0% found this document useful (0 votes)
117 views18 pages

Copper Complex Coordination Study

The document discusses determining the coordination number of copper (II) chloride dihydrate complex. It provides background on coordination complexes, ligands, and how color can indicate the coordination environment of copper ions. The objective is to use copper (II) chloride dihydrate to determine the coordination number. Literature discusses properties of copper complexes and compounds, including their uses as fertilizers and pesticides. Results indicate copper (II) forms complexes with ligands that are light blue and have coordination numbers of 6, consistent with an octahedral geometry.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
117 views18 pages

Copper Complex Coordination Study

The document discusses determining the coordination number of copper (II) chloride dihydrate complex. It provides background on coordination complexes, ligands, and how color can indicate the coordination environment of copper ions. The objective is to use copper (II) chloride dihydrate to determine the coordination number. Literature discusses properties of copper complexes and compounds, including their uses as fertilizers and pesticides. Results indicate copper (II) forms complexes with ligands that are light blue and have coordination numbers of 6, consistent with an octahedral geometry.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 18

A.

TITLE OF EXPERIMENT
Determination Of The Cordination Number Of The Copper II Complex

B. OBJECTIVE OF EXPERIMENT
To determine the complex coordination number with chemical CuCl2.2H2O

C. LITERATURE REVIEW
1. General Review
The transition elements are often said to exhibit "variable valency'. Because
they so readily form complex compounds, it is better to use the term 'variety of
oxidation states'. Complexes have already received some discussion; it defined (and
named) in terms of (a) the central metal atom or ion and its oxidation state, (b) the
number of surrounding ligands which may be ions, atoms or polar molecules, (c) the
overall charge on the complex, determined by the oxidation state of the central atom
and the charges on the ligands. Hence the number of complexes high oxidation states
is very limited. At lower oxidation states, a variety of ligands can form complexes
some common ligands (Chambers, Holliday. 1975: 362-363).
The word ligand is derived from the Latin verb ‘ligare’ meaning ‘to bind’. In a
coordination complex, a central atom or ion is coordinated by one or more
molecules or ions (ligands) which act as Lewis bases the latter acts as a Lewis acid,
forming coordinate bonds with the central atom or ion; the latter acts as a Lewis acid.
Atoms in the ligands that are directly bonded to the central atom or ion are donor
atoms. In a complex: a line is used to denote the interaction between an anionic
ligand and the acceptor; an arrow is used to show the donation of an electron pair
from a neutral ligand to an acceptor. The formation of complexes in aqueous
solution may be studied by a number of methods, of which testing the
modifications of chemical properties is only one, and a somewhat unreliable one at
that (Catherine, et al. 2005: 179).
More precisely an inner-sphere complex, the ligands are attached directly to the
central metal atom or ion. These ligands form the primary coordination sphere of the
complex and their number is called the coordination number of the central metal
atom. As in solids, a wide range of coordination numbers can occur, and the origin of
the structural richness and chemical diversity of complexes is the ability of the
coordination number to range up to 12. Although we shall concentrate on inner-
sphere complexes throughout this chapter, that complex cations can associate
electrostatically with anionic ligands (other weak interactions, with solvent
molecules) without displacement of the ligands already present. The product of this
association is called an outer-sphere complex (Atkins, et al. 2010: 200).
Transition metal compounds are very often coloured; frequently (but not
always) the colour is due to the presence of coordination complexes. When a cation
containing d electrons is surrounded by other ions or polar molecules, either in a
complex ion in solution or in a solid, a splitting of the energy levels of the five d
orbitals (all originally having the same energy) occurs; when light falls on such a
system, electrons can move between these split levels. The energy absorbed in this
process corresponds to absorption of the light at certain wavelengths, usually in the
visible part of the spectrum (Chambers, Holliday. 1975: 364).
When complex formation occurs between highly charged cations and
anions, with a resulting partial or total cancellation of charges, the changes
in enthalpy for these processes are significantly negative. However, the
accompanying changes in entropy are significantly positive because less order
is imposed on the H2O molecules around the complex ion than around
the uncomplexed, metal cations and anionic ligands. We now compare the
stability of complexes formed between a given metal ion and related monodentate
and didentate ligands, and address the so-called chelate effect. In order
to make meaningful comparisons, it is important to choose appropriate
ligands (Catherine, et al. 2005: 183).
We can illustrate this by reference to the Cu2+ ion. In solid anhydrous copper(II)
sulphate, the Cu2+ ion is surrounded by ions SO 42- ; in this environment, the d orbital
splitting is such that absorption of light by the Cu2+ cation is not in the visible part of
the spectrum, and the substance appears white. If the solid is now dissolved in water,
the Cu2+ ion becomes surrounded by water molecules, and complex species such as
Cu(H2O)6+ are formed—these absorb light in the visible part of the spectrum and
appear pale blue. If this solution of copper(II) sulphate is allowed to crystallise, water
molecules remain coordinated round the Cu2+ ion in the solid copper(II) sulphate
pentahydrate (CuSO4.5H2O) and the solid is pale blue. When an excess of ammonia is
added to the original solution, some of the water ligands around the copper(II) ion are
replaced by ammonia :
[Cu(H2O)6]2+(aq) + 4NH3 (aq) [Cu(NH3)4(H2O)2] 2+ (aq) + 4H2O
pale blue deep blue

(Chambers, Holliday. 1975: 364-365).


A species like [Co(NH3)6]3+ is called a “coordination entity”. The atom in the
middle is called the “central atom”, the attached groups are called “ligands” (Latin,
ligare, bind), and the atoms by which they are attached, “coordinating” or “ligating”
atoms. The ligands are said to be “coordinated” or “ligated” to the central atom. They
are also said to be in the “coordination sphere” of the central atom. Following
Werner, the number of coordinating atoms around the central atom is called the
“coordination number” of the central atom. This term is also used by
crystallographers. However, the latter use it to describe a particular structure, whereas
Werner used it more as a valency. A better term for this purpose would be
“coordinate valency”. A ligand containing more than one coordinating atom is called
a multidentate (literally “many-toothed”) ligand, the number of coordinating atoms
being indicated by the terms “unidentate”, “bidentate”, etc. This can coordinate
through its two nitrogen atoms in the same way as two molecules of CH 3NH2 or NH3.
Thus, just as the addition of ammonia to a solution containing Cu 2+ leads to the
formation of the deep blue [Cu(NH3)4]2+ ion, so the addition of ethylenediamine leads
to the formation of the dark blue-violet [Cu(en)2]2+ (Nelson, 2011: 110).
For compounds that consist of one or more ions, the cation is named first
followed by the anion (as for simple ionic compounds), regardless of which ion is
complex. Complex ions are named with their ligands in alphabetical order (ignoring
any numerical prefixes). The ligand names are followed by the name of the metal
with either its oxidation number in parentheses, as in hexaamminecobalt(III) for
[Co(NH3)6], or with the overall charge on the complex specified in parentheses, as in
hexaamminecobalt(3-). The suffix -ate is added to the name of the metal (sometimes in
its Latin form) if the complex is an anion, as in the name hexacyanoferrate(II) for
[Fe(CN)6]43- (Atkins, et al. 2010: 202).
Hydrated copper(II) hydroxide, Cu(OH)2, is precipitated as a pale blue solid
when alkali is added to an aqueous solution of a copper(II) salt. It is readily
dehydrated on warming, to give the black oxide CuO. It dissolves in excess of
concentrated alkali to form blue hydroxocuprate(II) ions, of variable composition; it
is therefore slightly amphoteric. If aqueous ammonia is used to precipitate the
hydroxide, the latter dissolves in excess ammonia to give the deep blue ammino
complexes, for example [Cu(NH3)4(H2O)2] 2+ (Chambers, Holliday. 1975).
B. Review of Result
Copper compounds are used in agriculture as fertilizers (for soils which
contain less than 5 mgkg-1 available copper) and pesticides (because of their
fungicidal and bactericidal properties). Copper fertilizers are available as oxides
(CuO, CuO), simple salts (CuSO45H2O) and complex compounds. Copper
pesticides include copper oxides, copper hydroxide, simple salts (as sulphate,
carbonate) and complex compounds (like copper complex, copper ethylenediamine
complex, copper triethanolamine complex etc.) (Dumbrava, et al. 2013).
Copper(II) formed a light blue coloured complex with EDBDMPO. In its
electronic spectrum, a single band was observed at 13,333 cm this complex is
proposed and a distorted octahedral structure for . An additional weak band is
observed at 23, 530 cm authors have attributed this to metal-metal interactions 35,36.
There is a single transition in the electronic spectrum of Cu(II) PDBDMPO complex
at 13,330 cm-1 and a distorted octahedral structure for the same is proposed 34.
Another band at 23, 530 cm-1 has also been observed and can be attributed to metal-
metal interactions-1 (Rao, Puri, 2011).
The coordination compounds are air-stable at room temperature. They are
insoluble in H2O, partially soluble in MeOH, EtOH, and completely soluble in
DMSO and DMF. Their molar conductance measurements (∆M = 3.8–8.9 cm2 mol-1)
mho in DMF indicate their nonelec trolytic nature. .e room temperature magnetic
moments of the coordination compounds of I magnetic moments of [Co(LH)
(MeOH)3] and [Ni(LH)(MeOH)3] are 4.75 and 3.14 B.M., respectively. These values
are indicative of the magnetically dilute high-spin octahedral coordination com
pounds of Co(II) and Ni(II) ions.The coordination compounds of other ions are
diamagnetic (Kumar, et al., 2015).
Synthesis of the Cu (II) metal ion complex with 2-pheniletilamine ligand was
carried out at a mole ratio of metals and 1: 2 ligands. This study used CuCl2 · 2H2O
and precursors suitable solvent is alcohol [8]. In this research, the chosen solvent is
methanol because methanol can dissolve metals and ligands well. Each metals and
ligands are dissolved in methanol, then stirred and heated until homogeneous to form
a green solution. The resulting compound is a colored crystal orange with a yield of
57.76% (Swastika, Fahimah. 2012).

D. APPARATUS AND CHEMICALS


1. Apparatus
a. Beaker 50 mL 2 Pieces
b. Beaker 100 mL 4 Pieces
c. Erlenmeyer 100 mL 8 Pieces
d. Burette 2 Pieces
e. Measuring Pipette 5 mL 1 Piece
f. Measuring Pipette 10 mL 1 Piece
g. Bulb pipette 1 Piece
h. Funnel 1 Piece
i. Stir road 2 Pieces
j. Thermometer 1 Piece
k. Spray bottle 1 Piece
l. Volumetric flask 100 mL 3 Pieces
m. Volumetric flask 250mL 1 Piece
n. Sttive and Clamp 1 Unit
2. Chemicals
a. Ammonium NH3
b. Copper (II) Chloride CuCl2.5H2O
c. Ethanol C2H5OHs
d. Ammonium hydroxide NH4OH
e. Crystal Sodium Borax Decahydrate Na2B4O7.10 H2O
f. Metil orange
g. Chloride acid HCl
h. Indicator PP

E. WORK PROCEDURE
1. Determination coordination complex number with CuCl2.H2O

1 11

4 ,2 5 g ra m 4 ,2 5 g ra m
5 0 m l a lc o h o l 5 0 m l C u C l2
c ris ta l c ris ta l
C u C l2.2 H 2O 96 % 0 ,5 M
C u C l2.2 H 2O (e th a n o l)
aluminium foil

2 5 m l a lc o h o l 5 0 m l N H 3
9 6 % (e th a n o l) 8 ,5 M

2 5 m l N H 4 O H
1 7 M

2. Standarisation of NH3 solution


wash with
aquades anh
HCl

1 11
1 ,8 7 g ra m c ris ta l
N a 2B 4O 7.1 0 H 2O
1 ,8 7 g ra m c ris ta l (d is o lv e d w ith
a q u a d e s u n til s n ip p e t H C l
N a 2B 4O 7.1 0 H 2O aquades 1 ,8 7 g ra m c ris ta l
s o lv e d )
N a 2B 4O 7.1 0 H 2O

2 d ro p s m e th y l
titra tio n N a 2B 4O 7 u n til th e o ra n g e in d ic a to r
c o lo rs is c h a n g e
(titra tio n u n til 3 tim e s )

1 2 3
1 0 m l N a 2B 4O 7
p u t 1 0 m l N a 2B 4O 7
in to th e e a c h
e rle n m e y e r

3. Determination coordination number of Cu(NH3)2+ complex with titrimometri


method

N H 3

o b s e rv e d th e c o lo r a n d th e
te m p e ra tu re

1 0 m l C u C l2

p u t N H 3 th a t h a s b e e n p u t N H 3 in to th e e rle n m e y e r th a t c o n ta io n
s ta n d a rita tio n C u C l2
p u t 1 0 m l C u C l2 in to
th e e rle n m e y e r
make a chart

measuring the
temerature

4. Determination absorbansi, λ and λ maks with UV-Vis method

NH3

do absorbation each solution with


wavelength 340-370 nm and make
curva the realation between lamda
for determining lamda maks

each erlenmeyer added 10 each erlenmeyer added a


mL CuCl2 0,5 M variation of NH3

F. OBSERVATION RESULT

No Activity Result
1 Make a CuCl3 0.5 M solution and NH3 8.5 M
solution Dak Green Solution
a. CuCl2. 5H2O 4.25 g (blue) + Ethanol
Colorless solution
(C2H5OH) 50 mL (Colorless)
b. NH4OH (colorless) 25 mL + ethanol
(C2H5OH) 25 mL (colorless)
2 Standardization of NH3 solution
a. Na2B4O7. 2H2O (white) 1.87 g + 100 mL Colorless solution
H2O
V HCl = 1,2 mL (orange)
b. Na2B4O7. 2H2O (colorless) 10 mL V HCl = 1,2 mL (orange)
V HCl = 1,7 mL (orange)
+ methyl orange indicator 2 drops (Orange)
c. Titration withl HCl V1 HCl = 50 mL
(colorless)
V2 HCl = 50 mL
d. NH3 (Colorless) 10 mL + phenolftalein (colorless)
V3 HCl = 50 mL
indicator 2 drops
(colorless)
e. Titration with HCl
3 Determination coordination number complex Cu Light Blue Colorless
(NH3)2+ with titriometry method (1:1)
a. 10 ml CuCl2 solution (dark green) titration -Deep Blue Solution
(T = 29°C)
with 4,2 ml NH3 (colorless)
- Deep Blue Solution
b. 10 ml CuCl2 solution (dark green) titration (T = 28°C)
- Deep Blue Solution
with 5 ml NH3 (colorless)
(T = 29°C)
c. 10 ml CuCl2 solution (dark green) titration - Deep Blue Solution
(T = 29°C)
with 5,6 ml NH3 (colorless)
- Deep Blue Solution
d. 10 ml CuCl2 solution (dark green) titration (T = 29°C)
- Deep Blue Solution
with 6,2 ml NH3 (colorless)
(T = 29°C)
e. 10 ml CuCl2 solution (dark green) titration
with 6,8 ml NH3 (colorless)
f. 10 ml CuCl2 solution (dark green) titration
with 8,8 ml NH3 (colorless)

G. DATA ANALYSIS
1. Determination of CuCl2 concentration
Known : Mass of CuCl2.2H2O = 8,525 gram
Mr CuCl2.2H2O =170,5 gram
V CuCl2 = 100 mL = 0,1 L
asked : M CuCl2.2H2O ?
Solution :
mCuCl 2. 2 H 2 O
n CuCl2.2H2O =
Mr CuCl2 . 2 H 2 O
8,525 g
=
170,5 g/mol
n CuCl2 . 2 H 2 O
M CuCl2 =
V CuCl 2
0,05 mol
=
0,1 L
= 0,5 N
2. Determination of concentration 100 mL of NH3
Known: V NH4OH = 50 mL
[NH4OH] = 17 M
V NH3 = 100 mL
Asked : [NH3] ..?
Solution :
V NH4OH x [NH4OH] = V NH3 x [NH3]
50 mL x 17 M = 100 mL x [NH3]
[NH3] = 8,5 M

3. Determination concentration of Na2B4O7


Known : V Na2B4O7.10H2O = 100 mL = 0,1 L
m Na2B4O7.10H2O = 1,8750 gram
Mr Na2B4O7.10H2O = 382 gram/mol
Asked : M Na2B4O7.10H2O =…?
Solution :
m Na2 B 4 O7 .10 H 2O
n Na2B4O7.10H2O =
Mr Na 2 B 4 O7 . 10 H 2 O
1,8750 gram
=
382 gram/mol
= 0,0049 mol
= 0,05 mol
m Na2 B 4 O7 .10 H 2O
M Na2B4O7.10H2O =
Mr Na 2 B 4 O7 . 10 H 2 O
0,0049 mol
=
0,1 L
= 0,0489 N
= 0,05 N
N Na2B4O7.10H2O = M x 2
= 0,05 x 2
= 0,10 N

4. Determination concentration of HCl


Known : V1 = 1,2 mL
V2 = 1,2 mL
V3 = 1,7 mL
V Na2B4O7.10H2O = 10 mL
N Na2B4O7.10H2O = 0,10 N
Asked : M HCl =…?
Solution :
V +V +V
V́ = 1 2 3
3
( 1 ,2+1 ,2 +1,7 ) mL
=
3
= 1,3 mL
V Na2B4O7 x [ Na2B4O7] = V HCl x [HCl]
10 mL x 0,048 M = 1,3 mL x [HCl]
[HCl] = 0,36 M

5. Determination of standadized NH3 concentrations


Known: Titration I = 5 mL
Titration II = 5 mL
Titration III = 5 mL
M HCl = 0,36 M
V NH3 = 10 mL
Asked : M NH3 =….?
Solution :
V +V +V
V́ = 1 2 3
3
( 5 0 +5 0 +5 0 ) mL
=
3
= 50 mL
V HCl x M HCl
M NH3 =
V NH 3
5 0 mL x 0,36 M
=
10 mL
= 1,8 N

6. Determination of n(mol) NH3


Known : V CuCl2 = 100 mL = 0,1 L
M CuCl2.2H2O = 0,5 M ≈ 0,5 mmol/mL
Asked : n CuCl2 =……?
Solution :
n CuCl2 = M . V
= 0,5 mmol/mL x 0 mL
= 5 mmol

7. Determination of NH3 volume


Known : V CuCl2 = 10 mL
n CuCl2 = 5 mmol
N NH3 ≈ M NH3 ≈ 1,8 N
Asked : V NH3 =…?
Solution :
n CuCl2 ≈ n NH3
so, 5 mmol ≈ n NH3
n NH 3 5 mmol
V= =
M NH 3 1,8 mmol /mL

= 2,7 mL
29.2

29

28.8

28.6

28.4
temperaure
28.2

28

27.8

27.6

27.4
4,2 ml 5 ml 5,6 ml 6,2 ml 6,8 ml 8,8 ml

H. DISCUSSION
Bilangan koordinasi merupakan jumlah ruangan yang tersedia disekitar atom atau
ion pusat dalam senyawa atau ion kompleks yang masing-masing dapat dihuni oleh
satu ligan (monodentat) (Tim Dosen Kimia Anorganik, 2019: 25). Percobaan ini
bertujuan untuk menentukan bilangan koordinasi kompleks dengan bahan
CuCl2.2H2O. Adapun ada percobaan ini, yang akan ditentukan bilangan
koordinasinya adalah [Cu(NH3)]2+.
1. Pembuatan CuCl2 0.5 M dan NH3 8.5 M
Penentuan bilangan koordinasi kompleks tembaga (II) dilakukan dengan
menggunakan bahan CuCl2.2H2O yang merupakan kristal terhidrat yang dapat
mengikat air, sehingga jika dilarutkan dengan air sebagai pelarut, maka akan
menyebabkan kristal Cu2+ lebih banyak dilingkupi oleh air akibat terjadinya proses
solvasi yaiu terjadinya pengurangan partikel zat terlarut oleh molekul pelarut. Hal
tersebut akan berakibat terbentuknya senyawa kompleks Cu (II) yang akan
berlangsung lambat dan sedikit sulit. Sehingga untuk menghindari hal tersebut
CuCl2.2H2O dilarutkan dengan etanol 96 % dengan tujuan untuk mempercepat dan
mempermudah pembentukan senyawa kompleks Cu (II). Dari hasil analisis data,
diperoleh molaritas CuCl2 0.5 N.
Pembuatan larutan NH3 dilakukan dengan mengencerkan NH4OH dengan etanol
96 %. Etanol 96 % digunakan sebagai zat yang dapat mengencerkan NH 4OH karena
etanol dapat mengikat air atau molekul air. Menurut persamaan reaksi :
NH4OH(aq) + C2H5OH NH3 + H2O
2. Standarisasi Larutan NH3
Standarisasi larutan NH3 dilakukan dengan larutan cuplikan HCl, yang
sebelumnya distandarisasi dengan Na2B4O7. Standarisasi larutan HCl perlu dilakukan
karena HCl merupakan larutan standar sekunder, dimana konsentrasinya selalu
berubah saat penyimpanan. Dari hasil analisis data diperoleh normalitas HCl sebesar
0.36 N dan normalitas NH3 sebesar 1.8 N.Adapun reaksi yang terjadi :
Na2B4O7.10H2O + 2 HCl 2 NaCl + 4 H3BO3 + 5 H2O
3. Penentuan Bilangan Koordinasi Kompleks [Cu(NH3)]2+
Pada penentuan bilangan koordinasi kompleks [Cu(NH3)]2+ dilakukan dengan
metode titrimometri, yaitu suatu metode titrasi dimana digunakan perubahan suhu
untuk menentukan titik akhir titrasi dari suatu reaksi volumetric (Kealey and Haines,
2002: 80). Dalam hal ini, penentuan bilangan koordinasi dilakukan dengan
menambahkan NH3 pada larutan CuCl2. Penambahan NH3 secara bertahap dimana
penambahan NH3 disesuaikan dengan perbandingan mol NH3 dan mol Cu2+, dari hasil
perhitungan volume NH3 yang ditambahkan ke dalam larutan. Penambahan NH3
dilakukan sebanyak 6 kali dengan setiap penambahan dilakukan pengamatan terhadap
suhu dan warna larutan yang terbentuk. Dalam hal ini, NH3, merupakan ligan netral
yang dapat membentuk kompleks dengan ion Cu2+, dimana saat NH3 ditambahkan
dalam larutan CuCl2 yang pada larutan ini mengandung ion [Cu(H2O)4]2+, maka
molekul air yang terdapat pada larutan sebagai ligan akan digantikan dengan molekul
NH3 sehingga akan terbentuk kompleks [Cu(NH 3)]2+. Penggantian molekul air dengan
NH3 dapat terjadi akibat NH3 merupakan basa Lewis yang lebih kuat dari H 2O (basa
Lewis lemah dari suatu asam Lewis) sehingga molekul H 2O dapat digantikan dengan
molekul NH3 menurut persamaan reaksi :
[Cu(H2O)4]2+ + 4 NH3 [Cu(NH3)4]2+ + 4H2O
Dari hasil pengamatan, saat penambahan NH3 sebanyak 5 kali diperoleh suhu
yang berubah-ubah. Pada penambahan 1 suhu larutan 29oC dengan warna larutan
larutan hijau , penambahan 2 suhu larutan menurun menjadi 28oC dengan warna
larutan biru, penambahan 3 suhu larutan menjadi 29oC dengan warna larutan biru tua,
penambahan 4 suhu larutan tetap 29oC dengan warna larutan biru tua. Serta pada
penambahan 5 dan 6 suhu tetap 29oC dengan warna larutan biru tua. Dari hasil
percobaan tersebut, terlihat bahwa pada penambahan NH3 1 dan 2 terjadi kenaikan
suhu dikarenakan rendahnya kelarutan CuCl2, dimana kelarutan CuCl2 konstan pada
penambahan NH3 selanjutnya, dimana peningkatan kelarutan CuCl2 ditandai dengan
turunnya suhu. Hal ini tidak sesuai dengan teori. Suhu konstan terjadi sebagai akibat
dari efek John Teller yang ,menyatakan bahwa Cu2+ hanya akan stabil mengikat
molekul NH3 sebanyak 4 sedangkan untuk mengikat molekul NH 3 sebanyak 5 dan 6
akan membuat molekul Cu2+ menjadi kurang stabil.
Dari hasil tersebut dapat dikatakan molekul NH3 yang dapat diikat oleh ion
Cu2+ sebanyak 4. Adapun persamaan reaksinya :
Cu2+ + NH3 [Cu(NH3)]2+
[Cu(NH3)]2+ + NH3 [Cu(NH3)2]2+
[Cu(NH3)]2+ + NH3 [Cu(NH3)3]2+
[Cu(NH3)3]2+ + NH3 [Cu(NH3)4]2+
Berdasarkan aturan Aufbau bahwa perpindahan elektron terjadi dari sub kulit
terendah menuju tertinggi. Satu elektron pada kulit 3d tereksitasi menuju kulit 4p
sehingga pada kulit 3d tersedia orbital kosong. Dimana elektron tersebut tereksitasi
pada orbital 4p ruang ketiga. Hal ini untuk membuktikan hibridisasi dari [Cu(NH 3)4]2+
adalah dsp2 dengan bentuk bujursangkar. Atom Cu2+ akan berikatan dengan 4 ligan
NH3 yang memiliki 4 pasangan elektron sehingga satu ruang pada orbital 3d, satu
pada 4s dan dua pada orbital 4p akan diisi oleh 4 pasang elekton dari NH3.
Adapun hibridisasi dari [Cu(NH3)4]2+, yaitu :
a. Keadaan dasar

Cu2+ : [Ar] 3d9 4s0 4p0

b. Keadaan terekritasi

Cu2+ : [Ar] 3d9 4s0 4p0

c. Keadaan Hibridisasi

Cu2+ dalam [Cu(NH3)4]2+ : 3d9 4s0 4p0

4 NH3 (ligan)

Adapun struktur dari [Cu(NH3)4]2+ yaitu :


NH3 NH3 2+

Cu2+

H3N NH3

Ion Tetraamintembaga(II)
I. CONCLUSION AND SUGGESTION
1. CONCLUSION
Based on the experiments conducted it can be concluded that the coordination
number of the copper (II) complex is 4, with the formula of complex ions
[Cu(NH3)4]2+. This is in accordance with the theory thay the coordination number for
copper ions in [Cu(NH3)4]2+ is 4 (Tim Dosen Kimia Anorganik, 2020: 25).
2. SUGGESTION
In this experiment, the apparatus used should be prepared before the practicum,
so that the apprentice can finish in accordance with practicum time and be careful
during titration to get the titration results in accordance with the theory.
BIBLIOGRAPHY

Atkins, P., Overton, T., Rourke, J., Weller, M., Armstrong, F., & Hagerman, M.
2010. Innorganic Chemistry fifth edition . New York: W. H. Freemen

Chambers, C., A. K. Holliday., 1975. Modern Inorganic Chemistry First Edition.


England: Butterworth and Co.

Catherine, Housecroft, C. E., and Sharpe, A. G. 2005. Inorganic Chemistry Second


Edition. England: Pearson Practice Hall.

Dumbrava, Anca, Semagiul Birghila, Daniela Stamate. 2013. Considerations On The


Influence Of Complexation In The Copper Uptake and Translocation.
Chemistry & Chemical Engineering Journals, ISSN 1582 vol. 14. Romania

Nelson, Peter G,. 2011. Introduction to Inorganic Chemistry. London: London


Bussiness School.

Kumar, Dinash, Amit Kumar, and Durga Dass. 2015. Syntheses and Characterization
of the Coordination Compounds of N-(2-hydroxymethylphenyl)-C(3'-
carboxy2' hydroxyphenyl)thiazolidin-4-one. International Journal of
Inorganic Chemistry. volume 2013. India

Rao, Venkateswara B,. D. M. Putri. 2011. Copper(II) Complexes of


Organophoshonic Acids-A Comparative Study. E-Journal of Chemistry,
ISSN 1973 vol. 8. India

Swastika, Nindia Lexy and Fahimah Martak. 2012. intesis dan Sifat Magnetik
Kompleks Ion Logam Cu(II) dengan Ligan 2-Feniletilamin. Jurnal Sains
dan Seni Pomits vol. 1 no. 1. Surabaya

You might also like