0% found this document useful (0 votes)
54 views14 pages

Shear Connection

The document provides details of the geometric considerations and dimensions of a steel connection between an angle, beam, and support. It includes the minimum and maximum allowed values for dimensions like length, edge distances, and spacing as specified in the relevant design code.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
54 views14 pages

Shear Connection

The document provides details of the geometric considerations and dimensions of a steel connection between an angle, beam, and support. It includes the minimum and maximum allowed values for dimensions like length, edge distances, and spacing as specified in the relevant design code.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

Unable to read file "<>" HP

Units system:SI
Current Date:11-09-2020 10:38 AM

Steel connections
Results
_______________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________

Connection name : DAWC_IS_BCW All bolted


Connection ID : 1V
_______________________________________________________________________________________________________________________________

Family: Beam - Column web (BCW)


Type: Angle(s)
Design code: IS 800 : 2007

DEMANDS
Description Pu Ru RuLeft Mu
[KN] [KN] [KN] [KN*m]
--------------------------------------------------------------------------------------------------------------------------------------
DL 5.00 25.00 0.00 0.00
--------------------------------------------------------------------------------------------------------------------------------------

GEOMETRIC CONSIDERATIONS
Dimensions Unit Value Min. value Max. value Sta. References
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Angle
Length [mm] 150.00 150.00 199.00
Lmin = 0.6*hb
= 0.6*250[mm]
= 150[mm]

Lmax = hb - max(dnt, ktop) - max(dnb, kbottom)


= 250[mm] - max(0[mm], 25.5[mm]) - max(0[mm], 25.5[mm])
= 199[mm]

Angle (Beam side)


Vertical edge distance [mm] 40.00 27.00 72.00 Cl. 10.2.4.2,
Cl. 10.2.4.3
ShearedEdges ® False

emin = 1.5*dh
= 1.5*18[mm]
= 27[mm] Cl. 10.2.4.2

CorrosionExposed ® False
0.5
emax = 12.0*t*((250.0 [MPa])/fy)
0.5
= 12.0*6[mm]*((250.0 [MPa])/250[N/mm2])
= 72[mm] Cl. 10.2.4.3

Horizontal edge distance [mm] 30.00 27.00 72.00 Cl. 10.2.4.2,


Cl. 10.2.4.3
ShearedEdges ® False

emin = 1.5*dh
= 1.5*18[mm]
= 27[mm] Cl. 10.2.4.2

CorrosionExposed ® False

Page1
0.5
emax = 12.0*t*((250.0 [MPa])/fy)
0.5
= 12.0*6[mm]*((250.0 [MPa])/250[N/mm2])
= 72[mm] Cl. 10.2.4.3

Vertical center-to-center spacing (pitch) [mm] 70.00 40.00 124.00 Cl. 10.2.3.3
pmin = 2.5*d
= 2.5*16[mm]
= 40[mm]

pmax = min(100 [mm] + 4*t, 300 [mm])


= min(100 [mm] + 4*6[mm], 300 [mm])
= 124[mm] Cl. 10.2.3.3

Angle (Support side)


Vertical edge distance [mm] 40.00 27.00 72.00 Cl. 10.2.4.2,
Cl. 10.2.4.3
ShearedEdges ® False

emin = 1.5*dh
= 1.5*18[mm]
= 27[mm] Cl. 10.2.4.2

CorrosionExposed ® False
0.5
emax = 12.0*t*((250.0 [MPa])/fy)
0.5
= 12.0*6[mm]*((250.0 [MPa])/250[N/mm2])
= 72[mm] Cl. 10.2.4.3

Horizontal edge distance [mm] 30.00 27.00 72.00 Cl. 10.2.4.2,


Cl. 10.2.4.3
ShearedEdges ® False

emin = 1.5*dh
= 1.5*18[mm]
= 27[mm] Cl. 10.2.4.2

CorrosionExposed ® False
0.5
emax = 12.0*t*((250.0 [MPa])/fy)
0.5
= 12.0*6[mm]*((250.0 [MPa])/250[N/mm2])
= 72[mm] Cl. 10.2.4.3

Vertical center-to-center spacing (pitch) [mm] 70.00 40.00 124.00 Cl. 10.2.3.3
pmin = 2.5*d
= 2.5*16[mm]
= 40[mm]

pmax = min(100 [mm] + 4*t, 300 [mm])


= min(100 [mm] + 4*6[mm], 300 [mm])
= 124[mm] Cl. 10.2.3.3

Page2
Beam
Vertical center-to-center spacing (pitch) [mm] 70.00 40.00 127.60 Cl. 10.2.3.3
pmin = 2.5*d
= 2.5*16[mm]
= 40[mm]

pmax = min(100 [mm] + 4*t, 300 [mm])


= min(100 [mm] + 4*6.9[mm], 300 [mm])
= 127.6[mm] Cl. 10.2.3.3

Horizontal edge distance [mm] 35.00 27.00 82.80 Cl. 10.2.4.2,


Cl. 10.2.4.3
ShearedEdges ® False

emin = 1.5*dh
= 1.5*18[mm]
= 27[mm] Cl. 10.2.4.2

CorrosionExposed ® False
0.5
emax = 12.0*t*((250.0 [MPa])/fy)
0.5
= 12.0*6.9[mm]*((250.0 [MPa])/250[N/mm2])
= 82.8[mm] Cl. 10.2.4.3

Support
Vertical center-to-center spacing (pitch) [mm] 70.00 40.00 130.80 Cl. 10.2.3.3
pmin = 2.5*d
= 2.5*16[mm]
= 40[mm]

pmax = min(100 [mm] + 4*t, 300 [mm])


= min(100 [mm] + 4*7.7[mm], 300 [mm])
= 130.8[mm] Cl. 10.2.3.3

Horizontal center-to-center spacing (gage) [mm] 70.00 40.00 130.80 Cl. 10.2.3.3
pmin = 2.5*d
= 2.5*16[mm]
= 40[mm]

pmax = min(100 [mm] + 4*t, 300 [mm])


= min(100 [mm] + 4*7.7[mm], 300 [mm])
= 130.8[mm] Cl. 10.2.3.3

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

DESIGN CHECK
Verification Unit Capacity Demand Ctrl EQ Ratio References
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Angle (beam side)
Bolt group shear [KN] 57.95 22.39 DL 0.39 Cl. 10.3.3
2
Asb = π/4*d
2
= π/4*16[mm]
= 201.06[mm2]
2
Anb = 0.78*π/4*d
2
= 0.78*π/4*16[mm]
= 156.83[mm2]

Page3
0.5
Vnsb = fu/(3) *(nn*Anb + ns*Asb)
0.5
= 400[N/mm2]/(3) *(1*156.83[mm2] + 0*201.06[mm2])
= 36.22[kN] Cl. 10.3.3

Vdsb = 2 * (Vnsb/gmb)
= 2 * (36.22[kN]/1.25)
= 57.95[kN] Cl. 10.3.3
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((5[kN]/2 + 1.13[kN*m]*-35[mm]/2450[mm2]) + (25[kN]/2 + 1.13[kN*m]*0[mm]/2450[mm2]) )
= 18.45[kN]
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((5[kN]/2 + 1.13[kN*m]*35[mm]/2450[mm2]) + (25[kN]/2 + 1.13[kN*m]*0[mm]/2450[mm2]) )
= 22.39[kN]

Bolt bearing [KN] 93.30 20.36 DL 0.22 Cl. 10.3.4


kb = min(e1/(3*d0), p/(3*d0) - 0.25, fub/fu, 1.0)
= min(40[mm]/(3*18[mm]), 70[mm]/(3*18[mm]) - 0.25, 400[N/mm2]/410[N/mm2], 1.0)
= 0.741 Cl. 10.3.4

Vnpb = 2.5*kb*d*t*fu
= 2.5*0.741*16[mm]*6[mm]*410[N/mm2]
= 72.89[kN] Cl. 10.3.4

Vdpb = Vnpb/gmb
= 72.89[kN]/1.25
= 58.31[kN] Cl. 10.3.4

Vdpb = 2 * (Vnpb/gmb)
= 2 * (58.31[kN]/1.25)
= 93.3[kN] Cl. 10.3.4
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 1.13[kN*m]*-35[mm]/2450[mm2]) + (25[kN]/2 + 1.13[kN*m]*0[mm]/2450[mm2]) )
= 20.36[kN]
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 1.13[kN*m]*35[mm]/2450[mm2]) + (25[kN]/2 + 1.13[kN*m]*0[mm]/2450[mm2]) )
= 20.36[kN]

Shear at gross section [KN] 236.19 25.00 DL 0.11 Cl. 8.4.1,


Cl. 8.4
Av = h*t
= 150[mm]*6[mm]
= 900[mm2] Cl. 8.4.1
0.5
Vng = Av*fy/(3)
0.5
= 900[mm2]*250[N/mm2]/(3)
= 129.9[kN] Cl. 8.4.1

Page4
Vdg = 2 * (Vng/gm0)
= 2 * (129.9[kN]/1.1)
= 236.19[kN] Cl. 8.4

Shear at net section [KN] 259.06 25.00 DL 0.10 Cl. 8.4


An = t*(h - n1*d0)
= 6[mm]*(150[mm] - 2*18[mm])
= 684[mm2] Cl. 6.3.1
0.5
Vdn = 2 * (An*fu/((3) *gm1))
0.5
= 2 * (684[mm2]*410[N/mm2]/((3) *1.25))
= 259.06[kN] Cl. 8.4

Block tearing [KN] 310.58 25.00 DL 0.08 Cl. 6.4.1


Av = h*t
= 150[mm]*6[mm]
= 900[mm2] Cl. 8.4.1

Avn = t*(h - e1 - (n1 - 0.5)*d0)


= 6[mm]*(150[mm] - 40[mm] - (2 - 0.5)*18[mm])
= 498[mm2] Cl. 6.4.1

IsSingleLineOfBolts ® True

Atn = t*(e2 - d0/2)


= 6[mm]*(30[mm] - 18[mm]/2)
= 126[mm2] Cl. 6.4.1
0.5 0.5
Tdb = 2 * (min(Avg*fy/(3 *gm0) + 0.9*Atn*fu/gm1, 0.9*Avn*fu/(3 *gm1) + Atg*fy/gm0))
0.5 0.5
= 2 * (min(900[mm2]*250[N/mm2]/(3 *1.1) + 0.9*126[mm2]*410[N/mm2]/1.25, 0.9*498[mm2]*410[N/mm2]/(3 *
1.25) + 900[mm2]*250[N/mm2]/1.1))
= 310.58[kN] Cl. 6.4.1

Bolt bearing due to tension [KN] 93.30 2.50 DL 0.03 Cl. 10.3.4
kb = min(e1/(3*d0), p/(3*d0) - 0.25, fub/fu, 1.0)
= min(40[mm]/(3*18[mm]), 70[mm]/(3*18[mm]) - 0.25, 400[N/mm2]/410[N/mm2], 1.0)
= 0.741 Cl. 10.3.4

Vnpb = 2.5*kb*d*t*fu
= 2.5*0.741*16[mm]*6[mm]*410[N/mm2]
= 72.89[kN] Cl. 10.3.4

Vdpb = Vnpb/gmb
= 72.89[kN]/1.25
= 58.31[kN] Cl. 10.3.4

Vdpb = 2 * (Vnpb/gmb)
= 2 * (58.31[kN]/1.25)
= 93.3[kN] Cl. 10.3.4
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((5[kN]/2 + 0[kN*m]*-35[mm]/2450[mm2]) + (0[kN]/2 + 0[kN*m]*0[mm]/2450[mm2]) )
= 2.5[kN]

Page5
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((5[kN]/2 + 0[kN*m]*35[mm]/2450[mm2]) + (0[kN]/2 + 0[kN*m]*0[mm]/2450[mm2]) )
= 2.5[kN]

Block tearing due to tension [KN] 115.72 5.00 DL 0.04 Cl. 6.4.1
Atn = t*((n1 - 1)*(p1 - d0))
= 6[mm]*((2 - 1)*(70[mm] - 18[mm]))
= 312[mm2]

Avn = 2*t*(e2 + (p2 - d0)*(n2 - 1) - 0.5*d0)


= 2*6[mm]*(30[mm] + (50[mm] - 18[mm])*(1 - 1) - 0.5*18[mm])
= 252[mm2]

Av = h*t
= 30[mm]*6[mm]
= 180[mm2] Cl. 8.4.1

Atg = t*((n1 - 1)*p1 + e1)


= 6[mm]*((2 - 1)*70[mm] + 0[mm])
= 420[mm2]
0.5 0.5
Tdb = min(Avg*fy/(3 *gm0) + 0.9*Atn*fu/gm1, 0.9*Avn*fu/(3 *gm1) + Atg*fy/gm0)
0.5 0.5
= min(180[mm2]*250[N/mm2]/(3 *1.1) + 0.9*312[mm2]*410[N/mm2]/1.25, 0.9*252[mm2]*410[N/mm2]/(3 *1.25) +
420[mm2]*250[N/mm2]/1.1)
= 115.72[kN] Cl. 6.4.1

Atn = t*((n1 - 1)*(p1 - d0) - 0.5*d0 + e1)


= 6[mm]*((2 - 1)*(70[mm] - 18[mm]) - 0.5*18[mm] + 40[mm])
= 498[mm2]

Avn = t*(e2 + (p2 - d0)*(n2 - 1) - 0.5*d0)


= 6[mm]*(30[mm] + (50[mm] - 18[mm])*(1 - 1) - 0.5*18[mm])
= 126[mm2]

Atg = t*((n1 - 1)*p1 + e1)


= 6[mm]*((2 - 1)*70[mm] + 30[mm])
= 600[mm2]
0.5 0.5
Tdb = min(Avg*fy/(3 *gm0) + 0.9*Atn*fu/gm1, 0.9*Avn*fu/(3 *gm1) + Atg*fy/gm0)
0.5 0.5
= min(180[mm2]*250[N/mm2]/(3 *1.1) + 0.9*498[mm2]*410[N/mm2]/1.25, 0.9*126[mm2]*410[N/mm2]/(3 *1.25) +
600[mm2]*250[N/mm2]/1.1)
= 157.84[kN] Cl. 6.4.1

Beam
Bolt bearing [KN] 88.32 20.36 DL 0.23 Cl. 10.3.4
kb = min(e1/(3*d0), p/(3*d0) - 0.25, fub/fu, 1.0)
= min(90[mm]/(3*18[mm]), 70[mm]/(3*18[mm]) - 0.25, 400[N/mm2]/410[N/mm2], 1.0)
= 0.976 Cl. 10.3.4

Vnpb = 2.5*kb*d*t*fu
= 2.5*0.976*16[mm]*6.9[mm]*410[N/mm2]
= 110.4[kN] Cl. 10.3.4

Page6
Vdpb = Vnpb/gmb
= 110.4[kN]/1.25
= 88.32[kN] Cl. 10.3.4
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 1.13[kN*m]*-35[mm]/2450[mm2]) + (25[kN]/2 + 1.13[kN*m]*0[mm]/2450[mm2]) )
= 20.36[kN]
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 1.13[kN*m]*35[mm]/2450[mm2]) + (25[kN]/2 + 1.13[kN*m]*0[mm]/2450[mm2]) )
= 20.36[kN]

Shear at gross section [KN] 268.50 25.00 DL 0.09 Cl. 8.4.1,


Cl. 8.4
Av = Max(Ag - bfTop*tfTop - bfBottom*tfBottom + ((tw + 2*rb,top)*tfTop/2) + ((tw + 2*rb,bottom)*tfBottom/2), hw*tw)
= Max(4760[mm2] - 125[mm]*12.5[mm] - 125[mm]*12.5[mm] + ((6.9[mm] + 2*13[mm])*12.5[mm]/2) + ((6.9[mm] +
2*13[mm])*12.5[mm]/2), 225[mm]*6.9[mm])
= 2046.25[mm2]
0.5
Vng = Av*fy/(3)
0.5
= 2046.25[mm2]*250[N/mm2]/(3)
= 295.35[kN] Cl. 8.4.1

Vdg = Vng/gm0
= 295.35[kN]/1.1
= 268.5[kN] Cl. 8.4

Shear at net section [KN] 340.46 25.00 DL 0.07 Cl. 8.4


Av = Max(Ag - bfTop*tfTop - bfBottom*tfBottom + ((tw + 2*rb,top)*tfTop/2) + ((tw + 2*rb,bottom)*tfBottom/2), hw*tw)
= Max(4760[mm2] - 125[mm]*12.5[mm] - 125[mm]*12.5[mm] + ((6.9[mm] + 2*13[mm])*12.5[mm]/2) + ((6.9[mm] +
2*13[mm])*12.5[mm]/2), 225[mm]*6.9[mm])
= 2046.25[mm2]

Av,net = Av - n1*d0*tw
= 2046.25[mm2] - 2*18[mm]*6.9[mm]
= 1797.85[mm2]
0.5
Vdn = An*fu/((3) *gm1)
0.5
= 1797.85[mm2]*410[N/mm2]/((3) *1.25)
= 340.46[kN] Cl. 8.4

Block tearing due to tension [KN] 137.61 5.00 DL 0.04 Cl. 6.4.1
Atn = t*((n1 - 1)*(p1 - d0))
= 6.9[mm]*((2 - 1)*(70[mm] - 18[mm]))
= 358.8[mm2]

Avn = 2*t*(e2 + (p2 - d0)*(n2 - 1) - 0.5*d0)


= 2*6.9[mm]*(50[mm] + (35[mm] - 18[mm])*(1 - 1) - 0.5*18[mm])
= 565.8[mm2]

Av = h*t
= 35[mm]*6.9[mm]
= 241.5[mm2] Cl. 8.4.1

Page7
Atg = t*((n1 - 1)*p1 + e1)
= 6.9[mm]*((2 - 1)*70[mm] + 0[mm])
= 483[mm2]
0.5 0.5
Tdb = min(Avg*fy/(3 *gm0) + 0.9*Atn*fu/gm1, 0.9*Avn*fu/(3 *gm1) + Atg*fy/gm0)
0.5 0.5
= min(241.5[mm2]*250[N/mm2]/(3 *1.1) + 0.9*358.8[mm2]*410[N/mm2]/1.25, 0.9*565.8[mm2]*410[N/mm2]/(3 *
1.25) + 483[mm2]*250[N/mm2]/1.1)
= 137.61[kN] Cl. 6.4.1

Bolt bearing due to tension [KN] 58.68 5.00 DL 0.09 Cl. 10.3.4
kb = min(e1/(3*d0), p/(3*d0) - 0.25, fub/fu, 1.0)
= min(35[mm]/(3*18[mm]), 70[mm]/(3*18[mm]) - 0.25, 400[N/mm2]/410[N/mm2], 1.0)
= 0.648 Cl. 10.3.4

Vnpb = 2.5*kb*d*t*fu
= 2.5*0.648*16[mm]*6.9[mm]*410[N/mm2]
= 73.34[kN] Cl. 10.3.4

Vdpb = Vnpb/gmb
= 73.34[kN]/1.25
= 58.68[kN] Cl. 10.3.4

Angle (support side)


Bolt group shear [KN] 28.97 8.96 DL 0.31 Cl. 10.3.3
2
Asb = π/4*d
2
= π/4*16[mm]
= 201.06[mm2]
2
Anb = 0.78*π/4*d
2
= 0.78*π/4*16[mm]
= 156.83[mm2]
0.5
Vnsb = fu/(3) *(nn*Anb + ns*Asb)
0.5
= 400[N/mm2]/(3) *(1*156.83[mm2] + 0*201.06[mm2])
= 36.22[kN] Cl. 10.3.3

Vdsb = Vnsb/gmb
= 36.22[kN]/1.25
= 28.97[kN] Cl. 10.3.3
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 0.563[kN*m]*-85[mm]/7450[mm2]) + (12.5[kN]/2 + 0.563[kN*m]*0[mm]/7450[mm2]) )
= 8.96[kN]
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 0.563[kN*m]*-15[mm]/7450[mm2]) + (12.5[kN]/2 + 0.563[kN*m]*0[mm]/7450[mm2]) )
= 6.35[kN]

Bolt bearing [KN] 58.31 8.96 DL 0.15 Cl. 10.3.4


kb = min(e1/(3*d0), p/(3*d0) - 0.25, fub/fu, 1.0)
= min(40[mm]/(3*18[mm]), 70[mm]/(3*18[mm]) - 0.25, 400[N/mm2]/410[N/mm2], 1.0)
= 0.741 Cl. 10.3.4

Page8
Vnpb = 2.5*kb*d*t*fu
= 2.5*0.741*16[mm]*6[mm]*410[N/mm2]
= 72.89[kN] Cl. 10.3.4

Vdpb = Vnpb/gmb
= 72.89[kN]/1.25
= 58.31[kN] Cl. 10.3.4
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 0.563[kN*m]*-85[mm]/7450[mm2]) + (12.5[kN]/2 + 0.563[kN*m]*0[mm]/7450[mm2]) )
= 8.96[kN]
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 0.563[kN*m]*-15[mm]/7450[mm2]) + (12.5[kN]/2 + 0.563[kN*m]*0[mm]/7450[mm2]) )
= 6.35[kN]

Bending [KN*m] 6.14 0.56 DL 0.09 Cl. 8.2.1.2


2
Ze = b*h /6
2
= 6[mm]*150[mm] /6
= 22500[mm3]

M = 1.2*fy*Z/gm0
= 1.2*250[N/mm2]*22500[mm3]/1.1
= 6.14[kN*m] Cl. 8.2.1.2

M = V*e
= 12.5[kN]*45[mm]
= 0.563[kN*m]

Shear at gross section [KN] 236.19 25.00 DL 0.11 Cl. 8.4.1,


Cl. 8.4
Av = h*t
= 150[mm]*6[mm]
= 900[mm2] Cl. 8.4.1
0.5
Vng = Av*fy/(3)
0.5
= 900[mm2]*250[N/mm2]/(3)
= 129.9[kN] Cl. 8.4.1

Vdg = 2 * (Vng/gm0)
= 2 * (129.9[kN]/1.1)
= 236.19[kN] Cl. 8.4

Shear at net section [KN] 259.06 25.00 DL 0.10 Cl. 8.4


An = t*(h - n1*d0)
= 6[mm]*(150[mm] - 2*18[mm])
= 684[mm2] Cl. 6.3.1
0.5
Vdn = 2 * (An*fu/((3) *gm1))
0.5
= 2 * (684[mm2]*410[N/mm2]/((3) *1.25))
= 259.06[kN] Cl. 8.4

Page9
Block tearing [KN] 251.57 25.00 DL 0.10 Cl. 6.4.1
Av = h*t
= 150[mm]*6[mm]
= 900[mm2] Cl. 8.4.1

Avn = t*(h - e1 - (n1 - 0.5)*d0)


= 6[mm]*(150[mm] - 40[mm] - (2 - 0.5)*18[mm])
= 498[mm2] Cl. 6.4.1

Atg = B*t
= 30[mm]*6[mm]
= 180[mm2]

IsSingleLineOfBolts ® True

Atn = t*(e2 - d0/2)


= 6[mm]*(30[mm] - 18[mm]/2)
= 126[mm2] Cl. 6.4.1
0.5 0.5
Tdb = 2 * (min(Avg*fy/(3 *gm0) + 0.9*Atn*fu/gm1, 0.9*Avn*fu/(3 *gm1) + Atg*fy/gm0))
0.5 0.5
= 2 * (min(900[mm2]*250[N/mm2]/(3 *1.1) + 0.9*126[mm2]*410[N/mm2]/1.25, 0.9*498[mm2]*410[N/mm2]/(3 *
1.25) + 180[mm2]*250[N/mm2]/1.1))
= 251.57[kN] Cl. 6.4.1

Prying moment [KN*m] 0.31 0.10 DL 0.34 [2]


2
Mp = fy*w*t /(gm0*4.0)
2
= 250[N/mm2]*150[mm]*6[mm] /(1.1*4.0)
= 0.307[kN*m] [2]

MA = Te*lv/2
= 5[kN]*41.5[mm]/2
= 0.104[kN*m] [2]

Bolt tension [KN] 43.87 4.75 DL 0.11 Cl. 10.3.5


2
Asb = π/4*d
2
= π/4*16[mm]
= 201.06[mm2]
2
Anb = 0.78*π/4*d
2
= 0.78*π/4*16[mm]
= 156.83[mm2]

Tnb = min(0.90*fub*Anb, fyb*Asb*(gmb/gm0))


= min(0.90*400[N/mm2]*156.83[mm2], 240[N/mm2]*201.06[mm2]*(1.25/1.1))
= 54.84[kN] Cl. 10.3.5

Tdb = Tnb/gmb
= 54.84[kN]/1.25
= 43.87[kN] Cl. 10.3.5

fo = 0.70*fub
= 0.70*400[N/mm2]
= 280[N/mm2] Cl. 10.4.3

Page10
IsPretensionedBolt ® False

b=2 Cl. 10.4.7


0.5
le = min(e, 1.1*t*(b *fo/fy) )
0.5
= min(30[mm], 1.1*6[mm]*(2*280[N/mm2]/250[N/mm2]) )
= 9.88[mm] Cl. 10.4.7
4 2
Q = lv/(2.0*le)*(Te - b *nano*fo*be*t /(27*le*lv ))
4 2
= 41.5[mm]/(2.0*9.88[mm])*(2.5[kN] - 2*1.5*280[N/mm2]*150[mm]*6[mm] /(27*9.88[mm]*41.5[mm] ))
= 4.5[kN] Cl. 10.4.7

Tb = T e + Q
= 2.25[kN] + 2.5[kN]
= 4.75[kN] Cl. 10.4.7

Support
Web local shear [KN] 401.01 25.00 DL 0.06 Cl. 8.4.1,
Cl. 8.4
et = min(e1,t, 5.0*d)
= min(1.00E+33[mm], 5.0*16[mm])
= 80[mm]

IsBeamToGirder ® False

eb = min(p/2.0, 5.0*d)
= min(96.9[mm]/2.0, 5.0*16[mm])
= 48.45[mm]

Av = t*(et + (n1 - 1.0)*p1 + eb)


= 7.7[mm]*(80[mm] + (2 - 1.0)*70[mm] + 48.45[mm])
= 1528.07[mm2]
0.5
Vng = Av*fy/(3)
0.5
= 1528.07[mm2]*250[N/mm2]/(3)
= 220.56[kN] Cl. 8.4.1

Vdg = 2 * (Vng/gm0)
= 2 * (220.56[kN]/1.1)
= 401.01[kN] Cl. 8.4

Web local net shear [KN] 473.75 25.00 DL 0.05 Cl. 8.4
et = min(e1,t, 5.0*d)
= min(1.00E+33[mm], 5.0*16[mm])
= 80[mm]

IsBeamToGirder ® False

eb = min(p/2.0, 5.0*d)
= min(96.9[mm]/2.0, 5.0*16[mm])
= 48.45[mm]

Page11
Av = t*(et + (n1 - 1.0)*p1 + eb)
= 7.7[mm]*(80[mm] + (2 - 1.0)*70[mm] + 48.45[mm])
= 1528.07[mm2]

Av,net = Av - n1*d0*tw
= 1528.07[mm2] - 2*18[mm]*7.7[mm]
= 1250.87[mm2]
0.5
Vdn = 2 * (An*fu/((3) *gm1))
0.5
= 2 * (1250.87[mm2]*410[N/mm2]/((3) *1.25))
= 473.75[kN] Cl. 8.4

Bolt group bearing [KN] 98.56 8.96 DL 0.09 Cl. 10.3.4


kb = min(e1/(3*d0), p/(3*d0) - 0.25, fub/fu, 1.0)
= min(∞[mm]/(3*18[mm]), 70[mm]/(3*18[mm]) - 0.25, 400[N/mm2]/410[N/mm2], 1.0)
= 0.976 Cl. 10.3.4

Vnpb = 2.5*kb*d*t*fu
= 2.5*0.976*16[mm]*7.7[mm]*410[N/mm2]
= 123.2[kN] Cl. 10.3.4

Vdpb = Vnpb/gmb
= 123.2[kN]/1.25
= 98.56[kN] Cl. 10.3.4
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 0.563[kN*m]*-85[mm]/7450[mm2]) + (12.5[kN]/2 + 0.563[kN*m]*0[mm]/7450[mm2]) )
= 8.96[kN]
2 2 0.5
Ri = ((Px/n + Mecc*yi/Ibg) + (Py/n + Mecc*xi/Ibg) )
2 2 0.5
= ((0[kN]/2 + 0.563[kN*m]*-15[mm]/7450[mm2]) + (12.5[kN]/2 + 0.563[kN*m]*0[mm]/7450[mm2]) )
= 6.35[kN]

Web tying capacity [KN] 92.71 5.00 DL 0.05 [1]


2
Mu = (fu*tw )/(4*gm0)
2
= (410[N/mm2]*7.7[mm] )/(4*1.1)
= 5.52[kN] [1]

eta1 = ((n1 - 1)*p1 - n1/2*d0)/hw


= ((2 - 1)*70[mm] - 2/2*18[mm])/273.8[mm]
= 0.19 [1]

b 1 = p/hw
= 96.9[mm]/273.8[mm]
= 0.354 [1]

g1 = d0/hw
= 18[mm]/273.8[mm]
= 0.0657 SCI P358 p. 29
0.5 0.5
Tn = 8*Mu/(1 - b 1)*(eta1 + 1.5*((1 - b 1) )*(1 - g1) )
0.5 0.5
= 8*5.52[kN]/(1 - 0.354)*(0.19 + 1.5*((1 - 0.354) )*(1 - 0.0657) )
= 92.71[kN] [1]

Page12
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Global critical strength ratio 0.39
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

NOTES
Some verifications for this connection are not available in IS 800-2007 and thus, they have been calculated with NA to BS EN 1993-1-8:2005

NOTATION
Ag: Gross area of cross section
An: Net area of the total cross-section
Anb: Net shear area of the bolt at threads
Asb: Nominal plain shank area of the bolt
Atg: Minimum gross area in tension from the bolt hole perpendicular to the line of force
Atn: Minimum net area in tension from the bolt hole perpendicular to the line of force
Av : Shear area
Avg: Minimum gross area in shear along bolt line parallel to external force
Avn: Minimum net area in shear along bolt line parallel to external force
Av,net: Net shear area
b: Depth of the plate
B: Width
be: Effective width of flange per pair of bolts
bfBottom: Bottom flange width
bfTop: Top flange width
b: Bolt type factor for prying
b 1: Column web factor
CorrosionExposed: Members are exposed to corrosive influences
d: Nominal bolt diameter
d0: Diameter of the bolt hole
dh: Diameter of bolt hole
dnb: Bottom notch height
dnt: Top notch height
e: Distance from centerline of bolts to weld or eccentricity
e1: End distance
e1,t: Distance between the first row of bolt to the top end of the supporting member
e2: Edge distance
eb: Distance to the bottom end of the supporting member
e: Edge or end distance
emax: Maximum edge distance
emin: Minimum edge distance
et: Distance to the top end of the supporting member
eta1: Column web plate height to column clear depth ratio
fo: Proof stress in consisten units
fu: Characteristic ultime tensile stress of the connected part
fub: Ultime tensile stress of the bolt
f y: Characteristic yield stress of the connected part
fyb: Yield stress of the bolt
g1: Hole diameter to web clear depth ratio
gm0: Partial factor against yield stress and buckling
gm1: Partial factor against ultimate stress
gmb: Partial factor for bolted connection with bearing type bolts
hb: Height of the member
h: Height of the plate
hw: Clear depth between flanges
Ibg: Moment of inertia of bolt group
IsBeamToGirder: Is beam to girder connection
IsPretensionedBolt: Is pre-tensioned bolt
IsSingleLineOfBolts: Single line of bolts
kb: Bearing capacity factor
kbottom: Thickness of the bottom flange + root radius
ktop: Thickness of the top flange + root radius
le: Distance between prying force and bolt centreline
Lmax: Maximum length
Lmin: Minimum length
lv : Distance from the bolt centreline to the toe of the fillet weld or to half the root radius for a rolled section
M: Factored design moment
MA: Moment in the plate at the bolt center line
Mecc: Moment due to force eccentricity
Mp: Plastic moment capacity of the plate

Page13
Mu: Moment capacity of column web per unit length
n: Number of bolts
n1: Number of rows of bolts
n2: Number of columns of bolts
nn: Number of shear planes with threads intercepting the shear plane
ns: Number of shear planes without threads intercepting the shear plane
nano: Prying factor
p: Pitch distance
p1: Vertical spacing between centres of bolts in a line in the load direction
p2: Horizontal spacing between centres of bolts in adjacent lines perpendicular to the load direction
pmax: Maximum pitch
pmin: Minimum pitch
Px : Horizontal component of acting force
P y: Vertical component of acting force
Q: Prying force
rb,bottom: Root radius of the bottom flange beam section
rb,top: Root radius of the top flange beam section
Ri: Force acting on a bolt due to eccentric load
ShearedEdges: Sheared or hand cut flame edges
t: Component thickness
Tb: Factored tensile force acting on the bolt
Tdb: Block shear strength
Te: Externally applied tension
tfBottom: Bottom flange thickness
tfTop: Top flange thickness
Tn: Nominal tensile capacity
Tnb: Nominal tensile capacity of the bolt
tw: Thickness of web
V: Factored applied shear force
Vdg: Design shear strenght of the gross section
Vdn: Design shear strenght of the net section
Vdpb: Design bearing strength of a bolt
Vdsb: Design shear strength of a bolt
Vng: Nominal plastic shear resistance of the gross section
Vnpb: Nominal bearing strength of a bolt
Vnsb: Nominal shear capacity of a bolt
w: Plate width
Ze: Elastic section modulus
xi: Abscissa of a bolt with respect to the center of gravity of the bolt group
yi: Ordinate of a bolt with respect to the center of gravity of the bolt group
Z: Section modulus

REFERENCES
[2] Subramanian, N. (2010). Steel Structures, Design and Practice. Oxford University Press.
[1] Bhavikatti, S.S. (2014). Design of Steel Structures by Limit State Method as Per IS: 800-2007. New Delhi: I.K. International Publishing House Pvt. Ltd.

Page14

You might also like