A. Sample size is the number of measurements recorded.
n = 15
B. Sample mean
x̄ = (Σ xi) / n
= (3.4 + 2.5 + 4.8 + 2.9 + 3.6 + 2.8 + 3.3 + 5.6 + 3.7 + 2.8 + 4.4 + 4.0 + 5.2 + 3.0 + 4.8)/15
= 56.8/15
x̄ = 3.79
C. Sample Median
Ascending order of the data:
2.5, 2.8, 2.8, 2.9, 3.0, 3.3, 3.4, 3.6, 3.7, 4.0, 4.4, 4.8, 4.8, 5.2, 5.6
Sample media if n is odd:
x̄ = x(n+1)/2
= x(15+1)/2
= x(16/2)
= x(8)
x̄ = 3.6
D. Dot plot for the given data.
2.5 Dot Plot
2
1.5
1
0.5
0
2.5 2.8 2.9 3 3.3 3.4 3.6 3.7 4 4.4 4.8 5.2 5.6
Driving time
E. Trimmed Mean
1. eliminate the largest 20% and smallest 20%
2. compute average of the remaining
x̄tr(20) = (2.9+ 3.0 + 3.3 + 3.4 + 3.6 + 3.7 + 4.0 + 4.4 + 4.8)/9
= 33.1/9
x̄tr(20) = 3.68
F. Based on the computations above, the sample mean is 3.79 while the trimmed mean is 3.68.
Hence, both values are approximately the same.
G. Sample Variance (s2) and Sample Standard Deviation (s)
s2 = [Σ(xi- x̄)2]/n-1
= [(3.4-3.79)2 + (2.5-3.79)2 + (4.8-3.79)2 + (2.9-3.79)2 + (3.6-3.79)2 + (2.8-3.79)2 + (3.3-3.79)2
+ (5.6-3.79)2 + (3.7-3.79)2 + (2.8-3.79)2 + (4.4-3.79)2 + (4.0-3.79)2 + (5.2-3.79)2 + (3.0-3.79)2
+ (4.8-3.79)2] / (15-1)
= 13.2/14
s2 = 0.943;
s = √s2
= √0.943
s = 0.971