Chapter 13 - Section A - Mathcad Solutions
Chapter 13 - Section A - Mathcad Solutions
Note: For the following problems the variable kelvin is used for the SI
unit of absolute temperature so as not to conflict with the variable K
used for the equilibrium constant
Q=
¦ Q i = 1 1 1 1 = 0 n0 = 1 1 = 2
i
1H H
By Eq. (13.5). yH = yCO = yH2O = yCO =
2 2 2 2
T 1000 kelvin
G H ¨
§ 1 H · (395790) J H (192420 200240) J
© 2 ¹ mol 2 mol
§ 1 H ln § 1 H · 2 H ln§ H · ·
R T ¨ 2 ¨ ¨
© 2 © 2 ¹ 2 © 2 ¹¹
Guess: H e 0.5
Given
d
G H e = 0
J
H e Find H e He 0.45308
dH e mol
2.084
G H
5
10
2.086
2.088
0.2 0.3 0.4 0.5 0.6
H
483
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.5 (a) H2(g) + CO2(g) = H2O(g) + CO(g)
Q=
¦ Q i = 1 1 1 1 = 0 n0 = 1 1 = 2
i
1H H
By Eq. (13.5). yH = yCO = yH2O = yCO =
2 2 2 2
T 1100 kelvin
G H ¨
§ 1 H · ( 395960) J H ( 187000 209110) J
© 2 ¹ mol 2 mol
§
R T ¨ 2
1 H §
ln ¨
1 H · 2 ln§ · ·
H H
¨
© 2 © 2 ¹ 2 © 2 ¹¹
Guess: H e 0.5
Given
d
G H e = 0
J
H e Find H e He 0.502 Ans.
dH e mol
2.102
2.103
2.104
G H
5
10
2.105
2.106
2.107
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
H
484
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
(b) H2(g) + CO2(g) = H2O(g) + CO(g)
Q=
¦ Q i = 1 1 1 1 = 0 n0 = 1 1 = 2
i
1H H
By Eq. (13.5), yH = yCO = yH2O = yCO =
2 2 2 2
T 1200 kelvin
G H ¨
§ 1 H · (396020) J H (181380 217830) J
© 2 ¹ mol 2 mol
§
R T ¨ 2
1 H §
ln ¨
1 H · 2 ln§ · ·
H H
¨
© 2 © 2 ¹ 2 © 2 ¹¹
Guess: H e 0.1
Given
d
G H e = 0
J
H e Find H e He 0.53988 Ans.
dH e mol
2.121
2.122
2.123
G H
5 2.124
10
2.125
2.126
2.127
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
H
485
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
(c) H2(g) + CO2(g) = H2O(g) + CO(g)
Q=
¦ Q i = 1 1 1 1 = 0 n0 = 1 1 = 2
i
1H H
By Eq, (13.5), yH = yCO = yH2O = yCO =
2 2 2 2
T 1300 kelvin
G H ¨
§ 1 H · ( 396080) J H ( 175720 226530) J
© 2 ¹ mol 2 mol
§ 1 H ln § 1 H · 2 H ln§ H · ·
R T ¨ 2 ¨ ¨
© 2 © 2 ¹ 2 © 2 ¹¹
Guess: H e 0.6
Given
d
G H e = 0
J
H e Find H e He 0.57088 Ans.
dH e mol
2.14
2.142
G H
5
2.144
10
2.146
2.148
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
H
486
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.6 H2(g) + CO2(g) = H2O(g) + CO(g)
Q=
¦ Q i = 1 1 1 1 = 0 n0 = 1 1 = 2
i
1H H
By Eq, (13.5), yH = yCO = yH2O = yCO =
2 2 2 2
With data from Example 13.13, the following vectors represent values for
Parts (a) through (d):
§ 1000 · § 3130 ·
¨ ¨
1100 ¸ 150 ¸ J
T ¨ kelvin 'G ¨
¨ 1200 ¸ ¨ 3190 ¸ mol
¨ ¨
© 1300 ¹ © 6170 ¹
Combining Eqs. (13.5), (13.11a), and (13.28) gives
§ H ·§ H ·
¨ ¨ 2
© 2¹ © 2¹ =
H § 'G ·
= K = exp ¨
§ 1 H · § 1 H · 1 H 2 © R T ¹
¨ ¨
© 2 ¹© 2 ¹
o § 0.4531 ·
o ¨
[
§ 'G ·
exp ¨ H
[
H ¨ 0.5021 ¸ Ans.
© R T ¹ 1[ ¨ 0.5399 ¸
¨
© 0.5709 ¹
J J
'H298 114408 'G298 75948
mol mol
487
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
The following vectors represent the species of the reaction in the order in
which they appear:
§ 4 · § 3.156 · § 0.623 · § 0.151 ·
¨ ¨ ¨ ¨
1 3.639 ¸ 0.506 ¸ 3 ¨ 0.227 ¸ 105
Q ¨ ¸ A ¨ B ¨ 10 D
¨2 ¸ ¨ 3.470 ¸ ¨ 1.450 ¸ ¨ 0.121 ¸
¨ ¨ ¨ ¨
©2 ¹ © 4.442 ¹ © 0.089 ¹ © 0.344 ¹
end rowsA
() i 1 end
'A
¦ Qi Ai 'B
¦ QiBi 'D
¦ Qi Di
i i i
5 4
'A 0.439 'B 8 u 10 'C 0 'D 8.23 u 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
4 J
'G 1.267 u 10
mol
K exp ¨
§ 'G · K 7.18041
© R T ¹
5 4 H
By Eq. (13.5) yHCl =
6H
1H 2 H 2 H
yO2 = yH2O = yCl2 =
6H 6H 6H
488
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.12 N2(g) + C2H2(g) = 2HCN(g) Q= 0 n0 = 2
This is the reaction of Pb. 4.21(x). From the answers for Pbs. 4.21(x),
4.22(x), and 13.7(x), find the following values:
J J
'H298 42720 'G298 39430
mol mol
3 5
'A 0.060 'B 0.173 10 'C 0 'D 0.191 10
'G 'H298
T0
T
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 3.242 u 10
4 J
K exp ¨
§ 'G · K 0.01464
mol © R T ¹
By Eq. (13.5),
1H 1H 2e
yN2 = yC2H4 = yHCN = = H
2 2 2
2
§ 2 H · = K H Find H H
Given ¨ 0.057
©1 H¹
1H 1H
yN2 yC2H4 yHCN H
2 2
yN2 0.4715 yC2H4 0.4715 yHCN 0.057 Ans.
Given the assumption of ideal gases, P has no effect on the equilibrium
composition.
489
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.13 CH3CHO(g) + H2(g) = C2H5OH(g) Q = 1 n0 = 2.5
This is the reaction of Pb. 4.21(r). From the answers for Pbs. 4.21(r),
4.22(r), and 13.7(r), find the following values:
J J
'H298 68910 'G298 39630
mol mol
3 6 5
'A 1.424 'B 1.601 10 'C 0.156 10 'D 0.083 10
'G 'H298
T0
T
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 6.787 u 10
3 J
K exp ¨
§ 'G · K 3.7064
mol © R T ¹
1H 1.5 H H
By Eq. (13.5), yCH3CHO = yH2 = yC2H5OH =
2.5 H 2.5 H 2.5 H
H 2.5 H
Given = 3 K H Find H H 0.818
1 H 1.5 H
1H 1.5 H H
yCH3CHO
2.5 H yH2 yC2H5OH
2.5 H 2.5 H
490
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.14 C6H5CH:CH2(g) + H2(g) = C6H5.C2H5(g) Q = 1 n0 = 2.5
This is the REVERSE reaction of Pb. 4.21(y). From the answers for Pbs.
4.21(y), 4.22(y), and 13.7(y) WITH OPPOSITE SIGNS, find the following
values:
J J
'H298 117440 'G298 83010
mol mol
3 6 5
'A 4.175 'B 4.766 10 'C 1.814 10 'D 0.083 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 2.398 u 10
3 J
K exp ¨
§ 'G · K 1.36672
mol © R T ¹
1H
By Eq. (13.5), yC6H5CHCH2 =
2.5 H
1.5 H H
yH2 = yC6H5C2H5 =
2.5 H 2.5 H
H 2.5 H
Given = 1.0133 K H Find H H 0.418
1 H 1.5 H
1H 1.5 H H
yC6H5CHCH2 yH2 yC6H5C2H5
2.5 H 2.5 H 2.5 H
491
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.15 Basis: 1 mole of gas entering, containing 0.15 mol SO2, 0.20 mol O2,
and 0.65 mol N2.
SO2 + 0.5O2 = SO3 Q = 0.5 n0 = 1
By Eq. (13.5),
0.15 H 0.20 0.5 H H
ySO2 = yO2 = ySO3 =
1 0.5 H 1 0.5 H 1 0.5 H
'A
¦ Qi Ai 'B
¦ QiBi 'D
¦ Qi Di
i i i
6 4
'A 0.5415 'B 2 u 10 'C 0 'D 8.995 u 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 2.804 u 10
4 J
K exp ¨
§ 'G · K 88.03675
mol © R T ¹
By Eq. (13.28), H 0.1 (guess)
H 1 0.5 H
0.5
Given = K H Find H H 0.1455
0.15 H 0.2 0.5 H 0.5
492
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
By Eq. (13.4), nSO3 = H = 0.1455
By Eq. (4.18),
'H753 'H298 R IDCPH T0 'T ' A ' B ' C D
J J
'H753 98353 Q H'
H753 Q 14314 Ans.
mol mol
n0 nC3H8 1 1 H
Fractional conversion of C3H8 = = = H
n0 1
1H H H
By Eq. (13.5), yC3H8 = yC2H4 = yCH4 =
1H 1H 1H
The following vectors represent the species of the reaction in the order
in which they appear:
'A
¦ Qi Ai 'B
¦ QiBi 'C
¦ QiCi
i i i
3 6
'A 1.913 'B 5.31 u 10 'C 2.268 u 10 'D 0
493
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
'G 'H298
T0
T
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 2187.9
J
K exp ¨
§ 'G · K 1.52356
mol © R T ¹
By Eq. (13.28), H 0.5 (guess)
2
H
Given = K H Find H
1 H 1 H
H 0.777 This value of epsilon IS the fractional conversion. Ans.
2
H
(b) H 0.85 K K 2.604
1 H 1 H
J
'G R T ln ( K) 'G 4972.3 Ans.
mol
The problem now is to find the T which generates this value.
It is not difficult to find T by trial. This leads to the value:
T = 646.8 K Ans.
1H H H
yC2H6 = yH = yC2H4 =
1.5 H 1.5 H 1.5 H
The following vectors represent the species of the reaction in the order in
which they appear:
494
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
§¨ 1 · §¨ 1.131 · §¨ 19.225 ·
3
Q ¨1 ¸ A ¨ 3.249 ¸ B ¨ 0.422 ¸ 10
¨1 ¨ 1.424 ¨ 14.394
© ¹ © ¹ © ¹
§¨ 5.561 · §¨ 0.0 ·
6 5
C ¨ 0.0 ¸ 10 D ¨ 0.083 ¸ 10
¨ 4.392 ¨ 0.0
© ¹ © ¹
end rowsA
() i 1 end
'A
¦ Qi Ai 'B ¦ QiBi 'C
¦ QiCi 'D
¦ Qi Di
i i i i
3 6 3
'A 3.542 'B 4.409 u 10 'C 1.169 u 10 'D 8.3 u 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 5.429 u 10
3 J
K exp ¨
§ 'G · K 1.81048
mol © R T ¹
495
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.18 C2H5CH:CH2(g) = CH2:CHCH:CH2(g) + H2(g) Q= 1
(1) (2) (3)
n0 = 1 x
1H H
By Eq. (13.5), y1 = y2 = y3 = = 0.10
1 Hx 1 Hx
From data in Table C.4,
J J
'H298 109780 'G298 79455
mol mol
§¨ 1 · §¨ 1.967 · §¨ 31.630 ·
3
Q ¨1 ¸ A ¨ 2.734 ¸ B ¨ 26.786 ¸ 10
¨1 ¨ 3.249 ¨ 0.422
© ¹ © ¹ © ¹
§¨ 9.873 · §¨ 0.0 ·
6 5
C ¨ 8.882 ¸ 10 D ¨ 0.0 ¸ 10
¨ 0.0 ¨ 0.083
© ¹ © ¹
end rows ( A) i 1 end
'A
¦ Qi Ai 'B ¦ QiBi 'C
¦ QiCi 'D
¦ Qi Di
i i i i
3 7 3
'A 4.016 'B 4.422 u 10 'C 9.91 u 10 'D 8.3 u 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
496
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
'G 4.896 u 10
3 J
K exp ¨
§ 'G · K 0.53802
mol © R T ¹
1H
(a) y1 yH2O 1 0.2 y1
1 Hx
6.5894
(b) ysteam ysteam 0.8682 Ans.
7.5894
1H H
By Eq. (13.5), y1 = y2 = = 0.12
1 x 2 H 1 x 2 H
y3 = 2 y2 = 0.24
From data in Table C.4,
J J
'H298 235030 'G298 166365
mol mol
The following vectors represent the species of the reaction in the order in
which they appear:
§¨ 1 · §¨ 1.935 · §¨ 36.915 ·
3
Q ¨1 ¸ A ¨ 2.734 ¸ B ¨ 26.786 ¸ 10
¨2 ¨ 3.249 ¨ 0.422
© ¹ © ¹ © ¹
497
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
§¨ 11.402 · §¨ 0.0 ·
6 5
C ¨ 8.882 ¸ 10 D ¨ 0.0 ¸ 10
¨ 0.0 ¨ 0.083
© ¹ © ¹
end rows ( A) i 1 end
'A
¦ Qi Ai 'B
¦ QiBi 'C
¦ QiCi 'D
¦ Qi Di
i i i i
3 6 4
'A 7.297 'B 9.285 u 10 'C 2.52 u 10 'D 1.66 u 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 9.242 u 10
3 J
K exp ¨
§ 'G · K 0.30066
mol © R T ¹
( 0.12) ( 0.24) 1 x 2 H
2
By Eq. (13.28), = K
1H
K
Because 0.12H1 x 2 H = H
2
K ( 0.24)
H
x 1 2 H x 4.3151 H 0.839
0.12
1H
(a) y1 yH2O 1 0.36 y1
1 x 2 H
4.3151
(b) ysteam ysteam 0.812 Ans.
5.3151
498
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.20 1/2N2(g) + 3/2H2(g) = NH3(g) Q = 1
Basis: 1/2 mol N2, 3/2 mol H2 feed n0 = 2
This is the reaction of Pb. 4.21(a) with all stoichiometric coefficients divided
by two. From the answers to Pbs. 4.21(a), 4.22(a), and 13.7(a) ALL
DIVIDED BY 2, find the following values:
J J
'H298 46110 'G298 16450
mol mol
3 5
'A 2.9355 'B 2.0905 10 'C 0 'D 0.3305 10
(a) T 300 kelvin T0 298.15 kelvin
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 1.627 u 10
4 J
K exp ¨
§ 'G · K 679.57
mol © R T ¹
P 1 P0 1
2
H Solving the next-to-last equation for K with P = P0 gives:
3
2
§ 1 · 1
¨
1 H¹
K © K 6.1586
1.299
499
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
Find by trial the value of T for which this is correct. It turns out to be
T 583kelvin P 100bar
583 100
Tr2 Tr2 4.62 Pr2 Pr2 2.941
126.2 34.0
For H2(3), estimate critical constants using Eqns. (3.58) and (3.59)
Tc3 §
43.6 · kelvin Tc3 42.806 K
¨ 21.8
¨1 ¸
T
¨ 2.016 T
© kelvin ¹ Tr3 Tr3 13.62
Tc3
20.5
Pc3 bar Pc3 19.757 bar
44.2
1 P
T Pr3 Pr3 5.061
2.016 Pc3
kelvin
Z3 0
500
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
Therefore, i 1 3
§¨ 1 · Qi
Q ¨ 0.5 ¸ Ii 1.184
¨ 1.5 i
© ¹
The expression used for K in Part (c) now becomes:
2
§ 1 · 1
¨
1 H¹
K © K 0.07292
§ 129.9 ·
¨
© 1.184 ¹
Another solution by trial for T yields T = 568.6 K Ans.
Of course, the INITIAL assumption made for T was not so close to the
final T as is shown here, and several trials were in fact made, but not
shown here. The trials are made by simply changing numbers in the
given expressions, without reproducing them.
J J
'H298 90135 'G298 24791
mol mol
501
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
'G 'H298
T0
T
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 2.439 u 10
4 J § 'G ·
K exp ¨ K 1.762 u 10
4
mol © R T ¹
P 1 P0 1
By Eq. (13.5), with the species numbered in the order in which they appear
in the reaction,
1H 2 2 H H
y1 = y2 = y3 =
3 2 H 3 2 H 3 2 H
H 3 2 H
2 2
Given
§ P · K
= ¨ H Find H H 0.9752
4 1 H
3 © P0 ¹
H
y3 y3 0.9291 Ans.
3 2 H
(b) y3 0.5 By the preceding equation
3 y3
H H 0.75
2 y3 1
H 3 2 H
2
K K 27
4 1 H
3
Find by trial the value of T for which this is correct. It turns out to be:
502
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
(c) For P = 100 bar, the preceding equation becomes
H 3 2 H
2
2 3
K 100 K 2.7 u 10
4 1 H
3
(d) Eq. (13.27) applies, and requires fugacity coefficients. Since iteration
will be necessary, assume a starting T of 528 K, for which:
T 528kelvin P 100bar
T P
Tr Tr 1.03 Pr Pr 1.235
Tc3 Pc3
Therefore: i 1 3
§ PHIBTr1 ZPr1 1 · §¨ 1.032 ·
¨
I ¨ 1.0 ¸ I ¨ 1 ¸
¨ ¨ 0.612
© 0.612 ¹ © ¹
§¨ 1 ·
Qi
Q ¨ 2 ¸
¨1
Ii 0.5933
© ¹ i
503
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
The expression used for K in Part (c) now becomes:
H 3 2 H
2
2 3
K 100 0.593 K 1.6011 u 10
4 1 H
3
Each species exists PURE as an individual phase, for which the activity is
f/f0. For the two species existing as solid phases, f and f0 are for practical
purposes the same, and the activity is unity. If the pure CO2 is assumed
an ideal gas at 1(atm), then for CO2 the activity is f/f0 = P/P0 = P (in bar).
As a result, Eq. (13.10) becomes K = P = 1.0133, and we must find the T
for which K has this value.
From the data of Table C.4,
J J
'H298 178321 'G298 130401
mol mol
The following vectors represent the species of the reaction in the order in
which they appear:
§¨ 1 · §¨ 12.572 · §¨ 2.637 · §¨ 3.120 ·
3 5
Q ¨1 ¸ A ¨ 6.104 ¸ B ¨ 0.443 ¸ 10 D ¨ 1.047 ¸ 10
¨1 ¨ 5.457 ¨ 1.045 ¨ 1.157
© ¹ © ¹ © ¹ © ¹
i 1 3 'A
¦ Qi Ai 'B
¦ QiBi 'D
¦ Qi Di
i i i
3 4
'A 1.011 'B 1.149 u 10 'C 0 'D 9.16 u 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
504
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
'G 126.324
J
K exp ¨
§ 'G · K 1.0133
mol © R T ¹
Thus T = 1151.83 kelvin Ans.
Although a number of trials were required to reach this result, only the
final trial is shown. A handbook value for this temperature is 1171 K.
The NH4Cl exists PURE as a solid phase, for which the activity is f/f0.
Since f and f0 are for practical purposes the same, the activity is unity. If
the equimolar mixture of NH3 and HCl is assumed an ideal gas mixture at
1.5 bar, then with f0 = 1 bar the activity of each gas species is its partial
pressure, (0.5)(1.5) = 0.75. As a result, Eq. (13.10) becomes K =
(0.75)(0.75) = 0.5625 , and we must find the T for which K has this value.
From the given data and the data of Table C.4,
J J
'H298 176013 'G298 91121
mol mol
The following vectors represent the species of the reaction in the order in
which they appear:
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
505
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
'G 2.986 u 10
3 J
K exp ¨
§ 'G · K 0.5624
mol © R T ¹
Thus T = 623.97 K Ans.
Although a number of trials were required to reach this result, only the
final trial is shown.
yNO2 yNO2
= = K T 298.15 kelvin
yNO yO2
0.5 0.5
yNO (0.21)
J
From the data of Table C.4, 'G298 35240
mol
§ 'G298 ·
K exp ¨ K 1.493 u 10
6
© R T ¹
12 6
yNO 10 yNO2 10 (guesses)
0.5 6
Given yNO2 = (0.21) K yNO yNO2 yNO = 5 10
§ yNO · 12
¨ FindyNO yNO2 yNO 7.307 u 10
© y NO2 ¹
6
This is about 7 10 ppm (a negligible concentration) Ans.
506
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
n0 1 nO2 nN2 n0 3.976
Index the product species with the numbers:
1 = ethylene
2 = oxygen
3 = ethylene oxide
4 = nitrogen
The numbers of moles in the product stream are given by Eq. (13.5).
Guess: H 0.8
§ 4.392 · § 0.0 · § 1 ·
¨ ¨ ¨
0.0 ¸ 10 6 0.227 ¸ 5 0.5 ¸
C ¨ D ¨ Q ¨
2
10 kelvin
¨ 9.296 ¸ kelvin2 ¨ 0.0 ¸ ¨ 1 ¸
¨ ¨ ¨
© 0.0 ¹ © 0.040 ¹ © 0 ¹
i 1 4 A H
¦ n H iAi B H
¦ nH i Bi
i i
C H
¦ nH i Ci D H
¦ n H iDi
i i
n H Qi
y H
n0 0.5 H
K H
yH i K H 15.947
i
The energy balance for the adiabatic reactor is:
'H298 'HP = 0 For the second term, we combine Eqs. (4.3) & (4.7).
507
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
For the equilibrium state, apply a combination of Eqs. (13.11a) &
(13.18).The reaction considered here is that of Pb. 4.21(g), for which the
following values are given in Pb. 4.23(g):
3 6
10 10
'A 3.629 'B 8.816 'C 4.904
kelvin 2
kelvin
5 2
'D 0.114 10 kelvin T0 298.15 kelvin
Guess: W 3
ª
idcph « 'AWT0 1
'B 2 2
WT0
º
1 »
2
« 'C 3 3 'D § W 1 · »
« W
T0
1 ¨ »
¬ 3 T0 © W ¹ ¼
ln W « B'
idcps 'A'
ª
T0 ª C T0
2 º §¨ W 1 · º W 1
« » © 2 ¹»
« « 'D » »
« « WT 2 » »
¬ ¬ 0 ¼ ¼
Given
B H
ª
'H298 = R « A H WT0 1
2 2
WT0
º
1 »
2
« C H D H § W 1 · »
«
3 3
WT0
1 ¨ »
¬ 3 T 0 © W ¹ ¼
ª§ 'H298 'G298 'H298 · 1 º
K H = exp «¨ idcps idcph»
¬© R T0 RWT0 ¹ T 0 W ¼
§H · §H · § 0.88244 ·
¨ Find HW ¨ ¨
©W ¹ ©W ¹ © 3.18374 ¹
508
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
§ 0.0333 ·
¨
0.052 ¸
y(0.88244) ¨ Ans.
¨ 0.2496 ¸
¨
© 0.6651 ¹
T W T0 T 949.23 kelvin Ans.
The carbon exists PURE as an individual phase, for which the activity is
unity. Thus we leave it out of consideration.
§¨ 1 · §¨ 1.702 · §¨ 9.081 ·
3
Q ¨1 ¸ A ¨ 1.771 ¸ B ¨ 0.771 ¸ 10
¨2 ¨ 3.249 ¨ 0.422
© ¹ © ¹ © ¹
§¨ 2.164 · §¨ 0.0 ·
6 5
i 1 3 C ¨ 0.0 ¸ 10 D ¨ 0.867 ¸ 10
¨ 0.0 ¨ 0.083
© ¹ © ¹
'A
¦ Qi Ai 'B
¦ QiBi 'C
¦ QiCi 'D
¦ Qi Di
i i i i
3 6 4
'A 6.567 'B 7.466 u 10 'C 2.164 u 10 'D 7.01 u 10
509
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
'G 'H298
T0
T
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 1.109 u 10
4 J
K exp ¨
§ 'G · K 4.2392
mol © R T ¹
1H 2 H
By Eq. (13.5), n0 = 1 yCH4 = yH2 =
1H 1H
K
H H 0.7173 (fraction decomposed)
4K
1H 2 H
yCH4 yH2 yCH4 0.1646
1H 1H
Ans.
yH2 0.8354
2 H 2
Given = K H Find H
2 H 1 H
H 0.7893 (fraction decomposed)
1H 2 H
yCH4 yH2 yN2 1 yCH4 yH2
2H 2H
510
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.28 1/2N2(g) + 1/2O2(g) = NO(g) Q= 0 (1)
J J
'H298 90250 'G298 86550
mol mol
3 5
'A 0.0725 'B 0.0795 10 'C 0 'D 0.1075 10
'G 'H298
T0
T
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 6.501 u 10
4 J
K1 exp ¨
§ 'G · K1 0.02004
mol © R T ¹
1/2N2(g) + O2(g) = NO2(g) Q = 0.5 (2)
J J
'H298 33180 'G298 51310
mol mol
The following vectors represent the species of the reaction in the order in
which they appear:
i 1 3 'A
¦ Qi Ai 'B
¦ QiBi 'D
¦ Qi Di
i i i
4 4
'A 0.297 'B 3.925 u 10 'C 0 'D 5.85 u 10
511
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 1.592 u 10
5 J
K2 exp ¨
§ 'G · K2 6.9373 u 10
5
mol © R T ¹
yNO yNO
(1) = = K1
yN2 0.5
yO2
0.5 0.5
(0.7) (0.05)
0.5
0.5 0.5 3
yNO K1 (0.7) (0.05) yNO 3.74962 u 10 Ans.
(2) P0 1 P 200
0.5
= §¨
yNO2 yNO2 P·
= K2
yN2 0.5 yO2 0.5
(0.7) (0.05) © P0 ¹
0.5
yNO2 §¨
P· 0.5 5
K2 (0.7) (0.05) yNO2 4.104 u 10 Ans.
© P0 ¹
The sulfur exists PURE as a solid phase, for which the activity is f/f0. Since
f and f0 are for practical purposes the same, the activity is unity, and it is
omitted from the equilibrium equation. Thus for the gases only,
Q = 1
From the given data and the data of Table C.4,
J J
'H298 145546 'G298 89830
mol mol
512
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
The following vectors represent the species of the reaction in the order in
which they appear:
i 1 4 'A
¦ Qi Ai 'B
¦ QiBi 'D
¦ Qi Di
i i i
3 4
'A 5.721 'B 6.065 u 10 'C 0 'D 6.28 u 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 1.538 u 10
4 J
K exp ¨
§ 'G · K 12.9169
mol © R T ¹
By Eq. (13.5), gases only: n0 = 3 (basis)
2 2 H 1H 2 H
yH2S = ySO2 = yH2O =
3H 3H 3H
2 H 2 3 H
Given = 8 K H Find H H 0.767
2 2 H 2 1 H
Percent conversion of reactants = PC
ni0 ni HQ i
PC = 100 = 100 [By Eq. (13.4)]
ni0 ni0
513
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
Since the reactants are present in the stoichiometric proportions, for each
reactant,
ni0 = Q i Whence PC H 100 PC 76.667 Ans.
J J
'H298 57200 'G298 5080
mol mol
3 5
'A 1.696 'B 0.133 10 'C 0 'D 1.203 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 3.968 u 10
3 J
K exp ¨
§ 'G · K 3.911
mol © R T ¹
1
1H 2 H 2 H 2 § P · K
ya = yb = = ¨
1H 1H 1 H 1 H © P0 ¹
K
(a) P 5 P0 1 H H 0.4044
4 P K
1H
ya ya 0.4241 Ans.
1H
K
(b) P 1 P0 1 H H 0.7031
4 P K
514
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
By Eq. (4.18), at 350 K:
'H 'H298 R IDCPH T0 'T ' A ' B ' C D 'H 56984
J
mol
This is Q per mol of reaction, which is
ln J a = 0.1 xB
2
ln J b = 0.1 xA
2
Whence
§ 1 xA · exp 0.1 xA
K= ¨
2
=
1 xA
exp ª¬0.1 xA xB º¼
2 2
© xA ¹ exp 0.1 xB 2
xA
1 xA § 'G ·
K= exp ª¬0.1 2 xA 1 º¼ K = exp ¨
xA © R T ¹
J
'G 1000 T 298.15 kelvin
mol
xA .5 (guess)
1 xA § 'G ·
Given exp ª¬0.1 2 xA 1 º¼ = exp ¨ xA FindxA
xA © R T ¹
xA 0.3955 Ans.
1 xA § 'G ·
Given = exp ¨ xA FindxA xA 0.4005
xA © R T ¹
This result is high by 0.0050. Ans.
515
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.32 H2O(g) + CO(g) = H2(g) + CO2(g) Q= 0
From the the data of Table C.4,
J J
'H298 41166 'G298 28618
mol mol
'G 'H298
T0
T
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 9.668 u 10
3 J
K exp ¨
§ 'G · K 4.27837
mol © R T ¹
(a) No. Since Q= 0 , at low pressures P has no effect
nCO
= 0.02
nCO nH2 nCO2
By Eq. (13.5),
wH 2Hz 1H 1H
yH2O = = yCO = yH2 =
2w 2 2 z 2 2 z 2 2 z
516
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
H
yCO2 = By Eq. (13.28) z 2 (guess)
2 2 z
Given H 1 H
= K z Find()
z z 4.1 Ans.
2Hz 1 H
3 5
'A 0.476 'B 0.702 10 'C 0 'D 1.962 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 3.074 u 10
4 J
K exp ¨
§ 'G · K 101.7
mol © R T ¹
By Eq. (13.28), gases only, with P = P0 = 1 bar
yCO2
= K = 101.7 for the reaction AT EQUILIBRIUM.
yCO 2
If the ACTUAL value of this ratio is GREATER than this value, the
reaction tries to shift left to reduce the ratio. But if no carbon is present, no
reaction is possible, and certainly no carbon is formed. The actual value of
the ratio in the equilibrium mixture of Part (c) is
H 1H
yCO2 yCO
2 2 z 2 2 z
3
yCO2 0.092 yCO 5.767 u 10
yCO2 3
RATIO RATIO 2.775 u 10
yCO 2
No carbon can deposit from the equilibrium mixture.
517
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.33 CO(g) + 2H2(g) = CH3OH(g) Q = 2 (1)
This is the reaction of Pb. 13.21, where the following parameter values are
given:
J J
'H298 90135 'G298 24791
mol mol
'G 'H298
T0
T
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 3.339 u 10
4 J
K1 exp ¨
§ 'G · K1 6.749 u 10
4
mol © R T ¹
H2(g) + CO2(g) = CO(g) + H2O(g) Q= 0 (2)
J J
'H298 41166 'G298 28618
mol mol
The following vectors represent the species of the reaction in the order in
which they appear:
§ 1 · § 3.249 · § 0.422 · § 0.083 ·
¨ ¨ ¨ ¨
1 5.457 ¸ 1.045 ¸ 3 ¨ 1.157 ¸ 105
Q ¨ ¸ A ¨ B ¨ 10 D
¨1 ¸ ¨ 3.376 ¸ ¨ 0.557 ¸ ¨ 0.031 ¸
¨ ¨ ¨ ¨
©1 ¹ © 3.470 ¹ © 1.450 ¹ © 0.121 ¹
i 1 4 'A
¦ Qi Ai 'B
¦ QiBi 'D
¦ Qi Di
i i i
4 5
'A 1.86 'B 5.4 u 10 'C 0 'D 1.164 u 10
518
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
'G 'H298
T0
T
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 1.856 u 10
4 J
K2 exp ¨
§ 'G · K2 0.01726
mol © R T ¹
By Eq. (13.7)
0.05 H 2 H1 H2
yCO2 = yCH3OH = yH2O =
1 2 H 1 1 2 H 1 1 2 H 1
P 100 P0 1
By Eq. (13.40), H 1 0.1 H 2 0.1 (guesses)
Given
H 1 1 2 H 1
2
= §¨
P·
2
K1
0.75 H2 H 1 2
2
0.15 HH 1 2 © P0 ¹
519
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
3
H1 0.1186 H2 8.8812 u 10
0.05 H 2 H1 H2
yCO2 yCH3OH yH2O
1 2 H 1 1 2 H 1 1 2 H 1
§ 1 · § 1.702 · § 9.081 ·
¨ ¨ ¨
1 3.470 ¸ 1.450 ¸ 3
Q ¨ ¸ A ¨ B ¨ 10
¨1 ¸ ¨ 3.376 ¸ ¨ 0.557 ¸
¨ ¨ ¨
©3 ¹ © 3.249 ¹ © 0.422 ¹
§ 2.164 · § 0.0 ·
¨ ¨
0.0 ¸ 6 0.121 ¸ 5
C ¨ 10 D ¨ 10 i 1 4
¨ 0.0 ¸ ¨ 0.031 ¸
¨ ¨
© 0.0 ¹ © 0.083 ¹
'A
¦ Qi Ai 'B
¦ QiBi 'C
¦ QiCi 'D
¦ Qi Di
i i i i
3 6 3
'A 7.951 'B 8.708 u 10 'C 2.164 u 10 'D 9.7 u 10
520
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
T 1300 kelvin T0 298.15 kelvin
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 1.031 u 10
5 J
K1 exp ¨
§ 'G · K1 13845
mol © R T ¹
J J
'H298 41166 'G298 28618
mol mol
3 5
'A 1.860 'B 0.540 10 'C 0.0 'D 1.164 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
'G 5.892 u 10
3 J
K2 exp ¨
§ 'G · K2 0.5798
mol © R T ¹
(c) The value of K1 is so large compared with the value of K2 that for all
practical purposes reaction (1) may be considered to go to
completion. With a feed equimolar in CH4 and H2O, no H2O then
remains for reaction (2). In this event the ratio, moles H2/moles CO
is very nearly equal to 3.0.
521
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
(d) With H2O present in an amount greater than the stoichiometric
ratio, reaction (2) becomes important. However, reaction (1) for all
practical purposes still goes to completion, and may be considered
to provide the feed for reaction (2). On the basis of 1 mol CH4 and
2 mol H2O initially, what is left as feed for reaction (2) is: 1 mol
H2O, 1 mol CO, and 3 mol H2; n0 = 5. Thus, for reaction (2) at
equilibrium by Eq. (13.5):
1H H 3H
yCO = yH2O = yCO2 = yH2 =
5 5 5
By Eq. (13.28), H 0.5 (guess)
H 3 H
Given = K2 H Find H H 0.1375
1 H 2
yH2 3H
Ratio = Ratio Ratio 3.638 Ans.
yCO 1H
(e) One practical way is to add CO2 to the feed. Some H2 then reacts
with the CO2 by reaction (2) to form additional CO and to lower the
H2/CO ratio.
J J
'H298 172459 'G298 120021
mol mol
3 5
'A 0.476 'B 0.702 10 'C 0.0 'D 1.962 10
'G 'H298
T
T0
'H298 'G298
R IDCPH T0 'T ' A ' B ' C D
R T IDCPS T0 'T ' A ' B ' C D
522
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
'G 5.673 u 10
4 J
K exp ¨
§ 'G · K 5.255685 u 10
3
mol © R T ¹
H5
Ratio Ratio 0.924
1 H 2
C + 2H2 = CH4
H2 + (1/2)O2 = H2O
C + (1/2)O2 = CO
C + O2 = CO2
yCO yH2
3
yCO2 yH2
= k1 = k2
yCH4 yH2O yCO yH2O
§ 'G1 · § 'G2 ·
K1 exp ¨ K2 exp ¨
© R T ¹ © R T ¹
K1 27.453 K2 1.457
H 1 1.5 H2 1 (guesses)
Given
H 1 H 2 3HH 1 2 3 = K1
2 H 1 3 HH 1 2 5 2 H 1 2
H 2 3HH 1 2
= K2
H 1 H 2 3 HH 1 2
§¨ H 1 ·
Find H 1 H 2 H1 1.8304 H2 0.3211
¨ H2
© ¹
2 H1 3 HH 1 2 H1 H2
yCH4 yH2O yCO
5 2 H 1 5 2 H 1 5 2 H 1
524
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
H2 3HH 1 2
yCO2 yH2
5 2 H 1 5 2 H 1
13.39Phase-equilibrium equations:
y1 P
Ethylene oxide(1): p1 = y1 P = 415x
1 P 101.33 kPa x1 =
415kPa
y2 P
Water(2): x2 Psat2 = y2 P Psat2 3.166 kPa x2 =
Psat2
(steam tables)
Therefore, y2 = 1 y1 and x3 = 1 x2 x3
J 3 x3 x3
k= =
§y P · J x y1 x2 T 298.15kelvin
¨ 1 2 2
© P0 ¹
J
Data from Table C.4: 'G298 72941
mol
§ 'G298 · 12
k exp ¨ k 6.018 u 10 Ans.
© R T ¹
525
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
So large a value of k requires either y1 or x2 to approach zero. If y1
approaches zero, y2 approaches unity, and the phase-equilibrium
expression for water(2) makes x2 = 32, which is impossible. Thus x2
must approach zero, and the phase-equilibrium equation requires y2 also
to approach zero. This means that for all practical purposes the reaction
goes to completion. For initial amounts of 3 moles of ethylene oxide and
1 mole of water, the water present is entirely reacted along with 1 mole of
the ethylene oxide. Conversion of the oxide is therefore
33.3 %.
§ 1 1 · § 50 ·
13.41 ¨ ¨
1 0 ¸ Initial
¨ 50 ¸ kmol
a) Stoichiometric coefficients: Q ¨ numbers of n0
¨ 1 1 ¸ moles
¨ 0 ¸ hr
¨ ¨
©0 1 ¹ ©0¹
Number of components: i 1 4 Number of reactions: j 1 2
vj
¦ Qi j v
§ 1 ·
¨
© 1 ¹
n0
¦ n0i n0 100
kmol
hr
i
i
Given values: yA 0.05 yB 0.10
kmol kmol
Guess: yC 0.4 yD 0.4 H1 1 H2 1
hr hr
Given
§ yC ·
¨
¨ yD ¸
¨ ¸ FindyC HyD H 1 2 H1 44.737
kmol
H2 2.632
kmol
¨ H1 ¸ hr hr
¨H
© 2¹
526
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
kmol
(i) nA n01 HH 1 2 nA 2.632
hr
kmol
nB n02 H 1 nB 5.263
hr
kmol
nC n03 HH 1 2 nC 42.105
hr
kmol
nD n04 H 2 nD 2.632
hr
kmol
n nA nB nC nD n 52.632 Ans.
hr
§ 1 1 · § 40 ·
¨ ¨
1 2 ¸ Initial
¨ 40 ¸ kmol
b) Stoichiometric coefficients: Q ¨ numbers of n0
¨1 0 ¸ moles
¨ 0 ¸ hr
¨ ¨
©0 1 ¹ ©0¹
Number of components: i 1 4 Number of reactions: j 1 2
vj
¦ Qi j v
§ 1 ·
¨
© 2 ¹
n0
¦ n0i n0 80
kmol
hr
i
i
Given values: yC 0.52 yD 0.04
kmol kmol
Guess: yA 0.4 yB 0.4 H1 1 H2 1
hr hr
Given
527
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
§ yA ·
¨
¨ yB ¸
¨ ¸ FindyA HyB H 1 2 H1 26
kmol
H2 2
kmol
¨ H1 ¸ hr hr
¨H
© 2¹
yA 0.24 yB 0.2
kmol
nA n01 HH 1 2 nA 12
hr
kmol
nB n02 H 1 2H 2 nB 10
hr Ans.
kmol
nC n03 H 1 nC 26
hr
kmol
nD n04 H 2 nD 2
hr
§ 1 1 · § 100 ·
¨ ¨
1 1 ¸ Initial
¨ 0 ¸ kmol
c) Stoichiometric coefficients: Q ¨ numbers of n0
¨1 0 ¸ moles
¨ 0 ¸ hr
¨ ¨
©0 1 ¹ © 0 ¹
Number of components: i 1 4 Number of reactions: j 1 2
vj
¦ Qi j v
§1 ·
¨
© 1 ¹
n0
¦ n0i n0 100
kmol
hr
i
i
Given values: yC 0.3 yD 0.1
kmol kmol
Guess: yA 0.4 yB 0.4 H1 1 H2 1
hr hr
Given
528
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
§ yA ·
¨
¨ yB ¸
¨ ¸ FindyA HyB H 1 2 H1 37.5
kmol
H2 12.5
kmol
¨ H1 ¸ hr hr
¨H
© 2¹
yA 0.4 yB 0.2
kmol
nA n01 HH 1 2 nA 50
hr
kmol
nB n02 HH 1 2 nB 25
hr Ans.
kmol
nC n03 H 1 nC 37.5
hr
kmol
nD n04 H 2 nD 12.5
hr
§ 1 1 · § 40 ·
¨ 1 1 ¨ 60
¨ ¸ Initial ¨ ¸ kmol
d)Stoichiometric coefficients: Q ¨ 1 0 ¸ numbers of n0 ¨0¸
¨0 1 ¸ moles ¨ 0 ¸ hr
¨ ¨
©0 1 ¹ ©0¹
Number of components: i 1 5 Number of reactions: j 1 2
vj
¦ Qi j v
§ 1 ·
¨
©0 ¹
n0
¦ n0i n0 100
kmol
hr
i
i
Given values: yC 0.25 yD 0.20
kmol kmol
Guess: yA 0.2 yB 0.4 yE 0.1 H1 1 H2 1
hr hr
529
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
Given n01 HH 1 2 n02 HH 1 2
yA = yB = Eqn. (13.7)
n0 H 1 n0 H 1
§ yA ·
¨
¨ yB ¸
¨ yE ¸ Find y y Hy H H1 20
kmol
H2 16
kmol
A B E 1 2
¨ ¸ hr hr
¨ H1 ¸
¨
© H2 ¹
(i) (ii)
kmol
nA n01 HH 1 2 nA 4 yA 0.05
hr
kmol
nB n02 HH 1 2 nB 24 yB 0.3
hr
kmol
nC n03 H 1 nC 20 Ans. yC 0.25
hr
kmol
nD n04 H 2 nD 16 yD 0.2
hr
kmol
nE n05 H 2 nE 16 yE 0.2
hr
530
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
kJ
'H0 '
'H0f1 ' H0f2 H0f3 'H0 45.782
mol
kJ
'G0 '
'G0f1 ' G0f2 G0f3 'G0 8.378
mol
a) K0 exp §¨
'G0 ·
Eqn. (13.21) K298 K0 K298 29.366 Ans.
© R T0 ¹
b) K1 exp ª«
'H0 § T0 ·º 3
¨1 » Eqn. (13.22) K1 9.07 u 10
¬ R T0 © T ¹¼
1
K2 exp §¨ IDCPH T0 'T ' A ' B ' C D · K2 0.989 Eqn. (13.23)
T
¨
© IDCPST0 'T ' A ' B ' C D
¹
K400 K0 K1 K2 Eqn. (13.20) K400 0.263 Ans.
531
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
Solve for He using a Mathcad solve block. Guess: H e 0.5
He
2H e
Given
1 He 1 He
= K400
P
P0
H e Find H e He 0.191
2 He 2 He
1 He 1 He He
y1 y2 y3
2 He 2 He 2 He
J J
S0H2 130.680 S0O2 205.152
mol kelvin mol kelvin
J
S0H2O2 232.95
mol kelvin
J
'S0fH2O2 S0H2 S0O2 S0H2O2 'S0fH2O2 102.882
mol kelvin
kJ
'G0f 'H0fH2O2 T 'S0fH2O2 'G0f 105.432 Ans.
mol
532
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
13.48 C3H8(g) -> C3H6(g) + H2(g) (I)
C3H8(g) -> C2H4(g) + CH4(g) (II)
J J
2 = C3H6 (g) 'H0f2 19710 'G0f2 62205
mol mol
J J
3 = H2 (g) 'H0f3 0 'G0f3 0
mol mol
J J
4 = C2H4 (g) 'H0f4 52510 'G0f4 68460
mol mol
J J
5 = CH4 (g) 'H0f5 74520 'G0f5 50460
mol mol
KI0 exp ¨
§ 'G0I ·
Eqn. (13.21) KI0 0
© R T0 ¹
KI1 exp «
ª 'H0I § 1 T0 ·º 1.348 u 10
13
¨ » Eqn. (13.22) KI1
¬ R T0 © T ¹¼
1
KI2 exp §¨ IDCPH T0 'T ' AI ' BI ' CI DI · KI2 1.714
T
¨
© IDCPST0 'T ' AI ' BI ' CI DI
¹ Eqn. (13.23)
533
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
KI KI0 KI1 KI2 Eqn. (13.20) KI 0.016
Calculate equilibrium constant for reaction II:
kJ
'H0II '
'H0f1 ' H0f4 H0f5 'H0II 82.67
mol
kJ
'G0II '
'G0f1 ' G0f4 G0f5 'G0II 42.29
mol
KII0 exp ¨
§ 'G0II · 8
© R T0 ¹ Eqn. (13.21) KII0 3.897 u 10
KII1 exp «
ª 'H0II § 1 T0 ·º Eqn. (13.22) 5.322 u 10
8
¨ » KII1
¬ R T0 © T ¹¼
1
KII2 exp §¨ IDCPH T0 'T ' AII ' BII ' CII DII KII2
· 1.028
T
¨
© IDCPS T0 'T ' AII ' BII ' CII DII
¹Eqn. (13.23)
KII KII0 KII1 KII2 Eqn. (13.20) KII 21.328
1 HH I II HI HI
y1 = y2 = y3 =
1 HH I II 1 HH I II 1 HH I II
H II H II
y4 = y5 = Eqn. (13.7)
1 HH I II 1 HH I II
y2 y3 y4 y5
= KI §¨
P0 ·
= KII §¨
P0 ·
Eqn. (13.28)
y1 ©P¹ y1 ©P¹
534
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
Substitution yields the following equations:
§ HI ·§ HI ·
¨ ¨
© 1 HH I II ¹ © 1 HH I II ¹
= KI §¨
P0 ·
§ 1 HH I II · ©P¹
¨
© 1 HH I II ¹
§ H II ·§ H II ·
¨ ¨
© 1 HH I II ¹ © 1 HH I II ¹
= KII §¨
P0 ·
§ 1 HH I II · ©P¹
¨
© 1 HH I II ¹
Use a Mathcad solve block to solve these two equations for H I and H II. Note
that the equations have been rearranged to facilitate the numerical
solution.
Guess: H I 0.5 H II 0.5
Given
HI HI § P0 · § 1 HH I II ·
= KI ¨ ¨
1 HH I II 1 HH I II © P ¹ 1 HH I II
© ¹
H II H II P0 · 1 HH I II
= KII §¨
1 HH I II 1 HH I II © P ¹ 1 HH I II
§¨ H I ·
Find H I H II HI 0.026 H II 0.948
¨ H II
© ¹
1 HH I II HI HI
y1 y2 y3
1 HH I II 1 HH I II 1 HH I II
H II H II
y4 y5
1 HH I II 1 HH I II
535
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
A summary of the values for the other temperatures is given in the table below.
kJ
'H0 '
'H0f1 H0f2 'H0 8.39
mol
kJ
'G0 '
'G0f1 G0f2 'G0 4.19
mol
a) K0 exp §¨
'G0 ·
Eqn. (13.21) K0 5.421 Ans.
© R T0 ¹
b) K1 exp ª«
'H0 § T0 ·º
¨1 » Eqn. (13.22) K1 0.364
¬ R T0 © T ¹¼
1
K2 exp §¨
·
IDCPH T0 'T ' A ' B ' C D K2 1 Eqn. (13.23)
T
¨
© IDCPST0 'T ' A ' B ' C D ¹
536
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
Ke K0 K1 K2 Eqn. (13.20) Ke 1.974 Ans.
y1 = 1 H e y2 = H e
y2
a) Assuming ideal gas behavior = Ke
y1
He
Substitution results in the following expression: = Ke
1 H e
Solving for Ke yields the following analytical expression for He
1
He He 0.336
1 Ke
b) Assume the gas is an ideal solution. In this case Eqn. (13.27) applies.
ª § P·
Q º
« yi I i = ¨
¬ © P0 ¹
K »
¼
Eqn. (13.27)
i
537
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.
I 2 PHIB Tr2 Z
Pr2 2 I2 0.884
I2
Solving for He yields: He He 0.339
I 2 Ke I 1
The values of y1 and y2 calculated in parts a) and b) differ by less than 1%.
Therefore, the effects of vapor-phase nonidealities is here minimal.
538
______________________________________________________________________________________________
PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. Limited distribution permitted
only to teachers and educators for course preparation. If you are a student using this Manual, you are using
it without permission.