Anchor Design Resistance Guide
Anchor Design Resistance Guide
h
The tensile design resistance of a single
anchor is the minimum of:
∆NRd,p : concrete pull out resistance
(only in cracked concrete)
∆NRd,c : concrete cone resistance
∆NRd,s : steel resistance
∆NRd, p = ∆NRd
o
, p ⋅ fB
The initial value of the tensile design load against pull out is calculated from ∆N°Rd,p=∆N°Rk,p/γMc, where the partial safety factor
1)
for concrete is γMc=1.62, with ∆N°Rk,p =64%NRk,p. The load values are corresponding to a constant load. The displacement is
smaller than d95% ≤ 3 mm after 1000 crack cycles (w = 0.3 mm).
∆NRd ,c = ∆NRd
o
,c ⋅ fB ⋅ f A,N ⋅ fR ,N
20
PI Fatigue HDA
f A,N : Influence of anchor spacing, fR ,N : Influence of edge distance,
Anchor spacing HDA-T/HDA-P anchor size Edge distance HDA-T/HDA-P anchor size
s [mm] M10 M12 M16 c [mm] M10 M12 M16
100 0.67 80 0.66
125 0.71 0.67 100 0.76 0.66
150 0.75 0.70 120 0.86 0.74
190 0.82 0.75 0.67 140 0.96 0.82
200 0.83 0.77 0.68 150 1.00 0.87 0.66
250 0.92 0.83 0.72 160 0.90 0.68
300 1.00 0.90 0.76 180 0.98 0.73
350 0.97 0.81 187 1.00 0.75
375 1.00 0.83 200 0.79
400 0.85 220 0.84
450 0.89 240 0.89
500 0.94 260 0.94
550 0.98 280 0.99
570 1.00 285 1.00
s c
f A,N = 0.5 + fR,N = 0.27 + 0.49 ⋅
6 ⋅ h ef h ef
Limits: smin ≤ s ≤ s cr,N Limits: c min ≤ c ≤ c cr,N Note: If more than 3 edges are
smaller than ccr,N consult
smin = h ef c min = 0.8 ⋅ h ef your Hilti Technical
s cr,N = 3 ⋅ h ef c cr,N = 1.5 ⋅ h ef Advisory Service
∆ NRd,s
1)
[kN] 6.7 11.8 22.9
21
PI Fatigue HDA
Detailed design method – Hilti CC
(The Hilti CC-Method is a simplified Version of ETAG Annex C)
c2 > V rec,c/s
1.5
c
s
c c2 >
SHEAR 1 .5
c
h>1
.5 c
The design shear resistance of a single
anchor is the minimum of:
∆VRd,c : concrete edge resistance
∆VRd,s : steel resistance Note: If the conditions regarding h and c2 are not met,
consult your Hilti technical advisory service.
The weakest concrete edge resistance must be calculated. All nearby edges must be checked, (not only the
edge in the direction of shear). Shear direction is accounted for by the factor fβ,V.
∆VRd ,c = ∆VRd
o
,c ⋅ fB ⋅ f β ,V ⋅ f AR ,V
∆V°Rd,c= ∆V°Rk,c/γMc,V, where the partial safety factor, γMc,V, is 1.62 and ∆VRk,c=55%VRk,c
f ck,cube
Limits: 25 N/mm2 ≤ f ck,cube ≤ 60 N/mm2 fB =
25
22
PI Fatigue HDA
fβ ,V : Influence of shear load direction
fAR,V c/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Single anchor with
edge influence 1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00
s/cmin 1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 3.44 3.73 4.03 4.33
1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.50
2.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.67
2.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.83
3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.00
3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.17
4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.33
4.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.50
5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.67
5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.83
6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.00
6.5 3.24 3.54 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.17
7.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.33
7.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.50
8.0 These results are for a pair of 4.57 4.91 5.25 5.59 5.95 6.30 6.67
8.5 anchors. 5.05 5.40 5.75 6.10 6.47 6.83
9.0 5.20 5.55 5.90 6.26 6.63 7.00
9.5 For more than 2 anchors, use 5.69 6.05 6.42 6.79 7.17
10.0 the general formulae for n 6.21 6.58 6.95 7.33
10.5 anchors at the top of the page. 6.74 7.12 7.50
11.0 7.28 7.67
11.5 7.83
12.0 8.00
23
PI Fatigue HDA
The shear design resistance is calculated from ∆VRd,s= ∆VRk,s/γMs,V. The partial safety factor γMs,V for HDA-T is equal to 1.5 and 1.25 for HDA-
1)
P.
COMBINED LOADS
γ ⋅ ∆N γ ⋅ ∆V h h
steel: F ,N
+ ≤ 1.0Sd F ,V Sd
highest loaded single anchor
∆N ∆V
Rk , s Rk , s
γ MsN
γ MsV
∆N g
∆V g
concrete: Sd
+ Sd
≤ 1.0 anchor group
∆N g
∆V g
Rk ,c
Rk ,c
γ Mc γ Mc
24
PI Fatigue HVZ
4.2 Productinformation HVZ
The initial value of the tensile design load against pull out is calculated from ∆N°Rd,p=∆N°Rk,p/γMp, where the partial safety factor
1)
for concrete is γMp=2.27 (M10) resp. 1.94 (M12, M16, M20), with ∆N°Rk,p =60%NRk,p. The load values are corresponding to a constant
load. The displacement is smaller than d95% ≤ 3 mm after 1000 crack cycles (w = 0.3 mm).
∆N Rd , c
= ∆N 0
Rd ,c
⋅f B.N
⋅f A, N
⋅f R ,N
25
PI Fatigue HVZ
The tensile design resistance is calculated from the tensile characteristic resistance ∆N by ∆N ∆N
1) o o o
Rk,c=60%NRk,c Rd,c= Rk,c/γMc,N, where the
partial safety factor γMc,N is equal to 1.62.
25
PI Fatigue HVZ
f − 25
fB,N = 1 + ck,cube Limits: 25 N/mm² ≤ f ck,cube ≤ 60 N/mm²
K
s
f A,N = 0.5 + Limits: smin ≤ s ≤ scr,N
6h ef
26
PI Fatigue HVZ
fR,N: Influence of edge distance
Edge Anchor size
distance,
M10 M12 M16 M16L M20
c [mm]
60 0.65
65 0.68
70 0.72
75 0.75 0.64
80 0.78 0.67
85 0.82 0.70 0.65 0.59
90 0.85 0.72 0.68 0.61
95 0.88 0.75 0.70 0.63
100 0.92 0.78 0.73 0.65
105 0.95 0.80 0.75 0.67
110 0.98 0.83 0.77 0.69
115 1.00 0.86 0.80 0.71
125 0.91 0.85 0.75
135 0.96 0.89 0.79 0.65
145 1.00 0.94 0.83 0.68
155 1.00 0.87 0.71
165 0.91 0.74
175 0.95 0.76
185 1.00 0.79
205 0.85
230 0.93
255 1.00
c
fR,N = 0.25 + 0.50 Limits: cmin ≤ c ≤ ccr,N
h ef
Note: If more than 3 edge distances are smaller than ccr,N, please contact your Hilti sales
representative.
27
PI Fatigue HVZ
SHEAR
The design shear resistance of a single anchor is the minimum of,
∆VRd,c : concrete edge resistance
∆VRd,s : steel resistance
c2 > V rec,c/s
1 .5
c
s
c c2 >
1 .5
c
h>
1 .5
c
Note: If the conditions shown for h and c2 cannot be observed, please contact your Hilti sales representative.
∆V Rd , c
= ∆V 0
Rd , c
⋅f B ,V
⋅f β ,V
⋅f AR ,V
28
PI Fatigue HVZ
29