data is set automatically by
the angle of minimum increment.

* 5° index table

360° makes 72 with division by 5°, then 72 makes 00(as data *6)
and 48 (as data *5) in hexadecimal number.

* 1° index table

360° makes 01 (as data *6) and 68(as data *5) in hexadecimal
number .

2.3 Present position data

Address 30A9 and 30AA ; A.T.C., Turret head


Address 30AB and 30AC ; Table

The tool no. and the angle of table, which are selected
presently , are displayed in hexadecimal number.

The present position data should be set correctly at initial


stage .

These data are changing during rotation of equipment.

Mode Address Data


1
3 0 3 0 A 9 *7
Of',
. 3 0 A A *8
1
3 0 A B *9
3 0 A C *10

Example 1 . NE-II

When the turret face number is 10, the data is 00 as *8


and 2E as *7 in hexadecimal number.

A1 - 4
Example 2. MN-II 5° index table

When the table is at 300° , 300° makes 60 with division by 5°,


then 60 makes 00 as data *10 and 3C as data *9 in hexadecimal
number .

2.4 A-B phase error display

Mode Address Data


3 0
or 3 0 A F 0 *1 1
1

-Data *11 0 No error


1 Abnormal phase rotation of PA1 and PB1
A.T.C. , Turret head
2 Initial set error of PA1 and PB1 at power-on

A.T.C. , Turret head


3 Abnormal phase rotation of PA2 and PB2
Table
4 Initial set error of PA2 and PB2 at power-on
Table

More than two errors occur at same time, the displayed No.
is the total of each number group added together. And data should
be set to "0" at initial stage.

*Initial set error at power-on

"'v
The ON-OFF state of proximity switch at power on is checked
with last data before power off of low bit on the address 30AD
or 30AE.

A1 - 5
3. Diagnostic function of A-B phase

Mode Address Data


3 3 9 0 5. *12 X.

No relation with
A-B phase

The ON-OFF state of proximity switch can be checked by 31 mode


and address 3905 instead of 21 mode as normal diagnostic function.

Data *12 PB2 PA2 PB1 PA1


0 OFF OFF OFF OFF
1 OFF OFF OFF ON
2 OFF OFF ' ON OFF
3 OFF OFF ON ON
4 OFF ON OFF OFF
5 OFF ON OFF '
ON
6 OFF ON ON OFF
7 OFF ON ON ON
8 ON OFF OFF OFF
9 ON OFF OFF ON
A (10) ON OFF ON OFF
B (11) ON OFF ON ON
C (12) ON ON OFF OFF
D (13) ON ON OFF ON
E (14) ON ON ON OFF
F (15) ON ON ON ON

A1 - 6
4. Proximity switch

4.1 Output circuit diagram


+V ( red )

w o« T
Output
+24V

Proximity
switch
1 I (white)
J
Load

ma in rÿWv o <-
circuit
X -V
(black)
ov
—o -*
PRESENT
Detectable
object ABSENT

Load OPERATES '

(Between red
and white wire) RELEASES

ON
Operation
indicater OFF

*Note Maximum load current I ; 200mA

4.2 Maintenance and inspection

Checic',£he following items when the proximity switch does not

operate upon putting a detectable object close to the switch or


when the proximity switch does not release upon keeping the detect¬
able object away from the switch.

A1 - 7
* The proximity switch does not operate

Has the rated Apply the rated


NO
supply voltage supply voltage.
been applied?
YES
1
Is there any loose Connect the proximity
YES
connection or switch properly.
broken wire?
NO
Does the load
voltage exceed NO Increase the supply
the operating voltage .
voltage?
YES

Is the load Replace the detective


faulty or YES load with a new one
improperly or connect the load

connected? properly .
NO
1
Is the detectable Bring the detectable
NO
object within the object closer to the
setting distance? proximity switch.
YES
Is the detectable Use a detectable object
NO
object of adequate of larger size or .

size? change the proximity


switch to the appropriate
type.

A1 - 8
* The proximity switch does not release

Is the ambient Keep the ambient


NO
temperature temperature at
below 85 °C? less than 85°C.

i t
YES
Is the proximity Provide adequate
switch sufficiently NO space between the
distant from the proximity switch and
surrounding metal? the surrounding metal.
YES
Are the two Be sure to mount
juxtaposed the two switches
proximity switches with adequate
NO
provided with distance .
adequate space to
prevent mutual

interference?
YES
if

Have any metal Remove the metal


powder collected YES powder from the
-s-
on the detecting detecting head.
head?

A1 - 9
APPENDIX 2 Memory Data and Parameter

A2 - 1
NE-H , NE 1

Timer

Timer No. Data T ime Description

01 A100 10 min. Lubrication pause

02 0100 10 sec. Lubrication

03 0002 0.2 sec. Gear shift

04 0005 0.5 sec. Counter set

05 0001 .
0 1 sec .

06 0001 0 . 1 sec .

07 0001 o , 1 sec .
08 0001 .
0 1 sec .

09 0120 12 sec. Lubrication oil level detection

10 0025 2 . 5 sec . Quil retract confirmation

11 0001 0 . 1 sec .

12 0050 5 sec . Tool post diagnostic timer

13 0050 5 sec . Tool post diagnostic timer

14 0150 1 5 sec . Tool post diagnostic timer

15 0100 10 sec. Spindle gear shift diagnostic timer

16 . 0010 1 sec. DC 12V confirmation

A2 - 2 NE- H . NT l
N't -U , NF 2

Mode 28 and 29

In/Output |
2 i 8.1 A.| * k k k k
No. Description
* U406 | DC 12V fail
U405 DC 24V fail
U409 N/C fuse alarm
U404 AC 100V fail
*

2 8. B. * * * * *
* U408 | N/C not ready

* U413 Spindle alarm

T* U4 10 X axis shear pin alarm

,* U411 Z axis shear pin alarm


U414 Thermal alarm

2 8. C. * * * * k

* U415 [ Fan alarm

* U412 Brush abrasion


U4 1 6 Turret head alarm
U4 1 9 Spindle gear alarm
*
L

2 8. D. k k k
* *

2 8. E. * * k
* k

* U43 1 I Tape start interlock


U426 Spindle rotate inhibit
*
* U434 Tail stock inhibit
U437 Auto door open inhibit
*
£
2 9. F. * * * * *
N 11 3 Program stop MOO
*
N 1 16 Optional stop MO 1
*
N 1 14 End of program MO 2
Tl
N1 1 5 End of tape M30
*
*
A2 - 3 NK-D • NF
NE-H. , NF 3

*In- or Output selection of each class on 28 and 29 mode

Address Data Description

30B0 38 29. F. class Input

30B1 35 28. A. class Output

30B2 35 28. B. class Output

30B3 35 28. C. class Output

30B4 35 28. D. class Output

30B5 35 28. E. class Output

A2 - 4 NE-H , NF 3
NE-H , NF 4

* Number of class on 28 mode

Address Data Descr ipt ion


3060 05 from A class to E class
of display on 28 and 29 mode
Address Data Description
3061 70 29.F.0 bit. N 1 1 3 Program stop MOO
3062 73 29.F.1 bit. N116 Optional stop M0 1
3063 71 29. F. 2 bit. N 1 1 4 End of program M0 2
3064 72 29. F. 3 bit. N 1 1 5 End of tape M30
-3065 00 29. F. 4 bit.
3066 95 28. A. 0 bit. U406 DC 12V fail
3067 94 28. A. 1 bit. U405 DC 24V fail
3068 '
98 28. A. 2 bit. U409 N/C fuse alarm
3069 93 28. A. 3 bit. U404 AC 100V fail
306A 00 28. A. 4 bit.
306B 97 28.B.0 bit. U408 N/C not ready
306C 9C 28 . B , 1 bit , U4 1 3 Spindle alarm
306D 99 .
28 . B 2 bit. U410 X axis shear pin alarm
306E 9A 28. B. 3 bit. U4 1 1 Z axis shear pin alarm
306F 9D 28. B. 4 bit. U414 Thermal alarm
3070 9E 28.C.0 bit. U415 Fan alarm
3071 9B 28.C.1 bit. U412 Brush abrasion
3072 9F 28. C. 2 bit. U416 Turret head alarm
3073 A2 28. C. 3 bit. U4 1 9 Spindle gear alarm
3074 00 28. C. 4 bit.
3075 00 28.D.0 bit.
3076 00 28.D.1 bit.
3077 00 28. D. 2 bit.
3078 00 28. D. 3 bit.
3079 00 28. D. 4 bit.
307A AE 28.E.0 bit. U431 Tape start interlock
307B A9 28.E.1 bit. U426 Spindle rotate inhibit
307C B1 28. E. 2 bit. U434 Tail stock inhibit
307D B4 28. E. 3 bit. U437 Auto door open inhibit
307E 00 28. E. 4 bit.

A2 - 5 NE-ir , NF 4
NE- IL , NF 5

Parameter

*Latch-Output

Address Data Description

3040 08 U009 Chuck close

3041 09 U010 Chuck open

3042 FF

3043 FF

-3044 FF

3045 FF

3046 FF

3047 FF

3048 FF

3049 2D U302 Quil advance in act

304A FF

304B FF

304C FF

304D FF

304E FF

304F FF

A2 - 6 NE-H ,
NE-E , NF 6

* Others

Address ! Data Descript ion


30A9 ** Turret face number in hexadec inormal number
30AA 00 is 01
i ** at face 01, ** is OA at face 10.

30AD 01 Direction of turret rotation and condition of


proximity switch.

30AF 00 Error display of phase rotation on turret head


•!
Data shows no error.

30B6 3C Number of detectable objects (teeth on the gear)


30B7 • 00 60 teeth on the gear

30C5 Spindle speed limitation amount : OPTION

30C6 4095 x S
lmt
/ S
max
hexadec inormal

S, ; Desired speed limitation


lmt
S ; Max. spindle speed on high gear
max

A2 - 7 NE-E , NF 6
MG 1

Timer

Timer No. Data Time Description

01 A200 20 min. Lubrication pause time

02 0250 25 sec. Lubrication time

03 0002 0.2 sec. Spindle start time

04 0060 6 sec . Gear change

05 0020 2 sec . Shifter return

06 0060 6 sec . Spindle orientation

07 0001 0 . 1 sec . Sequencer check

08 0003 .
0 3 sec . Finger open for small dia. tool

09 . 0010 1 sec . Active time

10 0010 1 sec . APC time

11 A0 50 5 min . Cycle time over

12 0001 0 . 1 sec . ATC time

13 0020 2 sec . Oil mist time

14 0001 0 . 1 sec .

15 0001 0 . 1 sec .

16 0001 0 . 1 sec .

A2 - 8 MG 1
MC 2

Mode 28 and 29

In/Output j
2 8.1 A.l * * k k k
No . Descr ipc ion
NO 20 Sub motor over load
*
* N007 | Breaker trip
N009 Float switch in lub. tank
*
NO 3 3 N/C alarm
*
N006 Spindle alarm

2 8. B. * * * * *
* U 1 95 | Spindle rotation alarm
i
U 1 93 Tool broken alarm
*
U 1 90 Cycle time over
*
U 1 60 Lub. pressure low
*
U 1 53 Index alarm
*
2 | 8.j Cj * | * k k k

* U111 I ATC parity alarm


U1 12 No tool presence
*
U19A ATC alarm
*
*

2 8. D. * *j * * * I
U079 j X axis interlock
*
U080 Y axis interlock
*
* U08 1 j Z axis interlock
U082 4th axis interlock
*
U 182 Spindle interlock
*
2 8 .| E \ *| * k k k

U 1 96 Auto door open


*
U19 7 Auto door close
*
U 1 98 Door interlock
U 1 99 APC interlock
*
2 9. F. * * * * *
NO 3 8 Program stop (MOO)
*
NO 28 Opt ional stop (MOD
*
NO 3 9 | End of program (MO 2)
*
NO 29 End of tape (M30 )
*
k
1

A2 - 9 Mi
MG 3

*In- or Output selection of each class on 28 and 29 mode

Address Data Descript ion

30B0 38 29 . F. class Input

30B 1 38 28. A. class Input

30B2 34 28. B. class Output

30B3 34 28. C. class Output

30B4 34 28. D. class Output

30B5 34 28. E. class Output

A2 10 MG 3
MG 4

* Number of class on 28 mode


Address Data Descript ion
3060 05 from A class to 0 class
*Detail of display on 28 and 29 mode
Address Data Descript ion
3061 25 29.F.0 bit, N038 Program stop (MOO)

3062 IB 29.F.1 bit. N028 Optional stop ( M0 1 )

3063 26 29. F. 2 bit, NO 3 9 End of program (M02)


3064 1C .
29 F . 3 bi t . NO 2 9 End of tape (M30)

3065 00 29. F. 4 bit.


3066 13 28. A. 0 bit. NO 20 Sub motor overload
3067 06 28. A. 1 bit. N007 Breaker trip
3068 08 28. A. 2 bit. N009 Float switch in lub. tank
3069 20 28. A. 3 bit. N033 N/C alarm
306A 05 28. A. 4 bit. N006 Spindle alarm
306B C2 28.B.0 bit. U195 Spindle rotation alarm
306C CO 28.B.1 bit. U193 Tool broken alarm
306D BD 28. B. 2 bit. 0 1 90 Cycle time over
306E 9F 28. B. 3 bit. 0160 Lub. pressure low
306F 98 28. B. 4 bit. 0153 Index alarm
3070 6E 28.C.0 bit. U1 1 1 ATC parity alarm

3071 6F 28.C.1 bit. 0112 No tool presence


'

3072 Cl 28. C. 2 bit. 0194 ATC alarm

3073 FF 28. C. 3 bit.


3074 FF 28. C. 4 bit.
3075 4E 28.D.0 bit. U079 .X axis interlock
3076 4F 28.D.1 bit. 0080 Y axis interlock

3077 50 28. D. 2 bit. 0081 Z axis interlock

3078 51 28. D. 3 bit. 0082 4th axis interlock


3079 B5 28. D. 4 bit. U182 Spindle interlock
307A FF 28.E.0 bit.
307B C3 28.E.1 bit. U196 Auto door open

307C C4 28. E. 2 bit. 0197 Auto door close

307D C5 28. E. 3 bit. 0198 Door interlock

307E C6 28. E. 4 bit. 0199 APC interlock

A2 11 MC 4
MG 5

Parameter

*Latch-Output

Address Data Description

3040 B9 U186 Large pot keep

3041 BA U187 Pot horizontal keep

3042 17 U024 Pot horizontal

3043 2E U047 Tool unclamp

3044 FF

3045 2F U048 Arm shift

3046 C7 U200 VDE Safty regulation

3047 A5 U166 Table zero pint

3048 FF

3049 FF

304A FF

304B FF

304C FF

304D FF

304E FF

304F FF •

A2 - 12 MG 5
MG 6

* Others

Address Data Description

30AB ** Table position data


30 AC ==** is 0012 at 90° on 5°index table.

30AE 14 Direction of table rotation and condition of


proximity switch.

3 OAF 00 Error display of phase rotation on table.


Data 00 shows no error.

30B8 360° on table .


30B9 r=rr ==** is 0048 on 5° index table.

==** is 0168 on 1° index table.

3030 19 Idling speed on spindle as the command voltage.


4 . 89mV x 25(19) = 122.25mV
3031 19 ditto.

3150 ** Type of table. 01:5°, 00:1°

3151 kk Type of command on the table.


01: Absolute, 00: Incremental.

A2 - 13 MG 6
MG 7

Maintenance mode

* M Function

M. No. Set Rese t Description


00
01 U001 U002 Table right turn
02 U002 U001 Table left turn

03
04
05
06
07
08
09
10
11
12
13
14
15 U0 1 5 U0 1 6 Spindle pin in
16 U0 1 6 U01 5 Spindle pin out

17
18
19 U0 1 9 U023 Table stopper pin in
20
21 U02 1 U022 Table unclamp
22 U022 • U02 1 Table clamp
23 U023 ,019 Table stopper pin reset
24 -r U024 ,04 1 , 187 U033 ,040 Pot horizontal
25
26
27
28
29
30
31
32

A2 - 14 MG 7
MG 8

M. No. Se t Reset Description


33 U033 , 04 1 0024,040,18 7 Pot up to waiting position
34 U034 U035 Finger open
35 D035 U034 Finger close
36 U036 U037 Arm forward
37 U037 U036 Arm backward
38
39
40 1)040,033 U041 ,024,187 Pot down
U040 , 024
41 U04 1 U033 . 187 Pot wait down
42 1)042 U045 Magazine pin in
43 U04 3 U042 Magazine pin out

44 U044 U04 5 Magazine right turn

45 U045 U044 Magazine left turn

46
47
48
49
50
51
52.
53 U053 . U054 Pallet unclamp
54 U054 U053 Pallet clamp
55
56
57
58
59
60
61
62
63
64
65

A2 15 MG 8
MG 9
Tool number memory

Tool number Tool number


Address Standard Option Address Standard Option
30D0 01 30FD FF
30D 1 FF 30FE FF
30D2 FF 30FF 12
30D3 FF 3100 FF
30D4 FF 3101 FF
30D5 FF 3102 FF
30D6 02 3103 13
30D7 FF 3104 FF
30D8 FF 3105 FF
‘ 30D9 FF 3106 14
30DA FF 3107 FF
30DB 03 3108 15
30DC FF 3109 FF
30DD FF' 3 1 0A 16
30DE FF 310B FF
30DF 04 310C 17
30E0 FF 3 1 0D FF
30E 1 FF 3 1 0E 18
30E2 FF 310F FF
30E3 05 3110 19
30E4 FF 3111 FF
30E5 FF 3112 20
30E6 FF 3113 FF
30E7 06 3114 21
30E8 FF 3115 FF
30E9 FF 3116 22
30 EA FF 3117 FF
30EB 07 3118 23
30EC FF 3119 FF
30ED FF 31 1 A 24
30EE FF 31 1B FF
30EF 08 31 1C 25
30F0 FF 31 1 D FF
30F1 FF 31 1E 26
30F2 FF 31 1F FF
30F3 09 3120 27
30F4 FF 3121 FF
30F5 FF 3122 28

30F6 FF 3123 FF
30F7 10 3124 29
30F8 FF 3125 FF
30F9 FF 3126 30
30FA FF 3127 FF
30FB 11 3128 FF
30FC FF 3129 FF

A2 16 MG 9
MN 1

Timer

Timer No. Data Time Description

01 A200 20 min. Lubrication stop

02 0250 25 sec. Lubrication start

03 A250 25 min. Lubrication time

04 0030 3 sec . Orientation

05 A005 0.5 min. Cycle time over

06 0015 15 sec. Operation

07 0020 2 sec . Oil mist

08 0005 0.5 sec. ATC timing

09 0010 1 sec . Pallet left or right end dwell

10 0005 0.5 sec. Pallet unclamp timing

11 0005 .
0 5 sec . M7 1 timing

12 0002 0.2 sec. 5° table clamp timing

13 0005 0 . 5 sec . Sequencer act check

14 0030 3 sec . Magazine position check

15 0015 .
1 5 sec . Spindle stop timing

16 0001 0.1 sec .

A2 - 1 7 MN
MN 2

Mode 28 and 29

In/Ou tpu11
2 8.1 A.I * * * * * No. Description
U460 I Tool unpresence
*
1
,* U46 1 ATC A,B phase alarm
U4 75 Table fault

*
8. B. -k k
2 * * k

U 1 36 Machine alarm
*
U 1 52 Tool ' broken
*
U 1 62 Magazine position fault
U 1 63 Lubrication fault
i*
£
2 8. C. * * * * *
* U137 I Spindle no ready to start

U 1 53 Cycle time over


*
U 1 68 M06 Not ready
*
U 1 69 M60 Not ready
1*
U 1 70 Table index not ready
*
2 8 . D. * *I * 3*C -k

* U16 7 I Spindle rotation fault


U 1 83 Transfer not ready
*

2 8. .E. * * * * *
U026 Call light
*
U16 1 Call light off auxiliary
*
U 1 64 Program stop auxiliary
*

£
2 9. F. * * * * *
N 1 25 MF
*
N 1 26 SF
*
N 1 27 TF
*
N 1 28 BF
*
*
A2 - 1 8- MN 2
MN 3

*In- or Output selection of each class on 28 and 29 mode

Address Data Description

30B0 38 29. F. class Input

30B 1 35 28. A. class Output

30B2 34 28. B. class Output

30B3 34 28. C. class Output

30B4 34 28.D. class Output

30B5 34 28.E. class Output

A2 - 1 9 MN 3
MN 4

*Number of class on 28 mode


Address Data Description
3060 05 from A class to E class
*Detail of display on 28 and 29 mode
Address Data Description
3061 7C 29.F.0 bit. N 1 25 MF
3062 7D 29.F.1 bit. N 1 26 SF
3063 7E 29. F. 2 bit. N 1 2 7 TF
306A 7F 29. F. 3 bit. N 1 28 BF
'3065 FF 29. F. A bit.
3066 CB 28. A. 0 bit. U460 Tool unpresence
3067 CC 28. A. 1 bit. U461 ATC A,B phase alarm
3068 DA 28. A. 2 bit. U475 Table fault
3069 FF 28. A. 3 bit.
306A FF 28. A. 4 bit.
306B 87 28.B.0 bit. U136 Machine alarm
306C 97 28.B.1 bit. U 1 52 Tool broken
306D A1 28. B. 2 bit. U 1 6 2 Magazine position fault
306E A2 28. B. 3 bit. U 1 63 Lubrication fault
306F FF 28. B. 4 bit.
3070 88 28.C.0 bit. U137 Spindle no ready to start

3071 98 28.C.1 bit. U153 Cycle time over


3072 A7 28. C. 2 bit. U168 M06 not ready

3073 A8 28. C. 3 bit. U169 M60 not ready


3074 A9 28. C. 4 bit. U170 Table- index not ready
3075 A6 28.D.0 bit. U167 -Spindle rotation fault
3076 B6 28.D.1 bit. U 1 8 3 "fransfer not ready

3077 FF 28. D. 2 bit.


3078 FF 28. D. 3 bit.
3079 FF 28. D. 4 bit.
307A 19 28.E.0 bit. U026 Call light

307B A0 28. E. 1 bit. U161 Call light off auxiliary


307C A3 28. E. 2 bit. U164 Program stop auxiliary

307D FF 28. E. 3 bit.


307E FF 28. E. 4 bit.

A2 - 20 MN 4
MN 5

Parameter

*Latch-Output

Address Data Descript ion

3040 03 U004 Gear high

3041 04 U005 Gear low

3042 09 U010 ATC tool grip

3043 0A U01 1 ATC initial position

3044 81 U 130 ATC initial position auxiliary

3045 82 U131 Tool grip auxuliary

3046 83 U 1 32 Arm 90° acting

3047 84 U 1 33 Arm 90° act confirm

3048 FF

3049 FF

304A FF

304 B FF

304C FF

304D FF

304E FF

304F FF

A2 - 2 1 MN 5
MN 6

* Others

Address Data Description

30A9 Magazine pot number at A.T.C. position.


30AA 00 ** is 01 01, is 12
at pot no.
** at pot no. 18.

30AB ** Table position data.


30 AC ==** is 0012 at 90° index table.

30AD 01 Direction of magazine rotation and condition of


proximity switch.
30AE 14 Direction of table rotation and condition of
proximity switch.

3 OAF 00 Error display of phase rotation on magazine and


table . Data shows no error.

30B6 18 Number of magazine pots. (Hexadecinormal)


30B7 00 24 pots.

30B8 ** 360° on table.


30B9 ==** is 0048 on 5° index table.
==** is 0168 on 1° index table.

3130 11 Idling speed OQ spindle as the command voltage.


4.89mV x 16 = 78.24mV. High gear.
3131 35 Idling speed on spindle as the command voltage.
.
4 89mV x 53 = 259. 1 7mV Low gear

3150 ** Type of table. 01:5°, 00:1°.

3151 Type of command on table.


01: Absolute, 00: Incremental.

A2 - 22 MN 6
MN 7

Maintenance mode

* M Function

M. No. Set Reset Description


00
01
02
03
04
05
06 U006 U007 Tool clamp
07 U007 U006 Tool unclamp
08
09
10 U010, 132 U01 1 Arm tool grip
11 U0 1 1 , 0 1 5 , 132 U0 10,014 Arm initial position
12 U0 1 2 U0 1 3 Arm forward

13 U013 U0 1 2 Arm retract

14 U0 1 4 U0 1 5 Arm 180° turn

15
16
17 U01 7 U0 1 8 Table clamp
18 U0 1 8 U0 1 7 Table unclamp
19 U0 1 9 U020 Table rotation high (Table pin in)
20 U020 U0 1 9 Table rotation low (Table pin out)
21 U02 1 U022 Pallet clamp
22 U022 U02 1 Pallet unclamp
23 U023 U024 Transfer right
24 • U024 U023 Transfer left
•25
26
27
28
29 U029 Stopper pin out set

30
31
32

A2 - 23 MN 7
MN 8

M. No. Set Reset Description


66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88 U01 9 , 020 Table rotation reset

89 U029 Stopppr pin out reset

90
91
92
93
94
95
96
97
98
99

A2 - 2 4 MN 8
VA 1

Timer

Timer No. Data Time Description

01 0001 .
0 1 sec . Spindle reverse timing

02 0010 1 sec . Gear shift start timing

03 0050 5 sec . Shifter start timing

04 0010 1 sec . Gear shift recycle timing

05 0003 0 . 3 sec . Torque limiter release timing

06 0005 0 . 5 sec . Arm down act timing

07 0005 0 . 5 sec . Arm up act timing

08 0005 0.5 sec. ATC command error timing

09 0005 .
0 5 sec . Orientation start timing

10 0001 0 . 1 sec . Orientation idling timing

11 0030 0 . 3 sec . ilist on timing

12 0250 25 sec. Cycle time over

13 0100 10 sec. Automatic power circuit breaker timing

14 0010 1 sec'.' Spindle safty check

15 A200 20 min. Lub . pause time

16 0150 1 5 sec . Lubrication time

A2 - 25 VA 1
VA Z

Mode 28 and 29

In/Output |
2 8. A. k
* k k -k
No. Descript ion
NO 1 2 I Motor overload
*
* N02 1 N/C fuse alarm
* N025 Lubrication alarm

* N034 N/C alarm


NO 9 8 Spindle drive unit alarm

2 8. B. * k k k k

* U 1 38- Spindle alarm

* U225 Spindl-e command error

* U226 ATC command error


U227 Battery alarm
i *
1*
2 8. C. * * k k k

2 8.D.* *| * * *
L
\ 1

2 8. E. * k k k k

1
k

2 j 9.| F] * * * * *
NO 2 8 MOO in act (Pro pram stop)
*
NO 2 9 MO 1 in act (Optional stop)

* N030 j MO 2 in act (End of program)


NO 3 1 | M30 in act (Nnd of tape)

A2 - 2b VA
VA 4

*Number of class on 28 mode


Address Data Description
3060 02 from A class to B class
*Detail of display on 28 and 29 mode

Address Data Description


3061 IB 29.F.0 bit. N028 MOO in act (Program stop)
3062 1C 29.F.1 bit. N029 M0 1 in act (Optional stop)
3063 ID 29. F. 2 bit. N030 M02 in act (End of program)
3064 IE 29. F. 3 bit. N03 1 M30 in act (End of tape)
3065 00 29. F. 4 bit.
3066 0B 28. A. 0 bit. N012 Motor overload
3067 J4 28. A. 1 bit. N02 1 N/C fuse alarm
3068 J8 28. A. 2 bit. N025 Lubrication alarm
3069 21 .
28 A. 3 bit. N034 N/C alarm
306A 61 28. A. 4 bit. N098 Spindle drive unit alarm
306B 89 28.B.0 bit. U138 Spindle alarm
306C E0 28.B.1 bit. U225 Spindle command error
306D E1 28. B. 2 bit. 0226 ATC command error
306E E2 28. B. 3 bit. U227 Battery alarm
306F 00 28. B. 4 bit.
3070 00 28.C.0 bit.
3071 00 28. C. 1 bit.
3072 00 28. C. 2 bit.
3073 00 28. C. 3 bit.
3074 00 28. C. 4 bit.
3075 00 28.D.0 bit.
3076 00 28. D. 1 bit. fi

3077 00 28. D. 2 bit.


3078 00 28. D. 3 bit.
3079 00 28. D. 4 bit.
307A 00 28.E.O bit.
307B 00 28.E.1 bit.
307C 00 28. E. 2 bit.
307D 00 28. E. 3 bit.
307E 00 28. E. 4 bit.

A2 - 28 VA 4
VA 3

*In- or Output selection of each class on 28 and 29 mode

Address Data Description


28
30B0 38 .F . class Input

30B 1 38 28 .A. class Input

30B2 34 28. B. class Output

30B3 00 .
28 C . class

30B4 00 28 . D . class

30B5 00 28 . E . class

A2 - 2 7 VA 3
VA 5

Parameter

*Latch-Output

Address Data Description

3040 BO U 1 7 7 Confirmation of arm origin position

3041 B1 U178 Confirmation of arm grip position

3042 FF

3043 FF

‘3044 FF

3045 FF

3046 FF

3047 FF

3048 FF

3049 FF

304A FF

304B FF

304C FF

304D FF

304E FF

304F FF

A2 29 VA 5
VA 6

* Others

Address Data Descript ion

30A9 ** Magazine pot number at waiting position


30AA 00 in hexadecinormal

** is 01 at pot no. 01,


** is 12 at pot no . 18.

30AD 01 Direction of magazine rotation and condition of


proximity switch.

30AF 00 Error display of phase rotation on magazine .


Data 00 shows no error.

30B6 ** Number of magazine pots.


30B7 00 VA35: 12, VA40: 19, VA50: 14

3130 OF Idling speed on spindle as the command voltage.


.
4 89mV x 1 5 (OF) = 73.35mV

3141 ** Number of magazine pots.


VA35 : 1 8 , VA40:25, VA50:20

3146 kk Type of model


VA35 : 0 1 , VA40 , VA50 : 00
Difference between the waiting position and
the stock position on the magazine.

A2 - 30 VA 6
VA 7

Maintenance mode

*Mode FF

D. No. Set Reset Description


D00 1
D002
D003
D004
D005 U005 U006 High gear, shift act

D006 U006 U005 Low gear shift act

D007 U007 Tool unclamp


D008 U007 Tool clamp
D009
DO 10
D0 11 U01 1 U0 1 2 Arm down act
D0 12 U0 1 2 U01 1 Arm up act
D0 13
D0 14 U0 1 4 U0 1 5 Arm 70° turn act
D01 5 U0 1 5 U0 1 4 Arm 70° return act
D0 16 U0 1 6 U0 1 7 Arm 180° turn act
D0 17 U017 U0 1 6 Arm 180° return act
D0 18
D0 19
DO 20
D02 1
D022
D023
D024
D025
D026
D027
D028
D029
D030
D03 1
D032

A2 - 3 1 VA 7
VA 2a (from POM Edition 455D)

Mode 28 and 29

In/Output
2 | 8.! A .1 * 1 * j * * * No. Descript ion
N0 12 Motor overload
*
* N021 N/C fuse alarm

* N02 5 Lubrication alarm

* N034 N/C alarm


N098 Spindle drive unit alarm

2 8. B. * * * * *
* U 1 38 j Spindle alarm
U225 Spindle command error

* U226 ATC command error


U227 Battery alarm
*
t*
2 8. C. * •k k k . k

U 1 50 Cycle time over


*
_* U1 52 Lub . pressure low
U 11 2 No tool presence
*
U229 Orientation command error
*
U230 Gear shift command error
*
1

2 8 ,| D .[ *j k k k

2 8. E. k
* k k k

2 9. F. * k k k k

N028 MOO in act (Program stop)


*
1
N029 M0 1 in act (Optional stop)
*
NO 30 M02 in act (End of program)
£
* NO 3 1 | M30 in act (£nc| of tape)

A2 32 VA 2a
VA 3a (from POM Edition 455D)

*In- or Output selection of each class on 28 and 29 mode

Address Data Description

30B0 38 29. F. class Input

30B 1 38 28. A. class Input

30B2 34 28. B. class Output

30B3 34 28. C. class Output

30B4 00 28.D. class

30B5 00 28. E. class

,
•V
**

A2 - 33 VA 3a
VA 4a (from POM Edition 4550)

of class on 28 mode
Address Data Description
3060 03 from A class to C class

*Detail of display on 28 and 29 mode


Address Data Description
3061 IB 29.F.0 bit. N028 MOO in act (Program stop)
3062 1C 29.F.1 bit. N029 M01 in act (Optional stop)
3063 1D 29. F. 2 bit-. N030 M02 in act (End of program)
3064 IE 29. F. 3 bit. N031 M30 in act (End of tape)

'3065 00 29. F. 4 bit.


3066 0B 28. A. 0 bit. N0 1 2 Motor overload
3067 14 28. A. 1 bit. N021 N/C fuse alarm
3068 18 28. A. 2 bit. N025 Lubrication alarm
3069 21 28. A. 3 bit. N034 N/C alarm
306A 61 28. A. 4 bit. N098 Spindle drive unit alarm
306B 89 28.B.0 bit. U138 Spindle alarm
306C E0 28.B.1 bit. U225 Spindle command error
306D E1 28. B. 2 bit. U226 ATC command error

306E E2 28. B. 3 bit. U227 Battery alarm


306F 00 28. B. 4 bit.
3070 95 28.C.0 bit. U150 Cycle time over
3071 -97 28.C.1 bit. U 1 52 Lub . pressure low

3072 6F 28. C. 2 bit. U1 12 No tool presence

3073 E4 28. C. 3 bit. U229 Orientation command error


3074 E5 28. C. 4 bit. U230 Gear shift command error

3075 00 28.D.0 bit.


3076 00 28.D.1 bit. i-

3077 00 28. D. 2 bit.


3078 00 28.D. 3 bit.
3079 00 28. D. 4 bit.
307A 00 28.E.0 bit.
307B 00 28.E.1 bit.
307C 00 28. E. 2 bit.
307D 00 28. E. 3 bit.
307E 00 28. E. 4 bit.

A2 34 VA 4a
APPENDIX 3 EXAMPLE OF TROUBLE SHOOTING
(How to read the elec. drawing and flow-chart)

(How to use the key board of MICON 8)

Trouble ; Lubrication does not work on the 4NE-I1 .

( S shows a question, shows an answer.)


*

Trouble shooting (Use’ the elec, drawing No. 1567-044 or -045)

a. $ Is the motor running ?

The lubrication motor is driven by the motor.

* Not running. ====> To item b.

* Running
Check the piping, pump and the direction of rotation.

b. $ Does OL-3 (Over load relay) detect an overload ?

Find the Fig. 1 at the page 1. of the first parts of elec.


drawing which shows the hard-ware (wiring) .

R2--T2
S2 OL-3
MS-3
n , U1
Lubricating pump
Motor
(9-07) V1
if n 30w
4P
W1
G

Fig. 1 MS-3; Magnetic contacto


OL-3; Overload relay

* No overload. == = = => To item c .

* Overload.
Motor alarm on the operator's panel turns on. Check the

motor circuit and reset OL-3.

A3 - 1
c. $ Is MS-3 (Magnet ic contactor) on ?

Refer Fig . 1 .

* Off. = == To item d.

* On.

Check the contactors of MS-3 or wiring to the motor.

d. $ Is U002 (LUB) on ?

Find the Fig. 2 at the page 9, there is the coil of MS-3.

MS-3

(9-07)
r MICON 8
Page 9 Row 7
SOFT SQ. OUTPUT 2

Lubricating
pump
PRE LUB
11
'( MS it
k 3
(1 1-06) (U002)

Fig. 2

k U002 is off.
Display on the key board ..is as follows.
Mode Address/Data
2 2. 0 0 2. 0.
U002 OFF

ITNPI OB

==>
== To item e.

k U002 is on.
Display on the key board is as follows.
Mode Address /Data
2 2.0 0 2. 1.
U002 ON

A3
Check the relay "PRE"(page II) , wire no. 5 and wire no. II.

The output relay board for U002 should be checked.

e . The page which U002 is set or reset in the flow-chart (soft-ware)


is mentioned on the output list in the last parts of elec.
drawing.

STO RTO SNO or


page page SNON page
LUB U002 ??? Lubrication F20 F20 F20
pump

U002 is set at page F20 where the whole program of lubrication


is described.

When the sequence-flow passes Fig. 3 from the lowest part of page

F20, U002 is set to make on MS-3.

S
LUB , U002

A400
6 Fig. 3

$ Is U289 (REDY ) on ?

Find Fig. 4 at upper part of page F20.


5

Machine ready
N
A340
REDY ,U289
Y
v
f

(U002 , on) (U002 ,of f )

Fig. 4

A3 - 3

%
r
?
£
* U289 is on.
Display on the key board is as follows. !
}
Mode Address/Data
2 2.2 8 9.
i
\
flNPl
U289
UN
ON

V'

====5> To item f.
-t -

* U289 is off.
r
Display on the key board is as follows.
Mode Address /Data
2 2. 2 8 9. 0.
U289 OFF

When U289 is off, the sequence-flow follows N(no) direction


and will pass the line A340, then U002 will be reset after
?
resetting TR-1 (Timer 1) and TR-2(Timer 2).

The page in the output list where U289 is set in flow=chart is


as follows.

STO RTO SNO or


pagr page SNON page
REDY U289 ??? Machine F 1 0 F 10 F20 ,F25
ready

Find Fig. 5 at page FJ0. -»

A150
Machine ready
N
£
-
RDYM,N04 1 /
N A160

S R
Machine ready AUX.
REDY ,U289 REDY ,U289

A t 70
Fig. 5
4

A3 4
?
i
i."
When N04 1 ( Input No. 41) is off, the sequence-flow proceeds to
the line A160 in order to reset U289 . The display on the key
board is as follows.
Mode Address/Data
2 1.04 0.

\
EHB
N04 1
IN
OFF

Find Fig. 6 on the hard-ware drawing. (Page 14)

0V DC24
PRE S4 1 Standby
ih
II
(11-06)
RDYM
(N04 1 )

Fig. 6

Check the relay "PRE" and the wire S4 1 . However many other
functions are not performed under OFF condition on U289.

f. Find Fig. 7 in the page F20 of flow-chart.

$ Is U039 (Lubrictaing oil lack) on ?


Lubrication oil lack
y A340
LABL.U039
N
Fig. 7
(U002 , on )

* '
U039 is off.
Display on the key board is as follows.

Mode Address /Da ta


2 2. 0 3 9. 0.
\ U039 \ OFF

llNPi [INPI

== > To item g.

A3 - 5
r

* U039 is on.
Display on the key board is as follows. i

Mode Address/Data
;
2 2. 0 3 9
.

U039 ON

?
When U039 is on, the sequence-flow follows Y(yes) direction,
and will pass the line A340, the U002 will be reset after resett- ;

ing TR-1 and TR-2.


In this case, LUB. ALARM on the operator's panel turns on . r

Please refer to the page F 1 5 in flow-chart and the page 22 in j


hard-ware drawing.

g- Find Fig. 8 in the page F20 of flow-chart.

Lubricating pump
Y
LUB ,U002

N A320
v
Y Standby
PREM, N00 1
N
A3 10 N TR-2
Y
TR-1
YJL
A3 2 5
Y
u Y V
(U002 , on) (U002 ,of f )
Fig. 8
1

Z
,

U002 is off (Item d.), therefore the sequence-flow follows *

N(no) direction.

t
The lubrication is performed by pushing the button of "Standby"
(N001). The display on the key board is as follows.

Mode Address/Data
2 1.0 0 1. ?.
N00 1
NPl NP;

When the data shows 11


1", the push button "Standby" is pressed,
so that manual lubrication is performed. If N00 1 is not turned on,

\
A3 - b %i
the hydraulic pump do not run. Please refer to Fig. 9 and the page
FO in the flow-chart.

Hydraulic pump
Y
HYP , U00 1

N
I
N
Standby
<-
PREM,N001
Y
V
''
s R
HYP ,U00 1 HYP ,U00 1

Fig. 9

TR-2 in Fig. 8 is set to 10 sec. to make off the lubricating


after its time-up(Y direction) .

$ Is TR-1 on ?

There are two timers in Fig. 8, The sequence-flow follows


N(no) direction without those time-up.

* TR-1 is on.

Pisplay on the key board is as follows.

Mode Address /Pata


2 7. 0 1. 0.
TR-1 Time-up
lINPi IN Pi

= ==== To item h.

Note . Pata display of timer reset is same as data display of


time-up (0). Please follow next
* when the timer is

in reset condition.

* TR-1 is counting or reset condition.

A3 7
( .
Display on Che key board is as follows.
Mode Address/Data
l
2 7. 0 1. 1 .
Counting r
I
2 7. 0 1. 0.
TR-1 Reset condition r
t
When TR-1 is counting or reset condition, the sequence-flow
r
follows N(no) direction and passes RESET U002. 1
f-

The timer set up amount should be checked, when time-up is not f


i
completed for a long time. TR-1 is set to 10 sec. as normal.
Display on the key board is as follows.
!
Mode Address/Data
1 1. 0 1. 0 0.

\ TR- 1 TlNPj
jlNPt
\ 10 sec.

If display is not same as above, the memory write for timer


should be done with "WRSW" sw’itch on.
Mode Address/Data
0.01.010 0.
TR- 1 \ 10 sec.
IlNPl lINPl tlNPl
*
Data "0" of the 4th digit from right side should be input. '
:V
"WRSW" switch should be turped off after memory write.

====£> To item h. V:!


A
'A*

h. Find Fig. 10 in the page F20 of flow-chart.

N
Y
Spindle zero
speed
:,
\
-Yi
.. .*

ZRSP , U29 1
N Tool post
'f
clamp
Y
TUCL ,N046
Fig . 10
N r
t

A3 1 0
(U002 ,on )
A3 - 8 ••1
1 i

j
V.Tien the spindle is not rotating and TR-1 is on, the sequence-
flow follows line A310 to set U002.

In spite of spindle rotating, U002 is set with no "Tool post


clamp" (Tool post unclamp).
c

Display of the key board are as follows.

Mode Address/Data

2 2.2 9 1 . 1 . ====£> U002 on

2 2. 2 9 1 . 0.
====> U002 on
2 1 . 0 4 6. 0.

2 2. 2 9 1 . 0.
====t> U002 off
2 1. 0 4 6. 1

Trouble shooting is completed.

A3 - 9
MICON -8 -

READER’S COMMENT FORM

Please use this form to identify any manual errors, request changes or additional
technical questions.

Errors in (typographical, illustration, etc.) list page number and error:

If you find any inaccurate or misleading information in this manual, please tell us about
it.

Send your comments to:

HITACHI SEIKI U.S.A., INC.


250 Brenner Drive
Congers, NY 10920
Attn: Sales Support Group

Name

Address

Phone No.

You might also like