c************************************************************
c Arrays
c **************************************************************
c This is a MATLAB and FORTRAN based program that computes the radiation
c characteristics of:
c
c I. Linear arrays (uniform & broadside nonuniform)
c II. Planar array (broadside uniform)
c III. Circular array (uniform distribution)
c
c The uniform and broadside nonuniform linear arrays have N elements
c placed equidistantly along the z-axis.
c
c Broadside planar uniform array has M x N elements placed equidistantly
c along the x and y axes
c
c Option I. Linear arrays
c
c Option A. Uniform
c
c **Choices: Array type
c 1. Broadside (maximum along = 90o)
c 2. Ordinary end-fire (maximum along = 0o or 180o)
c 3. Hansen-Woodyard end-fire (maximum along = 0o or 180o)
c 4. Scanning (maximum along = max)
c
c **Array input parameters
c 1. Number of elements
c 2. Spacing between the elements (in )
c 3. Direction of array maximum max (in degrees)
c
c ** Program output:
c 1. Normalized array factor
c 2. Directivity (dimensionless and in dB) using numerical
c integration of the array factor
c 3. Half-power beamwidth (in degrees) using an iterative method
c (for all maxima in the pattern)
c
c Option B. Nonuniform (broadside)
c
c **Choices: Array type
c 1. Binomial
c 2. Dolph-Tschebyscheff
c
c **Binomial array input parameters
c 1. Number of elements
c 2. Spacing between the elements
c
c **Dolph-Tschebyscheff array input parameters
c 1. Number of elements
c 2. Spacing between the elements (in )
c 3. Side lobe level (in positive dB; i.e., 30 db)
c
c **Program output:
c 1. Normalized excitation coefficients (an)
c 2. Normalized array factor
c 3. Directivity (in dB) using numerical integration of the array factor
c 4. Half-power beamwidth (in degrees) using an iterative method
c (for all maxima in the pattern)
c
c Option II. Planar array (broadside uniform)
c
c **Array input parameters
c 1. Number of array elements in x-direction
c 2. Spacing between elements in x-direction (in )
c 3. Number of array elements in y-direction
c 4. Spacing between elements in y-direction (in )
c 5. Maximum beam direction angle o
c 6. Maximum beam direction angle o
c 7. The azimuthal angle elevation (in degrees) at which the 2-D
c antenna pattern needs to be evaluated
c
c **Note
c Only the elevation antenna pattern is evaluated. This pattern
c ranges from =0o to =180o, whereas remains constant at
c
c elevation. If the pattern needs to be evaluated in the backside
c region of the 2-D array, then the program needs to be re-run for a
c new azimuthal angle 'elevation = elevation + 180o.
c
c **Program output:
c 1. Normalized array factor.
c 2. Directivity (in dB) using numerical integration of the array factor.
c 3. Half-power beamwidth (in degrees) for all maxima that occur
c in the elevation plane of the 2-D array pattern.
c
c Option III. Circular array (uniform)
c
c Option A. Array factor in exponential form
c Option B. Array factor in terms of Bessel functions
c
c **Choices: Array type
c 1. Scanning (maximum along = max & max)
c
c **Array input parameters
c 1. Number of elements
c 2. Loop radius (in )
c 3. Direction of array maximum (max & max)
c
c ** Program output:
c 1. Directivity (dimensionless and in dB)
c 2. Half-power beamwidth (in degrees)
c 3. 3-D normalized pattern
c 4. Normalized and absolute 2-D patterns in polar form (in dB)
c 5. Normalized and absolute 2-D patterns in linear form
c (dimensionless and in dB)
c 6. Principal and Principal + Residual patterns
c (using Bessel function form)
c************************************************************