ARTERIAL BLOOD GAS
ABG
1. Acid-base Balance
2. Blood oxygenation assessment
Arterial pH
Maintained at 7.35-7.45 by
Intracellular and extracellular buffering
Respiratory mechanisms
Renal mechanisms
Arterial CO2 tension (PaCO2)
Controlled by the CNS and respiratory system
Plasma bicarbonate
Controlled by the kidneys
By retention or excretion of acid or alkali
CLINICAL MANIFESTATIONS
LOW ARTERIAL PH
- generalized depressive effect
- drowsiness and lethargy
- very low pH (<7.1) – coma
- < 6.8 for any extended period –
incompatible with life
CLINICAL MANIFESTATIONS
HIGH BLOOD pH
- excitatory to the CNS
- irritability or tetany
- serious arrhythmias
- very high pH = convulsions
- > 7.8 – incompatible with life
pH Symptoms
7.80 Death
Convulsions
Arrhythmias
Irritability
7.40 Normal
Drowsiness
Lethargy
Coma
6.80 Death
PaCO2
Usual steady state PaCO2 at 40 mmHg
Under-excretion causes hypercapnia
Over-excretion produces hypocapnea
Regulated primarily by neural respiratory factors
and not by rate of CO2 production
May be due to compensatory changes in
response to a primary alteration in the plasma
HCO3
HCO3
24 (22-26)
Regulated by
Reabsorption of filtered HCO3
Formation of titratable acid
Excretion of ammonia in the urine
Kidneys filter 4000 mmol per day
80-90% in the proximal tubule
Acid-Base Disorders
Primary respiratory disturbances invoke
compensatory metabolic responses and vice
versa in an attempt to drive pH to normal
The degree of compensation can be predicted
Any abnormal compensation define a mixed
acid-base disturbance
Acid-Base Disorders
Acid-Base Disorders
Causes
Acidosis
Alkalosis
NAGMA HAGMA
• GI Bicarbonate loss Lactic acidosis • Diuretics
• Renal acidosis Ketoacidosis • Antacids
• Drug induced Toxins • Volume
hyperkalemia Renal failure depletion
MUDPILES • Cushing
syndrome
• CAH
• Bartter syndrome
• Gitelman
syndrome
Acid-Base Disorders
Acid-Base Disorders
Causes
Acidosis Alkalosis
COPD Anxiety
Neuromuscular diseases Pneumonia
Chest wall disorders High altitude
Obesity/OSA Pregnancy
CNS depression Sepsis
Drugs Drugs
Anion gap
Measure of unmeasured anions in the blood
Major anions: Cl- and HCO3
Others: phosphates, sulfates and proteins
Major Cation: Na
Others: Ca, K, Mg
Anion Gap: unmeasured anions – unmeasured
cations
(Na)- (Cl+HCO3)
8-10 mmol/L
Compensatory Responses in Simple Acid-Base Disturbances
Metabolic Acidosis Limit
PCO2= (1.5 x HCO3) + 8 + 2 10 mmhg
Metabolic Alkalosis
Each mEq inc. in HCO3=
0.5-1.0 mmhg inc in PCO2 55 mmhg
Acute Respiratory Acidosis
HCO3 inc by 3-4 mEq/L 30 mmhg
Acute Respiratory Alkalosis
HCO3 dec by 2-4 mEq/L 18 mEq/L
Chronic Respiratory Acidosis
Each mEq inc in PCO2=
0.4 meq/L inc in HCO3 45mEq/L
Chroinc Respiratory Alkalosis
Each mEq dec in Pco2 =
0.5 mEq dec in Hco3 12-15mEq/L
PRIMARY PROBLEM
RESPIRATORY
40 – ACTUAL PCO2 X 100
40
METABOLIC
24 – ACTUAL HCO3 X 100
24
EXAMPLE 1
pH - 7.28
PaCO2 - 60 mmHg
HCO3 - 22 mEq/L
Solution:
Expected HCO3= 24 + (Actual PaCO2 – Desired PaCO2) x 0.1
24 + (60-40) x 0.1
24 + 2
26
Acute Respiratory acidosis, uncompensated
if ph is between 7.35-7.45
24 + (Actual PCO2 – Desired PCO2) x 0.4
24 + (60-40) x 0.4
24 + (20 x 0.4)
24 + 8
32
Chronic Respiratory Acidosis, uncompensated
EXAMPLE 2
pH - 7.49
PaCO2 - 32 mmHg
HCO3 - 26 mEq/L
Solution:
Expected HC03 = 24 –(Desired PaCo2 – Actual PaCo2) x 0.2
24- (40-32) x 0.2
24- (8 x 0.2)
24- 1.6
22.4
Acute Respiratory Alkalosis, uncompensated
if ph is between 7.35-7.45
24- (40-32) x 0.4
24- (8 x 0.4)
24- 3.2
20.8
Chronic Respiratory Alkalosis, uncompensated
Example 3
pH: 7.50
PaCo2: 36
Hco3: 32
Solution:
Expected PaCo2: Actual HCo3 + 15
32 + 15
47 or
[(Desired PaCo2 – Actual PaCo2) x 0.75] + 40
[(40-36) x 0.75] + 40
(4x0.75)+ 40
3+40
44
Uncompensated Metabolic Alkalosis
Example 4
pH: 7.10
PaCo2: 45
HCo3: 14
Solution:
Expected PaCo2: (1.5 x HCO3) + 8
(1.5 x 14) + 8
21+8
29 0r
Actual HC03 + 15
14 + 15
29
Uncompensated Metabolic Acidosis
CLASSIFICATION PaO2 (mmHg)
Hyperoxemia >100
Normoxemia 80 – 100
Mild Hypoxemia 60 – 79
Moderate Hypoxemia 45 – 59
Severe Hypoxemia < 45
QUANTIFYING
PULMONARY
DYSFUNCTION
Indices of Oxygenation
1. pO2
2. P/F ratio
3. O2 saturation
4. aADO2 – difference in O2 in the alveolus and
the arterial blood (alveolar-arterial O2
gradient or difference)
pAO2 = 713 (FiO2) – pCO2
0.8
aADO2 = pAO2 – paO2
Normal ≤ 20
Oxygenation
Expected pO2 at room air:
For age ≤ 60 y.o. = 80-100
For age > 60 y.o. = 80 - # of years above
60
eg. 70 y.o. = 80-10 = 70
Ideal PO2 for age: 103.5 - 0.42(age)
Oxygenation
At Room Air:
- Compare actual pO2 to expected pO2
Actual < Expected = HYPOXEMIC
Actual > Expected = NON-HYPOXEMIC
On supplemental O2:
- Expected P/F ratio (pO2/FIO2)
For age ≤ 60 y.o.: 400-500
For age > 60 y.o.: 400 – (age above 60 x 5)
eg. 70 y.o.: 400 – (10 x 5) = 350
FiO2 per nasal cannula:
= (O2 in L/min) x 4 + 20
eg. O2 at 2 lpm = 2 x 4 + 20 = 28%
Actual P/F ratio:
P/F = paO2 (actual from ABG)
FiO2 (expressed in decimal)
FiO2 Requirement
Room air = 0.21
Nasal cannula= # of liters x 4 + 20/100
Face mask = # LPM x 10 – 20
ET = # LPM x 10
OXYGENATION RATIO
PULMONARY OXYGENATION
STATUS RATIO
Normal 400 – 500
Moderate Pulmonary 200 – 399
dysfunction
Substantial Pulmonary < 200
dysfunction
4 MECHANISMS
1. Hypoventilation
2. Absolute shunting
3. Relative Shunting (V/Q mismatch)
4. Diffusion defects
Hypoventilation
Quantitate the efficiency of oxygen loading
Causes: neuromuscular disorders, chest wall
trauma, CNS depression, anesthesia effect, high
cervical spine trauma
Absolute Shunting
Blood passing from the right side of the heart to
the left side of the heart without being exposed to
alveolar oxygen
Anatomic or capillary in nature
Does not respond to administration of
supplemental oxygen
Capillary Shunting
Alveolar consolidation (filling with fluid)
Collapse
Causes: ARDS, left-sided heart failure, pneumonia,
atelectasis
Pulmonary edema – single greatest cause of
severe, absolute capillary shunting
Anatomic Shunting
Congenital cardiovascular abnormalities
Persistent fetal circulation
Relative Shunting
Most common
V/Q perfusion mismatch
Perfusion in excess of ventilation
Good PaO2 response to small increments of
oxygen therapy
Uneven distribution of ventilation secondary to
increased pulmonary secretions
COPD
Diffusion defects
Anatomic impedance to oxygen transfer in the
lungs, due to a thickened alveolar-capillary
membrane
Responds to oxygen therapy
Can be included to relative shunting
PHYSIOLOGIC SHUNTING
Percentage of the venous blood that remains
unoxygenated after traveling from the right side
of the heart to the left side of the heart
I. (alveolar) PAO2 = 713 (FiO2) – pC02/0.8
II. (arterial) PaO2 = PAO2 (O2 for age/PO2)
III. FiO2 requirement (minimum)
PaO2 + pCO2/0.8
------------------------ x100
713
Exercise
pH 7.36
pCO2 46
HCO3 26
pO2 154
FIO2 100%
Age 42
Compensated Respiratory Acidosis with
Hypoxemia with Overcorrected FIO2 at 100%
Respiratory
Acidosis (Acute) Get O2 for Age
Exp HCO3= 24+ =103.5- (0.42 X
[(Actual PCO2- age)
Desired PCO2) X =103.5- (0.42 x 42)
0.1] =103.5- 17.64
24+ [(46-40) x 0.1] =85.86
24 + (6 x 0.1)
24 + 0.6
26.6
Compute for PF=
Actual/FIO2
= 154/100
= 154
New FIO2
I = 713 (FIO2) – Pco2/0.8
= 713 (100) – 46/0.8.
= 713- 57.5
=655
II = I (O2 for age/po2)
= 655 (85.86/154)
= 655 x 0.55
=360.25
III = II +[( PCO2/0.8) x 100]/713
=360.25 + (57.5 x 100) / 713
=41750/713
58.55
Exercise:
Age; 42
Ph=7.56
PC02= 34.4
P02= 156
HC03= 30.9
FI02= 40% MV
Combined Metabolic Alkalosis with underlying
Respiratory Alkalosis with hypoxemia with
overcorrected FIO2 at 40% FIO2
Respiratory Metabolic
= 40-PC02x100 =24-HC03x100
40
24
= 40-34.4x100
40 24-30.9x100
=5.6x100 24
40
=560 -6.9x100
40 24
=14 -690
24
28.75
P/F ratio= 156/.40
=390
O2 for age= 103.5 – (0.42x42)
=103.5-17.64
=85.86
New FIO2
I = 713 (.40) – PCO2/.8
= 285- 43
= 242
II = I (O2 for age/PO2)
= 242 (85.86/156)
= 242 x .55
= 133
III = II [(PCO2/0.8) x 100]/ 713
= 133 ( 43 x 100) x 100/713
= 24
Exercise
Age: 79
pH: 7.32
PCO2: 28
PO2: 101
HCO3: 14
FIO2: 2 lpm via NC
Metabolic Acidosis, uncompensated,
non-hypoxemic, with overcorrected
FIO2 at 2lpm Nc
Expected PCO2= (1.5 x O2 for Age
HCO3) + 8
103.5 –(0.42 x 79)
(1.5 x 14) + 8
103.5 – 33.18
21+ 8
70.32
29
P/F ratio= 101/.28
360
Expected P/F ratio
400- (19x5)
400 – 95
305
New FIO2
I = 713 (FIO2)- PCO2/0.8
=713 (.28) -35
=1.99.64-35
= 164
II =I (O2 for age/PO2)
= 164 x 0.69
=113.16
III = II x [(PCO2/0.8) x 100]/713
= 113.16 x (35 x 100)/713
= 20. 77
Exercise
Age: 54
pH: 7.53
PCO2: 45.2
HCO3: 37.8
PO2: 78
FIO2: 8l FM
Metabolic Alkalosis, uncompensated
with hypoxemia, uncorrected @ 8LPM
via N.C
Expected PCO2= Actual PF ratio= 78/0.60
HCO3 + 15
130
37.8 + 15
O2 for age=103.5-(.42 x
52.8 or age)
[(Desired HCO3-Actual 80.82
HCO3)x0.75] + 40
10.35 + 40
50.35
New FIO2
I = 713 (FIO2) – PCO2/0.8
= 713 (.60)- 56.6
= 427- 56.5
= 371
II = I (O2 for age/po2)
= 371 x 1.03
= 382
III = III + [(Pco2/0.8) x 100]/ 713
= 382 + (56.6 x 100)/ 713
= 61.5
Exercise
Age: 68
pH: 7.24
pCO2: 94.1
pO2: 60
HCO3: 40.4
FIO2: 2l NC
Acute Respiratory Acidosis,
uncompensated with hypoxemia,
uncorrected @ 2 lpm via N.C
Expected HCO3=24+ O2 for age=103.5-
(Actual HCO3-Desired (0.42xage)
HCO3)x0.1
103.5-28.56
24+ (54.1x 0.1)
74.94
29.41
PF ratio= 60/.28
214
PF for age=400-(8x5)
360
New FIO2
I = 713 (FIO2) – PCO2/.08
= 713 (0.28) – 117.625
= 82.015
II = I (O2 for age/PO2)
= 82.015 (74.94/60)
= 102
III = III + [(PCO2/0.8) x 100] /713
= 102 + (117.625) x 100/ 713
= 30
Henderson-Hasselbalch equation: to determine if
acid is chronic or acute
A. H+ = 24x PCO2/ HCO3
= 24 x 94.1/40.4
= 55.68
B. Delta H+= [H+] – Desired PCO2
= 55.68 – 40
= 15.68
C. Delta PaCO2= Actual PCO2- Desired PCO2
= 94.1 - 40
= 54.1
D. Delta [H+]/Delta PCO2
= 15.68/54.1
= 0.3 = Acute on top of chronic
Interpretation
0.3 – 0.7
< 0.3 chronic hypercapnia
> 0.7 acute hypercapnia
0.3 -0.7 acute on top of chronic
Exercise
Age: 32
pH: 7.41
pCO2: 36.7
pO2: 56
HCO3: 23.5
FIO2: 4l NC
Normal Acid base balance with
Hypoxemia uncorrected @ 4l via NC
O2 for age=103.5-
(0.24x32)
PF ratio= 56/0.36
103.5-13.44
155
90.06
New FIO2
I = 713 (FIO2) – PCO2/.8
= 713 (0.36) – 45.875
= 256.68.-45.875
= 210.805
II = I (O2 for age/PO2)
= 210.805 x 1.6-8
= 338.97
III = II [PCO2/0.8 )x 100]/713
= 338.97 (45.875 x 100)/ 713
= 53.97
HCO3 Deficit
Metabolic acidosis
18 to 20 (desired)-actual HCO3 x (0.4 to 0.6) x
weight
Half of computed is given SIVP then half as 24
hour drip
Repeat ABG post correction
Example:
pH 7.18
PCO2 27
HCO3 9
Thank you for your attention