DISCRETE-TIME FOURIER TRANSFORM
Fourier Series Periodic signals
Fourier Transform Non-Periodic Signals.
DTFT and CTFT
Discrete-time Fourier transform is applied on discrete non-periodic signals.
The DTFT of the signal x [n] is given as
∞
X ( e j Ω )= ∑ x [ n ] e− j Ωn
n=−∞
e− j Ωn=cosΩn− jsinΩn
Inverse DTFT is given as,
❑
1
x [ n ] = ∫ X ( e j Ω ) e j Ωn d Ω
2 π 2π
Problems on DTFT
Prob 1: Find the DTFT of the signal x [ n ] =α n u [ n ] ,|α|<1. Draw the
magnitude spectrum
Sol:
∞
X ( e j Ω )= ∑ x [ n ] e− j Ωn
n=−∞
∞
X ( e j Ω )= ∑ α n u [ n ] e− j Ωn
n=−∞
u[n]
-2 -1 0 1 2 3 4 5 6
∞
X ( e j Ω )=∑ α n e− j Ωn
n=0
∞
n
X ( e j Ω )=∑ ( α e− j Ω )
n=0
1
X ( e− j Ω )=
1−α e− j Ω
Magnitude spectrum |α |<1 -1<α <1
i. 0< α <1 ii. −1<α <0
-2π -π 0 π 2π
-2π -π 0 π 2π
Prob 2: Find the DTFT of the signalδ [ n ]. Draw the magnitude
spectrum
Sol:
∞
X ( e j Ω )= ∑ x [ n ] e− j Ωn
n=−∞
∞
jΩ
X ( e )= ∑ δ [ n ] e− j Ωn
n=−∞
δ[n]
-2 -1 0 1 2
X ( e j Ω )=δ [ 0 ] e− j Ω 0
X ( e− j Ω )=1
Magnitude spectrum
-2π -π 0 π 2π
Prob 3: Find the DTFT of the signal x [ n ] ={1 ,3 ,5 , 3 ,1 } and evaluate
X ( e j Ω )at Ω=0
Sol:
∞
X ( e j Ω )= ∑ x [ n ] e− j Ωn
n=−∞
X ( e j Ω )=…+ x [ −2 ] e− j Ω (−2)+ x [ −1 ] e− j Ω (−1 )+ x [ 0 ] e− j Ω 0 + x [ 1 ] e− j Ω 1 + x [ 2 ] e− j Ω 2 +…
X ( e j Ω )=x [−2 ] e j Ω 2 + x [−1 ] e j Ω 1 + x [ 0 ] e− j Ω 0+ x [ 1 ] e− j Ω 1+ x [ 2 ] e− j Ω 2
X ( e j Ω )=1 e j Ω 2 +3 e j Ω 1 +5+3 e− j Ω 1+1 e− j Ω 2
X ( e j Ω )=( e j 2 Ω+ e− j 2 Ω ) +3 ( e j Ω 1+ e− j Ω 1 ) +5
X ( e j Ω )=5+2 cos ( 2 Ω ) +6 cos (Ω)
They have also asked to evaluate X ( e j Ω )at Ω=0
X ( e j Ω )=5+2 cos ( 0 )+ 6 cos (0)
X ( e j Ω )=5+2+6
X ( e j Ω ) |Ω=0=13
Prob 4: Find the DTFT of a rectangular pulse defined as
x [ n ] = 1 ;∨n∨≤ m
{ 0 ;|n|>m
Draw the magnitude spectrum
Sol:
∞
X ( e j Ω )= ∑ x [ n ] e− j Ωn
n=−∞
x[n]
-m m
m
jΩ
X ( e )= ∑ 1 e− j Ωn
n=−m
n n−m +1
∑ ak=am 1−a
1−a
k=m
1−e− j Ω (m +m +1)
X ( e j Ω )=e− j Ω (−m) −jΩ
1−e
1−e− j Ω (2 m+ 1)
X ( e j Ω )=e j Ωm
1−e− j Ω
e x =e x/ 2 . e x /2
1−e− j Ω (2 m+ 1)/ 2 e− j Ω (2 m +1)/ 2
X ( e j Ω )=e j Ωm
1−e− j Ω/ 2 e− j Ω /2
e− j Ω ( 2 m+1 )/2 e j Ω ( 2 m+1 )/2 −e− j Ω ( 2m +1) /2
X ( e j Ω )=e j Ωm −jΩ/2 j Ω /2 − j Ω /2
e e −e
2 jsin Ω ( 2m+1 ) /2
X ( e j Ω )=
2 jsin Ω/2
sin Ω ( 2m+1 ) /2
X ( e j Ω )=
sin Ω/2
Magnitude spectrum