CT-LTI System Analysis
Generalized I/O DE is d2y dy
2
a1 a0 y b0 x
dt dt
Approach #I Steps:
(i) Derive the I/O DE
(ii) Solve the ODE using standard technique
y (t ) yn (t ) natural response/homogeneous solution of the ODE
y (t ) forced response/particular solution of the ODE
Approach #II
Steps:
(i) Derive the I/O DE
(ii) Find ZIR from the homogeneous solution of the ODE using ICs
(iii)Find the impulse response(h(t)) of the system from the
homogeneous solution of the ODE using auxiliary ICs
(iii) Find ZSR by convolving h(t) with input x(t)
n
y (t ) c j e x(t ) h(t )
jt
j 1
ZSR
ZIR
The technique discussed above is illustrated using
R= 3 W, L= 1 H, C=0.5 F and vs(t)=x(t)=10e-3tu(t).
The generalized ODE can be written in the operator notation as
( D 2 3D 2) y 2 x
The characteristic equation is ( 2 3 2) 0
The characteristic roots are 1 and -2
Natural response/
Homogeneous solution yn (t ) C1e 1t C2 e 2 t
of the ODE is
Forced response/Particular solution of the ODE
Use method of undermined coefficient (page 140
Art. 2.5-1 BP Lathi
Here input x(t)=10e-3tu(t), the response will have form
Ae-3tu(t). Substituting the solution to the DE gives
9 Ae 3t 9 Ae 3t 2 Ae 3t 2 10e 3t
since e 3t 0; A 10.
y (t ) 10e u (t )
3 t
y (t ) C1e t C2 e 2 t 10e 3t u (t )
ICs : vc (0 ) vc (0 ) 5V y (0)
dvc dy
i (0 ) i (0 ) C t 0
0 t 0
0
dt dt
y (0) C1 C2 10 5
dy
t 0
C1 2C2 30 0
dt
Solving : C1 20, C2 25
y (t ) (20e 25e
t 2 t
10e )u (t )
3 t
Natural Response Forced Response
Approach #II
Determination of ZIR
The characteristic roots are 1 and -2
Natural response/
Homogeneous solution yn (t ) C1e 1t C2 e 2 t
of the ODE is
y (t ) C1e t C2 e 2 t
ICs : vc (0 ) vc (0 ) 5V y (0)
dvc dy
i (0 ) i (0 ) C t 0
0 t 0
0
dt dt
y (0) C1 C2 5
dy
t 0
C1 2C2 0
dt
Solving : C1 10, C2 5
yZSR (t ) (10e 5e )u (t )
t 2 t
Determination of Impulse Response
h(t ) bn (t ) P( D) yn (t ) u (t )
yn (t ) is the linear combination of the characteristics modes
of the system. Here n is the order of the system.
Here n=2, b n =b 2 =0, P(D)=2
y n (t)=C1e-t +C2 e-2t
Using auxiliary ICs( y'n (0) 1, yn (0) 0)
C1 2C2 1; C1 C2 0
Solving: C1 =1, C2 =-1
y n (t)=e-t -e-2t
h(t ) 0 (t ) 2(e -t -e-2t )u (t ) 2(e -t -e -2t )u (t )
yZSR (t ) h(t ) x(t ) 2(e-t -e-2t )u (t ) 10e 3t u (t )
o 2(e e )10e d 10e 20e 10e
t 2 3( t ) t 2 t 3 t
y (t ) yZIR (t ) yZSR (t ) (20e t 25e 2 t 10e 3t )u (t )
Nature of Response of a SO System
The nature of the response of a SO system depends on the
nature of the characteristic roots of the system.
( 2 a1 a0 ) 0
a1 1
1 / 2 (a12 4a02 ( 2 n2
2 2
a
Where is the damping factor (neper/s) and
2
n = a0 is the undamped natural frequency(rad/s).
The ratio is called the damping ratio of the system.
n
Using these notations, the characteristics equation of SOS
can be written as
2 2n n2 0
Case I: Overdamped response(when >n )
1 and 1 are real and negative. Natural response
y n (t ) A1e t A2 e t
1 2
Case I: Critically damped response(when nI )
1 and 1 are real, equal and negative. Natural response
y n (t ) ( A1 A2t )e t
Case III: underdamped response(when n )
1 and 1 are complex conjugate with negative real part.
1 /2 =- j n2 2 =- jd
Where d = n2 2 is the damped natural frequency of the SOS
Natural response
y n (t ) A1e(- j ) t A2 e(- j ) t e t ( B1 cos d t B2 sin d t )
d d
Case IV: undamped response(when 0)
1 and 1 are complex conjugate with negative real part.
1 /2 = j n2 2
Natural response
y n (t ) A1e(j ) t A2 e( j ) t ( B1 cos d t B2 sin d t )
d d
Symbolic Solution of ODE using Matlab
syms y(t)
Dy=diff(y)
vc=dsolve(diff(y,2)+3*diff(y)+2*y==20*exp(-3*t),y(0)==5,Dy(0)==0)
i=0.5*diff(vc)
vc =20*exp(-t) - 25*exp(-2*t) + 10*exp(-3*t)
i =25*exp(-2*t) - 10*exp(-t) - 15*exp(-3*t)
ezplot(vc, [0 10])
VC
i
Undamped case
VC
i
Finding Initial Values