0% found this document useful (0 votes)
39 views4 pages

Factors of Polynomials What'S More

This document summarizes key concepts from modules about factoring polynomials and working with polynomial equations: 1) It covers factoring techniques for polynomials including difference of squares, sum of cubes, quadratic trinomials, and perfect square trinomials. 2) Students learn how to factor polynomials like (b-c)(b^2 + bc + c^2) and (k+2m)(k^2 - 2km + 4m^2). 3) The document has assessments and additional activities involving solving polynomial equations and applying factoring to word problems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
39 views4 pages

Factors of Polynomials What'S More

This document summarizes key concepts from modules about factoring polynomials and working with polynomial equations: 1) It covers factoring techniques for polynomials including difference of squares, sum of cubes, quadratic trinomials, and perfect square trinomials. 2) Students learn how to factor polynomials like (b-c)(b^2 + bc + c^2) and (k+2m)(k^2 - 2km + 4m^2). 3) The document has assessments and additional activities involving solving polynomial equations and applying factoring to word problems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 4

Module 10

Factors of Polynomials

WHAT’S MORE ( y−5)( y 2 +5 y +25)


Difference of Cubes
1) 64 x 3 +27
WHAT I HAVE LEARNED
( 4 x )3 + ( 3 )3
( 4 x+ 3)(16 x 2−12 x+ 9) 1) Factor 8 x 3 y 2 z+12 x 2+ y z 2 +16 x y 3 z3
Sum of Cubes

2) Factor c 3−1
2) 25 x 2−70 x+ 49
( 5 x )2−[ ( 2 )( 5 x )( 7 ) ]+ (7 )2 ( c )3− ( 1 )3
(c−1)(c 2 +c +1)
( 5 x−7 )2
Perfect Square Trinomial
3) Factor c 3 +1
3) 8 x 3 y −50 y3 x ( c )3 + ( 1 )3
2 xy ( 4 x 2−25 y 2 ) ( c +1 ) ( c 2−c +1 )
2 xy ( 2 x−5 y )( 2 x +5 y )
Quadratic Trinomial 4) Factor 3 x 2 y 2−12

4) y 3−125 3 ( x 2 y 2−4 )
( y )3−( 5 )3 3 [ ( xy )2−( 2 )2 ]
3 ( xy−2 ) ( xy +2 )
WHAT I CAN DO

1) 2 x2 −3 x −20=( 2 x+ 5 )( x−4 )
2 x2 −3 x −20=[ ( 2 x )( x ) ] + [ ( 2 x ) (−4 ) ]+ [ (5 )( x ) ] + [ ( 5 ) (−4 ) ]
2 x2 −3 x −20=( 2 x 2 ) + (−8 x )+ (5 x ) + (−20 )
2 x2 −3 x −20=2 x 2−8 x+ 5 x−20
2 x2 −3 x −20=2 x 2−3 x−20
∴ ( 2 x +5 )∧( x−4 ) are factorsof 2 x2 −3 x −20

2) 100 x 2−20 xy+ y 2=( 10 x − y )( 10 x + y )


100 x 2−20 xy+ y 2=[ ( 10 x ) ( 10 x ) ] + [ ( 10 x )( y ) ] + [ (− y ) ( 10 x ) ] + [ (− y ) ( y ) ]
100 x 2−20 xy+ y 2=( 100 x2 ) + (10 xy ) + (−10 xy ) + (− y 2 )
100 x 2−20 xy+ y 2=100 x2 +10 xy−10 xy− y 2
100 x 2−20 xy+ y 2 ≠ 100 x 2− y 2
∴ ( 10 x− y )∧( 10 x + y ) are not factors of 100 x 2−20 xy+ y 2

3) b 3−c 3=( b−c ) ( b2 +bc +c 2 )


b 3−c 3={ [ ( b ) ( b 2) ]+ [ ( b ) ( bc ) ] + [ ( b ) ( c 2 ) ] }+ {[ (−c ) ( b2 ) ]+ [(−c )( bc ) ] + [ (−c ) ( c 2 ) ] }
b 3−c 3=[ ( b3 ) + ( b 2 c ) + ( b c 2) ]+ [ (−b 2 c ) + (−b c 2) + (−c 3 ) ]
b 3−c 3=( b 3 +b2 c+ b c 2 ) + (−b 2 c−b c 2−c 3 )
b 3−c 3=b 3+ b2 c+ b c 2−b2 c−b c2−c 2
b 3−c 3=b 3−c 3
∴ ( b−c )∧( b2 +bc +c 2 ) are factors of b3−c3

4) k 3+ 8 m3 =( k +2 m ) ( k 2−2 km+ 4 m2 )
k 3+ 8 m3 ={[ ( k ) ( k 2 ) ] + [ ( k )(−2 km ) ]+ [ ( k ) ( 4 m2) ] }+ { [ ( 2 m) ( k 2) ] + [ ( 2m ) (−2 km ) ] + [ ( 2m ) ( 4 m2 ) ] }
k 3+ 8 m3 =[ ( k 3 ) + ( −2 k 2 m ) + ( 4 k m 2 ) ] + [ ( 2 k 2 m ) + (−4 k m 2 ) + ( 8 m 3 ) ]
k 3+ 8 m3 =( k 3−2k 2 m+4 k m 2) + ( 2 k 2 m−4 k m2 +8 m 3 )
k 3+ 8 m3 =k 3−2 k 2 m+4 k m2 +2 k 2 m−4 k m2+ 8 m3
k 3+ 8 m3 =k 3 +8 m 3
∴ ( k +2 m )∧( k 2−2 km+ 4 m 2 ) are factors of k 3 +8 m 3
ASSESSMENT ( 12 x 2+28 x )− (15 x−35 )
1) B. 4 x ( 3 x+ 7 )−5 ( 3 x+ 7 )
( 4 x−5)(3 x+7)
2) A.
7 x 4 +35 x 3 10) C.
7 x 3 ( x+5) 3 x 3+5 x 2 +9 x+ 15
( 3 x 3+ 5 x 2 ) + ( 9 x +15 )
3) C. x 2 ( 3 x +5 ) +3 ( 3 x +5 )
4) D. ( x 2+ 3)(3 x +5)
18 x 4 +30 x3 + 42 x 2
6 x 2 ( 3 x 2 +5 x+7 )
5) A.
64 a3+ 27 b3
( 4 a )3 + ( 3 b )3 ADDITIONAL ACTIVITIES
( 4 a+3 b ) ( 16 a 2−12 ab+9 b2 )
Given:
6) A.  V =351
3
216 x −125  l=4+ w
( 6 x )3−( 5 )3  w=w
(6 x−5)(36 x 2+ 30 x +25) 1
 h= w
3
7) D.
5 x 3−45 x Solution:
5 x ( x 2−9 ) V =lwh
5 x [ ( x ) 2−( 3 )2 ]
5 x ( x−3 )( x +3 )
( 13 w )
351=( 4+ w ) ( w )

1
351=( 4+ w ) ( w ) 2
8) B. 3
x 2+ 40 x+ 400 4 1
351= w2 + w3
( x )2+ [ (2 )( x )( 20 ) ] + ( 20 )2 3 3
( x +20 ) ( x +20 )∨( x+ 20 )2 4 2 1 3
0= w + w −351
3 3
4 w + w3 −1053
9) A. 2

12 x2 +13 x−35 0=
3
12 x2 +28 x−15 x−35 0=4 w +w 3−1053
2
0=w 3+ 4 w 2−1053
Find h:
0=w 3−9 w 2+13 w2−1053 1
0=( w 3−9 w 2 ) + ( 13 w2 −1053 ) h= w
3
0=w 2 ( w−9 )+13 ( w2−81 ) 1
h= ( 9 )
0=w 2 ( w−9 )+13 ( w−9 )( w+9 ) 3
0=( w−9 ) [ w 2+13 ( w+9 ) ] 9
h=
0=( w−9 ) ( w 2+ 13 x +117 ) 3
h=3
Find w:
w−9=0 ∴ thedimensions of the cake pan should be
w=9 9 cm x 13 cm x 3 cm

Find l:
l=4+ w
l=4+ 9
l=13
Module 11
Illustrates Polynomial Equations

WHAT’S MORE

WHAT I HAVE LEARNED

WHAT I CAN DO

ASSESSMENT

ADDITIONAL ACTIVITIES

Module 12
Problems Involving Polynomials and Polynomial Equations

WHAT’S MORE

Activity 1. The Remains

Activity 2. Word Problem

WHAT I HAVE LEARNED

Activity. Do-Search-Learned

WHAT I CAN DO

Activity 1. Let’s Apply

Activity 2. Apply…Apply…

ASSESSMENT

ADDITIONAL ACTIVITIES

You might also like