3.155J/6.
152J Lecture 20: 
Fluids Lab Testing
      Prof. Martin A. Schmidt
Massachusetts Institute of Technology
            11/23/2005
         Outline
   Review of the Process and Testing
   Fluidics
       Solution of Navier-Stokes Equation
       Solution of Diffusion Problem
   Lab Report Guidance
   References
             Senturia, Microsystems Design, Kluwer
             6.021 Web Site on Microfluidics Lab
             Plummer, Chapter 7, p.382-384
Fall 2005 – M.A. Schmidt                    3.155J/6.152J – Lecture 20 – Slide 2
         Process Flow - Overview
                                       Unexposed
                    Si                 SU-8 (100 µm)               Surface treatment &
                                                                   casting PDMS
                         photolithography
                                                            PDMS
   UV light
                                                              Si
                                       mask
                                                                   removing elastomer from
                    Si                                             master
                                                            PDMS
                         development
                                                                   seal against glass after plasma
                                                                   treatment and insert tubing
                                       “master”
                    Si
                                                   tubing                         Our process
                                                                                  was changed
                                                                                      here
Fall 2005 – M.A. Schmidt                                    3.155J/6.152J – Lecture 20 – Slide 3
         The Mixer
                                                           Width = 250µm, 500 µm
                                                           Depth = 100 µm
                                                           Inlet Length = 25 mm
                                                           Outlet Length = 35 mm
                       Courtesy of Dennis Freeman.
                                      Courtesy of Dennis Freeman.
                                                                    Images: Prof. D. Freeman
Fall 2005 – M.A. Schmidt                                      3.155J/6.152J – Lecture 20 – Slide 4
         Packaging/Testing
              Courtesy of Dennis Freeman.
                                                 Courtesy of Dennis Freeman.
                                                  Images: Prof. D. Freeman
Fall 2005 – M.A. Schmidt                    3.155J/6.152J – Lecture 20 – Slide 5
         Experiment
   Gravity feed of fluids
       Requires ‘priming’ of channel
   Particles for velocity measurement
       We will attempt this
   Dye for diffusion experiments
   Measurements
       Particle velocity
       Diffusion
Fall 2005 – M.A. Schmidt                3.155J/6.152J – Lecture 20 – Slide 6
         Navier-Stokes
   The Navier-Stokes equation for
    incompressible flow:
       U = velocity
       P* = pressure (minus gravity body force)
       ρm = fluid density (103 kg/m3 for water)
       η = viscosity (10-3 Pa-s for water)
Fall 2005 – M.A. Schmidt             3.155J/6.152J – Lecture 20 – Slide 7
         Poiseuille Flow
   Assume width (w) >> height (h)
   Neglect entrance effects (L >> h)
                               L
                                   w
Fall 2005 – M.A. Schmidt               3.155J/6.152J – Lecture 20 – Slide 8
         Simplify to our problem
   No time dependence
       d/dt = 0
   Flow is constant in x-
    direction (and 0 in z)
       U = f(y)
   Pressure is only a
    function of x
       A linear pressure drop
Fall 2005 – M.A. Schmidt         3.155J/6.152J – Lecture 20 – Slide 9
         Poiseuille Flow
                           ILLUSTRATING POISEUILLE FLOW
                                τw                    h
          High P                              Low P
                                τw                                              Ux
                                                                           Umax
                                     Figure by MIT OCW.
   ‘No-Slip’ Boundary conditions
       Ux(y=0) = 0
       Ux(y=h) = 0
Fall 2005 – M.A. Schmidt                                  3.155J/6.152J – Lecture 20 – Slide 10
         Solution
    Solution is a quadratic polynomial
        Ux = a + by + cy2
	   Using boundary conditions and
     substitution
Fall 2005 – M.A. Schmidt	        3.155J/6.152J – Lecture 20 – Slide 11
             Parabolic Flow Profile
                 ILLUSTRATING POISEUILLE FLOW
                       τw              h
High P                         Low P
                       τw                          Ux
                                                Umax
                                                           Figure by MIT OCW.
        Maximum velocity
        Flow rate
        Average velocity
    Fall 2005 – M.A. Schmidt                       3.155J/6.152J – Lecture 20 – Slide 12
         Pressure drop over length
                ∆P = ρgH
   H = height of water
       g = gravity
                              Courtesy of Dennis Freeman.
Fall 2005 – M.A. Schmidt    3.155J/6.152J – Lecture 20 – Slide 13
         Flow Issues
   Edge effects
       Flow rate
   Particle location in channel
   Dimensions
   Merging of channels
       How to model
                           Courtesy of Dennis Freeman.
Fall 2005 – M.A. Schmidt                                 3.155J/6.152J – Lecture 20 – Slide 14
         The Mixer – Mixing by diffusion
                                                            Width = 250µm, 500 µm
                                                            Depth = 100 µm
                                                            Inlet Length = 25 mm
                                                            Outlet Length = 35 mm
                   Courtesy of Dennis Freeman.
                                          Courtesy of Dennis Freeman.
                                                                        Images: Prof. D. Freeman
Fall 2005 – M.A. Schmidt                                      3.155J/6.152J – Lecture 20 – Slide 15
         Diffusion Image Sequence
                           Think of this axis as length or time
Fall 2005 – M.A. Schmidt                                 3.155J/6.152J – Lecture 20 – Slide 16
         Imaging System Output
Fall 2005 – M.A. Schmidt   3.155J/6.152J – Lecture 20 – Slide 17
         Diffusion
   Same problem as diffusion in an epi layer
       As in the case of the design problem
                                                                   Dopant
                       n - epi                                  Concentration
                   n+ - silicon
                   Solution in Plummer, Chapter 7, p.382
Fall 2005 – M.A. Schmidt                      3.155J/6.152J – Lecture 20 – Slide 18
               Solution
	   Initial Conditions
                                                            C
                                                                                   Initial Profile
	   Identical to Infinite
                                                                              Diffused
     Source Problem:                                                          Profile
                                                                                                          x
                                                                          0
                                                                         Figure by MIT OCW.
               Reference: Plummer, J., M. Deal, and P. Griffin. Silicon VLSI Technology: Fundamentals,
               Practice, and Modeling. Upper Saddle River, NJ: Prentice Hall, 2000. ISBN: 0130850373.
      Fall 2005 – M.A. Schmidt	                                        3.155J/6.152J – Lecture 20 – Slide 19
          An ‘Intuitive’ way to look at it…
	   Think of the uniform
     concentration as a
     sum of dopant                     Figure removed for copyright reasons.
     ‘pulses’            Refer to Plummer, J., M. Deal, and P. Griffin. Silicon VLSI Technology:
                         Fundamentals, Practice, and Modeling. Upper Saddle River, NJ: Prentice
     Each ‘pulse’ has a
                         Hall, 2000. ISBN: 0130850373.
	
     Gaussian diffusion
     profile
         Dose = C ∆x
    Apply superposition
     since diffusion is
     linear
Fall 2005 – M.A. Schmidt	                                3.155J/6.152J – Lecture 20 – Slide 20
         Solution
   Taking the limit of ∆x
Fall 2005 – M.A. Schmidt     3.155J/6.152J – Lecture 20 – Slide 21
         Solution
Fall 2005 – M.A. Schmidt   3.155J/6.152J – Lecture 20 – Slide 22
         Error Function Solution
                           Figure removed for copyright reasons.
    Refer to Plummer, J., M. Deal, and P. Griffin. Silicon VLSI Technology: Fundamentals, Practice,
    and Modeling. Upper Saddle River, NJ: Prentice Hall, 2000. ISBN: 0130850373.
Fall 2005 – M.A. Schmidt                                          3.155J/6.152J – Lecture 20 – Slide 23
         Diffusion Issues
   Fitting ideal curve to measured profiles
   Scaling time to position
   Choice of velocity
   Non-ideal flow profiles
Fall 2005 – M.A. Schmidt         3.155J/6.152J – Lecture 20 – Slide 24
         Fluids Lab Report
   Follow the Letters format
       Purpose: Characterization of a Liquid
        Micromixer
   Report Flow Velocity
   Compare to calculated
       Estimate errors
   Extract an effective diffusion coefficient
       Utilize ‘best estimate’ for flow velocity
   Compare to expected (D ~ 2x10-6 cm2/s)
       Identify relevant non-idealities
Fall 2005 – M.A. Schmidt                3.155J/6.152J – Lecture 20 – Slide 25