2-D MENSURATION
S.N
               Name                     Figure                        Nomenclature                            Area         Perimeter
   o.
                                                             𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ                                                  2𝑙 + 2𝑏 =
 1.       Rectangle                                                                         𝑙 × 𝑏 = 𝐼𝑏
                                                             𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ                                                 2(𝑙 + 𝑏)
                                                             𝑎 → 𝑠𝑖𝑑𝑒                       (i) 𝑎 × 𝑎 = 𝑎2                𝑎+𝑎+𝑎+𝑎
 2.       Square                                             𝑑 → 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙                          𝑑2
                                                             𝑑 = 𝑎√2                        (ii)                          = 4𝑎
                                                                                                     2
                                                              𝑎, 𝑏 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑡ℎ𝑟𝑒𝑒 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓
                                                                   𝑡𝑟𝑎𝑖𝑛𝑔𝑙𝑒 𝑎𝑛𝑑 𝑠 𝑡ℎ𝑒      1
                                                             𝑠𝑒𝑚𝑖𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟, 𝑤ℎ𝑒𝑟𝑒(i)         ×𝑏×ℎ                         𝑎+𝑏+𝑐
          Triangle(Scal                                                                    2
 3.                                                                𝑎+𝑏+𝑐
                                                                                          (ii) √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)     = 2𝑠
          ene)                                               𝑠=(             )
                                                                       2
                                                             b is the base and h is the        (𝐻𝑒𝑟𝑜𝑛′ 𝑠 𝑓𝑜𝑟𝑚𝑢𝑙𝑎)
                                                             altitude of triangle
                                                             𝑎 → 𝑠𝑖𝑑𝑒                            1
                                                                                  (iii)     (i) × 𝑎 × ℎ                      3𝑎
          Equilateral                                        ℎ → ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑟 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒              2
 4.
          Triangle                                               √3               (iv)      (ii)
                                                                                                  √3
                                                                                                         𝑎2
                                                             ℎ→     𝑎                                4
                                                                  2
                                                             𝑎 → 𝑒𝑞𝑢𝑎𝑙 𝑠𝑖𝑑𝑒𝑠
                                                             𝑏 → 𝑏𝑎𝑠𝑒                            1
          Isosceles                                                               (v)       (i) × 𝑏 × ℎ
 5.                                                          ℎ → ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑟 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒              2
                                                                                                  1                      2𝑎 + 𝑏
          Triangle                                               √4𝑎2 − 𝑏 2       (vi)      (ii) × 𝑏 × √4𝑎2 − 𝑏 2
                                                                                                   4
                                                             ℎ=
                                                                     2
                                                             𝑏 → 𝑏𝑎𝑠𝑒
                                                                                                                          𝑏+ℎ+𝑑
          Right angled                                       ℎ → 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒/ℎ𝑒𝑖𝑔ℎ𝑡            1
 6.                                                          𝑑 → 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙        (vii)          ×𝑏×ℎ
          Triangle                                                                          2
                                                             𝑑 = √𝑏 + ℎ
                                                                    2    2
          Isosceles
                                                             𝑎 → 𝑒𝑞𝑢𝑎𝑙 𝑠𝑖𝑑𝑒
          right                                                                             1
 7.                                                          𝑑 → 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙          (viii)       𝑎2                       2𝑎 + 𝑑
          Angled                                             𝑑 = 𝑎√2
                                                                                            2
          triangle
                                                             AC is the diagonal and
                                                             ℎ1 , ℎ2 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑠 𝑜𝑛
                                                                                            1                            AB+BC+
 8.       Quadrilateral                                      𝐴𝐶 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒             (ix)     × 𝐴𝐶 × (ℎ1 + ℎ2 )
                                                             Verticals      D      and    B
                                                                                            2                            CD+AD
                                                             respectively
                                                             𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑠𝑖𝑑𝑒𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜
                                                             𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟.
          Parallelogra
 9.                                                          ℎ → 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛(x)        𝑎×ℎ                            2(a + b)
          m                                                  𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
                                                             𝑠𝑖𝑑𝑒
                                                             𝑎 → 𝑒𝑎𝑐ℎ 𝑒𝑞𝑢𝑎𝑙 𝑠𝑖𝑑𝑒
                                                             𝑜𝑓 𝑟ℎ𝑜𝑚𝑏𝑢𝑠
                                                                                            1
 10.      Rhombus                                                                  (xi)
                                                             𝑑1 𝑎𝑛𝑑 𝑑2 are the diagonals        × 𝑑1 × 𝑑2                     4𝑎
                                                                                            2
                                                             𝑑1 → 𝐵𝐷
                                                             𝑑2 → 𝐴𝐶
Head Office: 127, Zone II, MP Nagar, Bhopal |+91-9111555433| www.legaledge.in                                                      Page 1 of 4
                                                             𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑖𝑑𝑒 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟
                                                              𝑎𝑛𝑑 ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟              𝑎+𝑏                     𝐴𝐵 + 𝐵𝐶 + 𝐶𝐷
 11.      Trapezium                                                                                  (    )×ℎ
                                                             𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒                                  2                      + 𝐴𝐷
                                                             𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑖𝑑𝑒
          Regular                                                                             3√3
 12.                                                                              (xii)
                                                               𝑎 → 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑙 𝑠𝑖𝑑𝑒             𝑎2                     6𝑎
          Hexagon                                                                                 2
          Regular
 13.                                                             𝑎 → 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑒𝑞𝑢𝑎𝑙 (xiii)
                                                                                    𝑠𝑖𝑑𝑒      2𝑎2 (1 + √2)                   8𝑎
          Octagon
                                                                                                                             2𝜋𝑟
                                                               𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒                                       (𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑠 )
 14.      Circle                                                  22             (xiv)        𝜋𝑟 2
                                                               𝜋=    = 3.1416(𝑎𝑝𝑝𝑟𝑜𝑥)                                         Circumfere
                                                                   7
                                                                                                                              nce)
                                                                                              1
 15.      Semicircle                                                               (xv)
                                                                 𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒          𝜋𝑟 2                            𝜋𝑟 + 2𝑟
                                                                                              2
                                                                                              1                               1
 16.      Quadrant                                                      𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 (xvi)          𝜋𝑟 2                          𝜋𝑟 + 2𝑟
                                                                                              4                               2
          Ring        or                                                                                                     (outer)→
          circular path                                             𝑅 → 𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠                                         2𝜋𝑅
 17.                                                                              (xvii)      𝜋(𝑅2 − 𝑟 2 )
          (shaded                                                  𝑟 → 𝑜𝑚𝑚𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠                                          (Inner)→
          region)                                                                                                            2𝜋𝑟
                                                                𝑂 → 𝑐𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒
                                                                      𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠                                 𝜃
          Sector     of   a                                      𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 (xviii)
                                                                                    𝑎𝑟𝑒       (i) 𝜋𝑟 2 (             )
 18.                                                                                                         360°                 𝑙 + 2𝑟
          circle                                                𝜃 → 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑜𝑟
                                                                                   (xix)
                                                                                                      1
                                                                                              (ii) 𝑟 × 𝑙
                                                                               𝜃                      2
                                                                    𝑙 = 2𝜋𝑟 (     )
                                                                             360°
                                                                                  (xx)
                                                                𝜃 → 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑜𝑟       Area       of      segment      𝜋𝜃
          Segment of a                                                𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠                                         2𝑟 [     +
 19.                                                                                          ACB(minor segment)             360°
          circle                                                     𝐴𝐵 → 𝑐ℎ𝑜𝑟𝑑                      𝜋𝜃   𝑠𝑖𝑛𝜃
                                                                                                                               𝜃
                                                                                                                         𝑠𝑖𝑛 ( )]
                                                                                  (xxi)
                                                                𝐴𝐶𝐵 → 𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒       =𝑟 2 (    −      )                   2
                                                                                                          360°           2
          Pathways
                                                                        𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ                                            2(𝑙 + 𝑏)
          running
                                                                       𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ                                            − 4𝑤
 20.      across    the                                       𝑤
                                                                                     (xxii)   (𝑙 + 𝑏 − 𝑤)𝑤
                                                                                                                              = 2[𝑙 + 𝑏
          middle of a                                         → 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ (𝑟𝑜𝑎𝑑)                                      − 2𝑤]
          rectangle
                                                                                                                             (inner)→
                                                                      𝑙 → 𝑙𝑒𝑛𝑡ℎ
          Outer                                                                                                              2(𝑙 + 𝑏)
 21.                                                                𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ                            (𝑙 + 𝑏 + 2𝑤)2𝑤
          Pathways                                            𝑤 → 𝑤𝑖𝑑𝑡ℎ𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ                                      (outer)→
                                                                                                                             (𝑙 + 𝑏 + 4𝑤)
Head Office: 127, Zone II, MP Nagar, Bhopal |+91-9111555433| www.legaledge.in                                                              Page 2 of 4
                                                                                                             (𝑜𝑢𝑡𝑒𝑟)
                                                                     𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ
                                                                                                             → (𝑙 + 𝑏)
 22.       Inner path                                               𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ           (𝑙 + 𝑏 − 2𝑤)2𝑤
                                                              𝑤 → 𝑤𝑖𝑑𝑡ℎ𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ                    (inner)→
                                                                                                           (𝑙 + 𝑏 − 4𝑤)
Quadrilateral:
            The sum of opposite sides of a quadrilateral circumscribed about a circle is constant..
            Lines joining the mid points of the adjacent sides of a quadrilateral form a parallelogram.
            Area of triangle is half of the area of a parallelogram which lie on the same base and between the same parallel
             lines.
            A parallelogram inscribed in a circle is a rectangle.
            A parallelogram that is circumscribed about a circle is a rhombus.
Head Office: 127, Zone II, MP Nagar, Bhopal |+91-9111555433| www.legaledge.in                                        Page 3 of 4
                                                         3-D MENSURATION
                                                                                             Curved/Lateral
 S.No.      Name                  Figure             Nomenclature          Volume                                  Total surface area
                                                                                             surface area
 1.         Cuboid                                     𝑙 → 𝑙𝑒𝑛𝑔𝑡ℎ                𝑙𝑏ℎ              2(𝑙 + 𝑏)ℎ        2(𝑙𝑏 + 𝑏ℎ + ℎ𝑙)
                                                      𝑏 → 𝑏𝑟𝑒𝑎𝑑𝑡ℎ
                                                       ℎ → ℎ𝑒𝑖𝑔ℎ𝑡
 2.         Cube                                      𝑎                          𝑎3                  4𝑎2                        6𝑎2
                                                      → 𝑒𝑑𝑔𝑒/𝑠𝑖𝑑𝑒
 3.         Right circular                           𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓              𝜋𝑟 2 ℎ       2𝜋𝑟ℎ                  2𝜋𝑟(ℎ + 𝑟)
            cylinder                                  𝑏𝑎𝑠𝑒
                                                     ℎ → ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓
                                                     𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
 4.         Right circular                           𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠                 1 2                  𝜋𝑟𝑙                    𝜋𝑟(𝑙 + 𝑟)
                                                                                  𝜋𝑟 ℎ
            cone                                     ℎ → ℎ𝑒𝑖𝑔ℎ𝑡                 3
                                                     𝑙 → 𝑠𝑙𝑎𝑛𝑡
                                                      ℎ𝑒𝑖𝑔ℎ𝑡
                                                     𝑙 = √𝑟 2 + ℎ 2
 5.         Right                                                          Area of base      Perimeter of base ×   Lateral surface area + 2
            triangular                                                     × height          height                (area of base)
            prism
 6.         Right pyramid                                                  1                   1                     𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
                                                                             × 𝑎𝑟𝑒𝑎 𝑜𝑓           × 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
                                                                           3                   2                     + 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒
                                                                            𝑡ℎ𝑒 𝑏𝑎𝑠𝑒           𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒
                                                                            × ℎ𝑒𝑖𝑔ℎ𝑡           × 𝑠𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡
 7.         Sphere                                     𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠               4 3                                4𝜋𝑟 2
                                                                                  𝜋𝑟
                                                                                3
 8.         Hemisphere                                 𝑟 → 𝑟𝑎𝑑𝑖𝑢𝑠               2 3          2𝜋𝑟 2                 3𝜋𝑟 2
                                                                                  𝜋𝑟
                                                                                3
 9.         Spherical shell                             𝑟 → 𝑖𝑛𝑛𝑒𝑟           4                                      4𝜋[𝑅2 + 𝑟 2 ]
                                                                              𝜋[𝑅3 − 𝑟 3 ]
                                                          𝑟𝑎𝑑𝑖𝑢𝑠            3
                                                        𝑅 → 𝑜𝑢𝑡𝑒𝑟
                                                          𝑟𝑎𝑑𝑖𝑢𝑠
 10.        Frustum of a                                                    𝜋                    𝜋(𝑟 + 𝑅)𝑙            𝑙𝑡𝑒𝑟𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
                                                                              ℎ(𝑟 2 + 𝑅𝑟
            cone                                                            3                                              𝜋[𝑅2 + 𝑟 2 ]
                                                                            + 𝑅2 )
Head Office: 127, Zone II, MP Nagar, Bhopal |+91-9111555433| www.legaledge.in                                                           Page 4 of 4