2.065/2.
066 Acoustics and Sensing
                  Lecture 4
         Massachusetts Institute of Technology
    Professor Nicholas Makris
*
                         Acoustic Intensity
◮    Acoustic Intensity
                                                         Power
              ~ = ℜ{p~u∗ }                   |Intensity| =
             hIi                                         Area
                                                     ~       ~
                                             Power = Force · Velocity
◮    Power and Intensity
           ZZ                        Note:
       W =      ~ · dS
               hIi   ~               Power = rate of change of work over time
◮   Light Bulb - omnidirectional
                     W = I1 S1 = I2 S2
                     S1 = 4πr12
                     S2 = 4πr22
                                                                  W        W
                                W             W = IS ⇒       I=   S
                                                                      =   4πr 2
    Source           |hI~1 i| =
                                S1
                                W
                     |hI~2 i| =
                                S2
             Omni-directional Point Source
                             ∗             ∗            
 ~                p          j                   pp           j
hIi = ℜ p               1+              îr = ℜ         1−          îr
                ρ0 c         kr                  ρ0 c        kr
         2                                         
           |p|             j             |p|2         j         |p|2
    =ℜ               1−           îr =       ℜ 1−        îr =      îr
            ρ0 c          kr             ρ0 c        kr         ρ0 c
     ZZ
W =        ~ · dS
         hIi       ~
     ZZ
          |p|2          ~             A
   =            îr · dS,       p = ej(kr−ωt) (for point source)
           ρ0 c                       r
     ZZ        2
            A
   =               r 2 dΩ,       dΩ = sin θdθdφ
          ρ0 cr 2
     4πA2
   =
      ρ0 c
                                                     4πA2
          Power from a point source       W =         ρ0 c
                                 Decibels (dB)
Sound Pressure Level
                                              log10 10a = a log10 10 = a
                  |p|2
Lp = 10 log 10              dB re pref          log10 y a = a log10 y
                 |pref |2
                       |p|2                 |p|2
                      |pref |2
                                  Lp                    Lp
                                           |pref |2
                        1         0         20          13
                        2         3         30          15
                        3         5        100          20
                        4         6        800          29
                        5         7        1000         30
                        6         8          e        ∼ 4.343
                        8         9       ∼ 1.26         1
                        9         10      ∼ 1.12        0.5
                        10        10
                             Intensity
For point source and plane
wave:
               |p|2
          I∼
               ρ0 c
                                    Weber-Fechner Law
                                    S - human sensitivity to stimulus
                                    I - received intensity
                                                 dI
                                          dS =      = const.
                                            Z I Z
                                                        1
                                               dS =       dI
                                                        I
                                         S = ln I + constant
(Optics Letters 95)
                        Reference Pressure
What is pref ?
                 In Water: pref = 1 µPa = 10−6 Pa
                 In Air: pref = 20 µPa = 2 × 10−5 Pa
bars = B          micro bars = µB
1 µB = 0.1 Pa = 105 µPa
                        2
 p 2  p           1 µB 
 1 µPa  =  1 µB · 1 µPa 
                                         
                                    p 2
       y dB re 1 µPa = 10 log 
                                 1   µPa 
                                                          
                                    p 2             1 µB 2
                     = 10 log             + 10 log
                                 1   µB               1 µPa
                        = z dB re 1 µB + 10 log(105 )2
                        = z dB re 1 µB + 100 dB
                          Simple Sonar Equation
              (free space, omni-directional point source)
                                                 
                                                 2
Sound Pressure Level                Lp = 10 log  ppref  dB re pref
Omni-directional point source in free space
     A j(kr−ωt)                 2
p=   re        ⇒ |p|2 = Ar2            Typically, rref = 1 m
            2              2          2 
                                           r
Lp = 10 log r2Ap2 = 10 log r2Ap2 + 10 log rref2 dB re pref
                    ref               ref ref
Source Level
            2 
LS = 10 log r2Ap2 dB re rref and pref
                  ref ref
                                                          
                                                    r2
Transmission Loss              H = 10 log            2
                                                    rref
                                                               dB re rref
Simple Sonar Equation               Lp = LS − H
                                  Power Level
                    (free space, omni-directional point source)
Omni-directional point source:
     |p|2
                           
                  A2
I=   ρ0 c   =   r 2 ρ0 c
                                                         Power for omni-directional
                                      4πA2
                               ⇒ W =                      point source
                           
                                       ρ0 c
      W           W
I=   Area   =    4πr 2
                                                         
                                                   W
Power Level                     LW = 10 log        Wref       dB re Wref
                                                      Typically, Wref = 1 Watt
Relationship between Power Level and Source Level
                        
                     W
  LW     = 10 log            dB re Wref
                    Wref
                             
                     4πA2
         = 10 log                dB re Wref
                    ρ0 cWref
                                        2 2          
                      A2                   pref rref 4π
         = 10 log    2 p2       + 10 log                  dB re Wref
                    rref ref                Wref ρ0 c
           |       {z         }    |        {z          }
                   LS           depends on pref , ρ0 and c,
                                which differ across different
                                fluid media
                 LW = LS − 171 dB re 1 Watt
  Water:
                 LS = LW + 171 dB re 1 m and 1 µPa
                 LW = LS − 108 dB re 1 Watt
  Air:
                 LS = LW + 108 dB re 1 m and 20 µPa