SolutionCh1-10v2.
qxd    11/26/07   3:45 PM   Page 1
          Solutions Manual
          CHAPTER 1
                  1.1      Base-10: 16 17 18 19 20 21 22 23            24   25 26 27 28 29   30   31   32
                           Octal:    20 21 22 23 24 25 26 27           30   31 32 33 34 35   36   37   40
                           Hex:      10 11 12 13 14 15 16 17           18   19 1A 1B 1C 1D   1E   1F   20
                           Base-13    A B C 10 11 12 13 14             15   16 17 18 19 23   24   25   26
                 1.2       (a) 32,768      (b) 6,871,947,674
                 1.3       (4310)5 = 4 * 5 + 3 * 52 + 1 * 51 = 58010
                                          3
                           (735)8 = 7 * 82 + 3 * 81 + 5 * 80 = 47710
                  1.4      14-bit binary: 11_1111_1111_1111
                           Decimal: 214 - 1 = 16,38310
                           Hexadecimal: 3FFF16
                  1.5      Let b = base
                           (a) 14/2 = (b + 4)/2 = 5, so b = 6
                           (b) (2 * b + 4) + (b + 7) = 4b, so b = 11
                  1.6      (x - 3)(x - 6) = x 2 - (6 + 3)x + 6 * 3 = x 2 - 11x + 22
                           Therefore: 6 + 3 = b + 1m so b = 8
                           Also, 6 * 3 = (18)10 = (22)8
                  1.7      68BE = 0110_1000_1011_1110 = 110_100_010_111_110 = (64276)8
                                                                                                        1
SolutionCh1-10v2.qxd   11/26/07    3:45 PM   Page 2
      2     Solutions Manual
              1.8      (a) Results of repeated division by 2 (quotients are followed by remainders):
                           43110 = 215(1); 107(1); 53(1); 26(1); 13(0); 6(1) 3(0) 1(1)
                           Answer: 1111_10102 = FA 16
                       (b) Results of repeated division by 16:ß
                           43110 = 26(15); 1(10) (Faster)
                           Answer: FA = 1111_1010
              1.9      (a) 10110.01012 = 16 + 4 + 2 + .25 + .0625 = 22.3125
                       (b) 26.248 = 2 * 8 + 6 + 2/8 + 4/64 = 22.3125
                       (c) 1010.10102 = 8 + 2 + .5 + .125 = 10.625
              1.10     (a) 1.100102 = 0001.10012 = 1.916 = 1 + 9/16 = 1.56310
                       (b) 110.0102 = 0110.01002 = 6.416 = 6 + 4/16 = 6.2510
                       Reason: 110.0102 is the same as 1.100102 shifted to the left by two places.
                             1011.11
                       101ƒ111011.0000
              1.11         101
                           01001
                             101
                             1001
                               101
                               1000
                                101
                                0110
                       The quotient is carried to two decimal places, giving 1011.11
                       Checking: 1110112/1012 = 5910/510  1011.112 = 58.7510
              1.12     (a) 10000 and 110111
                                  1011
                                  +101                               1011
                                 10000 = 1610                        *101
                                                                     1011
                                                                   1011
                                                                   110111 = 5510
SolutionCh1-10v2.qxd    11/26/07    3:45 PM   Page 3
                                                                                                      Solutions Manual      3
                 1.13        (a) Convert 27.315 to binary:
                                                   Integer               Remainder               Coefficient
                                                   Quotient
                                                                              1
                                   27/2 =             13           +          2                 a0   =   1
                                                                              1
                                   13/2                6           +          2                 a1   =   1
                                    6/2                3           +          0                  a2   =   0
                                                                              1
                                    3/2                1           +          2                 a3   =   1
                                    1                                         1
                                     2                0           +          2                 a4   =   1
                                   2710 = 110112
                                                   Integer         Fraction          Coefficient
                                   .315 * 2 =          0     + .630                  a -1    =   0
                                   .630 * 2 =          1     + .26                   a -2    =   1
                                   .26 * 2 =           0     + .52                   a -3    =   0
                                   .52 * 2 =           1     + .04                   a -4    =   1
                                   .31510  .01012 = .25 + .0625 = .3125
                                   27.315  11011.01012
                           (b)     2/3  .6666666667
                                                             Integer              Fraction                    Coefficient
                                .6666_6666_67 * 2      = 1        + .3333_3333_34     a -1 = 1
                                .3333333334 * 2        = 0        + .6666666668       a -2 = 0
                                .6666666668 * 2        = 1        + .3333333336       a -3 = 1
                                .3333333336 * 2        = 0        + .6666666672       a -4 = 0
                                .6666666672 * 2        = 1        + .3333333344       a -5 = 1
                                .3333333344 * 2        = 0        + .6666666688       a -6 = 0
                                .6666666688 * 2        = 1        + .3333333376       a -7 = 1
                                .3333333376 * 2        = 0        + .6666666752       a -8 = 0
                                .666666666710  .101010102 = .5 + .125 + .0313 + .0078 = .664110
                                .101010102 = .1010_10102 = .AA 16 = 10/16 + 10/256 = .664110 (Same as (b)).
                   1.14     (a)          1000_0000    (b)          1101_1010      (c)          1000_0101
                                1s comp: 0111_1111         1s comp: 0010_0101         1s comp: 0111_1010
                                2s comp: 1000_0000         2s comp: 0010_0110         2s comp: 0111_1011
                   1.15     (a)            52,784,630        (b)             25,000,000
                                  9s comp: 47,215,369               9s comp: 74,999,999
                                  10s comp: 47,215,370              10s comp: 75,000,000
SolutionCh1-10v2.qxd   11/26/07      3:45 PM   Page 4
      4     Solutions Manual
               1.16                        B2FA           B2FA:        1011_0010_1111_1010
                             15s comp:     4D05           1s comp:     0100_1101_0000_0101
               1.17    (a) 3409 : 03409 : 96590 (9s comp) : 96591 (10s comp)
                           06428 - 03409 = 06428 + 96591 = 03019
                       (b) 6152 : 06152 : 93847 (9s comp) : 93848 (10s comp)
                           2043 - 6152 = 02043 + 93848 = 95891 (Negative)
                           Magnitude: 4109
                             Result: 2043 - 6152 = -4109
              1.18     Note: Consider sign extension with 2s complement arithmetic.
                       (a)               10001
                             1s comp:    01110
                             2s comp:    01111
                                         10011
                             Diff:       00010
                                         101000
                       (b)   1s comp:   1010111
                             2s comp:   1011000
                                         001001
                            Diff:       1100001 (negative)
                                        0011111 (2s comp)
                                        -011111 (diff is -31)
              1.19     +9286 : 009286; +801 : 000801; -9286 : 990714; -801 : 999199
                       (a) (+9286) + (-801) = 009286 + 000801 = 010087
                       (b) (-9286) + (+801) = 990714 + 000801 = 991515
              1.20      +49 : 0_110001 (Needs leading zero indicate + value); +29 : 0_011101
                       Leading 0 indicates + value) -49 : 1_001111; -29 : 1_100011
                       (a) (+29) + (-49) = 0_011101 + 1_001111 = 1_101100 (1 indicates negative value.)
                            Magnitude = 0_010100; Result (+29) + (-49) = -20
                       (b) (-29) + (+49) = 1_100011 + 0_110001 = 0_010100 (0 indicates positive value)
                            (-29) + (+49) = +20
                       (c) Must increase word size by 1 (sign extension) to accomodate overflow of values:
                           (-29) + (-49) = 11_100011 + 11_001111 = 10_110010 (1 indicates negative
                           result)
                           Magnitude: 1_001110 = 7810
                           Result: (-29) + (-49) = -78
SolutionCh1-10v2.qxd   11/26/07   3:45 PM   Page 5
                                                                                      Solutions Manual   5
                  1.21    +9742 : 009742 : 990257 (9’s comp) : 990258 (10s) comp
                          +641 : 000641 : 999358 (9’s comp) : 999359 (10s) comp
                          (a) (+9742) + (+641) : 010383
                          (b) (-9742) + (+641) = 990258 + 000641 = 990899 (negative)
                              Magnitude: 009101
                              Result: (-9742) + (641) = -9101
                  1.22    8,723
                          BCD: 1000_0111_0010_0011
                          ASCII: 0_011_1000_011_0111_011_0010_011_0001
                  1.23           1000     0100    0010 (842)
                                 0101     0011    0111 (+537)
                                 1101     0111    1001
                                 0110
                          0001   0011     0111    0101 (1,379)
                  1.24
                          (a)
                          6     3 1 1       Decimal
                          0     0 0 0       0
                          0     0 0 1       1
                          0     0 1 0       2
                          0     1 0 0       3
                          0     1 1 0       4 (or 0101)
                          0     1 1 1       5
                          1     0 0 0       6
                          1     0 1 0       7 (or 1001)
                          1     0 1 1       8
                          1     1 0 0       9
                  1.25    (a)    5,13710    BCD:          0101_0011_0111
                          (b)               Excess-3:     1000_0100_0110_1010
                          (c)               2421:         1011_0001_0011_0111
                          (d)               6311:         0111_0001_0100_1001
                 1.26     5,137     9s Comp:         4,862
                                    2421 code:       0100_1110_1100_1000
                                    1s comp:         1011_0001_0011_0111 same as (c) in 1.25
SolutionCh1-10v2.qxd   11/26/07    3:45 PM    Page 6
      6     Solutions Manual
              1.27     For a deck with 52 cards, we need 6 bits (32 6 52 6 64). Let the msb’s select the suit
                       (e.g., diamonds, hearts, clubs, spades are encoded respectively as 00, 01, 10, and 11. The
                       remaining four bits select the “number” of the card. Example: 0001 (ace) through 1011
                       (9), plus 101 through 1100 (jack, queen, king). This a jack of spades might be coded as
                       11_1010. (Note: only 52 out of 64 patterns are used.)
              1.28         G        (dot)      (space)       B          o          o          l          e
                       01000111_11101111_01101000_01101110_00100000_11000100_11101111_11100101
              1.29     Bill Gates
              1.30     73 F4 E5 76 E5 4A EF 62 73
                       73:      0_111_0011 s
                       F4:      1_111_0100 t
                       E5:      1_110_0101 e
                       76:      0_111_0110 v
                       E5:      1_110_0101 e
                       4A: 0_100_1010 j
                       EF: 1_110_1111 o
                       62:      0_110_0010 b
                       73:      0_111_0011 s
              1.31     62 + 32 = 94 printing characters
              1.32     bit 6 from the right
              1.33     (a) 897            (b) 871
              1.34     ASCII for decimal digits with odd parity:
                       (0): 10110000 (1): 00110001 (2): 00110010 (3): 10110011
                       (4): 00110100 (5): 10110101 (6): 10110110 (7): 00110111
                       (8): 00111000 (9): 10111001
              1.35     (a)
                        a b c
                                                   a
                                               f
                                                   b
                                                   c
                                               g
                                                   f
                                                   g
SolutionCh1-10v2.qxd    11/26/07      3:45 PM      Page 7
                                                                                                                                Solutions Manual                    7
                  1.36
                                               a    b
                                                                                          a
                                                                                      f
                                                                                          b
                                                                                      g
                                                                                          f
          CHAPTER 2
                  2.1
                            (a)
            xyz   x + y + z       1x + y + z2¿     x¿        y¿        z¿     x¿y¿z¿          xyz         (xyz)   1xyz2¿           x¿        y¿     z¿    x¿ + y¿ + z¿
            000         0              1           1         1         1          1           000          0           1           1         1      1          1
            001         1              0           1         1         0          0           001          0           1           1         1      0          1
            010         1              0           1         0         1          0           010          0           1           1         0      1          1
            011         1              0           1         0         0          0           011          0           1           1         0      0          1
            100         1              0           0         1         1          0           100          0           1           0         1      1          1
            101         1              0           0         1         0          0           101          0           1           0         1      0          1
            110         1              0           0         0         1          0           110          0           1           0         0      1          1
            111         1              0           0         0         0          0           111          1           0           0         0      0          0
                            (b)                                                                     (c)
                              xyz       x1y + z2        xy        xz        xy + xz                  xyz          yz       x(yz)        xy        (xy)z
                              000          0            0         0           0                      000          0         0           0          0
                              001          0            0         0           0                      001          0         0           0          0
                              010          0            0         0           0                      010          0         0           0          0
                              011          0            0         0           0                      011          1         0           0          0
                              100          0            0         0           0                      100          0         0           0          0
                              101          1            0         1           1                      101          0         0           0          0
                              110          1            1         0           1                      110          0         0           1          0
                              111          1            1         1           1                      111          1         1           1          1