0% found this document useful (0 votes)
456 views6 pages

Cooling Tower

1. The exit temperature of the cooled water is 31.9°C. 2. To cool 1 kg of water from 52°C to 27°C requires 0.654 kg of air at a volume of 0.5709 m3. The maximum water flow that can be cooled by 142 m3/min of air is 248.7 kg/min. 3. The mass flow rate of air is 3.244 kg/s. The make-up water required is 0.1810 kg/s.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
456 views6 pages

Cooling Tower

1. The exit temperature of the cooled water is 31.9°C. 2. To cool 1 kg of water from 52°C to 27°C requires 0.654 kg of air at a volume of 0.5709 m3. The maximum water flow that can be cooled by 142 m3/min of air is 248.7 kg/min. 3. The mass flow rate of air is 3.244 kg/s. The make-up water required is 0.1810 kg/s.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 6

COOLING TOWERS

1. A mechanical-draft cooling tower receives 115 m3 per second of atmospheric air


at 103 kPa, 32 C dry bulb temperature, 55% RH and discharges the air saturated
at 36 C. If the tower receives 200 kg/s of water at 40 C, what will be the exit
temperature of the cooled water?

Solution:

m 3  200 kg s
t3  40 C

tdb2  36 C saturated

V1  115 m3 s
tdb1  32 C
1  55%

at 1, for tdb  32 C
1

pd  4.799 kPa
hg1  2559.9 kJ kg

ps  1 pd  0.55 4.799  2.639 kPa


0.622 ps 0.622 2.639
W1    0.0164 kg kg
pt  ps 103  2.639

h1  c ptdb1  W1hg  1.0062 32   0.0164 2559.9  74.2 kJ kg


COOLING TOWERS

v1 
RT

 0.287 32  273  0.8722 m3 kg
pt  ps 103  2.639
V 115
a  1 
m  131.85 kg s
v1 0.8722

at 2, tdb2  36 C , saturated
ps  pd  5.979 kPa
hg 2  2567.1 kJ kg

0.622 ps 0.622 5.979


W2    0.0383 kg kg
pt  ps 103  5.979

h2  c ptdb2  W2 hg  1.0062 36   0.0383 2567.1  134.5 kJ kg

At 3, t3  40 C
h3  h f at 40 C  167.57 kJ kg

To solve for m
4:
By Mass Balance:
3 m
m  a  W1m
a m
4 m
 a  W2 m
a
 3  W1  W2  m
4 m
m  a  200   0.0164  0.0383131.85  197.1 kg s

To solve for h4 :
 a h1  m
m  3h3  m
 4 h4  m
 a h2
131.85 74.2   200167.57   197.1 h4   131.85134.5
h4  129.70 kJ kg
 t4  31.9 C - exit water temperature.

2. In a cooling tower water enters at 52 C and leaves at 27 C. Air at 29 C and 47%


RH also enters the cooling tower and leaves at 46 C fully saturated with moisture.
It is desired to determine (a) the volume and mass of air necessary to cool 1 kg of
water, and (b) the quantity of water that can be cooled with 142 cu m per minute
of atmospheric air.

Solution:
COOLING TOWERS

t3  52 C
tdb2  46 C sat
tdb1  29 C
1  47%
t4  27 C

From psychrometric chart


At 1, tdb1  29 C , 1  47%
h1  59 kJ kg
W1  0.0116 kg kg
v1  0.873 m3 kg

at 2, tdb2  46 C , saturated
ps  pd  10.144 kPa
hg 2  2585.0 kJ kg
0.622 ps 0.62210.144
W2    0.0692 kg kg
pt  ps 101.325  10.144

h2  c ptdb2  W2 hg  1.0062 46   0.0692 2585  225.2 kJ kg

At 3, t3  52 C
h3  h f at 52 C  217.69 kJ kg

At 4, t4  27 C
h4  h f at 27 C  113 .25 kJ kg

(a) Volume of air necessary to cool 1 kg of water = V1  ma v1


COOLING TOWERS

To solve for ma when m3  1 kg

By energy balance:
Eq. (1) ma h1  m3h3  ma h2  m4 h4
By mass balance
m3  m4  ma W2  W1 
Eq. (2) m4  m3  ma W2  W1 
Substitute in (1)

Eq. (3) ma h1  m3h3  ma h2   m3  ma W2  W1   h4


 ma  59  1 217.69   ma  225.2  1   ma  0.0692  0.0116  113 .25
ma  0.654 kg

Volume of air = V1  ma v1   0.654  0.873  0.5709 m3

Mass of air required = ma  0.654 kg

(b) Let m
 3 = quantity of water.
V1 142
a 
m   162.66 kg min
v1 0.873

Use Eq. (3), change ma  m a , m3  m 3


m a h1  m 3h3  m a h2   m 3  m a W2  W1   h4
162.66 59   m 3  217.69  162.66 225.2   m 3  162.66 0.0692  0.0116  113 .25
9597  217.69m  3  36,631  113.25m
 3  1061.1
 3  248.7 kg min
m

 Quantity of water =  3  248.7 kg min


m

3. A cooling tower receives 6 kg/s of water of 60 C. Air enters the tower at 32 C dry
bulb and 27 C wet bulb temperatures and leaves at 50 C and 90% relative
humidity. The cooling efficiency is 60.6%. Determine (a) the mass flow rate of air
entering, and (b) the quantity of make-up water required.

Solution:
COOLING TOWERS

 3  6 kg s , t3  60 C
m
t db2  50 C
2  90%
tdb1  32 C
t wb1  27 C

Cooling tower efficiency = 60.6%

To solve for t 4 :
t3  t 4
Efficiency 
t3  t wb1
60  t4
0.606 
60  27
t3  40 C

at 1, tdb  32 C , t wb  27 C
1 1

h1  85 kJ kg
W1  0.0208 kg kg

at 2, t db2  50 C , 2  90%
pd  12.349 kPa
ps  2 pd   0.9012.349  11 .114 kPa
hg 2  2592.1 kJ kg
0.622 ps 0.62211 .114 
W2    0.0766 kg kg
pt  ps 101.325  11.114

h2  c ptdb2  W2 hg  1.0062 50   0.0766 2592.1  248.9 kJ kg


COOLING TOWERS

At 3, t3  60 C
h3  h f at 60 C  251.13 kJ kg

At 4, t4  40 C
h4  h f at 40 C  167.57 kJ kg
By mass balance
m3  m4  ma W2  W1 
m4  m3  ma W2  W1 

By energy valance
 a h1  m
m  3h3  m
 a h2  m
 4 h4
m a h1  m 3h3  m a h2   m 3  m a W2  W1   h4
 m a  85   6 251.13   m a  248.9   6   m a  0.0766  0.0208 167.57
85m  a  1506.8  248.9m
 a  1005.4  9.35m
a
 a  3.244 kg s
m

(a) Mass flow rate of air = m a  3.244 kg s


(b) Make Up Water = ma W2  W1    3.244 0.0766  0.0208  0.1810 kg s

You might also like