Some Important Tools of Theory: L - V: - , " J - : - L T ,: E, ,,, - R
Some Important Tools of Theory: L - V: - , " J - : - L T ,: E, ,,, - R
r t o
P e r t u r b a t i o tnh e o r y a n d t h e v a r i a t i o n am
l ethod 117
"starting point"
But. once one has decidedon a reasonable model to use,horv
doesone connectthis model to the real systemof interest?Perfurbationtheory
and the variationalmethod are the two tools that are most commonly used for
thisPurPose.
4 . 1 . 1P e r t u r b a t i otnh e o r y
In this method one has availablea set of equationsfor -uenerating a sequence
of approximationsto the true energy E and true wave function /. I will now
briefly outline the derivationof theseworking equationsfor you. First. one de-
composes the true HamiltonianH into a so-calledzerorhorder part H0 (this is
theHamiltonianof the modelproblemone haschosento useto representthe real
s.v-stem)and the difference( H - H 0l ivhich is calledthe perturbationand often
denotedtr/:
H:H"+l/. (4.3)
H t ) t f r r- F o t y \ . (4.6)
H"rlrt + Vtlrt): 5o',1tt+ E' ,lrn. (4.1)
H",ltt + v,lt' : E"t: + E ' , l t t+ E t r l t " (4.8)
Thezerothorderequationsimplirinstructsusto solvethezerothorderSchrodinger
equationto obtainthe zerothorderwave function ry'0and its zerothorder energy
80. In the first order equation.the unknownsare ry'r and El (recall that Z is
assumedto be known becauseit is the differencebetweenthe Hamiltonianone
wantsto solveandthe modelHamiltonianF1')).
To solve the first order and higher order equations.one expandseachofthe
correctionsto thewavefunction ry'K in termsof thecompletesetof wavefunctions
118 S o m ei m p o r t a n t o o l so f t h e o r y
E': i,\t"ll,l1t/). ( , +I .0 )
) ,1' l) l( -8"El) l
'l ''= I,l ' i lft,t' 1r (4.1
I)
E,:tl,t/r,/,,)l'/(Eu-E:). (1.12\
r:ee('-:) . /nft.f 1
*;':(;)' srn(
/ /'
E:a,:tlI.
:(*;:,1
E,,,'=, nlwl'_:,) -
=(*;i1",(,
/ 1 r
f),-;:;
f l . / 7 - r r
:(;J/ s i n r ( z )/ * ( ' L- l; ) o '
= |/ 2,e.r 1 f t s i. n
rrr.\.r
- ( i ) ' -o('t;2 le ir ft ,I rL -.ay
''n'1,)ar
//'
The first integralcan be evaluatedusingthe following identity with a : {.
: sinz
e tte
/',i",(f )a, : 1,"
f - - | ! r 7
"
/ s i n . e , l H= _ _ s i n t : r t + l l :
Jrt 4 2lt) 2
Making all of these appropriatesubstitutionswe obtain:
L- r r r= (/ 2rt r 1 1 1 , : L L t \
/(T-1;t)=o
/ w l _. "i, '..t . - |_ t lI w_:-t\v1 .,
r r , , r _r \ ' "
_ _ F .
La=1 - t)r=.
( i ) / l s i n ( * ) . . r (- . r
vl: : ! ) s i n ( r ) , 1( ri ) ! r , " ( r f : \
\L/ \ r t
#i.r- ,
The two integralsin the numeratorneedto be evaluated:
l,',^(#),,"(?)
d,::f/,.". _lo,
(T)u. "o,(+)
a.rf
l
: ltl,"(f),',,-
*''"(+):] -n
120 S o m e i m p o r t a n t o o l so f t h e o r y
: :11,"..,
/'".',rn(?).'"(?)r,
-lu"'"'(T)"]
(| ),r.
l l t L t L . ,
: - - c o sr (7 \ \ , 7 . \ , \ 1
; | |
l l t . t ' \ ;L- l t- r - : 7r n { - ' L ' 1I I, ,
- ( # . . . ( + ) - + .J" ( +
tL: /-l.zt\ Lr 1 . 1 . - ,1. 1. ' f
1,2 1t
: - ( c- o s : z - c o s 0 ) * ^ sinr -0
llT lir
_2L2 _2L2 L) L: 8l:
: - :
2". 18", W-7:-r)".
t / Z\
Fnduced:
-"/ *-
(t
- - l vrtr. where* : (*lo,+ qrl,,)
2)
7L ,
- ' v l ') a r
: -n,/n
r.,,nou."o (*10'* r y l ' ) _ l
).(" l) (*''+
: -n *1n'.
rL
- " *1"(.,- I) *\"0'
(' l) v','a,
/
J" I,'
rL /
-'/ vl')'(.' -,I,'*1"-("
l)*1''r' -t)*\"0,
The first integralis zero (seethe evaluationof this integralfor.Ell) above).The
fourth integral is neglectedsince it is proportionalto e2. The secondand third
integralsare the sameand are combinedto give
rL
L1,.. I
Vi"' ["-
/
r \ wi"dx.
lt,nau*a=-2? |
JO \ t)
Perturbation
theoryandthevariational
method 121
S u b s r i t u tw n ': ( i ) , s i n ( f t a n dt t l l " :
i nl g s i n r f ) .w eo b t a i n
Y;titi 2
mLae2e 2to
_
'
h 2t 6 3-i
":ft) -nrL'e)2t"
\,JFl_,) h:t,.Ji'
4 . 1 . 2f h e v a r i a t i o n aml e t h o d
Let us now turn to the othermethodthat is usedto solveSchrddingerequarions
approximatel,v.
thevariational method.In thisapproach.onemustagainhavesome
reasonable waveflnction iy'trthatis usedto approximatethetrue,,vave
function.
within this approximatewavefunction,one imbedsone or morevariables
{a.7}
thatonesubsequently variesto achievea minimumin theenergyof ry'0computed
asan expectation 'nalueof the trueHamiltonianF1:
E ( { d J l )= l | t t l H j l / a ) 1 H . , , , 1 . , 1 r , , ) . ( 4 .1 3 )
The optimal valuesof the cyl parametersare determineciby makine
JE1da.,:Q ( + l.+ )
to achievethedesiredenergyminimum(n.b.,we alsoshouldverifzthatthesecond
derivativematrix 1i)16/da.t dar) hasall positiveeigenvalues).
The theoreticalbasis underlyingthe-variationalmethod can be understood
throughthe fbllor.vingderivation.Suppose- that someoneknew the eract eigen-
states(i.e..true w1' andtrue 6r) of the true HamiltonianH. Thesestatesobev
/":fcrvr ( : 1 .61)
(F . ^a ^f , ,* , ) ( . +l 7 )
( V , iI W r ) = 6 r z . (4.18)
r : f ( c { vr t H t C r * , ,( f { c " v " c ^w ( ) )
I
= f tc,t'r,
/ +,r,t . ( 4 .l 9 )
r = p tcrr,E,, : Eo
/ F,.^ t2
(4.20)
P e r t u r b a t i o tnh e o r y a n d t h e v a r i a t i o n am
l ethod lz5
-r"', .1
o= =
nd,,
,*p(-4.,,,
\ ..r., ) .*o(
' \
/ crr, /
n = ( t . , - 2 z1 . .
;r.) ;
Now.let'sfind the optimum valueof the variationalparameterZ, for anarbitrary
nuclearchargcZ by settingdIl'ldZ":0. After hnding the optimal value of
2., we'll then find the optimal ener_qy by pluggingthis Z. into the aboveW
expression. I'll do the algebraand seeif you can fbllow
/ 5 \ - :
il - l/.. _222,-,.2.]l'_.
\ 11 "1,, /
t lI I '
/-_ 5rel
_ = f\ 2 2 , - 2 2 - - l _ : { ) ,
tL, U,/ rr,r
5
22"-22*;:0.
- -
5
-.
z.L( _L
Z":Z-;: z-0.312s
(n.b..0.3I 25 represents
the shieldingfactorof one I s electronro the other).
Noq using this optimal Z. in our energyexpressiongives
r y: z e ( t . - t , - l ) ' :
\ 8./ a,,
= ( ' - ,116 ,lfL)f\z - : \ - r r * : l 1
\ t6/ 8Jro
a a A
S o m e i m p o r t a n t o o l so f t h e o r y
\ r r
/
- - at":
\ t n ) \ - t * ' J;
- ( z- 1 \ ( r - i ) l : - ( z - I ) ' l
\ 16l\ 16/u,, \ 16/ cre
- ( z - 0 . 3 1 2 5 y r 1 217I c. 2v
( n . b . "s i n c ea 6 i s t h eB o h rr a d i u s0 . 5 2 9A , e 1l u o - 2 7 . 2 1e y ) .
Is this energv"anygood"?The total energies of sometwo-electron atomsand
ions havebeenexperimentally determinedto be:
Atom E n e r g y( e V )
i H- - | 4.5C
2 He -78.98
3 Li* - 198.02
4 tse-' -J / t.5
5 B-3 - 599.3
/-r4 -aJat t.o
7 N*5 -1218.3
I n+6
4 . 2 . 1T h e C 3 us l m m e t r y g r o u p o f a m m o n i a- a n e x a m p l e
The ammoniamoleculeNH.rbelongs.in its ground-state equilibriumgeometry,
to-thec;,. point group.lts symmetryoperationsconsistof two C-rrotations,c-i,
cr2(rotationsby 120 and 240'. respectivel.v, aboutan axispassingthroughthe
nltrogenatomandlyingperpendicular to theplaneformedby thethreehydrogen
atoms),threeverticalreffections, o,, o,l, oj', and the identityoperation.corre-
spondingto thesesix operations are symmetryelements:the three-fbldrotarron
arrs' C3 a rd the threesymmetryplanesou. ol and o,' rharcontainthe three
NH
bondsandthe :-axis (seeFig.4. I ).
Ammonia
m o l e c u l ea n d i t s
symmetryelements.
tzo Some important tools of theory
Secondoperation
E E Cr C: o\ oi oi'
L.l C s C 4 E o i o i o \
Cr' E C3 oi' o' oy
o\ o\ oi o, E C'3 C3
t' oi 6\ oi' C3 E C21
6, ol' oi o\ Ci C3 E
First
operation
atoms(or of the fragments)in the m.o. case:they are unit vectorsalongthe -r, -v,
and: directionslocatedon eachofthe atoms,and represent displacementsalong
eachofthese directions.in the t,ibrationirotationcase.
(ii) Symmetrytools are usedto combinetheseM objectsinto M nervobjectseachof
u'hichbelongsto a specificsymmetryof the point group. Becausethe Hamiltonian
(electronicin the m.o. caseand vibrationi'rotationin the lattercase)commuteswith
the symmetryoperationsof the point group, the matrix representation of H within
the symmetryadaptedbasiswill be "block diagonal".That is. objectsof differenr
symmetrywill not interact;only interactionsamongthoseof the samesymmetry
needbe considered.
E
(.tN.
sr,.t,,sr) (sN.
sr.s.,s.)
C-r
+ (Sr. Sr..tr. S:)
C.r
e (Sr. S:, S,. Sr)
o\
+ (5\, Sr, Sr, S.)
o\
- ( . t \ . S j . S r . S r)
o\
- ( S N , . t 2 ,S r. S r ) (4.21)
[r o o nl [r,l
D " 'I 'lc=,lli; : ; l i l i [s"l
[r*l
=l;i (4.22)
we canlikewiservriternatrixrepresentations
for eachof the symmetryoperatlons
of the C.r, point group:
t-l : : ll [r o (' ol
, , ( c=:l):: ; ? l a , , , r r; :?l l: l
L o r o o J f o o o r j
,,.,,",):l:
; ; il
f r o o o l
,,,,n,,:ll
;:;l
f r o o o l
L o or o l L nr o o _ ]
^:1,,,f;:?:l
D,1)(o,,):lo
I o ol e.n)
L;o;;l
It is easyto verify that a Cr rotation foilowed by a o, reffection
is equi'alent to
a o] reffectionalone.In otherr.vords
sl Sr
o.Cr : o'. or. c3 d\
t4 )J\
S: .l Sr .t: S: Sl
[r o o ol[r o o ol [r o o ol
D , o , 1 o , ;1 ;p?al,l6:I ,:: ;l l: : l ;
: i ;l
L o o I oJLo o r oJ [o r o o]
- Dt4)@).
(.251
[r o o ol[, o o ol [r o o ol
p , r ' { c r r o , o , r0o ,0l :'1l l9o I 0 ol-lo o | 0l
l o I o o l l oo o 'l-lo I o ol
L o o I o J L oo I oJ [o o o r]
Dt4)G:'). (4.26)
Tr(D): ^. (4.27)
)o,,:
So,x is calledthe traceor characterof the matrix. In the aboveexamDle
x ( E ): a . (4.28)
x,c): x (c,'):1. (4.2e)
X@):x@)=X1o,,1:2. (1.30)
The importanceof the charactersof the symmetryoperationslies in the fact that
they do not dependon the specificbasisused to form them. That is, they are
invariantto a unitary or orthogonaltransformationofthe objectsusedto define
thematrices.As a result,they containinformationaboutthe symmetryoperation
itselfandaboutthesp./cespannedby the setofobjects.The significance ofthis
observationtbr our symmetryadaptationprocesswill becomeclearlater.
Note that the charactersof both rotationsare the same as are those of all
threereflections.Collectionsofoperationshavingidenticalcharacters arecalled
classes,Eachoperationin a c'lassof operationshas the samecharacteras other
membersofthe class.The characterofa classdependson the spacespanned by
thebasisof functionson which the symmetryoperations act.
E C ; Li
Sx --' SN. Sr'; + Sy. Sr --+ '!ru,
( 4 . r3)
o\ o, ov
Snr --+ Su. Sr - Sx, Sr.r- Sr.r.
Againwe have
D ( t t 1 o , 7 D t t ) 1 C: - . )I . t - r t r t 1 o , " )
a n d D \ t ' 1 C . . 1 D ' t ' 1 o: , ) I . I : I ) ' r ) ( o , ' ) . r-1.-ljr
Thesesix matricesform anotherrepresentation of the -eroup.In this basis.each
characteris equal to unity. The representationforrned by,allo*'ing the six sym-
metry operatrons to act on the 1sN-atom orbitalis clearlynot thc sameas that
formedwhen the samesir operationsactedon the ( S^-. St. S: . 5i ) basis.We nou,
needto learnhou'to further analyzethe information contentof a specificrepre-
sentationof the group formed when the symmetryoperationsact on any specific
setof objects.
4 . 2 . 3R e d u c i b l ea n d i r r e d u c i b l er e p r e s e n t a t i o n s
A reducible representation
Note that everymatrix in the four-dimensionalgroup representation
labcledD(a)
hasthe so-calledblock diaconalforrn
3 x 3 matrix
[t o' ol [o o rl [o I o-l
D ( 3 ) ( E )=
l 0 0 orl l . D'r)1C,;: o l , D . ( c: il )o o t l
I r oI 0-J
L0 L0 0 0l Ll
[ r oo 'o1l . lo o ll [o i ol
D,,,(o,.)-
l 0 r 0_.1 D13)1o];:
lot ol, D ( 3 ) ( c ' Jo ' o
) :l l l
L0 Lr o oJ [o o
,,0]ro,
T h e c h a r a c t e rosf D ( 3 ) a r eX ( E ) : 3 , X ( 2 C ) : 0 , X ( 3 o , ) : 1 . N o t e t h a tw e
would haveobtainedthis D(3)representation directly if we had originallychosen
P o i n tg r o u p s y m m e t r y '131
A change in basis
Now let us convertto a neu, basisthat is a linear combinationof the original
( S r .S : . S 3 )b a s i s :
Ir:Sr*S:+S:. (4.35)
l=2Sr-S:-S:. (4.36)
l:S:-Sr. (4.37)
(Don't worry abouthow.we constructTy. 72.and7l yet. As will be demonstrated
Iater.we form them by using symmetryprojectionoperatorsdefinedbelow:)we
determinehow the "T" basis functionsbehaveunder the group operationsby
allorvingthe operationsto act on the s, and interpretingthe resultsin terms of
the 4. In particular
( r r .l . n ) 3 t r , .n . _ n l . ( T tT. z . r ,77 g , . T . . r ; .
( T t .T ) .T l a f s , + . S :* ^ ! r , 2 . t r- S : - S r , S : - S r )
: (. - j ,. -3.r,,-
jn * jn),
( T t .T : . 7 ) a t S ,+ . ! r * 5 ' . .2 5 :- . S r - S : . . t r- S r )
: ( . - j r . + 3 r r , l nj ^. )
(Tt.T2.Tt)!tS,+Sr*S:. l!,-Sr -S:,.tr --t:)
= (n - j r. _ 3rr, -
Ir. )n)
(n, l. n)j ,t, * sr+ s,. 2s:- s, - s'r..tr- "tr)
: (n - j r.+ 3rr,.
-)r. - (1.i8)
)r.,)
So thematrixrepresentations
in the new.I basisare
. [r o ol
D'.'(E):10
[ t _o+ o . l
I 01. ao)1c,;:10 _ll
lo o ,J [o *j _;i
=fj i j*l D,,,(*):
,,,,,.,, [; o?-'J
:.l
-] -jl [o lo
ol
[ '
D ( ' ) ( o j ) : 1-0j - i I [r o ol
D , r , 1 o , , ) :_1+0 + + l (4.3e)
[o -l *j] Lo+i .J.l
132 S o m e i m p o r t a n t o o l so f t h e o r v
D , , , ( E ) : ol tl . D ( 2 ' 1 c .:1
[ _ 1 _ :] tl
I ,t o( :) ( cl)
: tl
r
|
I
1
, j-l
r l
L0 ]j L r l '
- ;
- - t .
l r ; I l - l; t
l - i I
. [r ol T I
:
.t-t
l - - :1 _ r t
D ' - ' 1 o , ) -| | to,) ,:
2t(2t tI : I
I D ( 2 ) 1 o :i , 1| r l
LO -IJ ll - 1) r. l 1I | - t . r - 1l '
l . r l
(4.40)
The characterscan be obtainedby sun-rmingdiagonalelements:
x ( E :\ 2 x(2Ct\: -1.
x 1 3 oI, : g ( 4 . 4t )
Rotations as a basis
Another one-dimensional representationof the group can be obtainedby taking
rotation about the :-axis (the C3 axis) as the obiect on
ivhich the symmetry
operationsact:
c?
n--3 R,, n.-S R,, R_i
R,3 -R., R. 5 -R,, R . a- R " (4.42)
In writing theserelations,we use the fact that reflection
reversesthe senseof
a rotation. The matrix representarionscorrespondingto this one-dimensional
basisare
DtttE) - l, D ( r ) ( C 3 -) l , D o r ( C r 2 :) l .
D ( r ) ( o ":) - 1 , D(r)1o]= '; -1, D(r)1o;;: _1. (4.43)
Theseone-dimensional matricescan be shownto multipry togetherjust like the
symmetry operationsof the c3, group. They form an
irreduc,iblerepresentation
of the group (becauseit is one-dimensional,it can not be further reduced).Note
that this one-dimensionalrepresentationis not identical
to that found abovefor
the 1sN-atom orbital,or the | function.
P o i n tg r o u p s y m m e t r v
133
Overview
\l'e ha'e found three distinct irreducibrerepresentations for the C;u slmmetr!
sroup;t$'o differentone-dimensional and one two-dimensional.ap..r.nrur,onr.
Arc'rhereanymore?An importanttheoremof grouptheoryshowsthatthenumber
of irreducible representations of a groupis equalto thenumberof classes.
Since
rhereare three classesof operation(i.e.. E. C3 and ou), we
have found alr the
irreduciblerepresentations of the C:u point group. Thereare no more.
Theirreduciblerepresentations havestandardnames;thefirst D( r)
lthat arrsing
from the 11and ls1' orbitals)is calledA1, the D( r) arisingfrom R,-is cailed
42
anilD1:)is ca'ed E (not to be confusedwith the rdentityoperation
t). we will
seeshortlywhereto find and identify thesenames.
Thus.our original D(a)representation was a combinationof two A1 represen-
tationsand one E representation. we say that D(a) is a direct ,u. ..pr...n,u_
tion:D(a):2Ar e E. A consequence is that the charactersof the cornbinatron
representation D(a) can be obtainedby adding the characters
of its constltuent
irreduciblerepresentations.
E 3o,
I I I
A. I I I
E -l 0
?A,a tr
1 E
I c]
[ r I r r r '] I
I : 4 + l - l * ' + r - ) - r ?
lEC. o. 2 6\
(4.44)
L '
2
)
T h e v e c t o r( l . l . l . r . l . r ) i s n o t n o r m a r i z e d ;
h e n c et o o b t a i nt h e c o m p o n e not f
{ 4 , 1 . 1 , 22, , 2 ) a l o n ga u n i tv e c t o irn t h e( 1 , 1 . 1 . 1 , 1 . 1 )
d i r e c t i o no,n em u s td i v i d e
by the norm of(l.l.l,l.r,l): this
n o r m i s 6 . T h e r e s u r ti s t h a t t h e r e d u c i b r e
representation containsr2/6 :2 A1 components. Anaiogousprojectionsin the
134 S o m e i m p o r t a n tt o o l so f t h e o r y
r"'hereg is the orderof the group and 1p(R) are the characters
of the fth irre-
duciblerepresentation.
Summary
The basicideaof symmetryanalysisis that any basisof orbitals.displacements.
rotations.etc. transformseither as one of the irreduciblerepresentations or as
a direct sum (reducible)representation.Symmetrytools are usedto first deter-
mine hou' the basistransformsunder action of the symmetry operations.They
are then usedto decomposethe resultantrepresentations into their irreducible
components.
4.2.4 Anotherexample
The2p orbitalsof nitrogen
For a function to transform accordingto a specificirreducible representation
meansthatthefunction,whenoperateduponby a point-groupsymmetryoperator,
yields a linear combinationof the functions that transform accordingto that
irreduciblerepresentation. For example,a 2p.-orbital(z is the C3 axis of NH3) on
the nitrogenatom belongsto the .A1representation becauseit yields unity times
itself when Ct, Cl, ou, o!, o,'.'orthe identity operationact on it. The factor of I
meansthat 2p, hasA1 symmetrysincethe characters (thenumberslistedopposite
.A1and below E, 2C3, and3ou in the C3ucharactertableshownin the Appendix)
of all six symmetryoperationsare I for the A1 irreduciblerepresentation.
The 2p_*and2p, orbitalson thenitrogenatomtransformasthe E representation
since C3, C?, o,, oi, oi' andthe identity operationmap2p, and 2p, amongone
P o i n tg r o u p s y m m e t r y
135
another.SPecificallY.
F A
E l ' p , l [r
= 2a0' - sin240
c' i l - p ' l [cos
L:P'J lsin 240' cos2210''
]
= o.l[zp.l
l[;;:] (4.47)
(4.18)
L2p.l lo'jLro_j
lzo I [- r o.l[,0,j
(4.4e)
L:P'J I o r]L:p,l
i *l +;l
T f
A short-cut
A short-cutdeviceexistsfor evaluatingthe traceofsuch representation
matrices
(thatis. fbr computingthe charaoers).The diagonalelements
of the representa-
tlon matncesare the proiectionsalong eachorbital of the effect
of the symme-
try operationacting on that orbital. For example,a diagonalelemenr
of the C3
matrix is the componentof Cs2p, along the 2p,, direction.More rigorously,
it is
I Z p :. C , 2 p , c. l t . T h u s .t h ec h a r a c i t e rtohfeC 3m a r r i xi sr h es u mo l J ' 2 p i Cj 2 p ,d r
and / 2pl C3 2p, dt . In general,the character of any ,y**"i.y
X operationS
canbe computedby allowing S to operateon eachorbital
@;,thenprojecting.!@i
along@;(i.e.,forming O: SO,rtt), andsummingrheseterms,
I
This setof characters is the sameas rrl) aboveand agreesu,ith thoseof the E
representation lor theCj..pointgroup.Hence.2p.,and2p,.belongto or transform
as the E representation. This is why (.r..1')is to the riglrtof the row of characters
for the E representation in the Cq, charactertable shou,nin the Appendix.In
similarfashion,the Cr, character table(pleasereferto this tablenow) statesthat
d,,-,,. and d., orbitalson nitrogentransformas E, as do d.,. and d,.--.but d-,
transformsas A1.
Earlier.u,econsidered in sornedetailhor.",the threeI sp1 orbitalson thehydrogen
atomstranslbrm.Repeating this analysisusingthe short-cutrulejust described
the traces(characters) of the 3 x 3 representatiorr rnltricesare cornputedby
a l l o w i n gE , 2 C t , a n d3 o , t o o p e r a t e
o n l s s , . l s p . . a n d 1 s s .a n dt h e nc o m p u t i n g
thecomponentof theresultingfunctionalongthe originalfunction.The resulting
c h a r a c t ear rsey . l E) = 3 . 2 { 6 . y : X t C i ) : 0 . a n d X ( 6 \ l : y t o , y : / l o , ' l :
l, in agreement u'ith whatwe calculated before.
Using the orthogonalityofcharacterstakenasvectors\\rccanreducethe above
setof characters to A1* E. Hence,we saythatour orbitalsetof threelss orbitals
forms a redLrcible representation consistingof the sum of A1 and E IRs. This
meansthat the tl.rreelss orbitals can be con.rbinedto yield one orbital of ,A1
symmetryand a pair that transfornraccordingto the E representation.
4 . 2 . 5P r o j e c t i o no p e r a t o r ss: y m m e t r y - a d a p t eldi n e a r
c o m b i n a t i o n so f a t o m i co r b i t a l s
To -eeneratethe aboveA'1and E symmetry-adapted orbitals,we make useof so-
called symmetryprojectionoperatorsP6 and Pa,. Theseoperatorsare given in
termsof linearcombinationsof productsof characterstimeselementarysymme-
trv oDerationsas follows:
^ s -
r', : )_ Xe(J15. r4 551
5'
P a ,l s s , : l s H , * l s 6 , * l s s , * l s p . 1 l s s , * l s s ,
- 2 ( l s y 1*, l s H .+ 1 s " , )- ( 45 7 )
dn'.
F
F:
P o i n tg r o u p s y m m e r r y
t5t
r'
i
s.hichis an (unnormalized)orbital havingAl symmetry.Clearly,this same@a,
by Ps, actingon lsg, or 1s11..
rYouldbe -generated Hence,only one Al orbital
Likewise,
exists.
P p l s 1-12, x l s g , - l S r r : - l s u , : d e . r . (4.5g)
*hich is one of the symmetry-adapted
orbitals havin_eE symmetry.The other E
orbitalcanbe obtainedby allowingpE to act on lsH, or lss.:
P s l s p , - 2 . l s g ,- l s s , - l s s . :
@E.;. (4.59)
P E 1 s 1 1=. 2 . l s l r , - l s H r l s u , = (4.60)
de.:.
It might seemas though three orbitalshaving E symrnetrywere generated.but
only two of theseare really independentfunctions.For example,
@E3 is related
to @r-r and dr : as follows:
Qt.::-ltr.t*Qr.z). ( 4 . 6r )
Thus,onry /s 1 and Q2.2afeneededto spanthe two-tlimensionalspace
of the E
representation. If we include@p. 1 in our setof orbitalsandrequireour orbitalsto
beorthogonal, thenwe mustfindnumbersa andb suchthat : aQp.:f
@i b@g.3 is
orthogonal to Qv.1:.f 0o0o.ttlt :0. A straightforwarcl
givesa : _b
calculation
or Qu: a( lss. - lsH,) which agreeswith what we usedearlier
to constructthe
?l functionsin terms of the Si functions.
4 . 2 . 6S u m m a r y
Letusnow summarizewhatwe havelearned.Any given
setofatomic orbitars{@;}.
atom-centered displacements or rotationscanbe usedasa basisfbr thesymmetry
operations of the point group of the molecule.The characters
X(S) bllung,ng
to the operationsS of this point group within any
suchspacecan be founclby
summingthe inte-urals o; so, rlt overall the atomic
I orbitals(or corresponding
unit vectoratomicdisplacements). The resultantcharactersrvill. in ,9eneral,
be
reducibleto a combinationof the characters of the irreduciblereprJsentations
xi(5'). To decomposethe characters x(s) of the reduciblerepresentation to a
sumof characters X;(S) of the irreciucible
representatron
x(S):Ir,x,(S). (4.62)
tt is necessary
to determinehow manytimes,n;. thei th irreducible
representatron
occursln the reduciblerepresentation.
The expression for n; is
,,=:I.x(s)xi(s), (.+.63
)
tn rvhich g is the order of thc point group -
the total number of symmetry
operatrons in the group(e.g.,g: 6 fbr C:").
138 S o m e i m p o r t a n t o o l so f t h e o r y
I
r ^ : - ( i . l + 2 . 0 . 1 + l . 'l l ) : l . (4.64)
l
/ r A :r .l '(-l)):0 (.1.6-51
6(3.1+2.0.1+-l
I
i r ,= - 1 1 . 1 - 1 . ( l . r l-r + 1 . l . { ) ) : I (.:1.66)
/,,: I x;(s)s ( 1 . 6 7|
I
n n ,= .1.12+2.1.0+3'1.2]=3. (4.68
)
6[1
I
no=
, '1.122
+.1.0+3.(-1).2]:1. (4.6e)
A[1
I
n E= 1 2+ 2 . ( . - l ) . 0 + 3 . 0 . 2 1 : 4 . (4.70)
6t1.2.
P o i n tg r o u p s y m m e t r v
139
4 . 2 . 7D i r e c tp r o d u c tr e p r e s e n t a t i o n s
Directproductsin N-electronwavefunctions
we now turn to the syrnmetryanalysisof orbital products.Such
knowledgeis
importantbecauseone is routinelyfacedwith constructingsl,mmetry_adapted
N-electronconfigurations that consistof productsof N individualspinorbitars,
onefor eachelectron. A point-groupsvrnmetryoperators. whenactingon strch
a
productof orbitals.gir,estheproductof s actin,eon eachof theindividualorbrtals
S ( t b t r b z e.)..d r ) = ( S d r) ( " t d :X . t @): . ( . ! @ r ( 4 . 7| )
)
For example'reflectionof an ,v-orbitalprotructthrou_sh the ou pranein NH-q
appliesthe reflqctionoperationto all ,V electr.ons.
Justas the individLrar orbitaisformed a basist.r actionof the poinr--rroup
operators, the configr-rrations (.V_orbital prociucts) fbrm a basisfor the actronof
thesesamepoint--eroup operotors.Hence.the variouselectr.nicconfiguratrons
canbe treatedastirnctions on rvhichs operates. andthemachineryillustrated ear_
lier for decornposing orbitarsymmetrycanthenbe usedto carrvout a svmnletry
analysisof confi-gLrrations.
Anothershorr-cutmakesthis taskeasier.Sincethe synrmetry-adapted
indi-
t i d u a l o r b i t asl { Q i .i - l . . . . . , t 1 }t r a n s f o r ranc c o r d i n g
t o i r r e d u c i b l ree p r e s e n -
tations,the representation r.natrices for the .v-termproductsshor.vn aboveconsist
of productsof the rnatricesberon-uing to cach@;.This rnatrixproductrs not a
simpleproductbut what is calleda directproduct.To
computethe characters of
thedirectprodtrctmatrices.onernultipliesthe
characters of the i6dividLral matri-
cesof the irreduciblerepresentations of'the,\ orbitalsthatappearin theelectron
configuration. The direct-product representation fbrmedb1,theorbitalproducts
cantherefbrebe s.u-rnmetry analyzed(reduced)usingthe sametoolsas we used
earlier.
Forerample.if oneis interested i. knowingthesvmmetryof an orbitalproduct
of the lorm alaier lnote: lower caseletters
are useclto denotethe symmetry
of electronicorbitals.whereascapitallerters
are reservedto label the o'crall
confi-quration's symmetry)in Clv symmetrl,.11.,. fbllowing procedureis used.For
140 S o m e i m p o r t a n t o o l so f t h e o r v
x ( s ) = f l x i ( S y= ( x . r , r S ) () xr n . ( . ! ) () x: r ( s ) ) : . (.72)
I n t h e s p e c i f i c a s ec o n s i d e r ehde r e ,
X ( E ) : 4 . X e C t ) : l . a n dy ( 3 o , ) : 6 .
Notice that the contributionsof any doubiv occupiednon_degenerate
orbitals
(e.g..ai a'<1aj) to thesedirectproducrchara*ers
x(s) areur.ritybecauseror a//
operators(xr(s))2 : I fbr any one-di'ensio'al irreducible
represenratron. As
a result,only the singly occupiedor degenerate orbiralsneedto be consrdered
whenfbrnrinqthecharacters ofthe reducibledirect-product representarion x (J ).
Forthis examplethisnreansthatthe direct-procluct characters canbe dererrrrrned
from the characters x6(s) of the two active(i.e..non-crosed-shell) orbitars_ the
e 2o r b i t a l sT. h a ti s . X ( ^ g ): X r . ( S ).
Xn(S).
Fror' the direct-product characters x(s) belongingto a particularelectronic
configuration te.g..a]aie:;. onemusrstill deconposethis list of characters into a
sumof irreducible characters. Fortheexampleat hand.thedirect-pr.ductcharac_
ters1(s)decomposeint. oneA1, ore 42. anclore E representation.
This means
that the e2 configuration containsAr. A:. and E symnrerryeiements.projection
operatorsanalo-qous to thoseintroducedearlier.fororbitalscan be usedto
lbrnr
slimmetry-adapted orbital productsfrom the individualbasisorbital products
of the fornr afaiell'ei'. *'here ,r and,nr' denotethe occupation(
l or 0) of'the
trvo degenerate orbitalse,, and e, . when dealingu,ith indistinguishabre
parrr-
clessuchas electrons. it is alsonecessary to furtherprojectthe resultingorbital
productsto makethem a'tisymmetric (for fernrrons)
or sy'metric (for bosons)
with respectto interchangeof any pair of particles.This
stepreducesthe set of
'v-electronstatesthat can arise.For example,in the above
e2configurationcase.
o n l y 3 A 2 ,l A r , a n d l E s t a t e sa r i s e t; h e t E , t A , . a n d r 4 2 p o s s i b i i i t - i e s
disappear
when the antisvmmetryprojector is applied.In contrast,
for an ele'l configura-
tion, all statesariseevenafter the wave functio' has
beenrnadeantisymmetric.
The stepsinvolvedin combiningthe point-groupsymmetry
rvith permutationar
antisynrmetryare illustratedin chapter l0 of my
eMIC text.In Appendix III
of Electronic Spectra and Electr.onic Structure of pol),atornic
Molecules,
G. Herzberg,Van NostrandReinholdCo., Ner.r,york,
N.y. (1966),the resolu_
tion ofdirect productsarnong'arious represenrations u,ithin 'rany point grcups
are tabulated.
I sl.r.Yg1,
x.,,rsl (4.74)
1,t,,:,*,,,, (4.7sl
where2,, and R,, are the chargeand position of the nth nucleusand r, is the
positionof the7th electron.Now,considerevaluating this inte-eral
fbr the singlet
n "->n* transitionin fbrmaldehyde. Here.the closed-shell groundstateis of I A 1
symmetryand the singletexcitedstate,rvhichinvolvespromotingan electron
from thenon-bonding b2 lonepair orbitalon the oxygeninto thez*b1 orbitalon
theCO moiety,is of rAz symmetry(b1x b: : a:). The directproductof tnet,rvo
rvavefunctionsvmmetriesthuscontainsonly a2symmetry.The threecomponents
(,r.1,.and;) of the dipoleoperatorhave.respectively. b1,b2,anda1 stmmetr1l.
Thus'the tripledirectproductsgive riseto the fbllorvingpossibilities:
a 2 X b l : f . (4.77)
a2xbl:!1 (4.78)
a : X a t = a l (4.7e)
1At S o m e i m p o r t a n t o o l so f t h e o r Y
4 . 2 . 8O v e r v i e w
We have shown hou,'to make a symmetrv decompositionof a basis of atornic
orbitals(or Cartesiandisplacements or orbital products)into irreduciblerep-
resentationcompouents.This tool is ver,vhelpful when studying spectroscopy
and when constructingthe orbital correlatioudiagrar.ns that form the basis of
the Woodward-Hoffnrannrules.We also learnedhor"'to form the direct-product
symmetries thatarisewhenconsideringconfiguratiotls consistingof productsof
symmetry-adapted spinorbitals.Finally.u,elearned directproductanaly-
hou'tl.re
sisallowsoneto determineu'hetheror not integralsof productsof u'avefunctrons
with operatorsbetweenthem vanish.This tool is of utmost importancein deter-
mining selectionrulesin spectroscopy and for determiningthe effectsof external
perturbations on the statesofthe speciesunderinvestigation.