100% found this document useful (2 votes)
8K views19 pages

Bengali Version Law of Demand

This is Bengali version of Law of Demand which will be help to initial level Bengali students

Uploaded by

moon m
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (2 votes)
8K views19 pages

Bengali Version Law of Demand

This is Bengali version of Law of Demand which will be help to initial level Bengali students

Uploaded by

moon m
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 19

Pvwn`v BDwbU

Demand 5
f‚wgKv
†µZv n‡jv A_©bxwZi `„wó‡KvY †_‡K GKwU ¸iæZ¡c~Y© A_©‰bwZK cÖwZwbwa ev wbhy³K| GKRb †µZv evRvi †_‡K
wK wK `ªe¨ µq K‡i, wK cwigvY `ªe¨ µq K‡i, Ges wK cwigvY `vg w`‡Z B”QzK _v‡K Zv †µZvi AvPiY †_‡K
†evaMg¨ nq| †Kvb `ª‡e¨i Rb¨ †fv³vi Pvwn`vi cwigvY wba©vi‡Y I †fv³vi AvPiY ¸iæZ¡c~Y©| mvaviYZ: GKwU
wbw`©ó mg‡q GKwU wbw`©ó `v‡g GKRb †µZv GKwU `ª‡e¨i †h cwigvY µq Ki‡Z Pvq Zvn‡jv H `ª‡e¨i Rb¨
†fv³vi Pvwn`v| µq Ki‡Z PvB‡jB Zv Pvwn`v nq bv| Pvwn`v ZLbB nq hLb †fv³vi H `ªe¨ †Kbvi B”Qv, mvg_©¨
I cwiKíbv _v‡K| g‡b Kiv hvK, GK e¨w³ Pvj µq Kivi Rb¨ evRv‡i †Mj| evRv‡i wM‡q †`Lj Pv‡ji cÖwZ
†KwRi `vg 30 UvKv| GLb hw` †m wZb †KwR Pvj µq Ki‡Z Pvq Z‡e Zvi Kv‡Q 90 UvKv ev Zvi †P‡q †ewk
_vK‡Z n‡e Ges H UvKv LiP Kivi gZ B”Qv _vK‡Z n‡e| Z‡eB ejv hv‡e, H e¨w³i Pv‡ji Pvwn`v n‡jv 3
†KwR| G Aa¨v‡q Pvwn`v, Pvwn`v wewa, Pvwn`v m~wP, Ges Pvwn`v †iLv wb‡q Av‡jvPbv Kiv n‡jv|

BDwbU mgvwßi mgq BDwbU mgvwßi m‡ev©”P mgq 6 w`b

GB BDwb‡Ui cvVmg~n
cvV 5.1: Pvwn`v I Pvwn`vi wba©viKmg~n
cvV 5.2: Pvwn`v m~wP I Pvwn`v †iLv
cvV 5.3: Pvwn`v A‡cÿK I Pvwn`v mgxKiY
cvV 5.4: Pvwn`vi cwigv‡Yi cwieZ©b I Pvwn`vi cwieZ©b
GBP.Gm.wm †cÖvMÖvg

cvV 5.1 Pvwn`v I Pvwn`vi wba©viKmg~n


Demand and Determinants of Demand

D‡Ïk¨
GB cvV †k‡l wkÿv_©xiv -
 Pvwn`vi aviYv e¨vL¨v Ki‡Z cvi‡eb;
 Pvwn`vi wba©viKmg~n eY©bv Ki‡Z cvi‡eb;
 Pvwn`v wewa I G wewai e¨wZµgmg~n e¨vL¨v Ki‡Z cvi‡ebG

g~jcvV-

Pvwn`vi aviYv (Concept of Demand)


mvavib A‡_©, †Kvb wKQz cvIqvi AvKv•Lv ev B”Qv‡K Pvwn`v e‡j| wKš‘y A_©bxwZ‡Z Pvwn`v ej‡Z †fv³vi †Kvb `ªe¨
ev †mev cvIqvi AvKv•Lvi mv‡_ mv‡_ Zv µ‡qi A_©, mvg_©©¨ Ges e¨q Kivi B”Qv _vK‡j Z‡eB H AvKv•Lv‡K
Pvwn`v e‡j| aiv hvK, iwng Avw_©Kfv‡e Am”Qj| †m GKwU †gvUi Mvox †Kbvi Rb¨ AvKv•Lv cªKvk Kij wKš‘y Zv
µq Kivi g‡Zv Avw_©K mvg_©¨ Zvi †bB| Kv‡RB, G‡ÿ‡Î iwn‡gi †gvUi Mvwoi Rb¨ AvKv•Lv‡K Pvwn`v ejv hv‡e
bv| Avevi GKRb abx A_P K…cY †jv‡Ki Mvox †Kbvi B”Qv‡K Pvwn`v ejv hv‡e bv| †Kbbv Zvi µqÿgZv
_vK‡jI A_© e¨q Kivi B”Qv †bB| myZivs A_©bxwZ‡Z Pvwn`v n‡Z n‡j wb‡¤œv³ wZbwU kZ© Aek¨B c~iYxq| kZ©
wZbwU n‡jv :
(1) †Kvb `ªe¨ cvIqvi AvKv•Lv;
(2) `ªe¨wU µq Kivi cÖ‡qvRbxq Avw_©K mvg_©¨; Ges
(3) cÖ‡qvRbxq A_© e¨q K‡i `ªe¨wU µq Kivi B”Qv|
myZivs Avgiv ej‡Z cvwi, †Kvb †µZv ev †fv³vi GKwU wbw`©ó `ªe¨ cvIqvi AvKv•Lv, Avw_©K mvg_©¨ ev µqÿgZv
Ges wbw`©ó `v‡g µq Kivi B”Qv _vK‡j Z‡e Zv‡KB A_©bxwZ‡Z Pvwn`v (Demand) e‡j|

Pvwn`vi wbav©iK mg~n (Determinants of Demand)


†Kvb `ª‡e¨i Pvwn`v Zvi `vgmn Ab¨vb¨ KZK¸‡jv Dcv`vb ev wba©vi‡Ki Dci wbf©ikxj| G¸‡jv‡K Pvwn`vi
wba©viK ejv nq| Pvwn`vi wbav©iK¸‡jvi wfwˇZ Pvwn`vi A‡cÿK (Demand function) cÖKvk Kiv hvq|

wb‡¤œ Pvwn`vi wba©viKmg~n e¨vL¨v Kiv n‡jv:


(1) `ª‡e¨i wbR¯^ `vg: `ª‡e¨i wbR¤^ `v‡gi Dci Zvi Pvwn`v wbf©i K‡i| mvaviYZ: †Kvb `ª‡e¨i `vg Kg‡j Zvi
Pvwn`v ev‡o Ges `vg evo‡j Zvi Pvwn`v K‡g|
(2) †fv³vi Avq: mvaviYZ: †fv³vi Avq Zvi Pvwn`v‡K we‡klfv‡e cÖfvweZ K‡i| †fv³vi Avq evo‡j Pvwn`v
e„w× cvq Ges Avq Kg‡j Pvwn`v n«vm cvq|
(3) m¤cwK©Z `ª‡e¨i `vg: †Kvb `ª‡e¨i Pvwn`v Zvi m¤úwK©Z `ªe¨ A_©vr cwieZ©K I cwic~iK `ª‡e¨i `v‡gi Dci
wbf©ikxj| †hgb- Kwdi `vg evo‡j Pv‡qi Pvwn`v e„w× cvq| Acic‡ÿ `ya wPwbi `vg e„w× ‡c‡j Pv‡qi
Pvwn`v n«vm cvq|
(4) evRv‡i †µZvi msL¨v: evRv‡i †µZvi msL¨vi Dci Pvwn`v A‡bKvs‡k wbf©ikxj| evRv‡i †µZvi msL¨v †ekx
n‡j †Kvb `ª‡e¨i Pvwn`v †ekx nq| †µZvi msL¨v Kg n‡j Pvwn`v Kg nq|

BDwbU cuvP c„ôv-50


A_©bxwZ 1g cÎ

(5) †µZvi iæwP, cQ›` I Af¨vm: †µZvi iæwP, cQ›` I Af¨v‡mi cwieZ©b n‡j `ª‡e¨i Pvwn`viI cwieZ©b n‡Z
cv‡i| †hgb- GK f`ªgwnjv Zvi †Q‡j‡ejvq e¨vÛmsMxZ cQ›` Ki‡Zb| †mmgq wZwb e¨vÛ msMx‡Zi wmwW
ev K¨v‡mU wKb‡Zb| cieZ©x‡Z eqm evovi mv‡_ mv‡_ iex›`ª msMx‡Zi cÖwZ Abyi³ n‡q c‡ob Ges iex›`ª
msMx‡Zi wmwW ev K¨v‡mU wKb‡Z _v‡Kb|
(6) mgq: `ª‡e¨i Pvwn`v mg‡qi DciI wbf©ikxj| me mgq `ª‡e¨i Pvwn`v mgvb _v‡K bv| kxZKv‡j †h me
`ª‡e¨i Pvwn`v _v‡K MÖx®§Kv‡j †m me `ª‡e¨i Pvwn`v _v‡K bv| †hgb- AvBmµxg, †mv‡qUvi, R¨v‡KU BZ¨vw`|
(7) weÁvcb: weÁvcb ev cÖPv‡ii DciI A‡bK mgq Pvwn`v wbf©ikxj| †fv³v‡K AvK…ó Ki‡Z GwU ¸iæZ¡c~Y©
f‚wgKv iv‡L|
(8) Rxeb hvÎvi gvb: †`‡ki gvby‡li Rxeb hvÎvi gv‡bi DciI Pvwn`v A‡bKvs‡k wbf©ikxj| mvaviYZ: †`‡ki
gvby‡li Rxeb hvÎvi gvb DbœZ n‡j †fvM¨ c‡Y¨I Pvwn`v e„w× cvq| Avi wecixZ Ae¯’vq n«vm cvq|
(9) `v‡gi fwel¨r MwZ: fwel¨‡Z †Kvb `ª‡e¨i `vg evovi Avk¼v _vK‡j eZ©gv‡b H `ª‡e¨i Pvwn`v bv K‡g eis
e„w× cvq| Avevi fwel¨‡Z eo ai‡bi `vg Kgvi m¤¢vebv _vK‡j H `ª‡e¨i eZ©gvb Pvwn`v K‡g hvq|
(10) †µZvi fwel¨r Avq: †µZvi fwel¨r Av‡qi cwieZ©b nIqvi m¤¢vebv _vK‡j Pvwn`vi cwieZ©b NU‡e|
†µZvi fwel¨r Avq K‡g hvIqvi m¤¢vebv _vK‡j eZ©gv‡b Pvwn`v n«vm cv‡e| Ab¨w`‡K, †µZvi fwel¨r Avq
e„w×i m¤¢vebv _vK‡j eZ©gv‡b Pvwn`v e„w× cv‡e|

Pvwn`v wewa (Law of Demand)


ÓAb¨vb¨ Ae¯’v AcwiewZ©ZÓ †_‡K †Kvb `ª‡e¨i evRvi `v‡gi mv‡_ Zvi Pvwn`vi cwigv‡Yi g‡a¨ wµqvMZ m¤úK© †h
wewai mvnv‡h¨ cÖKvk Kiv nq Zv‡K Pvwn`v wewa e‡j| ÓAb¨vb¨ Ae¯’v AcwiewZ©ZÓ A_©¨r †µZvi Avq, Ab¨vb¨
m¤úwK©Z `ª‡e¨i g~j¨, †µZvi iæwP, Af¨vm I cQ›`, †µZvi msL¨v Ges `ª‡e¨i fwel¨r `vg, cÖf…wZ AcwiewZ©Z
_vK‡j †Kvb `ª‡e¨i wbR¯^ `vg evo‡j Zvi Pvwn`v K‡g Ges `vg Kg‡j Pvwn`v ev‡o| A_©vr `ª‡e¨i Pvwn`vi cwigvY
Avi `v‡gi g‡a¨ wecixZ m¤úK© we`¨gvb| `ª‡e¨i Pvwn`v I wbR¯^ `v‡gi g‡a¨ GB wµqvMZ m¤úK©B n‡jv Pvwn`v
wewa|

g‡b Kwi, GK †KwR Pv‡ji `vg hLb 30 UvKv ZLb GK e¨w³ 3 †KwR Pvj µq K‡i| GLb hw` `vg †e‡o 32
UvKv nq ZLb †m 3 †KwR bv wK‡b 2 †KwR µq K‡i| Avevi `vg K‡g hw` 25 UvKv nq ZLb †m 4 †KwR µq
K‡i| myZivs †`Lv hv‡”Q Pv‡ji `vg †e‡o †M‡j Pvwn`v cwigvY K‡g hvq| Avevi `vg K‡g †M‡j Pvwn`vi cwigvY
†e‡o hvq| Gfv‡e `vg cwieZ©‡bi mv‡_ mv‡_ Pvwn`vi cwigv‡Yi cwieZ©b nq| A_©vr Pv‡ji `vg I Pvwn`vi
cwigv‡Yi g‡a¨ wecixZ m¤úK© we`¨gvb, GwUB n‡jv Pvwn`v wewa|

Pvwn`v wewai AbywgZ kZ© (Assumptions of the Law of Demand)


Pvwn`v wewa KZK¸‡jv AbywgZ k‡Z©i Dci wfwË K‡i cÖwZwôZ| G¸‡jv wb¤œiƒc:
(1) †µZv / †fv³v hyw³kxj|
(2) ‡µZvi iæwP I Af¨vm AcwiewZ©Z _vK‡e|
(3) †µZvi Avq AcwiewZ©Z _vK‡e|
(4) Ab¨vb¨ m¤úwK©Z `ª‡e¨i `v‡gi †Kvb cwieZ©b n‡e bv|
(5) evRv‡i †µZvi msL¨vi †Kvb cwieZ©b n‡e bv|
(6) c~Y© cÖwZ‡hvwMZvgyjK evRvi _vK‡e|

Pvwn`v wewai e¨wZµg (Exceptions of the Law of Demand)


mvaviYZ: Pvwn`v Abyhvqx `ª‡e¨i `vg I Pvwn`vi cwigv‡Yi ga¨Kvi m¤úK© wecixZgyLx| Z‡e wKQz wKQz †ÿ‡Î Gi
e¨wZµg jÿ¨ Kiv hvq| Pvwn`v wewai e¨wZµg wb¤œiƒc:

BDwbU cuvP c„ôv-51


GBP.Gm.wm †cÖvMÖvg

(1) Av‡qi cwieZ©b: †fvM¨c‡Y¨i `vg cwieZ©‡bi nvi A‡cÿv hw` †µZvi Avq cwieZ©‡bi nvi AwaK nq
Z‡e Pvwn`v wewa Kvh©Ki bvI n‡Z cv‡i| †hgb- Avq n«vm †c‡j †Kvb `ª‡e¨i `vg Kg‡jI †µZv Zv Kg
cwigv‡Y µq K‡i|
(2) Af¨vm I iæwPi cwieZ©b: gvby‡li Af¨vm I iæwPi cwieZ©b NU‡j wewawU Kvh©Ki nq bv| †hgb-
†fv³vi Af¨vm I iæwPi cwieZ©‡bi d‡j w`b w`b †Uwjwfkb, wd«R cÖf…wZi Rb¨ †jv‡Ki Pvwn`v e„w×
cv‡”Q| d‡j Gme `ª‡e¨i `vg e„w× cvIqv m‡Ë¡I Pvwn`v K‡g bv|
(3) weKí `ª‡e¨i `v‡gi cwieZ©b: †Kvb `ª‡e¨i `v‡gi cwieZ©‡bi mv‡_ mv‡_ hw` weKí `ª‡e¨i `v‡giI
Abyiƒc cwieZ©b N‡U, †m me `ª‡e¨i †ÿ‡Î Pvwn`v wewa Kvh©Ki nq bv| †hgb- Pv Gi `vg n«v‡mi mv‡_
mv‡_ hw` Kwd Gi `vg n«vm cvq, Z‡e Pv Gi Pvwn`v evo‡e bv|
(4) Ae¯’vMZ KviY: Ae¯’vMZ Kvi‡YI Pvwn`v wewai e¨wZµg n‡Z cv‡i| †Kvb GjvKvq K‡jiv gnvgvix
AvKv‡i aviY Ki‡j, gv‡Qi `vg Kg‡jI Pvwn`v e„w× cv‡e bv| kxZKv‡j AvBmµx‡gi `vg K‡g †M‡jI
Pvwn`v K‡g hvq|
(5) wbZ¨ cª‡qvRbxq `ª‡e¨i †ÿ‡Î: wbZ¨ cÖ‡qvRbxq `ª‡e¨i †ÿ‡Î `ª‡e¨i `vg cwieZ©‡bi d‡j Pvwn`vi †Zgb
†Kvb cwieZ©b nq bv| †hgb- jeb, Jla BZ¨vw`|
(6) fwel¨‡Z `vg cwieZ©‡bi m¤¢vebv: †Kvb mgq †fv³v hw` g‡b K‡i fwel¨‡Z `ª‡e¨i `vg Av‡iv e„w× cv‡e
Zvn‡j eZ©gv‡b H `ª‡e¨i `vg evo‡jI Pvwn`v e„w× cv‡e| Avevi fwel¨‡Z Av‡iv `vg Kgvi m¤¢vebv
_vK‡j H `ª‡e¨i eZ©gvb `vg Kg‡jI Pvwn`v K‡g hv‡e|
(7) †µZvi AÁZv: †µZv A‡bK mgq AÁZvi Kvi‡Y `ª‡e¨i ¸bv¸b wePvi Ki‡Z cv‡i bv| G‡ÿ‡Î `ª‡e¨i
`vg e„w× †c‡j `ªe¨wU A‡bK g~j¨evb g‡b K‡i `ªe¨wU †ekx cwigvY µq K‡i| G‡ÿ‡Î Pvwn`v wewa
Kvh©Ki nq bv|
(8) wejvmeûj `ªe¨: Ggb wKQz `ªe¨ Av‡Q †h ¸‡jvi `vg e„w× †c‡j †jv‡K mvgvwRK gh©v`v ev †MŠi‡ei
Avkvq †ekx cwigvY µq K‡i| †hgb- WvqgÛ, `vgx Mvox, †mŠwLb evwo BZ¨vw`| A_©bxwZwe` †fe‡jb
(Veblen) Gme `ªe¨‡K ÒevM¤^oc~Y© †fvMÓ wnmv‡e AvL¨vwqZ K‡i‡Qb| Gme `ª‡e¨i †ÿ‡Î Pvwn`v wewa
Kvh©Ki nq bv|
(9) wM‡db `ªe¨: Ggb wKQz wbK…ô `ªe¨ Av‡Q †hgb- †gvUv Pvj, †gvUv Kvco, cÖf…wZi †ÿ‡Î `vg evo‡j µ‡qi
cwigvY e„w× cvq Ges `vg Kg‡j µ‡qi cwigvY n«vm cvq| A_©bxwZwe` m¨vi ievU© wM‡db Gi
bvgvbymv‡i Gme e¨wZµgag©x `ªe¨‡K wM‡db `ªe¨ ejv nq|

cwieZ©K I cwic~iK `ªe¨ (Substitute good and Complement good)


Avgiv †`‡LwQ †h, †Kvb `ª‡e¨i Pvwn`v m¤úwK©Z `ª‡e¨i `vg ØvivI cÖfvweZ nq| m¤úwK©Z `ªe¨ `yB cÖKvi n‡Z cv‡i:
(1) cwieZ©K `ªe¨ I
(2) cwic~iK `ªe¨
cwieZ©K `ªe¨ (Substitute good)
hLb `ywU `ª‡e¨i g‡a¨ GKwUi cwie‡Z© Ab¨wU †fvM Kiv hvq hv †_‡K cÖvq mgvb Dc‡hvM jvf Kiv hvq ZLb `ªe¨
`ywUi GKwU‡K Ab¨wUi cwieZ©K `ªe¨ ejv nq| Ab¨fv‡e Avgiv ej‡Z cvwi, GKwU `ª‡e¨i `vg e„wׇZ hw` Ab¨
`ªe¨wUi Pvwn`v e„w× cvq Z‡e `ªe¨ `ywU‡K cwieZ©K `ªe¨ ejv nq| †hgb- Pv-Kwd, wPwb-¸o, Kjg-‡cwÝj BZ¨vw`
G‡K Ac‡ii cwieZ©K `ªe¨|

D`vniY: g‡b Kwi, wPwbi `vg hLb 40 UvKv ZLb GK e¨w³ gv‡m 2 †KwR ¸o µq K‡i| wKš‘y hw` wPwbi `vg
†e‡o 45 UvKv nq ZLb †m 2 †KwR ¸o bv µq K‡i 3 †KwR ¸o µq K‡i| A_©vr wPwbi `vg †e‡o hvIqvq †µZv
†ekx cwigvY ¸o wK‡b| GLv‡b †µZv ¸o‡K wPwbi cwieZ©K wnmv‡e e¨envi K‡i| GKBfv‡e hw` wPwbi `vg K‡g

BDwbU cuvP c„ôv-52


A_©bxwZ 1g cÎ

35 UvKv nq Z‡e †µZv 2 †KwR ¸‡oi cwie‡Z© 1 †KwR ¸o wK‡b| A_©vr wPwbi `vg K‡g hvIqvq ¸o Kg µq
K‡i| A_©vr GLv‡b wPwbi Pvwn`v ev‡o|
GLv‡b wPwb I ¸o G‡K Ac‡ii cwieZ©K `ªe¨| cwieZ©K `ª‡e¨i †ÿ‡Î GKwUi `v‡gi †ÿ‡Î Ab¨wUi Pvwn`vi
abvZœK m¤úK©| QK 5.1.1 G cwieZ©K `ywU `ª‡e¨i g‡a¨ GKwU `ª‡e¨i `v‡gi mv‡_ Ab¨ `ªe¨wUi Pvwn`vi m¤úK©
†`Lv‡bv n‡jvÑ
QK 5.1.1: wPwbi `vg I ¸‡oi Pvwn`vi m¤úK©
wPwbi `vg (UvKv) ¸‡oi Pvwn`v (†KwR)
35 1 †KwR
40 2 ‡KwR
45 3 †KwR

wPÎ 5.1.3 G f‚wg A‡ÿ X `ª‡e¨i (¸‡oi) Pvwn`v Ges j¤^ A‡ÿ Y `ª‡e¨i (wPwbi) `vg wb‡`©k Kiv n‡jv| wPÎ
†_‡K ‡`Lv hvq, wPwbi `vg †e‡o OP †_‡K OP n‡j ¸‡oi Pvwn`v †e‡o OX1 ‡_‡K OX2 nq| A_©vr wPwbi `vg I
1 2

Pvwn`vi g‡a¨ mgg~Lx m¤úK© weivR K‡i| ZwB wPwb I ¸o ci¯úi cwieZ©K `ªe¨|
Y
wPwbi `vgদাম

D
P2 b
িচিনর

P1 a

O X1 X2 X
েড়র ¸‡oiচািহদা
Pvwn`v
wPÎ 5.1.3: cwieZ©K `ª‡e¨i Pvwn`v †iLv|

(2) cwic~iK `ªe¨ (Complement good) t


`ywU `ª‡e¨i g‡a¨ GKwU `ª‡e¨i †fvM e„w× †c‡j hw` Ab¨ `ª‡e¨i †fvMI e„w× cvq Z‡e `ªe¨ `ywU‡K G‡K AciwUi
cwic~iK `ªe¨ ejv nq| Ab¨fv‡e Avgiv ej‡Z cvwi, GKwU `ª‡e¨i `vg e„w× †c‡j hw` Ab¨ `ªe¨wUi Pvwn`v n«vm cvq,
ZLb `ªe¨ `ywU‡K G‡K Ac‡ii cwic~iK `ªe¨ ejv nq| †hgb- Pv-wPwb, Kvwj-Kjg, †c‡Uªvj-Mvwo, RyZv-‡gvRv
BZ¨vw`|

cwic~iK `ª‡e¨i †ÿ‡Î m¤úwK©Z `ª‡e¨i g‡a¨ GKwUi `vg evo‡j Aci `ª‡e¨i Pvwn`v n«vm cvq| A_©vr G‡ÿ‡Î GKwU
`ª‡e¨i `vg I Ab¨ `ª‡e¨i Pvwn`vi g‡a¨ wecixZg~Lx m¤úK© we`¨gvb| †hgb- wPwbi `vg e„w× †c‡j Pv‡qi Pvwn`v
K‡g hv‡e| QK 5.1.2 G cwic~iK `ywU `ª‡e¨i GKwUi `v‡gi mv‡_ Ab¨wUi Pvwn`vi m¤úK© †`Lv‡bv n‡jvÑ

QK 5.1.2: wPwbi `v‡gi mv‡_ Pv‡qi Pvwn`vi m¤úK©


wPwbi `vg (‡KwR) Pv‡qi Pvwn`v (Kvc)
40 UvKv 100 Kvc
45 UvKv 80 Kvc
50 UvKv 70 Kvc

Dc‡ii QK †_‡K †`Lv hvq †h, wPwbi `vg I Pv‡qi Pvwn`vi g‡a¨ FbvZœK m¤úK© we`¨gvb|

BDwbU cuvP c„ôv-53


GBP.Gm.wm †cÖvMÖvg

wPÎ 5.1.4 G X A‡ÿ Pv‡qi Pvwn`vi cwigvY Ges Y A‡ÿ wPwbi `vg wb‡`©wkZ| wPÎ 5.1.4 †_‡K ‡`Lv hvq †h,
wPwbi `vg hLb OP ZLb Pv‡qi Pvwn`vi cwigvY OQ1 | GLb wPwbi `vg †e‡o OP2 n‡j Pv‡qi Pvwn`v n«vm †c‡q
1

OQ2 nq| G‡ÿ‡Î wPwbi `v‡gi mv‡_ Pv‡qi Pvwn`vi FbvZ¡K m¤úK© we`¨gvb| Avi GB FbvZœK m¤ú©‡Ki Kvi‡Y
Pvwn`v †iLv evg w`K †_‡K Wvb w`‡K wb¤œMvgx nq|
Y

P2

`vg
wPwbi দাম
P1
িচিনর
D
O Q1 Q2 X
চােয়র Pv‡qi Pvwn`v
চািহদা
wPÎ 5.1.4: cwic~iK `ª‡e¨i Pvwn`v †iLv|

mvims‡¶c
 A_©bxwZ‡Z Pvwn`v ej‡Z †fv³vi †Kvb `ªe¨ ev †mev cvIqvi AvKv•Lvi mv‡_ mv‡_ Zv µ‡qi A_©, mvg_©¨
Ges Zv e¨q Kivi B”Qv‡K eySvq|
 ÒAb¨vb¨ Ae¯’v AcwiewZ©ZÓ _vK‡j Pvwn`v wewa‡Z `ª‡e¨i Pvwn`vi cwigv‡Yi mv‡_ H `ª‡e¨i `v‡gi
wecixZ m¤úK© cÖKvk K‡i|

cv‡VvËi g~j¨vqb-5.1
eûwbe©vPwb cÖkœ
1| A_©bxwZ‡Z Pvwn`v ej‡Z eySvq -
i. ‡Kvb `ªe¨ cvIqvi AvKv•Lv _vK‡Z n‡e
ii. `ªe¨wU µ‡qi mvg_©¨ _vK‡Z n‡e
iii. cÖ‡qvRbxq A_© e¨q Kivi B”Qv _vK‡Z n‡e
wb‡Pi †KvbwU mZ¨?
(K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii

2| Pvwn`v wewa‡Z cÖKvk cvq-


i. `vg I Pvwn`vi g‡a¨ abvZœK m¤úK©
ii. `vg I Pvwn`vi g‡a¨ wecixZ m¤úK©
iii. `vg I Pvwn`vi g‡a¨ †Kvb m¤úK© bvB
wb‡Pi †KvbwU mZ¨?
(K) i (L) ii (M) ii I iii (N) i, ii I iii

3| A_©bxwZ‡Z Pvwn`vi Dcv`vb KqwU?


(K) `ywU (L) wZbwU (M) PviwU (N) cvuPwU
4| Pvwn`v wewa Abyhvqx `v‡gi mv‡_ Pvwn`vi m¤úK© wKiƒc?
(K) abvZœK (L) FbvZœK (M) w¯’i (N) †Kvb m¤úK© bvB

BDwbU cuvP c„ôv-54


A_©bxwZ 1g cÎ

5| Kjg I †cwÝj `ywU cwieZ©K `ªe¨| GB `ywU `ª‡e¨i `vg I Pvwn`vi g‡a¨ we`¨gvb m¤ú‡K©i †cÖwÿ‡Z G‡`i
Pvwn`v †iLvi AvK…wZ †Kgb nq?
(K) evg †_‡K Wvb w`‡K wb¤œMvgx (L) evg †_‡K Wvb w`‡K DaŸ©Mvgx
(M) f‚wg A‡ÿi mgvšÍivj (N) j¤^ A‡ÿi mgvšÍivj
wb‡Pi DÏxcKwU co–b Ges 6 I 7 bs cÖ‡kœi DËi w`b|
iwng mv‡ne GKRb ¯‹zj wkÿK| ¯^vfvweK Ae¯’vq evRv‡i hLb ‡e¸‡bi `vg cÖwZ †KwR 15 UvKv ZLb wZwb cÖwZ
mßv‡n 3 †KwR †e¸b µq K‡ib| †e¸‡bi `vg †e‡o †M‡j wZwb †e¸b †Kbv Kwg‡q †`b| Avevi †e¸‡bi `vg K‡g
†M‡j ‡e¸b †Kbv evwo‡q †`b|
6| DÏxc‡K ewY©Z Z_¨ †Kvb wewa cÖKvk K‡i?
(K) Pvwn`v wewa (L) †hvMvb wewa (M) Drcv`K wewa (N) Dc‡hvM wewa
7| `vg I Pvwn`vi g‡a¨ m¤úK© n‡jv-
i. mgg~Lx
ii. wecixZg~Lx
iii. FbvZœK
wb‡Pi †KvbwU mwVK?
(K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii
8| Kwig GKRb w`bgRyi| Zvi K‡jR co–qv †Q‡j covïbvi Rb¨ GKwU j¨vcUc wK‡b †`Iqvi Rb¨ evev‡K
Aby‡iva Ki‡jv| A_©bxwZi `„wó†Kvb ‡_‡K j¨vcUc µ‡qi B”Qv Pvwn`v n‡e bv-
(K) Avw_©K mvg_©¨ †bB
(L) A_© e¨‡qi B”Qv †bB
(M) AvKv•Lv h_vh_ bq
(N) wcZvi K…cYZv
9| Pvwn`vi Dci cÖfve we¯ÍviKvix Dcv`vb¸‡jv :
i. ‡fv³vi Avq
ii. `v‡gi fwel¨r MwZ
iii. w¯’wZ¯’vcKZv
wb‡Pi †KvbwU mwVK?
(K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii

BDwbU cuvP c„ôv-55


GBP.Gm.wm †cÖvMÖvg

cvV 5.2 Pvwn`v m~wP I Pvwn`v †iLv


Demand Schedule and Demand Curve

D‡Ïk¨
GB cvV †k‡l wkÿv_©xiv-
 Pvwn`v wewa‡K m~wP Ges †iLvwP‡Î iƒc w`‡q Zv e¨vL¨v Ki‡Z cvi‡eb;
 Pvwn`v ‡iLv evg ‡_‡K Wvb w`‡K wb¤œMvgx nIqvi KviY e¨vL¨v Ki‡Z cvi‡eb;
 †fv³vi Pvwn`v †iLv †_‡K evRvi Pvwn`v †iLv A¼b Ki‡Z cvi‡eb|

g~jcvV-

Pvwn`v m~wP (Demand Schedule)


Ab¨vb¨ Ae¯’v AcwiewZ©Z ‡i‡L †Kvb †fv³v wbw`©ó mg‡q wewfbœ `v‡g GKwU `ª‡e¨i †h cwigvY µq K‡i Zvi
msL¨vZœK cÖKvk ev ZvwjKv‡K Pvwn`v m~wP (Demand Schedule) e‡j| †fv³v mvaviYZ: Kg `v‡g GKwU `ªe¨ †ekx
cwigv‡Y Ges †ekx `v‡g H `ªe¨wU Kg cwigv‡Y µq K‡i| Ab¨ K_vq Avgiv ej‡Z cvwi, Pvwn`v m~wP n‡jv Pvwn`v
wewai MvwYwZK cÖKvk|
QK 5.2.1: Pvwn`v m~wP
Pv‡ji `vg (UvKv cÖwZ †KwR) Pvwn`vi cwigvY (†KwR)
30 15
28 20
26 25
24 30

QK 5.2.1 †_‡K †`Lv hvq †h, hLb cÖwZ †KwR Pv‡ji `vg 30 UvKv ZLb Pv‡ji Pvwn`vi cwigvY 15 †KwR, `vg
K‡g hLb 28 UvKv nq, ZLb Pvwn`v e„w× †c‡q 20 †KwR n‡q‡Q| Pv‡ji `vg Av‡iv K‡g hLb 26 UvKv nq ZLb
Pvwn`vi cwigvY n‡jv 25 †KwR Ges `vg hLb K‡g 24 UvKv nq ZLb Pvwn`vi cwigvY n‡jv 30 †KwR|

Gfv‡e †Kvb †fv³v ev †µZv wewfbœ `v‡g GKwU `ª‡e¨i †h cwigvY µq K‡i Zvi ZvwjKv‡K Pvwn`v m~wP e‡j|

wkÿv_©xi KvR
kwdK mv‡ne 100 UvKv wb‡q evRv‡i †M‡jb| wZwb evox †_‡K gbw¯’i K‡iwQ‡jb †h Avjyi `vg hw` cÖwZ
†KwR 10 UvKv nq Z‡e wZwb 5 †KwR Avjy wKb‡eb| wKš‘y evRv‡i wM‡q †`L‡jb Avjyi `vg cÖwZ †KwR
11 UvKv| GgZve¯’vq wZwb Avjy bv wK‡b evox‡Z wd‡i G‡jb| Dc‡iv³ DÏxcKwU wK Pvwn`v wewa‡K
mg_©b K‡i? wb‡Ri gZvgZ cÖ`vb Kiæb|

BDwbU cuvP c„ôv-56


A_©bxwZ 1g cÎ

†fv³vi Pvwn`v †iLv (Demand Curve)


†Kvb ‡fv³v †Kvb wbw`©ó mg‡q wewfbœ `v‡g †Kvb GKwU `ª‡e¨i †h cwigvY µq K‡i Zv hLb †iLvwP‡Îi mvnv‡h¨
cÖKvk Kiv nq ZLb Zv‡K Pvwn`v †iLv ejv nq| Pvwn`v †iLv n‡jv Pvwn`v m~wPi R¨vwgwZK cÖKvk| Pvwn`v †iLvi
cªwZwU we›`y GKwU wbw`©ó `v‡g wbw`©ó cwigvY `ª‡e¨i Pvwn`v wb‡`©k K‡i|

wb‡¤œ Pvwn`v †iLvi GKwU D`vniY †`qv n‡jv :


Y

A
30
30
28 B
দাম
Pv‡ji `vg

26 C
26
চােলর

24
24 D
D
D
O 15
15 20
20 25
25 30
30 X
Pv‡ji Pvwn`vi cwigvY
চািহদা ( কিজ(†KwR) )

wPÎ 5.2.1: Pvwn`v †iLv

wPÎ 5.2.1 G X A‡ÿ Pv‡ji Pvwn`vi cwigvY Ges Y A‡ÿ Pv‡ji `v‡gi cwigvY wb‡`©k Kiv nq| Pvwn`v m~wP‡Z
ewY©Z wewfbœ `v‡g Pv‡ji Pvwn`vi †h wewfbœ cwigvY cvIqv hvq Zvi †cÖwÿ‡Z cªvß we›`y¸‡jv A, B, C, I D mshy³
K‡i Pvwn`v †iLv cvIqv hvq| ‡hgb- A we›`y‡Z Pv‡ji `vg hLb 30 UvKv, ZLb Pv‡ji Pvwn`vi cwigvY 15 †KwR,
†Zgwb D we›`y‡Z Pv‡ji `vg K‡g hLb 24 UvKv nq ZLb Pv‡ji Pvwn`vi cwigvY †e‡o 30 †KwR nq| myZivs A,
B, C, I D we›`ymg~‡ni mgš^‡q cÖvß †iLvB n‡jv Pvwn`v †iLv| GLv‡b GKwU welq jÿ¨Yxq †h, DD' Pvwn`v ‡iLvwU
evgw`K †_‡K Wvbw`‡K wb¤œMvgx| `v‡gi mv‡_ Pvwn`vi wecixZ m¤ú‡K©i Kvi‡YB DD' Pvwn`v †iLvwU Wvbw`‡K
wb¤œMvgx n‡q‡Q| myZivs Pvwn`v m~wP †_‡K Avgiv mn‡RB Pvwn`v †iLv AvuK‡Z cvwi|

†fv³vi Pvwn`v †iLv †_‡K evRvi Pvwn`v †iLv AsKb (Derivation of Market Demand Curve from
Individual or Consumer Demend Curve)
wewfbœ †fv³vi Pvwn`v ‡hvM K‡i evRvi Pvwn`v cvIqv hvq| Ab¨ K_vq, `ª‡e¨i cÖwZwU g~‡j¨ wewfbœ †fv³v †h
cwigvb µq K‡i †m¸‡jv †hvM Ki‡j `ª‡e¨i evRvi Pvwn`v cvIqv hvq|

P0 P0

D1 D2 DM

Q0M Q1M
wPÎ 5.2.2: evRvi Pvwn`v †iLv

BDwbU cuvP c„ôv-57


GBP.Gm.wm †cÖvMÖvg

g‡b Kwi evRv‡i X `ª‡e¨i n msL¨K †fv³v Av‡Q| Av‡jvPbvi myweav‡_© awi evRv‡i gvÎ `yBRb †fv³v
Av‡Q| wPÎ 5.2.2 G D1 Ges D2 Pvwn`v ‡iLv Øviv cÖ_g I wØZxq †fv³vi Pvwn`v cÖKvk K‡i| wP‡Î †`Lv
hvq, P0 `v‡g 1g I 2q †fv³vi Pvwn`vi cwigvb h_vµ‡g Q01 Ges Q02 | G‡ÿ‡Î evRvi Pvwn`vi cwivgvb
n‡e Q0M  Q01  Q 20 | Avevi `ª‡e¨i g~j¨ P0 †_‡K K‡g P1 n‡j 1g I 2q †fv³vi Pvwn`vi cwigvb
h_vµ‡g Q11 G Ges Q12 nq| G‡ÿ‡Î evRvi Pvwn`vi cwigvb n‡e Q1M  Q11  Q12 | Gfv‡e wewfbœ g~‡j¨
GB `yBRb †fv³vi Pvwn`vi cwigvb †hvM K‡i evRvi Pvwn`v †iLv DM AsKb Kiv hvq|

Pvwn`v †iLv evg †_‡K Wv‡b wb¤œMvgx nIqvi KviY (Causes of a Demand Curve to be Downward)
Pvwn`v †iLv wb¤œMvgx nIqvi cÖavb KviY n‡jv `ª‡e¨i `vg I Pvwn`vi cwigv‡Yi g‡a¨ wecixZgyLx ev FbvZœK
m¤úK©| Pvwn`v †iLvi Wvb w`‡K wb¤œMvgx nIqvi KviY¸‡jv wb¤œiƒct
(1) µgn«vmgvb cÖvwšÍK Dc‡hvM wewa (Law of diminishing Marginal Utility)
Pvwn`v †iLvi Wvbw`‡K wb¤œMvgxZvi wcQ‡b µgn«vmgvb cÖvwšÍK Dc‡hvM wewa KvR K‡i| mvaviYZ: `ª‡e¨i †fvM
µgvMZ evo‡j `ª‡e¨i cÖvwšÍK GKK †fvM †_‡K cÖvß Dc‡hvM K‡g| `vg I cÖvwšÍK Dc‡hvM hLb mgvb nq,
ZLb †fv³vi Dc‡hvM me©vwaK nq| †Kvb `ª‡e¨i `vg Kg‡j cÖvwšÍK Dc‡hvM `v‡gi Zzjbvq †ewk n‡q c‡o|
ZLb `ªe¨wU AwaK cwigvY µq Ki‡j Zvi cÖvwšÍK Dc‡hvM n«vm †c‡q Zv Avevi `v‡gi mgvb nq| Gfv‡e
µgn«vmgvb cÖvwšÍK Dc‡hvM wewa †_‡K ejv hvq, `ª‡e¨i `vg Kg‡j Pvwn`vi cwigvY †ewk Ges `vg †ekx n‡j
Pvwn`vi cwigvY Kg nq| `v‡gi mv‡_ Pvwn`vi GB wecixZ m¤ú‡K©i Kvi‡Y Pvwn`v †iLv Wvbw`‡K wb¤œMvgx nq|
(2) cÖK…Z Avq cwieZ©‡bi cÖfve (Effects of Real income changes)
‡Kvb `ª‡e¨i `vg Kg‡j mvaviYZ: †fv³vi cÖK…Z Avq (Real income) ev µqÿgZv ev‡o| A_©vr †Kvb `ª‡e¨i
`vg Kg‡j Kg cwigvY A‡_© †µZv GKB cwigvY `ªe¨ µq Ki‡Z cv‡i| G‡ÿ‡Î GKB cwigvY A_© w`‡q †µZv
Av‡Mi †P‡q ‡ewk cwigvY `ªe¨ µq Ki‡Z cvi‡e| d‡j `vg Kgvi Kvi‡Y Pvwn`v ev‡o| Avevi `ª‡e¨i `vg
evo‡j †fv³vi cÖK…Z Avq K‡g hvq| GgZve¯’vq †µZv Zvi A_© w`‡q Kg cwigvY `ªe¨ µq Ki‡Z cv‡i e‡j
Pvwn`v K‡g hvq| myZivs cÖK…Z Avq cÖfv‡ei `iæb Pvwn`v †iLv Wvbw`‡K wb¤œMvgx nq|
(3) cwieZ©K cÖfve (Substitution Effect)
m¤úwK©Z `ª‡e¨i `vg w¯’i _vK‡j GKwU `ª‡e¨i `vg Kg‡j m¤úwK©Z Ab¨ `ª‡e¨i †fvM Kwg‡q †fv³v †mB
cwigvY `ªe¨ †ekx cwigvY µq K‡i| †hgb - wPwb I ¸o| wPwbi `vg w¯’i _vKv Ae¯’vq hw` ¸‡oi `vg K‡g
hvq Z‡e †fv³v wPwbi e¨envi Kwg‡q ¸‡oi e¨envi †ekx Ki‡e| A_©vr ¸‡oi `vg Kgvq ¸‡oi Pvwn`v e„w×
cv‡e| Gfv‡e `ª‡e¨i `vg I Pvwn`vi g‡a¨ wecixZ m¤úK© cÖwZwôZ nq| d‡j Pvwn`v †iLv Wvbw`‡K wb¤œMvgx
nq|

wkÿv_©xi KvR
1) Pvj I Wvqg‡Ûi m¤¢ve¨ Pvwn`v †iLv †Kgb n‡Z cv‡i Zv A¼b K‡i e¨vL¨v Kiæb|
2) Pvwn`v m~wP I Pvwn`v †iLvi g‡a¨ cÖavb wZbwU cv_©K¨ D‡jøL Kiæb|
3) KvíwbK Pvwn`v †iLv AsKb Kiæb|
(K) Pv‡qi `vg I Kwdi Pvwn`vi †ÿ‡Î
(L) Kvwji `vg I Kj‡gi Pvwn`vi †ÿ‡Î

BDwbU cuvP c„ôv-58


A_©bxwZ 1g cÎ

mvims‡¶c
 ÒAb¨vb¨ Ae¯’v AcwiewZ©ZÓ we‡ePbv K‡i `ª‡e¨i Pvwn`vi cwigv‡Yi mv‡_ H `ª‡e¨i `v‡gi m¤úK© †h m~wPi
gva¨‡g cÖKvk Kiv nq Zv‡K Pvwn`v m~wP Ges †h †iLvi mvn‡h¨ cÖKvk Kiv nq Zv‡K Pvwn`v †iLv e‡j|
 Pvwn`vi cwigv‡Yi cwieZ©b ej‡Z GKB Pvwn`v †iLv eivei Ae¯’vbMZ cwieZ©b eySvq G‡ÿ‡Î `ª‡e¨i
Pvwn`v ïaygvÎ `vg Øviv cÖfvweZ nq| Acic‡ÿ, Pvwn`vi cwieZ©b ej‡Z Pvwn`v †iLvi ¯’vbvšÍi ev Pvwn`vi
n«vm ev e„w× eySvq| G‡ÿ‡Î `ª‡e¨i wbR¯^ `vg Qvov Ab¨vb¨ wba©viKmg~n †hgb †fv³vi Avq m¤úwK©Z
`ª‡e¨i `vg, fwel¨r `ªe¨g~j¨, †µZvi msL¨v BZ¨vw` Øviv cÖfvweZ nq|
 mvaviYZ: `ª‡e¨i Pvwn`vi cwigv‡Yi mv‡_ H `ª‡e¨i `v‡gi wecixZ m¤úK© nIqvi Kvi‡Y Pvwn`v †iLv
wb¤œMvgx nq|

cv‡VvËi g~j¨vqb-5.2
eûwbe©vPwb cÖkœ
1| Pvwn`v †iLvi AvK…wZ wK iƒc?
(K) evg w`K †_‡K Wvb w`‡K wb¤œMvgx
(L) evg w`K †_‡K Wvb w`‡K DaŸ©Mvgx
(M) f‚wg A‡ÿi mgvšÍivj
(N) j¤^ A‡ÿi mgvšÍivj
2| Pvwn`v †iLv evg †_‡K Wvbw`‡K wb¤œMvgx KviYÑ
i. cwic~iK `ª‡e¨i cÖfve
ii. µgn«vmgvb cÖvwšÍK Dc‡hvM wewa
iii. cwieZ©K cÖfve
wb‡Pi †KvbwU mwVK?
(K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii

BDwbU cuvP c„ôv-59


GBP.Gm.wm †cÖvMÖvg

cvV 5.3 Pvwn`v A‡cÿK I Pvwn`v mgxKiY


Demand Function & Demand Equation

D‡Ïk¨
GB cvV †k‡l wkÿv_©xiv -
 Pvwn`v A‡cÿK MVb K‡i Zv Pvwn`v mgxKi‡Y iƒc w`‡Z cvi‡eb;
 Pvwn`v mgxKiY †_‡K †fv³vi Pvwn`v †iLv A¼b Ki‡Z cvi‡eb|

g~jcvV-

Pvwn`v A‡cÿK wK? (What is Demand Function?)


Pvwn`v wewa Abyhvqx, `v‡gi Dci Pvwn`v wbf©ikxj| G‡ÿ‡Î `ª‡e¨i `vg (P) ¯^vaxb PjK Ges `ª‡e¨i Pvwn`vi cwigvY
(QD) n‡jv Aaxb ev wbf©ikxj PjK| `ª‡e¨i `vg I Pvwn`vi g‡a¨ wbf©ikxiZvi wµqvMZ m¤úK©‡K MvwYwZKfv‡e
mgxKi‡Yi gva¨‡g cÖKvk Kiv‡K Pvwn`v A‡cÿK e‡j| Pvwn`v A‡cÿK‡K wb¤œiƒcfv‡e cÖKvk Kiv hvq|
QD  f (P)

GLv‡b, Q D  Pvwn`vi cwigvY


P  `ª‡e¨i `vg
f  A‡cÿK hv `ªe¨ I `v‡gi g‡a¨ wµqvMZ m¤úK©
Z‡e †Kvb `ª‡e¨i Pvwn`v †KejgvÎ H `ª‡e¨i `v‡gi Dci wbf©i K‡i bv| eis `ªe¨wUi Pvwn`v H `ª‡e¨i `vg QvovI
‡fv³vi Avq, m¤úwK©Z `ª‡e¨i `vg, †fv³vi iæwP BZ¨vw`i DciI wbf©i K‡i|
G‡ÿ‡Î Pvwn`v A‡cÿK wb¤œiƒct
QD  f ( Px ,Y ,T , P1 , P2 ,...Pn )
GLv‡b, QD  X `ª‡e¨i Pvwn`vi cwigvY
Px  X `ª‡e¨i `vg
Y  ‡fv³vi Avq
T  ‡fv³vi iæwP/cQ›`
P1 , P2 ,...Pn  X `ª‡e¨i mv‡_ m¤úwK©Z cwieZ©K I cwic~iK `ª‡e¨i `vg
f  A‡cÿK
ms‡ÿ‡c Avgiv ej‡Z cvwi, Pvwn`vi cwigv‡Yi Dci cÖfve we¯ÍviKvix Dcv`vb mg~‡ni mv‡_ Pvwn`vi cwigv‡Yi
g‡a¨ †h wµqvMZ m¤úK© MvwYwZK mgxKi‡Yi gva¨‡g cÖKvk Kiv nq Zv‡K ÓPvwn`v A‡cÿKÓ ejv nq|

Pvwn`v mgxKiY MVb (Formation of Demand Equation)


‡Kvb `ª‡e¨i `v‡gi mv‡_ Pvwn`vi cwigv‡bi m¤ú‡K©i gvÎv I cÖK…wZ †h mgxKi‡Yi mvnv‡h¨ cÖKvk Kiv nq Zv‡K
Pvwn`v mgxKiYb e‡j| `ª‡e¨i `vg I Pvwn`vi cwigv‡bi g‡a¨ †h wbf©ikxjZvi m¤úK© i‡q‡Q Zv hLb †Kvb
mgxKi‡Yi gva¨‡g cÖKvk Kiv nq ZLb Zv‡K Pvwn`v mgxKiY (Demand Equation) e‡j|
Pvwn`v mgxKiY wb¤œiƒc :
QD  a  bP

BDwbU cuvP c„ôv-60


A_©bxwZ 1g cÎ

GLv‡b, QD = Pvwn`vi cwigvY


P = `ª‡e¨i `vg
a = civwgwZ (†Q`K)
b = civwgwZ (Xvj)| Xvj GLv‡b g~j¨ cwieZ©‡bi Kvi‡Y Pvwn`vi cwieZ©‡bi nvi †`Lvq|
GB Pvwn`v mgxKi‡Y D n‡jv `ª‡e¨i Pvwn`v hv Aaxb/ wbf©ikxj PjK Ges `ª‡e¨i `vg (P) n‡jv ¯^vaxb PjK|
hw` †Q`K a = 10 Ges Xvj b = 2 nq DcwiD³ Pvwn`v mgxKiY‡K wb¤œiƒ‡c cÖKvk Kiv hvq|
D = 10 – 2 P

GwU n‡jv Pvwn`v mgxKiY|

Pvwn`v mgxKiY †_‡K †fv³vi Pvwn`v †iLv AsKb (Derivation of a Consumer Demand Curve from
Demand Equation)
`ª‡e¨i `v‡gi mv‡_ Pvwn`vi cwigv‡Yi m¤úK© †h mgxKi‡Yi gva¨‡g cÖKvk Kiv nq Zv‡K Pvwn`v mgxKiY e‡j|
mvaviYZ: wb‡¤œv³fv‡e Pvwn`v mgxKiY cÖKvk Kiv nq|
QD  a  bP
GLv‡b, QD  Pvwn`vi cwigvc
P  `ª‡e¨i `vg
a  aªæeK hv k~Y¨ `v‡g Pvwn`vi cwigvY cÖKvk K‡i
b  aªæeK hv Pvwn`v †iLvi Xvj cÖKvk K‡i

D`vniY : aiv hvK, `ª‡e¨i Pvwn`v mgxKiY


QD  10  2 P
‡hLv‡b, QD  `ª‡e¨i Pvwn`vi cwigvY
10 n‡jv aªæeK Ges 2 n‡jv Xvj|

Pvwn`v mgxKiY †_‡K †fv³vi Pvwn`v †iLv AsKb Kiv hvq| cÖ_‡g Pvwn`v mgxKiY †_‡K Pvwn`v m~wP MVb Kiv nq|
cÖ`Ë Pvwn`v mgxKiYwU‡Z `ª‡e¨i `vg (P) n‡jv ¯^vaxb PjK Ges `ª‡e¨i Pvwn`v `ª‡e¨i Pvwn`v (D) n‡jv Aaxb
PjK| P Gi wewfbœ gv‡bi wfwˇZ `ª‡e¨i wewfbœ Pvwn`v (D) cvIqv hvq hv Pvwn`v m~wP‡Z †`Lv‡bv n‡jv:
hLb, P = 1 n‡j QD = 8
P = 2 n‡j QD = 6
P = 3 n‡j QD = 4
P = 4 n‡j QD = 2
myZivs †fv³vi Pvwn`v m~wP n‡e-
QK 5.3.1: Pvwn`v m~wP
P (`vg) UvKvq Q D (Pvwn`vi cwigvbGK‡K)
1 8
2 6
3 4
4 2

BDwbU cuvP c„ôv-61


GBP.Gm.wm †cÖvMÖvg

†fv³vi Pvwn`v †iLv AsKb


wPÎ 5.3.1 G X A‡ÿ `ª‡e¨i Pvwn`vi cwigvY Ges Y A‡ÿ `ª‡e¨i `vg wb‡`©k Kiv n‡q‡Q| Dc‡ii Q‡K Pvwn`v m~wP
†_‡K cÖvß `vg I Pvwn`vi gvb¸‡jvi cvi¯úwiK cwigvc MÖnY Ki‡j †iLv wP‡Î A, B, C I D we›`y¸‡jv cvIqv hvq|
Pvwn`v m~wP‡Z †`Lv hvq hLb `ª‡e¨i `vg 1 UvKv Pvwn`v ZLb 4 GKK hv D we›`y Øviv wb‡`©wkZ|
Y

A Pvwn`v †iLv
চািহদা রখা
দাম`vg 44
33 B
C
2
2
D
1
1
D
D
0O
22 4
4 66 88 X
চািহদার পিরমান
Pvwn`vi cwigvY
wPÎ 5.3.1: cÖ`Ë Pvwn`v mgxKi‡bi wfwˇZ AswKZ Pvwn`v †iLv|

`vg †e‡o 2 UvKv, 3 UvKv Ges 4 UvKv n‡j `ª‡e¨i Pvwn`v K‡g nq h_vµ‡g 6 GKK, 4 GKK I 2 GKK hv C, B
Ges A we›`yM‡jv Øviv wb‡`©wkZ| GLb `ª‡e¨i `vg I Pvwn`vi cwigvY m~PK A, B, C I D we›`y¸‡jv †hvM Ki‡j DD
Pvwn`v †iLv cvIqv hvq, hv n‡jv cÖ`Ë Pvwn`v mgxKi‡bi Dci wfwË K‡i GKwU mij ˆiwLK Pvwn`v †iLv|

wkÿv_©xi KvR
wb‡Pi Pvwn`v mgxKiY †_‡K Pvwn`v m~wP I Pvwn`v †iLv AsKb Kiæb|
Qd=15-3P, , ‡hLv‡b Qd n‡jv Pvwn`vi cwigvY Ges P n‡jv `ª‡e¨i `vg|

mvims‡¶c
 Pvwn`v mgxKiY †_‡K †Kvb `ª‡e¨i Pvwn`vm~wP I Pvwn`v‡iLv AsKb Kiv hvq|
 wewfbœ †fv³vi Pvwn`v ‡hvM K‡i evRvi Pvwn`v cvIqv hvq|

cv‡VvËi g~j¨vqb-5.4
eûwbe©vPwb cÖkœ
1| Pvwn`v mgxKiY n‡jvÑ
i. Q=10-2P
ii. D=18-3P
iii. S=5+5P
wb‡Pi †KvbwU mwVK?
(K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii

BDwbU cuvP c„ôv-62


A_©bxwZ 1g cÎ

2| aiv hvK, GKwU Pvwn`v A‡cÿK n‡jv -


QD  f ( p)  7  3P
GLv‡b, f wK‡mi wPý?
(K) Pvwn`v (L) wbf©ikxjZvi m¤úK© (M) aªæeK (N) `vg
3| Pvwn`v mgxKib D  a  bp †Z ' a ' n‡jv
i. PjK
ii. aªæeK
iii. civwgwZ
wb‡Pi †KvbwU mZ¨?
(K) i (L) ii (M) iii (N) i, ii I iii
4| D  8  2 p mgxKiYwU n‡jv-
(i) Pvwn`vi mgxKiY (ii) ‡hvMv‡bi mgxKiY (iii) Dc‡hv‡Mi mgxKiY
wb‡Pi †KvbwU mZ¨?
(K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii

BDwbU cuvP c„ôv-63


GBP.Gm.wm †cÖvMÖvg

cvV 5.4 Pvwn`vi cwigv‡Yi cwieZ©b I Pvwn`vi cwieZ©b


Changes in Quantity Demanded and Change in Demand

D‡Ïk¨
GB cvV †k‡l wkÿv_©xiv-
 Pvwn`vi ms‡KvPb-cÖmviY m¤ú‡K© e¨vL¨v Ki‡Z cvi‡eb;
 Pvwn`vi n«vm-e„w× m¤ú‡K© e¨vL¨v Ki‡Z cvi‡eb|

g~jcvV-

Pvwn`vi cwigv‡Yi cwieZ©b I Pvwn`vi cwieZ©b ev ¯’vbvšÍi (Changes in Quantity Demanded and Change in
Demand)
ÒAb¨vb¨ Ae¯’v AcwiewZ©Z Ó †_‡K hw` †Kvb `ª‡e¨i wbR `v‡gi cwieZ©‡bi d‡j Pvwn`vi cwieZ©b nq Z‡e, Zv‡K
Pvwn`vi cwigv‡Yi cwieZ©b eySvq| A_©vr Pvwn`vi cwigv‡Yi cwieZ©b ej‡Z `v‡gi cwieZ©‡bi d‡j GKB Pvwn`v
†iLv eivei Ae¯’vbMZ cwieZ©b eySv‡bv nq|
Ab¨w`‡K Pvwn`vi cwieZ©b ev ¯’vbvšÍi ej‡Z Pvwn`vi n«vm I e„w× eySvq| G‡ÿ‡Î `ª‡e¨i wbR¯^ `vg Qvov Pvwn`vi
Ab¨vb¨ wbav©iKmg~‡ni cwieZ©b n‡j Pvwn`v †iLv Wvb ev evg w`‡K ¯’vbvšÍwiZ nq|

Pvwn`v †iLvi ms‡KvPb cÖmviY (Contraction and Extension of Demand)


Pvwn`v †iLv eivei mÂvjb ej‡Z GKB Pvwn`v †iLv eivei Ae¯’vbMZ cwieZ©b ev bovPov‡K eySvq| ÒPvwn`vi
cwigv‡Yi cwieZ©bÓ Pvwn`vi ms‡KvPb -cªmviY avibvi mv‡_ A½vA½xfv‡e RwoZ| Ab¨vb¨ Ae¯’v AcwiewZ©Z †_‡K
†Kvb `ª‡e¨i `vg Kg‡j hw` Zvi Pvwn`vi cwigvY ev‡o, Z‡e Zv‡K Pvwn`vi cÖmviY e‡j| Aciw`‡K, ÓAb¨vb¨
Ae¯’v AcwiewZ©Z Ó †_‡K †Kvb `ª‡e¨i `vg evo‡j hw` Zvi Pvwn`vi cwigvY K‡g Z‡e Zv‡K Pvwn`vi ms‡KvPb
e‡j|
wb‡¤œ Pvwn`v †iLv Øviv Pvwn`vi ms‡KvPb I cÖmviY †`Lv‡bv n‡jvt
Y Y

D D

P2 A P2 A
`vg
দাম

`vg
দাম

P1 B P1 B

D D
O X1 X2 X O X1 X2 X
Pvwn`vi
চািহদার cwigvY
পিরমান চািহদারPvwn`viপিরমান
cwigvY
wPÎ 5.4.1 (i) Pvwn`vi cÖmviY wPÎ 5.4.1 (ii) Pvwn`vi ms‡KvPb

Dc‡i Aw¼Z wPÎ 5.4.1 (i) I (ii) G X Aÿ eivei `ª‡e¨i Pvwn`vi cwigvY Ges Y Aÿ eivei `ª‡e¨i `vg wb‡`©k
K‡i| wP‡Î DD n‡jv Pvwn`v †iLv| wPÎ (i) G †`Lv hvq, `ª‡e¨i `vg OP †_‡K K‡g OP n‡j `ª‡e¨i Pvwn`vi
2 1

BDwbU cuvP c„ôv-64


A_©bxwZ 1g cÎ

cwigvY †e‡o OX1 †_‡K OX2 nq| Gfv‡e `vg Kgvi d‡j `ª‡e¨i Pvwn`v e„wׇK Pvwn`vi cÖmviY e‡j| hv 5.4.1
(i) bs wP‡Î DD †iLv eivei A we›`y †_‡K B we›`y‡Z Pvwn`vi Mgb Øviv wb‡`©wkZ| Aciw`‡K wPÎ 5.4.1 (ii) †Z
‡`Lv hvq `ª‡e¨i `vg OP1 †_‡K †e‡o OP n‡j `ª‡e¨i Pvwn`vi cwigvY OX2 †_‡K K‡g OX1 nq| Gfv‡e `ª‡e¨i `vg
2

e„w×i d‡j `ª‡e¨i Pvwn`v n«vm‡K Pvwn`vi ms‡KvPb e‡j| hv 5.4.1 (ii) wP‡Î DD †iLv eivei B we›`y †_‡K A
we›`y‡Z Pvwn`vi Mgb Øiv wb‡`©wkZ|

Pvwn`v †iLvi ¯’vbvšÍi ev Pvwn`vi e„w× I n«vm (Shift in Demand curve or Increase and Decrease in
Demand)
‡Kvb †Kvb †ÿ‡Î `ª‡e¨i `v‡gi cwieZ©b bv NUv m‡Ë¡I Ab¨vb¨ Kvi‡Y Zvi Pvwn`vi cwieZ©b NU‡Z cv‡i| Pvwn`v
A‡cÿ‡K ewY©Z wewfbœ wba©viKmg~‡ni g‡a¨ Av‡jvP¨ `ª‡e¨i `vg w¯’i †_‡K Ab¨ wba©viKmg~‡ni (†hgb †µZvi Avq,
iæwP, mgq, m¤úwK©Z `ª‡e¨i `v‡gi cwieZ©b ......... ) †h †KvbwUi cwieZ©‡bi d‡j `ª‡e¨i Pvwn`vi cwieZ©b nq
Zv‡K Pvwn`vi n«vm e„w× e‡j| Pvwn`vi n«vm-e„w× Øviv Pvwn`vi cwieZ©b eySv‡bv nq|
wP‡Îi mvnv‡h¨ welqwU e¨vL¨v Kiv hvq t
Y

D2
D1 D

B A C
P0
`vg
দাম

D2
D1 D

O X1 X0 X2 X

Pvwn`vi
চািহদার cwigvY
পিরমান
wPÎ 5.4.2: Pvwn`vi n«vm-e„w×
cª`Ë wPÎ 5.4.2 G X A‡ÿ Pvwn`vi cwigvY Ges Y A‡ÿ `ª‡e¨i `vg wb‡`©k K‡i| DD n‡jv †Kvb `ª‡e¨i g~j Pvwn`v
†iLv| G‡ÿ‡Î g~j `vg n‡jv OP0 Ges Pvwn`vi cwigvY n‡jv OX | GLb `ª‡e¨i `vg OP †Z w¯’i _vKv Ae¯’vq
0 0

Ab¨vb¨ Kvi‡Yi g‡a¨ aiv hvK, hw` †fv³vi Avq K‡g hvq Z‡e `ª‡e¨i Pvwn`v OX0 †_‡K K‡g OX1 nq hv Pvwn`v
†iLv DD †K D1D1 G evgw`‡K ¯’vbvšÍi K‡i| `vg w¯’i †_‡K Gfv‡e Pvwn`v K‡g hvIqv‡K Pvwn`vi n«vm e‡j|
Acic‡ÿ aiv hvK, `vg OP0 †Z w¯’i †_‡K †fv³vi Avq e„w×i d‡j †fv³vi Pvwn`v OX0 †_‡K †e‡o OX2 nq hv
DD †K Wvbw`‡K D2D2 Ae¯’v‡b ¯’vbvšÍwiZ K‡i| `vg w¯’i †_‡K Pvwn`vi Gfv‡e e„wׇK Pvwn`vi e„w× e‡j|
mvaviYZ: Pvwn`v †iLv g~j Pvwn`v †_‡K Wvbw`‡K ¯’vbvšÍwiZ n‡j Pvwn`vi e„w× Ges evgw`‡K ¯’vbvšÍwiZ n‡j
Pvwn`vi nªvm e‡j|

Pvwn`v e„w×i KviYmg~n:


(1) †fv³vi Avq e„w×
(2) †fv³vi iæwPi AbyKzj cwieZ©b
(3) m¤cwK©Z `ª‡e¨i `vg n«vm
Pvwn`v n«v‡mi KviYmg~n t
(1) †fv³vi Avq n«vm
(2) †fv³vi iæwPi cwieZ©b
(3) m¤cwK©Z `ª‡e¨i `vg e„w×|

BDwbU cuvP c„ôv-65


GBP.Gm.wm †cÖvMÖvg

wkÿv_©xi KvR
wP‡Îi mvnv‡h¨ Pvwn`vi ms‡KvPb-cÖmviY Ges Pvwn`vi n«vm-e„w×i g‡a¨ cv_©K¨ D‡jøL Kiæb|

mvims‡¶c
 Pvwn`vi cwigv‡Yi cwieZ©b ej‡Z GKB Pvwn`v †iLv eivei Ae¯’vbMZ cwieZ©b‡K eySvq| G‡ÿ‡Î
`ª‡e¨i wbR¯^ `vg `ª‡e¨i Pvwn`v‡K cÖfvweZ K‡i| Avi Pvwn`vi cwieZ©b ej‡Z Pvwn`v †iLvi ¯’vbvšÍi ev
Pvwn`vi n«vm I e„w× eySvq| G‡ÿ‡Î `ª‡e¨i wbR¯^ `vg Qvov Pvwn`vi Ab¨vb¨ wba©viKmg~n `ª‡e¨i
Pvwn`v‡K cÖfvweZ K‡i|
 ÒPvwn`vi cwigv‡Yi cwieZ©bÓ Pvwn`vi ms‡KvPb-cÖmviY avibvi mv‡_ RwoZ| Ab¨vb¨ Ae¯’v
AcwiewZ©Z †_‡K †Kvb `ª‡e¨i `vg Kg‡j hw` Zvi Pvwn`vi cwigvY ev‡o Z‡e Zv‡K Pvwn`vi cÖmviY
e‡j Avi `vg evo‡j hw` Zvi Pvwn`vi cwigvY K‡g Z‡e Zv‡K Pvwn`vi ms‡KvPb e‡j|
 †Kvb `ª‡e¨i wbR¯^ `vg Qvov hw` †fv³vi Avq, iæwP, mgq, m¤úwK©Z `ª‡e¨i `vg BZ¨vw`i cwieZ©‡bi
d‡j `ª‡e¨i Pvwn`vi cwieZ©b nq Z‡e Zv‡K Pvwn`vi n«vm-e„w× e‡j| Pvwn`vi n«vm-e„w× Øviv Pvwn`vi
cwieZ©b eySv‡bv nq| mvaviYZ: Pvwn`v †iLv g~j Pvwn`v †iLv †_‡K Wvb w`‡K ¯’vbvšÍwiZ n‡j Pvwn`vi
e„w× Ges evg w`‡K ¯’vbvšÍwiZ n‡j Pvwn`vi n«vm e‡j|

cv‡VvËi g~j¨vqb-5.3
eûwbe©vPwb cÖkœ
1| Pvwn`v †iLv ¯’vbvšÍ‡ii KviY n‡jvÑ
i. m¤úwK©Z `ª‡e¨i `v‡gi cwieZ©b
ii. `ª‡e¨i wbR¯^ `v‡gi cwieZ©b
iii. †fv³vi Av‡qi cwieZ©b
wb‡Pi †KvbwU mwVK?
(K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii
2| `ª‡e¨i wbR¯^ `v‡gi cwieZ©‡bÑ
(K) Pvwn`v †iLv evgw`‡K ¯’vbvšÍwiZ nq
(L) Pvwn`v †iLv Wvbw`‡K ¯’vbvšÍwiZ nq
(M) †hvMvb †iLv evgw`‡K ¯’vbvšÍwiZ nq
(N) GKB Pvwn`v †iLvq Ae¯’vbMZ cwieZ©b N‡U|

P~ovšÍ g~j¨vqb
m„Rbkxj cÖkœ
1| wb‡Pi Pvwn`v mgxKibwU jÿ¨ Kiæb Ges cÖ`Ë cÖkœ¸‡jvi DËi ‡`b|
D = 40 – 4P, ‡hLv‡b D = Pvwn`vi cwigvb Ges P = `ª‡e¨i `vg|
(K) PjK wK?
(L) PjK I aªæe‡Ki g‡a¨ g‡a¨ cv_©K¨ wK?
(M) Pvwn`v mgxKiYwU †_‡K GKwU Pvwn`v †iLv AsKb Kiæb|
(N) cÖ`Ë mgxKiYwU †h GKwU Pvwn`v mgxKiY Zv Avcwb wKfv‡e cÖgvY Ki‡eb? we‡kølY Kiæb|

BDwbU cuvP c„ôv-66


A_©bxwZ 1g cÎ

2| iwgR mv‡ne evRvi †_‡K 30 UvKv †KwR `‡i 10 †KwR ‡cuqvR µq Ki‡jb| `vg n«vm †c‡q 25 UvKv I 20
UvKv n‡j wZwb h_vµ‡g 15 †KwR I 20 †KwR †cuqvR µq K‡ib|
(K) DÏxc‡K ewY©Z NUbvwU †Kvb wewa‡K mg_©b K‡i?
(L) DÏxc‡K ewY©Z NUbvwU †_‡K Pvwn`v m~wP ˆZix K‡i Pvwn`v †iLv AsKb Kiæb|
(M) AswKZ Pvwn`v †iLvwU Wvbw`‡K wb¤œMvgx nIqvi KviY we‡kølY Kiæb|
(N) hw` iwgR mv‡n‡ei Avq e„w× cvq Ges GKB mv‡_ †cuqv‡Ri `vg e„w× nIqv m‡Ë¡I Pvwn`v e„w× cvq, Z‡e
Pvwn`v wewa AKvh©Ki n‡e - g~j¨vqb Kiæb|

3| wb‡Pi ZvwjKvwU jÿ¨ Kiæb Ges cÖkœ¸‡jvi DËi ‡`b|


`ª‡e¨i 'X’ Pvwn`v m~wP †`qv n‡jv:
`ª‡e¨i `vg (UvKvq) Pvwn`vi cwigvY (GKK)
4 8
5 6
6 4
(K) Pvwn`v wewa wK?
(L) Aeva evwYR¨ _vK‡j wK‡mi Pvwn`v n«vm cvq?
(M) cÖ`Ë ZvwjKvwUi Pvwn`vm~wPi Av‡jv‡K Pvwn`v †iLv AsKb Kiæb|
(N) fwel¨‡Z ZvwjKvwU‡Z `ª‡e¨i `vg evovi cªZ¨vkv _vK‡j †m †ÿ‡Î Pvwn`v wewai Ae¯’v wKiƒc n‡e Zv
we‡kølY Kiæb|

4| widvZ I wicb `yB eÜz| `yÕR‡biB ‡gvUi mvB‡Kj µ‡qi cÖej B”Qv| widv‡Zi evev Mwie nIqvq Zvi c‡ÿ
gUi mvB‡Kj †Kbv m¤¢e n‡jv bv| Acic‡ÿ, wic‡bi evev abx n‡jI wKQzUv K…cY cÖK…wZi †jvK| ZvB
wic‡bi c‡ÿI †gvUi mvB‡Kj †Kbv m¤¢e n‡jv bv|
(K) Pvwn`v wK?
(L) Pvwn`v c~i‡Yi kZ©¸‡jv wK wK?
(M) widvZ I wic‡bi †gvUi mvB‡Kj µq Kivi B”Qv c~iY n‡jv bv †Kb?
(N) KLb I wK Ae¯’vq †fv³vi Pvwn`v c~iY Kiv m¤¢e, Zv e¨vL¨v Kiæb|

DËigvjv
cvV 5.1: 1| N 2| L 3| L 4| L 5| L 6| K 7| M 8| K 9| K
cvV 5.2: 1| K 2| M
cvV 5.3: 1|L 2| N
cvV 5.4: 1| K 2| L 3|M 4| K

BDwbU cuvP c„ôv-67

You might also like