0% found this document useful (0 votes)
65 views22 pages

Atomic Dipole Polarizability Data

This document provides a table of experimental and calculated static dipole polarizabilities for the electronic ground states of neutral elements. It lists the element, references, atomic state, calculated or experimentally determined polarizability value, and comments on the calculation method used. The table includes data from both nonrelativistic and relativistic calculations, and experimentally determined values, from hydrogen to silicon. It aims to provide the most accurate polarizability values available and notes that updated values are available on the listed website.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
65 views22 pages

Atomic Dipole Polarizability Data

This document provides a table of experimental and calculated static dipole polarizabilities for the electronic ground states of neutral elements. It lists the element, references, atomic state, calculated or experimentally determined polarizability value, and comments on the calculation method used. The table includes data from both nonrelativistic and relativistic calculations, and experimentally determined values, from hydrogen to silicon. It aims to provide the most accurate polarizability values available and notes that updated values are available on the listed website.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 22

Table of experimental and calculated static dipole polarizabilities

for the electronic ground states of the neutral elements (in atomic units)
Last Update: June 1, 2015
Peter Schwerdtfeger
Center for Theoretical Chemistry and Physics (CTCP), The New Zealand Institute for Advanced Study, Massey University Auckland,
Bob Tindall Building, 0632 Auckland, New Zealand
Email: p.a.schwerdtfeger@massey.ac.nz, Web: http://ctcp.massey.ac.nz/dipole-polarizabilities

Table of static (scalar) dipole polarizabilities (in atomic units) for neutral atoms. If not otherwise indicated by the state symmetry, ML(MJ) -
averaged polarizabilities are listed; ML (MJ) res. denotes that the polarizability for each ML (MJ) state can be found in the reference given.
Abbreviations used: exp.: experimentally determined value (set in bold letters, uncertainties given here consistently as ± values); NR:
nonrelativistic; R: Relativistic, DK: Scalar relativistic Douglas-Kroll; MVD: mass-velocity-Darwin; SO: Spin-orbit coupled; SF: Dyall’s spin-
free formalism (scalar relativistic); PP: relativistic pseudopotential; LDA: local (spin) density approximation; PW91: Perdew-Wang 91
functional; MBPT: many-body perturbation theory; CI: configuration interaction; CCSD(T): coupled cluster singles doubles (SD) with
perturbative triples; FS Fock-space; CEPA: coupled electron pair approximation; MR: multi-reference; CAS: complete active space; VPA:
variational perturbation approach [1]. For all other abbreviations see text or references. If the symmetry of the state is not clearly specified as in
Doolen’s calculations, the calculation was most likely set at a specific configuration (orbital occupancy) as listed in the Desclaux tables [2],
reflecting the ground state symmetry of the specific atom. Nonrelativistic HF values up to element No have been published by Fraga et al and are
not listed here [3]. NB: 1 a.u. = 0.14818474 Å3 = 1.6487773 × 10-41 C m2/V.
Remarks: Not all published values are listed, only the most accurate ones. If you have more accurate polarizability data available, please
provide the necessary information with a proper reference. NB: There is some confusion about the experimental data listed in the CRC
Handbook of Chemistry and Physics taken from Miller and Bederson. Some of the data are not experimental values as indicated, but from LDA
calculations of Doolen, which are listed here as well. Concerning older literature, in 1971 the polarizabilities have been listed up to the element
Radon by Teachout and Pack giving 138 references [4]. A more recent review by Mitroy, Safronova and Clark is highly recommended [5]. The
present list started in 2006 and the first version was published in Ref.6. The correct citation is therefore ref.6 with the addition: Updated static
dipole polarizabilities are available as pdf file from the CTCP website at Massey University: http://ctcp.massey.ac.nz/dipole-polarizabilities. If
we should provide ionic polarizabilities as well, please let us know.
Acknowledgment: I thank Ivan Lim (Auckland), Nicola Gaston (Wellington), George Maroulis (Patras), Uwe Hohm (Braunschweig), Antonio Rizzo (Pisa), Jürgen Hinze
(Bielefeld), Gary Doolen (Los Alamos National Laboratory), Dirk Andrae (Bielefeld), Vitaly Kresin (Los Angeles), Timo Fleig (Düsseldorf), Ajit Thakkar (Fredericton),
Pekka Pyykkö (Helsinki), Zong-Chao Yan (New Brunswick), Anastasia Borschevsky (Auckland), Keith Bonin (Winston-Salem) and Jeff Nagle (Bowdoin College) for
helpful discussions. Financial support from Marsden funding by the Royal Society of New Zealand is gratefully acknowledged.
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 2

Z Atom Refs. State αD comments


2
1 H [7] S 4.5 NR, exact
2
[7,8] S1/2 4.49975149589 R, Dirac, variational, Slater basis/B-splines (more digits are given in ref.8)
2
[9] S1/2 4.49975149518 R, Dirac, Lagrange mesh method (more digits are given in this paper)
2
[8,10] S1/2 4.50710742367 R, Dirac (as above), but with finite mass correction added for 1H
1
2 He [11] S0 1.383191 R, Dirac, Breit-Pauli, QED, mass pol., correlated basis (4He)
1
[12] S0 1.38376079(23) R, Dirac, Breit-Pauli, QED, mass pol., exponentially correlated Slater functions (4He)
1 1.383746(7)
[13,14] S0 exp.
2
3 Li [15,16] S 164.05 NR, exponentially correlated Gaussians [20] + R/DK
2
[17] S1/2 164.084 R, Dirac, MBPT, Breit, QED, recoil (7Li)
2
[18] S1/2 164.1125(5) Hylleraas basis, R(MV+Darwin+Breit), QED, recoil (7Li)
2
[19] S1/2 164.0±3.4 exp.
1
4 Be [15] S 37.755 NR, exponentially correlated Gaussians [20]
1
[21] S0 37.80 R, Dirac, coupled cluster
1
[22] S0 37.71 R, Dirac, CI+MBPT+ experimental data
2
5 B [23] P 20.5 NR, PNO-CEPA, ML res.
2
[24] P 20.43 NR, CCSD(T), ML res.
2
[25] P 20.59 R, SF, MRCI, ML res.
2
[25] P1/2/2P3/2 20.53/20.54 R, Dirac, MRCI, MJ res.
3
6 C [26] P 11.0 NR, CASPT2, ML res.
3
[24] P 11.67 NR, CCSD(T), ML res.
3
[27] P0 11.26 R, Dirac+Gaunt, CCSD(T)
4
7 N [23] S 7.43 NR, PNO-CEPA
4
[28] S 7.41 R, DK, CASPT2
4
[24] S 7.26 NR, CCSD(T)
4
[19,29] S3/2 7.6±0.4 exp.
3
8 O [23] P 6.04 NR, PNO-CEPA, ML res.
3
[26] P 6.1 NR, CASPT2, ML res.
3
[24] P 5.24 NR, CCSD(T), ML res.
Atomic Static Dipole Polarizabilities 3

Z Atom Refs. State αD comments


2
9 F [23] P 3.76 NR, PNO-CEPA, ML res.
2
[30] P 3.76 NR, CASPT2, ML res.
2
[24] P 3.70 NR, CCSD(T), ML res.
1
10 Ne [31] S 2.68 NR, CCSD(T)
1
[32] S 2.665 NR, CC3
1
[32-34] S 2.666 R, CC3+FCI+DK3 correction
1
[35] S0 2.6772 R, Dirac-Coulomb, non-linear PRCC
1
[36] S0 2.670±0.005 exp.
2
11 Na [37] S1/2 162.6 R, SD all orders + exp. data
2
[38] S1/2 162.7±0.8 exp.
2
[39] S1/2 162.7±0.1/±1.2 exp. (values in parentheses correspond to statistical and systematic uncertainties respectively)
2
[40] S1/2 161±7.5 exp.
1
12 Mg [41] S 71.7 NR, MBPT4
1
[42] S 71.8 NR, MBPT4
1
[43] S 70.9 R, DK, CASPT2
1
[21] S0 73.41 R, Dirac, coupled cluster
1
[22,44] S0 70.89 R, Dirac, CI+MBPT+ experimental data
1
[45] S0 70.76 R, Dirac+Breit, perturbed relativistic coupled-cluster theory (PRCC)
1
[40] S0 59±16 exp.
2
13 Al [46] P 56.3 NR, PNO-CEPA
2
[47] P 62.0 NR, numerical MCSCF, ML res.
2
[48] P 57.74 NR, CCSD(T), ML res.
2
[25] P 55.5 R, SF, MRCI, ML res.
2
[25] P1/2/2P3/2 55.4/55.9 R, Dirac, MRCI, MJ res.
2
[49,50] P1/2 46±2 exp. (see also ref.40)
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 4

Z Atom Refs. State αD comments


3
14 Si [46] P 36.7 NR, PNO-CEPA, ML res.
3
[26] P 36.5 NR, CASPT2, ML res.
3
[51] P 37.4 NR, CCSD(T), ML res.
3
[48] P 37.17 NR, CCSD(T), ML res.
3
[27] P0 37.31 R, Dirac+Gaunt, CCSD(T)
4
15 P [46] S 24.7 NR, PNO-CEPA
4
[26] S 24.6 NR, CASPT2
4
[28] S 24.9 R, DK, CASPT2
4
[48] S 24.93 NR, CCSD(T)
3
16 S [46] P 19.6 NR, PNO-CEPA, ML res.
3
[26] P 19.6 NR, CASPT2, ML res.
3
[30] P 19.6 NR, CASPT2, ML res.
3
[48] P 19.37 NR, CCSD(T), ML res.
2
17 Cl [46] P 14.7 NR, PNO-CEPA, ML res.
2
[26] P 14.6 NR, CASPT2, ML res.
2
[30] P 14.73 NR, CASPT2, ML res.
2
[48] P 14.57 NR, CCSD(T), ML res.
1
18 Ar [46] S 11.10 NR, PNO-CEPA
1
[52] S 11.084 NR, CCSD(T)
1
[28] S 11.1 R, DK, CASPT2
1
[34,52] S 11.10 R, CCSD(T) + DK3 correction
1
[53,54] S0 11.070(7) exp.
2
19 K [37] S1/2 289.1 R, SD all orders, + exp. data for electronic transitions
2
[55] S 291.1 R, DK, CCSD(T)
2
[19] S1/2 293±6 exp.
2
[39] S1/2 290.6±1.4 exp. (for hyperfine effects see ref.56)
Atomic Static Dipole Polarizabilities 5

Z Atom Refs. State αD comments


1
20 Ca [57] S0 160 R, CI, MBPT
1
[58] S 152.0 R, MVD, CCSD+T
1
[43] S 163 R, DK, CASPT2
1
[59] S0 158.6 R, DK+SO, CCSD(T)
1
[21] S0 154.58 R, Dirac, coupled cluster
1
[22,44] S0 155.9 R, Dirac, CI+MBPT+ experimental data
1
[45] S0 160.77 R, Dirac+Breit, perturbed relativistic coupled-cluster theory (PRCC)
1
[60,61] S0 169±17 exp.
2
21 Sc [62,63] D3/2 120 R, Dirac, LDA
2
[64,65] D 107 NR, small CI, VPA
2
[66] D 142.28 NR, MCPF
2
[40] D3/2 97.2±9.5 exp.
3
22 Ti [62] F2 99 R, Dirac, LDA
3
[64] F 92 NR, small CI, VPA
3
[66] F 114.34 NR, MCPF
3
[40] F2 63.4±3.4 exp.
4
23 V [62] F3/2 84 R, Dirac, LDA
4
[64] F 81 NR, small CI, VPA
4
[66] F 97.34 NR, MCPF
4
[40] F3/2 68.2±5.4 exp.
7
24 Cr [62] S3 78 R, Dirac, LDA
7
[66] S 94.72 NR, MCPF
7
[67] S 78.4 DK,CASPT2
7
[40] S3 60±24 exp.
6
25 Mn [62] S5/2 63 R, Dirac, LDA
6
[64] S 65 NR, small CI, VPA
6
[66] S 75.52 NR, MCPF
6
[67] S 66.8 DK,CASPT2
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 6

Z Atom Refs. State αD comments


5
26 Fe [62] D4 57 R, Dirac, LDA
5
[64] D 58 NR, small CI, VPA
5
[66] D 63.93 NR, MCPF
5
[68] D 62.65 NR, GGA(PW86)
4
27 Co [62] F9/2 51 R, Dirac, LDA
4
[64] F 53 NR, small CI, VPA
4
[66] F 57.71 NR, MCPF
3
28 Ni [62] F4 46 R, Dirac, LDA
3
[64] F 48 NR, small CI, VPA
3
[66] F 51.10 NR, MCPF
2
29 Cu [66] S 53.44 NR, MCPF
2
[69] S 45.0 R, PP, QCISD(T)
2
[70] S 46.5 R, DK, CCSD(T)
2
[67] S 40.7 R, DK,CASPT2
2
[40] S1/2 58.7±4.7 exp.
1
30 Zn [71] S 39.2 NR, CCSD(T), MP2 basis correction
1
[72] S 38.0 R, PP, CCSD(T)
1
[73] S 37.6 R, MVD, CCSD(T)
1
[67] S 38.4 R, DK,CASPT2
1
[74] S0 38.666 R, Dirac, CCSDT
1
[71] S0 38.8±0.3 exp.
2
31 Ga [75] P 54.9 NR, PNO-CEPA, ML res.
2
[25] P 50.7 R, SF, MRCI, ML res.
2
[25] P1/2/2P3/2 49.9/51.6 R, Dirac, MRCI, MJ res.
2
[76] P1/2/2P3/2 51.4/53.4 R, Dirac, FSCC, MJ res. (J=3/2: MJ=3/2: 41.9, MJ=1/2: 65.0)
2
[40] P1/2 46.6±4.0 exp.
3
32 Ge [75] P 41.0 NR, PNO-CEPA, ML res.
3
[27] P 40.16 R, DK, CCSD(T), ML res. (ML=0: 32.83, ML=1: 43.83)
3
[27] P0 39.43 R, Dirac_Gaunt, CCSD(T),
Atomic Static Dipole Polarizabilities 7

Z Atom Refs. State αD comments


4
33 As [75] S 29.1 NR, PNO-CEPA
4
[28] S 29.8 R, DK, CASPT2
3
34 Se [29] P 26.24 R, MVD, CASPT2, ML res.
2
35 Br [77] P1/2 21.9 R, DK, SO-CI
2
[77] P3/2 21.8 R, DK, SO-CI, MJ res.
2
[30] P 21.03 R, MVD, CASPT2, ML res.
1
36 Kr [53] S 16.8 R, DK3, CCSD(T)
1
[28] S 16.6 R, DK, CASPT2
1
[78] S0 16.012 R, Dirac, CCSD/T
1
[53] S0 17.075 exp.
2
37 Rb [37] S1/2 318.6 R, SD all orders + exp. data
2
[55] S 316.2 R, DK, CCSD(T)
2
[19] S1/2 316(6) exp.
2
[39] S1/2 318.8±1.4 exp.
1
38 Sr [57] S 199 R, CI, MBPT
1
[59] S0 199.4 R, DK+SO, CCSD(T)
1
[21] S0 199.71 R, Dirac, coupled cluster
1
[44,79] S0 197.2(3.6) R, Dirac, CI+MBPT+ experimental data
1
[80] S0 197.6 CI+ core polarization (corrected to exp. term energies)
1
[45] S0 190.82 R, Dirac+Breit, perturbed relativistic coupled-cluster theory (PRCC)
1
[63] S0 186±15 exp.
2
39 Y [62] D3/2 153 R, Dirac, LDA
2
[40] D3/2 163±12 exp.
3
40 Zr [62] F2 121 R, Dirac, LDA
3
[40] F2 112±13 exp.
6
41 Nb [62] D1/2 106 R, Dirac, LDA
6
[40] D1/2 97.9±7.4 exp.
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 8

Z Atom Refs. State αD comments


7
42 Mo [62] S3 86 R, Dirac, LDA
7
[67] S 72.5 R, DK,CASPT2
7
[40] S3 87.1±6.1 exp.
6
43 Tc [62] S5/2 77 R, Dirac, LDA
6
[67] S 80.4 R, DK,CASPT2
5
44 Ru [62] F5 65 R, Dirac, LDA
4
45 Rh [62] F9/2 58 R, Dirac, LDA
4
[40] F9/2 11±22 exp. (an unusually low value was obtained)
1
46 Pd [62] S0 32 R, Dirac, LDA
2
47 Ag [69] S 52.2 R, PP, QCISD(T)
2
[70] S 52.5 R, DK, CCSD(T)
2
[67] S 36.7 R, DK, CCSD(T)
2
[40] S1/2 45.9±7.4 exp.
1
48 Cd [72] S 46.3 R, PP, CCSD(T)
1
[73] S 46.8 R, MVD, CCSD(T)
1
[67] S 46.9 R, DK,CASPT2
1
[81] S0 49.65±1.46 exp.
2
49 In [82] P1/2 65.2 R, DFT
2
[25] P 66.7 R, SF, MRCI, ML res.
2
[25] P1/2/2P3/2 61.9/69.6 R, Dirac, MRCI, MJ res.
2
[76] P1/2/2P3/2 62.0/69.8 R, Dirac, FSCC, MJ res. (J=3/2: MJ=3/2: 55.1, MJ=1/2: 84.6)
2
[83] P1/2 62.4 R, Dirac+Breit, CI+all-order
2
[84] P1/2 68.7±8.1 exp.
2
[40] P1/2 62.1±6.1 exp.
Atomic Static Dipole Polarizabilities 9

Z Atom Refs. State αD comments


3
50 Sn [62] P 52 R, Dirac, LDA
3
[27] P 53.3 R, PP, 2nd order MBPT
3
[27] P 56.34 R, PP, CCSD(T), ML res. (ML=0: 54.28, ML=±1: 59.36)
3
[27] P0 52.91 R, Dirac+Gaunt
3
[27] P0 42.4±11 exp.
3
[40] P0 67.5±8.8 exp.
4
51 Sb [62] S 45 R, Dirac, LDA
4
[28] S 42.2 R, DK, CASPT2
4
[85] S 42.55 NR,CCSD(T)
3
52 Te [62] P 37 R, LDA
2
53 I [77] P1/2 35.1 R, DK, SO-CI
2
[77] P3/2 34.6 R, DK, SO-CI, MJ res.
1
54 Xe [34] S 27.06 R, DK3, CCSD(T)
1
[86] S0 27.36 R, SOPP, CCSD(T) + MP2 basis set correction
1
[28] S 26.7 R, DK, CASPT2
1
[78] S0 25.297 R, Dirac, CCSD/T
1
[87] S0 27.42 R, DK3, CCSD(T)
1
[53] S0 27.815 exp.
2
55 Cs [37] S1/2 399.9 R, Dirac, SD, all orders + exp. data
2
[55] S 396.0 R, DK, CCSD(T)
2
[88] S1/2 399.0 R, Dirac, CCSD(T)
2
[89] S1/2 401.0±0.6 exp.
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 10

Z Atom Refs. State αD comments


1
56 Ba [22,57] S 262.2 R, CI, MBPT
1
[59] S0 273.5 R, DK+SO, CCSD(T)
1
[21] S0 268.19 R, Dirac, coupled cluster
1
[90] S0 272.7 R, Dirac+Gaunt, CCSD(T)
1
[45] S0 275.68 R, Dirac+Breit, perturbed relativistic coupled-cluster theory (PRCC)
1
[60] S0 268±22 exp.
2
57 La [62] D3/2, 5d1 210 R, Dirac, LDA
2
[91] D3/2 213.7 R, Dirac, CI+MBPT+CP(RPA); (αD =218.7 for the 5d26s1 configuration)
2
[40] D3/2 170.7±8.1 exp.
58 Ce [62] 4f15d1 200 R, Dirac, LDA
[91] 4f15d1 204.7 R, Dirac, CI+MBPT+CP(RPA); (αD =223.4 for the 4f2 configuration)
1
[40] G4 191.7±20.2 exp.
59 Pr [62] 4f3 190 R, Dirac, LDA
[91] 4f3 215.8 R, Dirac, CI+MBPT+CP(RPA); (αD =195.7 for the 4f25d1 configuration)
4
[40] I 238.9±27.7 exp.
60 Nd [62] 4f4 212 R, Dirac, LDA
[91] 4f4 208.4 R, Dirac, CI+MBPT+CP(RPA); (αD =187.5 for the 4f35d1 configuration)
5
[40] I4 183.6±19.6 exp.
61 Pm [62] 4f5 203 R, Dirac, LDA
[91] 4f5 200.2 R, Dirac, CI+MBPT+CP(RPA); (αD =179.3 for the 4f45d1 configuration)
62 Sm [62] 4f6 194 R, Dirac, LDA
[91] 4f6 192.1 R, Dirac, CI+MBPT+CP(RPA); (αD =171.7 for the 4f55d1 configuration)
7
[40] F0 156.6±16.2 exp.
63 Eu [62] 4f7 187 R, Dirac, LDA
[91] 4f7 184.2 R, Dirac, CI+MBPT+CP(RPA); (αD =164.7 for the 4f65d1 configuration)
8
[40] S7/2 154.8±25.0 exp.
Atomic Static Dipole Polarizabilities 11

Z Atom Refs. State αD comments


7 1
64 Gd [62] 4f 5d 159 R, Dirac, LDA
[91] 4f75d1 158.3 R, Dirac, CI+MBPT+CP(RPA); (αD =194.5 for the 4f75d26s1 configuration)
9
[40] D2 176.1±26.3 exp.
65 Tb [62] 4f9 172 R, Dirac, LDA
[91] 4f9 169.5 R, Dirac, CI+MBPT+CP(RPA); (αD =152.4 for the 4f85d1 configuration)
6
[40] H15/2 158.6±10.8 exp.
66 Dy [62] 4f10 165 R, Dirac, LDA
[91] 4f10 162.7 R, Dirac, CI+MBPT+CP(RPA); (αD =148.3 for the 4f95d1 configuration)
5
[40] I8 157.2±10.8 exp.
67 Ho [62] 4f11 159 R, Dirac, LDA
[91] 4f11 156.3 R, Dirac, CI+MBPT+CP(RPA); (αD =142.9 for the 4f105d1 configuration)
4
[40] I15/2 145.1±11.5 exp.
68 Er [62] 4f12 153 R, Dirac, LDA
[91] 4f12 150.2 R, Dirac, CI+MBPT+CP(RPA); (αD =139.4 for the 4f115d1 configuration)
3
[40] H6 217.3±38.5 exp.
69 Tm [62] 4f13 147 R, Dirac, LDA
[91] 4f13 144.3 R, Dirac, CI+MBPT+CP(RPA); (αD =137.8 for the 4f125d1 configuration)
2
[40] F7/2 129.6±16.2 exp.
1
70 Yb [62] S0, 4f14 142 R, Dirac, LDA
1
[21] S0 144.59 R, Dirac, coupled cluster
1
[92] S0 140.7 R, Dirac+Gaunt, CCSD(T)
1
[93] S0 141(6) R, Dirac, CI+MBPT+ experimental data, see also ref.95 for error estimates
1
[94] S0 142.6 ECP, CCSD(T)
1
[91] S0 138.9 R, Dirac, CI+MBPT+CP(RPA); (αD =312.2 for the 4f146s16p1 configuration)
1
[40] S0 147.1±19.6 exp.
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 12

Z Atom Refs. State αD comments


2 1
71 Lu [62] D3/2, 5d 148 R, Dirac, LDA
2
[91] D3/2 137.2 R, Dirac, CI+MBPT+CP(RPA); (αD =61.3 for the 4f146s26p1 configuration)
2
[40] D3/ 123.5±18.2 exp.
3
72 Hf [62] F2, 5d3 109 R, Dirac, LDA
3
[40] F2 83.7±18.9 exp.
4
73 Ta [62] F3/2, 5d3 88 R, Dirac, LDA
4
[40] F3/2 58.0±12.1 exp.
5
74 W [62] D0 75 R, Dirac, LDA
6
75 Re [62] S5/2 65 R, Dirac, LDA
6
[67] S 61.1 DK, CASPT2
5
76 Os [62] D4 57 R, Dirac, LDA
4
77 Ir [62] F9/2 51 R, Dirac, LDA
3
78 Pt [62] D3 44 R, Dirac, LDA
2
79 Au [69] S 35.1 R, PP, QCISD(T)
2
[70] S 36.1 R, DK, CCSD(T)
2
[67] S 27.9 R, DK, CASPT2
1
80 Hg [72] S 34.4 R, PP, CCSD(T)
1
[73] S 31.2 R, MVD, CCSD(T)
1
[67] S 33.3 R, DK, CASPT2
1
[96] S0 34.15 R, Dirac, CCSD(T)
1
[97] S0 34.27 R, Dirac, CCSDT+QED
1
[98] S0 33.91±0.34 exp.
2
81 Tl [25] P 70.0 R, SF, MRCI, ML res.
2
[25] P1/2/2P3/2 51.6/81.2 R, Dirac, MRCI, MJ res.
2
[99] P1/2 52.3 R, Dirac, FS-CCSD
2
[76] P1/2/2P3/2 50.3/80.9 R, Dirac, FSCC, MJ res. (J=3/2: MJ=3/2: 56.7, MJ=1/2: 105.1)
2
[63] P1/2 51±7 exp.
Atomic Static Dipole Polarizabilities 13

Z Atom Refs. State αD comments


3
82 Pb [62] P 46 R, Dirac, LDA
3
[100] P0 51.0 R, SOPP, CCSD(T)
3
[27] P0 47.71 R, Dirac+Gaunt, CCSD(T)
3
[96] P0 46.96 R, Dirac, CCSD(T)
3
[27] P0 47.1±7 exp.
3
[40] P0 56.0±18.2 exp.
4
83 Bi [62] S 50 R, Dirac, LDA
4
[28] S 48.6 R, DK, CASPT2
4
[101] S 52.85 R, Cowan-Griffin, HF only
4
[40] S3/2 54.7±11.5 exp.
3
84 Po [62] P 46 R, R, Dirac, LDA
3
[101] P 46.8 R, Cowan-Griffin, HF only, ML res.
2
85 At [77] P1/2 45.6 R, DK, SO-CI
2
[77] P3/2 43.0 R, DK, SO-CI, MJ res.
1
86 Rn [34] S 33.18 R, DK3, CCSD(T)
1
[86] S0 34.33 R, SOPP, CCSD(T) + MP2 basis set correction
1
[100] S0 28.6 R, SOPP, CCSD(T)
1
[28] S 32.6 R, DK, CASPT2
2
87 Fr [37] S1/2 317.8 R, Dirac, SD all orders + experimental data
2
[55] S 315.2 R, DK, CCSD(T)
2
[88] S1/2 311.5 R, Dirac, CCSD(T)
1
88 Ra [59] S0 246.2 R, DK+SO, CCSD(T)
1
[90] S0 242.8 R, Dirac+Gaunt, CCSD(T)
1
[45] S0 242.42 R, Dirac+Breit, perturbed relativistic coupled-cluster theory (PRCC)
2
89 Ac [62] D3/2,6d1 217 R, Dirac, LDA
2
[91] D3/2,6d1 203.3 R, Dirac, CI+MBPT+CP(RPA); (αD =141.9 for the 7s27p1 configuration)
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 14

Z Atom Refs. State αD comments


2
90 Th [62] 6d 217 R, Dirac, LDA
91 Pa [62] 5f26d1 171 R, Dirac, LDA
[91] 5f26d1 154.4 R, Dirac, CI+MBPT+CP(RPA); (αD =151.9 for the 5f26d27s1 configuration)
92 U [62] 5f36d1 152.7 R, Dirac, LDA
[91] 5f36d1 127.8 R, Dirac, CI+MBPT+CP(RPA); (αD =153.2 for the 5f4 configuration)
5
[102] L6 137±9 exp.
93 Np [62] 5f46d1 167 R, Dirac, LDA
[91] 5f46d1 150.5 R, Dirac, CI+MBPT+CP(RPA); (αD =127.5 for the 5f5 configuration)
94 Pu [62] 5f6 165 R, Dirac, LDA
[91] 5f6 132.2 R, Dirac, CI+MBPT+CP(RPA); (αD =147.6 for the 5f56d1 configuration)
95 Am [62] 5f7 157 R, Dirac, LDA
[103] 5f7 116 R, DK, CASPT2
[91] 5f7 131.2 R, Dirac, CI+MBPT+CP(RPA); (αD =144.7 for the 5f66d1 configuration)
96 Cm [62] 5f76d1 155 R, Dirac, LDA
[91] 5f76d1 143.6 R, Dirac, CI+MBPT+CP(RPA); (αD =128.6 for the 5f8 configuration)
97 Bk [62] 5f9 153 R, Dirac, LDA
[91] 5f9 125.3 R, Dirac, CI+MBPT+CP(RPA); (αD =141.6 for the 5f86d1 configuration)
98 Cf [62] 5f10 138 R, Dirac, LDA
[91] 5f10 121.5 R, Dirac, CI+MBPT+CP(RPA); (αD =142.3 for the 5f96d1 configuration)
99 Es [62] 5f11 133 R, Dirac, LDA
[91] 5f11 117.5 R, Dirac, CI+MBPT+CP(RPA); (αD =146.1 for the 5f106d1 configuration)
100 Fm [62] 5f12 161 R, Dirac, LDA
[91] 5f12 113.4 R, Dirac, CI+MBPT+CP(RPA); (αD =155.6 for the 5f116d1 configuration)
101 Md [62] 5f13 123 R, Dirac, LDA
[91] 5f13 109.4 R, Dirac, CI+MBPT+CP(RPA); (αD =179.6 for the 5f126d1configuration)
Atomic Static Dipole Polarizabilities 15

Z Atom Refs. State αD comments


1 14
102 No [62] S0, 5f 118 R, Dirac, LDA
1
[92] S0, 5f14 110.8 R, Dirac+Gaunt, CCSD(T)
1
[91] S0, 5f14 105.4 R, Dirac, CI+MBPT+CP(RPA); (αD =267.8 for the 5f147s17p1 configuration)
1
112 Cn [72] S 25.8 R, PP, CCSD(T)
1
[100] S0 28.7 R, SOPP, CCSD(T)
1
[96] S0 27.64 R, Dirac, CCSD(T)
2
113 [99] P1/2 29.9 R, Dirac, FS-CCSD
3
114 Fl [100] P0 34.4 R, SOPP, CCSD(T)
3
[27] P0 31.98 R, Dirac+Gaunt, CCSD(T)
3
[96] P0 30.59 R, Dirac, CCSD(T)
1
118 [100] S0 52.4 R, SOPP, CCSD(T)
1
[104] S0 46.33 R, Dirac, CCSD(T)
2
119 [55] S 163.8 R, DK, CCSD(T)
2
[88] S1/2 169.7 R, Dirac, CCSD(T)
1
120 [90] S0 162.6 R, Dirac+Gaunt, CCSD(T)
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 16

References

1. A. Dalgarno, Atomic polarizabilities and shielding factors, Adv. Phys. 11, 281-315 (1962).
2. J. P. Desclaux, Relativistic Dirac-Fock Expectation Values for Atoms with Z=1 to Z=120, Atomic Data Nucl. Data Tabl. 12, 311-406 (1973).
3. S. Fraga, J. Karwowski, and K. M. S. Saxena, Hartree-Fock Values of Coupling Constants, Polarizabilities, Susceptibilities, and Radii for the
Neutral Atoms, Helium to Nobelium, Atomic Data Nucl. Data Tabl. 12, 467-477 (1973).
4. R. R. Teachout and R. T. Pack, The static dipole polarizabilities of all neutral atoms in their ground states, Atomic Data Nucl. Data Tabl. 3,
195-214 (1971).
5. J. Mitroy, M. S. Safronova, and C. W, Clark, Theory and applications of atomic and ionic polarizabilities, J. Phys. B: At. Mol. Opt. Phys. 43,
202001-1-38 (2010).
6. P. Schwerdtfeger, “Atomic Static Dipole Polarizabilities”, in Computational Aspects of Electric Polarizability Calculations: Atoms,
Molecules and Clusters, ed. G. Maroulis, IOS Press, Amsterdam, 2006; pg.1-32.
7. S. P. Goldman, Gauge-invariance method for accurate atomic-physics calculations: Application to relativistic polarizabilities, Phys. Rev. A
39, 976-980 (1989).
8. Li-Yan Tang, Yong-Hui Zhang, Xian-Zhou Zhang, Jun Jiang, and J. Mitroy, Computational investigation of static multipole polarizabilities
and sum rules for ground-state hydrogenlike ions, Phys. Rev. A 86, 012505-1-10 (2012).
9. L. Filippin, M. Godefroid, and D. Baye, Relativistic polarizabilities with the Lagrange-mesh method, Phys. Rev. A 90, 052520-1-12 (2014).
10. Zong-Chao Yan, University of New Brunswick, private communication (2008). For the mass scaling factor see Schiff, Quantum Mechanics,
3rd ed. p.93, below eq.(16.24).
11. K. Pachucki and J. Sapirstein, Relativistic and QED corrections to the polarizability of helium, Phys. Rev. A 63, 012504-1-3 (2001).
12. G. Łach, B. Jeziorski, and K. Szalewicz, Radiative Corrections to the Polarizability of Helium, Phys. Rev. Lett. 92, 233001-1-4 (2004).
13. A. C. Newell and R. D. Baird, Absolute Determination of Refractive Indices of Gases at 47.7 Gigahertz, J. Appl. Phys. 36, 3751-3759
(1965).
14. K. Grohman and H. Luther, Temperature—Its Measurement and Control in Science and Industry, AIP, New York, 1992,Vol. 6, p. 21.
15. J. Komasa, Dipole and quadrupole polarizabilities and shielding factors of beryllium from exponentially correlated Gaussian functions, Phys.
Rev. A 65, 012506-1-11 (2002).
16. I. S. Lim, M. Pernpointner, M. Seth, J. K. Laerdahl, P. Schwerdtfeger, P.Neogrady, and M.Urban, Accurate Relativistic Coupled Cluster
Static Dipole Polarizabilities of the Alkali Metals from Li to Element 119, Phys. Rev. A 60, 2822-2828 (1999).
17. W. R. Johnson, U. I. Safronova, A. Derevianko, and M. S. Safronova, Relativistic many-body calculation of energies, lifetimes, hyperfine
constants, and polarizabilities in 7Li, Phys. Rev. A 77, 022510-1-9 (2008).
Atomic Static Dipole Polarizabilities 17

18. M. Puchalski, D. Kędziera, and K. Pachucki, Lithium electric dipole polarizability, Phys. Rev. A 84, 052518-1-9 (2011); Erratum Phys. Rev.
A 85, 019910 (2012).
19. R. W. Molof, H. L. Schwartz, T. M. Miller, and B. Bederson, Measurements of electric dipole polarizabilities of the alkali-metal atoms and
the metastable noble-gas atoms, Phys. Rev. A 10, 1131-1140 (1974).
20. K. Singer, The Use of Gaussian (Exponential Quadratic) Wave Functions in Molecular Problems. I. General Formulae for the Evaluation of
Integrals, Proc. R. Soc. London Ser. A 258, 412-420 (1960).
21. B. K. Sahoo and B. P. Das, Relativistic coupled-cluster studies of dipole polarizabilities in closed-shell atoms, Phys. Rev. A 77, 062516-1-5
(2008).
22. S. G. Porsev and A. Derevianko, J. Exp. Theoret. Phys. (JETP) 102, 195–205 (2006).
23. H.-J. Werner and W. Meyer, Finite perturbation calculations for the static dipole polarizabilities of the first-row atoms, Phys. Rev. A 13, 13-
16 (1976).
24. A. K. Das and A. J. Thakkar, Static response properties of second-period atoms: coupled cluster calculations, J. Phys. B, At. Mol. Opt. Phys.
31, 2215-2223 (1998).
25. T. Fleig, Spin-orbit-resolved static polarizabilities of group-13 atoms: Four-component relativistic configuration interaction and coupled
cluster calculations, Phys. Rev. A 72, 052506 (2005).
26. K. Anderson and A. J. Sadlej, Electric dipole polarizabilities of atomic valence states, Phys. Rev. A 46, 2356-2362 (1992).
27. C. Thierfelder, B. Assadollahzadeh, P. Schwerdtfeger, S. Schäfer, and R. Schäfer, Relativistic and Electron Correlation Effects in Static
Dipole Polarizabilities for the Group 14 Elements from Carbon to Element 114, Phys. Rev. A 78, 052506-1-7 (2008).
28. B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov, and P.-O. Widmark, Main Group Atoms and Dimers Studied with a New Relativistic
ANO Basis Set, J. Phys. Chem. 108, 2851-2858 (2004).
29. R. D. Alpher and D. R. White, Optical Refractivity of High-Temperature Gases. I. Effects Resulting from Dissociation of Diatomic Gases,
Phys. Fluids 2, 153-161 (1959).
30. M. Medved, P. W. Fowler, and J. M. Hutson, Anisotropic dipole polarizabilities and quadrupole moments of open-shell atoms and ions: O,
F, S, Cl, Se, Br and isoelectronic systems, Mol. Phys. 7, 453-463 (2000).
31. J. E. Rice, G. E. Scuseria, T. J. Lee, P. R. Taylor, and J. Almlöf, Connected triple excitations in coupled-cluster calculations of
hyperpolarizabilities: neon, Chem. Phys. Lett. 191, 23-26 (1992).
32. K. Hald, F. Pawlowski, P. Jørgensen, and C. Hättig, Calculation of frequency-dependent polarizabilities using the approximate coupled-
cluster triples model CC3, J. Chem. Phys. 118, 1292-1300 (2003).
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 18

33. H. Larsen, J. Olsen, C. Hättig, P. Jørgensen, O. Christiansen, and J. Gauss, Polarizabilities and first hyperpolarizabilities of HF, Ne, and BH
from full configuration interaction and coupled cluster calculations, J. Chem. Phys. 111, 1917-1925 (1999).
34. T. Nakajima and K. Hirao, Relativistic Effects for Polarizabilities and Hyperpolarizabilities of Rare Gas Atoms, Chem. Lett. 766-767 (2001).
35. S. Chattopadhyay, B. K. Mani, and D. Angom, Phys. Rev. A 86, 022522-1-6 (2012).
36. R. H. Orcutt, and R. H. Cole, Dielectric Constants of Imperfect Gases. III. Atomic Gases, Hydrogen, and Nitrogen, J. Chem. Phys. 46, 697-
702 (1967).
37. A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F. Babb, High-Precision Calculations of Dispersion Coefficients, Static Dipole
Polarizabilities, and Atom-Wall Interaction Constants for Alkali-Metal Atoms, Phys. Rev. Lett. 82, 3589-3592 (1999).
38. C. R. Ekstrom, J. Schmiedmayer, M. S. Chapman, T. D. Hammond, and D. E. Pritchard, Measurement of the electric polarizability of
sodium with an atom interferometer, Phys. Rev. A 51, 3883-3888 (1995).
39. W. F. Holmgren, M. C. Revelle, V. P. A. Lonij, and A. D. Cronin, Phys. Rev. A 81, 053608-1-7 (2010).
40. L. Ma, J. Indergaard, B. Zhang, I. Larkin, R. Moro, and W. A. de Heer, Measured atomic ground-state polarizabilities of 35 metallic
elements, Phys. Rev. A 91, 010501(R)-1-5 (2015).
41. E. F. Archibong and A. J. Thakkar, Finite-field many-body-perturbation-theory calculation of the static hyperpolarizabilities and
polarizabilities of Mg, Al+, and Ca, Phys. Rev. A 44, 5478-5484 (1991).
42. A. Sadlej and M. Urban, Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties: III. Alkali
(Li, Na, K, Rb) and alkaline-earth (Be, Mg, Ca, Sr) atoms, J. Mol. Struct. (Theochem) 234, 147-171 (1991).
43. B. O. Roos, V. Veryazov, and P.-O. Widmark, Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms
applied to the ground-state potentials for the corresponding dimers, Theor. Chem. Acc. 111, 345-351 (2004).
44. S. G. Porsev and A. Derevianko, Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice
clocks, Phys. Rev. A 74, 020502-1-4(R) (2006).
45. S. Chattopadhyay, B. K. Mani, and D. Angom, Electric dipole polarizability of alkaline-earth-metal atoms from perturbed relativistic
coupled-cluster theory with triples, Phys. Rev. A 89, 022506-1-12 (2014).
46. E. A. Reinsch and W. Meyer, Finite perturbation calculation for the static dipole polarizabilities of the atoms Na through Ca, Phys. Rev. A
14, 915-918 (1976).
47. J. Stiehler and J. Hinze, Calculation of static polarizabilities and hyperpolarizabilities for the atoms He through Kr with a numerical RHF
method, J. Phys. B 28, 4055-4071 (1995).
48. C. Lupinetti and A. J. Thakkar, Polarizabilities and hyperpolarizabilities for the atoms Al, Si, P, S, Cl, and Ar: Coupled cluster calculations,
J. Chem. Phys. 122, 044301-1-7 (2005).
Atomic Static Dipole Polarizabilities 19

49. P. Milani, I. Moullet, and W. A. de Heer, Experimental and theoretical electric dipole polarizabilities of Al and Al2, Phys. Rev. A 42, 5150-
5154 (1990).
50. All theoretical values yield significantly larger values compared to the experimental results of ref.49, which casts some doubts on the
accuracy of this experiment.
51. G. Maroulis and C. Pouchan, Static dipole (hyper)polarizability of the silicon atom, J. Phys. B, At. Mol. Opt. Phys. 36, 2011-2017 (2003).
52. P. Soldán, E. P. F. Lee, and T. G. Wright, Static dipole polarizabilities (α) and static second hyperpolarizabilities (γ) of the rare gas atoms
(He–Rn), Phys. Chem. Chem. Phys. 3, 4661-4666 (2001).
53. U. Hohm and K. Kerl, Interferometric measurements of the dipole polarizability α of molecules between 300 K and 1100 K. I.
Monochromatic measurements at λ = 632.99nm for the noble gases and H2 , N2 , O2 , and CH4, Mol. Phys. 69, 803-817 (1990); ibid.
Interferometric measurements of the dipole polarizability agr of molecules between 300 K and 1100 K. II. A new method for measuring the
dispersion of the polarizability and its application to Ar, H2, and O2, Mol. Phys. 69, 819-831 (1990).
54. D. R. Johnston, G. J. Oudemans, and R. H. Cole, Dielectric Constants of Imperfect Gases. I. Helium, Argon, Nitrogen, and Methane,
J. Chem. Phys. 46, 697 (1966).
55. I. Lim, P. Schwerdtfeger, B. Metz and H. Stoll, Relativistic Small-Core Energy-Consistent Pseudopotentials for the Group 1 Elements from
K to Element 119, J. Chem. Phys. 122, 104103-1-12 (2005).
56. J. Jiang and J. Mitroy, Hyperfine effects on potassium tune-out wavelengths and polarizabilities, Phys. Rev. A 88, 032505-1-7 (2013).
57. S. Porsev and A. Derevianko, High-accuracy relativistic many-body calculations of van der Waals coefficients C6 for alkaline-earth-metal
atoms, Phys. Rev. A 65, 02701(R)-1-4 (2002).
58. A. J. Sadlej, M. Urban, and O. Gropen, Relativistic and electron-correlation contributions to the dipole polarizability of the alkaline-earth-
metal atoms Ca, Sr, and Ba, Phys. Rev. A 44, 5547-5557 (1991).
59. I. Lim and P. Schwerdtfeger, Four-component and scalar relativistic Douglas-Kroll calculations for static dipole polarizabilities of the
alkaline-earth elements and their ions from Can to Ran (n=0, +1, +2), Phys. Rev. A 70, 062501-1-13 (2004).
60. T. M. Miller, and B. Bederson, Measurement of the polarizability of calcium, Phys. Rev. A 14, 1572-1573 (1976).
61. H. L. Schwartz, T. M. Miller, and B. Bederson, Measurement of the static electric dipole polarizabilities of barium and strontium, Phys. Rev.
A 10, 1924-1926 (1974).
62. G. Doolen, personal communication August 2003 and values taken from ref.63. The calculations are relativistic LDA in linear response
theory. The method is described in: G. Doolen and D. A. Liberman, Calculations of Photoabsorption by Atoms Using a Linear Response
Method, Phys. Scr. 36, 77-79 (1987). See also: D.A. Liberman, J.T.Waber and D.T. Cromer, Self-Consistent-Field Dirac-Slater Wave
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 20

Functions for Atoms and Ions. I. Comparison with Previous Calculations, Phys. Rev. 137, A27-A34 (1965). The program used is described
in: D. A. Liberman and D. T. Cromer, J. T. Waber, Relativistic self-consistent field program for atoms and ions, Comput. Phys. Commun. 2,
107-113 (1971).
63. T. M. Miller, in CRC Handbook of Chemistry and Physics, Ed. D. R. Lide (CRC Press New York, 2002).
64. G. S. Chandler and R. Glass, Evaluation of atomic polarisabilities using the variational perturbation approach: the first transition series,
J. Phys. B 20, 1-10 (1987).
65. R. Glass and G. S. Chandler, The mean static dipole polarisability of scandium, J. Phys. B 16, 2931-2936 (1983).
66. R. Pou-Amérigo, M. Merchán, I. Nebot-Gil, P-O.Widmark, and B. O. Roos, Density matrix averaged atomic natural orbital (ANO) basis sets
for correlated molecular wave functions. III. First row transition metal atoms Theor. Chim. Acta 92, 149-181 (1995).
67. B. O. Roos, R. Lindh, P-Å. Malmqvist, V. Veryazov, and P-O. Widmark, New Relativistic ANO Basis Sets for Transition Metal Atoms,
J. Phys. Chem. A 109, 6575-6579 (2005).
68. P. Calaminici, Polarizability of Fen (n≤4) clusters: an all-electron density functional study, Chem. Phys. Lett. 387, 253-257 (2004).
69. P. Schwerdtfeger and G. A. Bowmaker, Relativistic effects in gold chemistry. V. Group 11 Dipole-Polarizabilities and Weak Bonding in
Monocarbonyl Compounds, J. Chem. Phys. 100, 4487-4497 (1994).
70. P.Neogrady, V. Kellö, M. Urban, and A. J. Sadlej, Ionization potentials and electron affinities of Cu, Ag, and Au: Electron correlation and
relativistic effects, Int. J. Quant. Chem. 63, 557-565 (1997).
71. D. Goebel, U. Hohm, and G. Maroulis, Theoretical and experimental determination of the polarizabilities of the zinc 1S0 state, Phys. Rev. A
54, 1973-1978 (1996).
72. M. Seth, P. Schwerdtfeger, and M. Dolg, The Chemistry of the Superheavy Elements I. Pseudopotentials for 111 and 112 and Relativistic
Coupled Cluster Calculations for (112)H+, (112)F2 and (112)F4, J. Chem. Phys. 106, 3623-3632 (1997).
73. V. Kellö and A. J. Sadlej, Polarized basis sets for high-level-correlated calculations of molecular electric properties VIII. Elements of the
group IIb: Zn, Cd, Hg, Theor. Chim. Acta 91, 353-371 (1995).
74. Y. Singh and B. K. Sahoo, Correlation trends in the polarizabilities of atoms and ions in the boron, carbon, and zinc homologous sequences
of elements, Phys. Rev. A 90, 022511-1-8 (2014).
75. E. A. Reinsch and W. Meyer, published in ref.47.
76. A. Borschevsky, T. Zelovich, E. Eliav, and U. Kaldor, Precision of calculated static polarizabilities: Ga, In and Tl atoms, Chem. Phys. 395,
104-107 (2012).
77. T. Fleig and A. J. Sadlej, Electric dipole polarizabilities of the halogen atoms in 2P1/2 and 2P3/2 states: Scalar relativistic and two-component
configuration-interaction calculations Phys. Rev. A 65, 032506-1-8 (2002).
Atomic Static Dipole Polarizabilities 21

78. B. K. Mani, K. V. P. Latha, and D. Angom, Relativistic coupled-cluster calculations of 20Ne, 40Ar, 84Kr, and 129Xe: Correlation energies and
dipole polarizabilities, Phys. Rev. A 80, 062505-1-10 (2009).
79. S. G. Porsev, A. D. Ludlow, M. M. Boyd, and Jun Ye, Phys. Rev. A 78, 032508-1-9 (2008).
80. J. Mitroy and J.Y. Zhang, Mol. Phys. 108, 1999–2006 (2010).
81. D. Goebel and U. Hohm, Dispersion of the refractive index of cadmium vapor and the dipole polarizability of the atomic cadmium 1S0 state,
Phys. Rev. A 52, 3691-3694 (1995).
82. D. A. Liberman and A. Zangwill, theoretical value published as a personal communication in ref.84.
83. M. S. Safronova, U. I. Safronova, and S. G. Porsev, Polarizabilities, Stark shifts, and lifetimes of the In atom, Phys. Rev. A 87, 032513-1-7
(2013).
84. T. P. Guella, T. M. Miller, and B. Bederson, J. A. D. Stockdale, and B. Jaduszliwer, Polarizability of 5s25p(2P1/2) atomic indium, Phys. Rev.
A 29, 2977-2980 (1984).
85. G. Maroulis, Chem. Phys. Lett. 444, 44-47 (2007).
86. N. Runeberg and P. Pyykkö, Relativistic pseudopotential calculations on Xe2, RnXe, and Rn2: The van der Waals properties of radon, Int. J.
Quantum Chem. 66, 131-140 (1998).
87. V. G. Bezchasnov, M. Pernpointner, P. Schmelcher, and L. S. Cederbaum, Nonadditivity and anisotropy of the polarizability of clusters:
Relativistic finite-field calculations for the Xe dimer, Phys. Rev. A 81, 062507-1-8 (2010).
88. A. Borschevsky, V. Pershina, E. Eliav, and U. Kaldor, Ab initio studies of atomic properties and experimental behavior of element 119 and
its lighter homologs, J. Chem. Phys. 138, 124302-1-5 (2013).
89. J. M. Amini and H. Gould, High Precision Measurement of the Static Dipole Polarizability of Cesium, Phys. Rev. Lett. 91, 153001-1-4
(2003).
90. A. Borschevsky, V. Pershina, E. Eliav, and U. Kaldor, Ab initio predictions of atomic properties of element 120 and its lighter group-2
homologues, Phys. Rev. A 87, 022502-1-8 (2013).
91. V. A. Dzuba, A. Kozlov, and V. V. Flambaum, Scalar static polarizabilities of lanthanides and actinides, Phys. Rev. A 89, 042507-1-8
(2014).
92. C. Thierfelder and P.Schwerdtfeger, The effect of relativity and electron correlation in static dipole polarizabilities of Ytterbium and
Nobelium, Phys. Rev. A 79, 032512-1-4 (2009).
93. V. A. Dzuba and A. Derevianko, Dynamic polarizabilities and related properties of clock states of the ytterbium atom, J. Phys. B: At. Mol.
Opt. Phys. 43, 074011 (2010).
P.Schwerdtfeger, Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study 22

94. A. A. Buchachenko, Ab initio dipole polarizabilities and quadrupole moments of the lowest excited states of atomic Yb, Eur. Phys. J. D 61,
291-296 (2011).
95. K. Beloy, Experimental constraints on the polarizabilities of the 6s2 1S0 and 6s6p 3P0 states of Yb, Phys. Rev. A 86, 022521-1-6 (2012).
96. V. Pershina, A. Borschevsky, E. Eliav, and U. Kaldor, Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from
ab initio Dirac-Coulomb atomic calculations, J. Chem. Phys. 128, 024707-1-9 (2008).
97. Y. Singh and B. K. Saho, Rigorous limits on the hadronic and semileptonic CP-violating coupling constants from the electric dipole moment
of 199Hg, Phys. Rev. A 91, 030501(R)-1-5 (2015).
98. D. Goebel and U. Hohm, Dipole Polarizability, Cauchy Moments, and Related Properties of Hg, J. Phys. Chem. 100, 7710-7712 (1996).
99. V. Pershina, A. Borschevsky, E. Eliav, and U. Kaldor, Atomic Properties of Element 113 and Its Adsorption on Inert Surfaces from Ab
Initio Dirac-Coulomb Calculations, J. Phys. Chem. A 112, 13712-13716 (2008).
100. C. S. Nash, Atomic and Molecular Properties of Elements 112, 114, and 118, J. Phys. Chem. A 109, 3493-3500 (2005).
101. V. Kellö and A. J. Sadlej, Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. VI. Fifth-
row atoms: Pb through At, Theor. Chim. Acta 83, 351-366 (1992).
102. M. A. Kadar-Kallen and K. D. Bonin, Uranium polarizability measured by light-force technique, Phys. Rev. Lett. 72, 828-831 (1994).
103. B. O. Roos, R. Lindh, P-Å. Malmqvist, V. Veryazov, and P.-O.Widmark, New relativistic ANO basis sets for actinide atoms, Chem. Phys.
Lett. 409, 295-299 (2005).
104. V. Pershina, A. Borschevsky, E. Eliav, and U. Kaldor, Adsorption of inert gases including element 118 on noble metal and inert surfaces
from ab initio Dirac–Coulomb atomic calculations, J. Chem. Phys. 129, 144106-1-9 (2008).

You might also like