Functional Analysis Exercise sheet 8 — solutions
1. Each element xn defines a linear map Ln : X ∗ → C by Ln (f ) = f (xn ).
Since the sequence f (xn ) is Cauchy, it is bounded. Hence, there exists
c = c(f ) > 0 such that |Ln (f )| ≤ c for all n. We note that X ∗ is also
a Banach space. By the Uniform Boundedness Theorem, supn kLn k <
∞. Finally,
kLn k = sup{|Ln (f )| : kf k = 1} = sup{|f (xn )| : kf k = 1} = kxn k.
This proves that the sequence xn is bounded.
2. (a) Suppose that kxn − xk → 0. Then for every y ∈ H,
| hxn , yi − hx, yi | ≤ kxn − xkkyk → 0.
Hence, xn → x weakly. Also by triangle inequality,
|kxn k − kxk| ≤ kxn − xk → 0.
To prove the converse, we observe that
kx − xn k2 = kxk2 − hxn , xi − hxn , xi + kxn k2 .
By weak convergence, hxn , xi → kxk2 . Hence, kx − xn k2 → 0 as
required.
(b) We have
| hxn , yn i − hx, yi | ≤ | hxn , yn i − hx, yn i | + | hx, yn i − hx, yi |
= | hxn − x, yn i | + | hx, yn − yi |.
Since yn → y weakly, the second term converges to zero. By
Cauchy-Schwarz inequality,
| hxn − x, yn i | ≤ kxn − xkkyn k.
Since yn is weakly convergent, it is bounded. Hence, it follows
that | hxn − x, yn i | → 0.
(c) This is not true in general. For example, consider H = `2 and
xn = yn = en . Then en → 0 weakly, but hen , en i = 1 does not
converge to zero.
3. (a) Let L(f ) = f (0). We claim that Ln → L weak∗ . Since f is
continuous, for every > 0 and n ≥ n0 (), we have |f (t)−f (0)| <
for all t ∈ [0, 1/n]. Then
Z 1/n
|Ln (f ) − L(f )| ≤ n |f (t) − f (0)| dt < .
0
Hence, Ln (f ) → L(f ) for all f ∈ C([0, 1]).
1
(b) It follows form (a) that if Ln → S in norm, then S = L. Consider
a function fn such that 0 ≤ fn ≤ 1, fn (0) = 0, and fn = 1 on
1 2
[ 3n , 3n ]. Then kfn k = 1, and
Z
1/n 1
|Ln (fn ) − L(fn )| = n fn (t) dt ≥ .
0 3
Hence, kLn − Lk ≥ 31 , and the sequence Ln does not converge in
norm.
4. (a) For n < m,
2
m
X
m
X
kPn x − Pm xk2 =
hx, ek i ek
= | hx, ek i |2 .
k=n+1 k=n+1
Hence, by the Bessel inequality, kPn x − Pm xk2 ≤ kxk2 . This
proves that kPn − Pm k ≤ 1. For x = em , kPn x − Pm xk = kem k.
Hence, kPn − Pm k = 1.
If we suppose Pn → P for some P in norm, then kPn − Pm k ≤
kPn − P k + kP − Pm k → 0 as n, m → ∞, which is impossible.
(b) We recall that for every x ∈ H, x = ∞
P P∞ 2
k=1 hx, ek i ek and k=1 | hx, ek i | <
∞. Hence,
∞
X
XN
kPn x − Ixk =
hx, ek i ek
= lim
hx, ek i ek
N →∞
k=n+1 k=n+1
v v
u ∞
u N u X
u X
= lim t | hx, ek i |2 = t | hx, ek i |2 ,
N →∞
k=n+1 k=n+1
and kPn x − Ixk → 0 as n → ∞.
5. (a) We first note that since An strongly converge, the sequence of
norms kAn k is bounded. We fix c > 0 such that kAn k ≤ c for all
n. For every x ∈ X,
kAn Bn x − ABxk ≤ kAn Bn x − An Bxk + kAn Bx − ABxk
≤ kAn kkBn x − Bxk + kAn (Bx) − A(Bx)k
≤ ckBn x − Bxk + kAn (Bx) − A(Bx)k
s s
Since An → A and Bn → B, we have kBn x − Bxk → 0 and
kAn (Bx) − A(Bx)k → 0. Hence,
kAn Bn x − ABxk → 0.
2
(b) Consider the operators An , Bn : `2 → `2 defined by Bn x =
hx, e1 i en and An x = hx, en i e1 . For every x, y ∈ `2 , hBn x, yi =
s
hx, e1 i hen , yi → 0, and kAn xk → 0. Hence, An → A and
w w
Bn → B. We also have An Bn x = hx, e1 i e1 . Hence, An Bn → 6 AB.