85% found this document useful (13 votes)
59K views4 pages

Mensuration 2D and 3D Formula

1. This document defines the key terms and formulas for calculating the areas and perimeters of various 2-D shapes including rectangles, squares, triangles, parallelograms, circles, semicircles, and more. 2. Formulas are provided for calculating the area and perimeter of rectangles, squares, triangles of different types, parallelograms, circles, semicircles, quadrants, and rings. 3. Definitions are given for key terms used in the formulas like side length, base, height, radius, and diameter to calculate measurements of 2-D geometric shapes.

Uploaded by

Rahul Barnwal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
85% found this document useful (13 votes)
59K views4 pages

Mensuration 2D and 3D Formula

1. This document defines the key terms and formulas for calculating the areas and perimeters of various 2-D shapes including rectangles, squares, triangles, parallelograms, circles, semicircles, and more. 2. Formulas are provided for calculating the area and perimeter of rectangles, squares, triangles of different types, parallelograms, circles, semicircles, quadrants, and rings. 3. Definitions are given for key terms used in the formulas like side length, base, height, radius, and diameter to calculate measurements of 2-D geometric shapes.

Uploaded by

Rahul Barnwal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

2-D MENSURATION

S.N
Name Figure Nomenclature Area Perimeter
o.

𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ 2𝑙 + 2𝑏 =
1. Rectangle 𝑙 × 𝑏 = 𝐼𝑏
𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ 2(𝑙 + 𝑏)

𝑎 → 𝑠𝑖𝑑𝑒 (i) 𝑎 × 𝑎 = 𝑎2 𝑎+𝑎+𝑎+𝑎


2. Square 𝑑 → 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑑2
𝑑 = 𝑎√2 (ii) = 4𝑎
2

𝑎, 𝑏 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑡ℎ𝑟𝑒𝑒 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓


𝑡𝑟𝑎𝑖𝑛𝑔𝑙𝑒 𝑎𝑛𝑑 𝑠 𝑡ℎ𝑒 1
𝑠𝑒𝑚𝑖𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟, 𝑤ℎ𝑒𝑟𝑒(i) ×𝑏×ℎ 𝑎+𝑏+𝑐
Triangle(Scal 2
3. 𝑎+𝑏+𝑐
(ii) √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) = 2𝑠
ene) 𝑠=( )
2
b is the base and h is the (𝐻𝑒𝑟𝑜𝑛′ 𝑠 𝑓𝑜𝑟𝑚𝑢𝑙𝑎)
altitude of triangle
𝑎 → 𝑠𝑖𝑑𝑒 1
(iii) (i) × 𝑎 × ℎ 3𝑎
Equilateral ℎ → ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑟 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 2
4.
Triangle √3 (iv) (ii)
√3
𝑎2
ℎ→ 𝑎 4
2

𝑎 → 𝑒𝑞𝑢𝑎𝑙 𝑠𝑖𝑑𝑒𝑠
𝑏 → 𝑏𝑎𝑠𝑒 1
Isosceles (v) (i) × 𝑏 × ℎ
5. ℎ → ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑟 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 2
1 2𝑎 + 𝑏
Triangle √4𝑎2 − 𝑏 2 (vi) (ii) × 𝑏 × √4𝑎2 − 𝑏 2
4
ℎ=
2
𝑏 → 𝑏𝑎𝑠𝑒
𝑏+ℎ+𝑑
Right angled ℎ → 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒/ℎ𝑒𝑖𝑔ℎ𝑡 1
6. 𝑑 → 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 (vii) ×𝑏×ℎ
Triangle 2
𝑑 = √𝑏 + ℎ
2 2

Isosceles
𝑎 → 𝑒𝑞𝑢𝑎𝑙 𝑠𝑖𝑑𝑒
right 1
7. 𝑑 → 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 (viii) 𝑎2 2𝑎 + 𝑑
Angled 𝑑 = 𝑎√2
2
triangle
AC is the diagonal and
ℎ1 , ℎ2 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑠 𝑜𝑛
1 AB+BC+
8. Quadrilateral 𝐴𝐶 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 (ix) × 𝐴𝐶 × (ℎ1 + ℎ2 )
Verticals D and B
2 CD+AD
respectively
𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑠𝑖𝑑𝑒𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜
𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟.
Parallelogra
9. ℎ → 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛(x) 𝑎×ℎ 2(a + b)
m 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
𝑠𝑖𝑑𝑒
𝑎 → 𝑒𝑎𝑐ℎ 𝑒𝑞𝑢𝑎𝑙 𝑠𝑖𝑑𝑒
𝑜𝑓 𝑟ℎ𝑜𝑚𝑏𝑢𝑠
1
10. Rhombus (xi)
𝑑1 𝑎𝑛𝑑 𝑑2 are the diagonals × 𝑑1 × 𝑑2 4𝑎
2
𝑑1 → 𝐵𝐷
𝑑2 → 𝐴𝐶

Head Office: 127, Zone II, MP Nagar, Bhopal |+91-9111555433| www.legaledge.in Page 1 of 4
𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑖𝑑𝑒 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟
𝑎𝑛𝑑 ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑎+𝑏 𝐴𝐵 + 𝐵𝐶 + 𝐶𝐷
11. Trapezium ( )×ℎ
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 2 + 𝐴𝐷
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑖𝑑𝑒

Regular 3√3
12. (xii)
𝑎 → 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑙 𝑠𝑖𝑑𝑒 𝑎2 6𝑎
Hexagon 2

Regular
13. 𝑎 → 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑒𝑞𝑢𝑎𝑙 (xiii)
𝑠𝑖𝑑𝑒 2𝑎2 (1 + √2) 8𝑎
Octagon

2𝜋𝑟
𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 (𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑠 )
14. Circle 22 (xiv) 𝜋𝑟 2
𝜋= = 3.1416(𝑎𝑝𝑝𝑟𝑜𝑥) Circumfere
7
nce)

1
15. Semicircle (xv)
𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝜋𝑟 2 𝜋𝑟 + 2𝑟
2

1 1
16. Quadrant 𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 (xvi) 𝜋𝑟 2 𝜋𝑟 + 2𝑟
4 2

Ring or (outer)→
circular path 𝑅 → 𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 2𝜋𝑅
17. (xvii) 𝜋(𝑅2 − 𝑟 2 )
(shaded 𝑟 → 𝑜𝑚𝑚𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 (Inner)→
region) 2𝜋𝑟

𝑂 → 𝑐𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒


𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 𝜃
Sector of a 𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 (xviii)
𝑎𝑟𝑒 (i) 𝜋𝑟 2 ( )
18. 360° 𝑙 + 2𝑟
circle 𝜃 → 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑜𝑟
(xix)
1
(ii) 𝑟 × 𝑙
𝜃 2
𝑙 = 2𝜋𝑟 ( )
360°

(xx)
𝜃 → 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑜𝑟 Area of segment 𝜋𝜃
Segment of a 𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 2𝑟 [ +
19. ACB(minor segment) 360°
circle 𝐴𝐵 → 𝑐ℎ𝑜𝑟𝑑 𝜋𝜃 𝑠𝑖𝑛𝜃
𝜃
𝑠𝑖𝑛 ( )]
(xxi)
𝐴𝐶𝐵 → 𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 =𝑟 2 ( − ) 2
360° 2

Pathways
𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ 2(𝑙 + 𝑏)
running
𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ − 4𝑤
20. across the 𝑤
(xxii) (𝑙 + 𝑏 − 𝑤)𝑤
= 2[𝑙 + 𝑏
middle of a → 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ (𝑟𝑜𝑎𝑑) − 2𝑤]
rectangle
(inner)→
𝑙 → 𝑙𝑒𝑛𝑡ℎ
Outer 2(𝑙 + 𝑏)
21. 𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ (𝑙 + 𝑏 + 2𝑤)2𝑤
Pathways 𝑤 → 𝑤𝑖𝑑𝑡ℎ𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ (outer)→
(𝑙 + 𝑏 + 4𝑤)

Head Office: 127, Zone II, MP Nagar, Bhopal |+91-9111555433| www.legaledge.in Page 2 of 4
(𝑜𝑢𝑡𝑒𝑟)
𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ
→ (𝑙 + 𝑏)
22. Inner path 𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ (𝑙 + 𝑏 − 2𝑤)2𝑤
𝑤 → 𝑤𝑖𝑑𝑡ℎ𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ (inner)→
(𝑙 + 𝑏 − 4𝑤)

Quadrilateral:
 The sum of opposite sides of a quadrilateral circumscribed about a circle is constant..
 Lines joining the mid points of the adjacent sides of a quadrilateral form a parallelogram.
 Area of triangle is half of the area of a parallelogram which lie on the same base and between the same parallel
lines.
 A parallelogram inscribed in a circle is a rectangle.
 A parallelogram that is circumscribed about a circle is a rhombus.

Head Office: 127, Zone II, MP Nagar, Bhopal |+91-9111555433| www.legaledge.in Page 3 of 4
3-D MENSURATION

Curved/Lateral
S.No. Name Figure Nomenclature Volume Total surface area
surface area
1. Cuboid 𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑏ℎ 2(𝑙 + 𝑏)ℎ 2(𝑙𝑏 + 𝑏ℎ + ℎ𝑙)
𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ
ℎ → ℎ𝑒𝑖𝑔ℎ𝑡
2. Cube 𝑎 𝑎3 4𝑎2 6𝑎2
→ 𝑒𝑑𝑔𝑒/𝑠𝑖𝑑𝑒

3. Right circular 𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝜋𝑟 2 ℎ 2𝜋𝑟ℎ 2𝜋𝑟(ℎ + 𝑟)


cylinder 𝑏𝑎𝑠𝑒
ℎ → ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓
𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
4. Right circular 𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 1 2 𝜋𝑟𝑙 𝜋𝑟(𝑙 + 𝑟)
𝜋𝑟 ℎ
cone ℎ → ℎ𝑒𝑖𝑔ℎ𝑡 3
𝑙 → 𝑠𝑙𝑎𝑛𝑡
ℎ𝑒𝑖𝑔ℎ𝑡
𝑙 = √𝑟 2 + ℎ 2
5. Right Area of base Perimeter of base × Lateral surface area + 2
triangular × height height (area of base)
prism
6. Right pyramid 1 1 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
× 𝑎𝑟𝑒𝑎 𝑜𝑓 × 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
3 2 + 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒
𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒
× ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑠𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡

7. Sphere 𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 4 3 4𝜋𝑟 2


𝜋𝑟
3

8. Hemisphere 𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 2 3 2𝜋𝑟 2 3𝜋𝑟 2


𝜋𝑟
3
9. Spherical shell 𝑟 → 𝑖𝑛𝑛𝑒𝑟 4 4𝜋[𝑅2 + 𝑟 2 ]
𝜋[𝑅3 − 𝑟 3 ]
𝑟𝑎𝑑𝑖𝑢𝑠 3
𝑅 → 𝑜𝑢𝑡𝑒𝑟
𝑟𝑎𝑑𝑖𝑢𝑠
10. Frustum of a 𝜋 𝜋(𝑟 + 𝑅)𝑙 𝑙𝑡𝑒𝑟𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
ℎ(𝑟 2 + 𝑅𝑟
cone 3 𝜋[𝑅2 + 𝑟 2 ]
+ 𝑅2 )

Head Office: 127, Zone II, MP Nagar, Bhopal |+91-9111555433| www.legaledge.in Page 4 of 4

You might also like