2019PT Crystallization Kramer
2019PT Crystallization Kramer
Crystallization
Leeghwaterstraat 39
2628 CB Delft
The Netherlands
H.J.M.Kramer@tudelft.nl
Acknowledgement
Process & Energy – Intensified Reaction & Separation Systems
Crystallization
A. Crystallization: Phenomena, Process & Product Properties
Introduction Crystallization
Crystals as Product:
Crystal purity, Crystal Size Distribution, Crystal shape and
crystal solid form
Crystallization kinetics
Nucleation, Crystal Growth, Attrition
Crystallization process
thermodynamics
process design
equipment
modelling optimization and control
Basic references
• Industrial Crystallization, fundamentals and application, A. Lewis,
M.S. Seckler, H.J.M. Kramer and G.M van Rosmalen, Cambrridge
University press, 2015
• Handbook of Industrial Crystallization, A.S Myerson, 2002,
Butterworth- Heinemann
• Crystallization, J.W. Mullin, 2001,Butterworth & Heinemann
• Crystallization, H.J.M. Kramer, G.M. van Rosmalen, In: Encyclopedia
of Separation Science, Ed. I.D. Wilson, 2000, Vol. 1, page 64-84.
xScr 0
KS (very small)
xS * xS *
Ki
a= (very large)
KS
99.9-100% pure
99.9-100% pure
• Separation
• Table salt, soda, sugar
• Purification
• Pharmaceuticals, caprolactam, parrafin, proteins
• Concentration
• Beverages, waste water
• Particulate Product Formation
• nano-scale (creams, magnetic tapes, catalysts, zeolites)
• micro-scale (inhalers)
• macro-scale (silicon wafers)
• Pharmaceutical crystal form: organic salt, polymorphism, co-
crystals
• Analysis
• Proteins
f(L)
L [m]
• Crystal shape: cubic
• Crystal stucture
• Solvates
• Polymorphs
• Chiral crystals
Incorporation of terrace
single molecules into
the crystal lattice
kink
Arrangement of
millions of molecules
into crystal lattice
Interaction at surface
with solvent and
impurities
One step
JMBC Particle crystallizations
Technology can result in 99.9% pure products
Course: Crystallization
Molecular structure: the crystal unit cell
11
A crystal is
a solid
in which its building units
(molecules, atoms, ions)
are packed in
regularly ordered,
repeated patterns
extending in all 3 dimensions
12
Crystallization
Phenomena Process
• Nucleation • Creation of supersaturation
• Growth • Crystallization method
• Attrition Process • Batch continuous
• Agglomeration design
13
14
15
Gypsum - CaSO4.2H2O
16
• Primary nucleation
• Secondary nucleation
• Attrition /breakage
• Growth
• Agglomeration
17
Chirality
• Bio activity
5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile
JACS 122 (2000) 585
18
19
20
Customer demands
21
22
A- A- A-
H+ H+ H+
stable
polymorph A- A- A-
H+ H+ H+
Structure
change
A- A- A-
H+ H+ H+
Metastable
polymorph
H+ H+ H+
A- A- A-
24
-form -form
25
27
A
A
C
B C B
Sólido regular Sólido irregular
28
29
Aperture
30
9.6%
0.1
2.9%
0.1% 1.0%
0
0 40 100 200 400 600 1000 2000
Size range
L m
[m]
<L>=362m
31
32
33
nucleation
Phenomena growth
agglomeration
supersaturation
Process impurities
solvent
temperature
34
fast
slow
35
Lysozyme
36
Thermal
roughening
Temperature (S=1)
Kinetic roughening
Supersaturation (constant T)
37
38
39
41
42
Enthalpy of dissolution of B
H 1 1
x* exp
R T Tm
JMBC Particle Technology Course: Crystallization! However the temperature dependence is.
Solubility, supersaturation and Phase diagrams
Lever-rule:
Eutectic system, constant P LZ
Suspension density
LC
Definition supersaturation
L S
S Seq Leq L *kT ln aeq
Solid A + solid B L L * kT ln a
a
kT ln
aeq
45
a x c c ceq
ln ln ln
aeq xeq ceq ceq
46
Temperature
control
Stirrer
Suspension
• Establish an equilibrium in a stirred suspension at a given T,P
between the solid and liquid phase
• Filter solution of crystals to isolate liquid
• Analyse the liquid phase to measure concentration at given T,P by
evaporating the solvent or by analytical techniques
Light X Light
Clear point:
The temperature at which a suspension becomes a clear solution
during heating with a certain rate
48
Transmission
T
Ts=42.2°C
Ts=42.3°C
Primary nucleation
ORP Pbca
= 46.1°
= 39.4°
… …
O
N
O
ROY
50
H
JMBC Particle Technology Course: Crystallization
S
Crystallization kinetics
n
Homogeneous
Nucleation (HON) spherical cluster
Primary in solution
Nucleation n
substrate
Heterogeneous
cap-shaped cluster
Nucleation (HEN) on a substrate
ORP Pbca
= 46.1°
= 39.4°
… …
O
N
fn – attachment frequency of monomers to n-sized cluster
O
gn – detachment frequency of monomers to n-sized cluster
ROY
H
52
S
JMBC Particle Technology Course: Crystallization
m
R
C
Nucleation work for HON
1. Creation of volume, ΔGV
2. Creation of surface, ΔGS
3. To form a cluster with n molecules, ΔGs
W (n) = ΔGV + ΔGS Free
energy
W(n)
16 v 2 3
W*
3k 2T 2 ln 2 S 0 n*
W*
HON
A=1030
1.0E+06
Arrhenius type reaction
with energy barrier W * 1.0E+03
1 10 100 1000 10000 100000 1000000
Supersaturation
S
ratio S
W* 16 v 2 3
J A exp A exp 3 3 2
kT 3k T ln S
Highly non-linear behavior towards S and
55
57
40%
20%
Solubility
10%
0%
0 20 40 60 80 100 120
Temperature
58
59
55 90
50
80
45
70
Clear point
Transmissivity (%)
40
Temperature (oC)
60
35
Temperature
50
30
MSZW Cloud point
Transmission
[°C] 25
40
of light
30
[%]
20
20
15
10 10
5 0
6:00 7:12 8:24 9:36 10:48 12:00
Time (hour)
60
Light Source
Photochemical
Effect
Non-
Photochemical
Effect
Rough growth
• growth units attach anywhere to the rough crystal surface
• Rough growth mechanism
A- A- A-
H+ H+ H+
stable
polymorph A- A- A-
H+ H+ H+
Structure
change
A- A- A-
H+ H+ H+
Metastable
polymorph
H+ H+ H+
A- A- A-
65
Record: 17 polymorphs
J.A. Pesti, R.A. Chorvat, G.F. Huhn, Chem. Innovations 2002, Oct. 28
66
-form -form
Orthorhombic monoclinic
(P21 21 21) (P21)
abc, ===90° abc, ==90°
67
68
monotropic enantiotropic
c* c*
Tt
Temperature Temperature
69
I
c*
c
Tt Temperature
Thermodynamics: Above Tt I is obtained, below Tt II is obtained, but …
70
I
Adjustable by
c* changing solvent
c
Tt Temperature
71
I
c*
c
Tt Temperature
72
Concentration I
+ seeds
T Temperature
Ttransform
73
Nucleation Nucleation
& &
crystal growth crystal growth
Solvent
Unstable mediated Stable
Polymorph polymorph Polymorph
transformation
74
-form fraction
0.800
0.750
in crystalline phase
0.700
0%
0.650
intensity0.550
polymorphic fraction in
0.500
68%
crystal phase of
0.450 suspension
97%
0.400
0.350
0.300
75
80
25ºC
60
-form fraction
[wt%] 50ºC 45ºC 40ºC
40
20 I II
0
-1 0 2 4 6 8 10
Time [hr]
Tt Temperature
77
78
c*
c liquid-liquid I
phase split
0
Temperature
• Why?
• Thermally instable API
• Removal from remaining
solution after cooling
crystallization Ascorbic acid from EtOH/CO2
• Solubility is variable
• Be aware of local conditions
• Many process configurations
• Wide variety of particle size
distributions and polymorphs
Acetaminophen from EtOH/CO2
80
S
Slow addition
mild conditions
0 w% antisolvent → 100 AS
less chance for
unwanted polymorph
81
AS
Extreme supersaturations
0 w% antisolvent → 100 AS Concomitant polymorphism
82
83
1. Crystallize form I
a. suspension form I seeds in anti-solvent
b. fed-batch addition of solution to anti-solvent
84
85
86
87
Lord Kelvin.
Baltimore Lectures on Molecular Dynamics and the Wave
Theory of Light, 1904.
88
89
Aspartames
NH2 NH2
H H
HOOC N L COOCH3 HOOC N D COOCH3
O CH2Ph O CH2Ph
sweet bitter
90
O O
H H
N N
O O
O N O O N O
H H
R-thalidomide S-thalidomide
mild sedative teratogen
Causes birth defects
91
+ +
Escher 92
Racemic compound
conglomerate
Escher 93
94
c Lnx
Transmission
T
Ts=42.2°C
Ts=42.3°C
Thermodynamic
Solubility point
The phase
L diagram reflects
L the kind of solid Lstate
T
S+L R+L RS+L
S+L R+L
RS
R+S S+RS R+RS
S yR R S yR R S yR R
30 80
x=25 a b
x=25
x=15 x=15
25
70
20
Ts
15 60
xs [°C]
[mmol/mol]
10
50
5
0 40
0 5 10 15 20 25 30 0 0.25 0.5 0.75 1
x R [mmol/mol] y R [-]
Conglomerate
200 60
x =175 c d
50
150
40
xs
[mmol/mol]
Ts
100 30
[°C]
20
50
10
0 0
0 50 100 150 200 0 0.25 0.5 0.75 1
x R [mmol/mol] y R [-]
Racemic compound
30 60
x=25 e x=25
x =25 f
x=25
x=10
x=10 x =10
x=10
50
20 40
xs Ts
30
[mmol/mol] [°C]
10 20
10
0 0
0 10 20 30 0 0.25 0.5 0.75 1
x R [mmol/mol] y R [-]
Solid solution
(S) (S)
S'
S'
s(+) + l
s(-) + l
s(+) + l s(R) + l s(-) + l
1. Preferential crystallization
2. Crystallization of diastereomers
104
Grow S Dissolve S
Dissolve R Grow R
S Seed fraction R
105
S Seed fraction R
106
Remove S crystals
S R
107
S R
108
Remove R crystals
S R
109
S R
110
111
CH3 R
+ -
NH3 OOC
R = CH3, C2H5, OH
112
R-form
0.5
S-form
0
0 20 40 60
Temperature C
113
S-form
0.5
R-form
0
0 20 40 60
Temperature C
114
conglomerate Enantiopure
W.L. Noorduin et al., J. Am. Chem. Soc. 130 (2008) 1158. 115
116