0% found this document useful (0 votes)
107 views60 pages

Supersonic Airfoil Dynamics

1) Supersonic flow over finite thickness wings produces wave drag even at zero angle of attack due to oblique shock waves forming on the upper and lower surfaces. 2) Supersonic airfoils require very sharp leading edges to minimize wave drag by keeping oblique shock waves attached. 3) At zero angle of attack, the pressure difference across the oblique shock waves on the upper and lower surfaces produces drag, called wave drag, proportional to the airfoil thickness.

Uploaded by

huynhnhu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
107 views60 pages

Supersonic Airfoil Dynamics

1) Supersonic flow over finite thickness wings produces wave drag even at zero angle of attack due to oblique shock waves forming on the upper and lower surfaces. 2) Supersonic airfoils require very sharp leading edges to minimize wave drag by keeping oblique shock waves attached. 3) At zero angle of attack, the pressure difference across the oblique shock waves on the upper and lower surfaces produces drag, called wave drag, proportional to the airfoil thickness.

Uploaded by

huynhnhu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 60

Section 7, Lecture 2:

Supersonic Flow on Finite Thickness Wings

• Concept of Wave Drag

• Anderson, Chapter 4, pp. 174-179


1
MAE 5420 - Compressible Fluid Flow
Supersonic Airfoils
• Recall that for a leading edge in Supersonic flow there is
γ=1.1
a maximum wedge angle at which the oblique shock wave
remains attached
γ=1.3 • Beyond that angle

γ=1.4 shock wave becomes


γ=1.1
γ=1.05

γ=1.2 detached from


γ=1.3

γ=1.4
leading edge

! max = tan
%
)
"1 {
2 M 12 sin 2 ( # max ) " 1 } '
*
) tan ( # max ) & 2 + M 1 %&$ + cos ( 2 # max ) '( ( *
% 2
'
& (

# max
1
= cos )
"1 ( )
% M 12 ($ " 1) + 4 " 16($ + 1) + 8M 12 ($ 2 " 1) + M 14 ($ + 1)2 '
*
2 )& 2$ M 12 *(

2
MAE 5420 - Compressible Fluid Flow
Supersonic Airfoils (cont’d)
• Normal Shock wave formed off theγ=1.1
front of a blunt leading
causes significant drag

Detached shock waveγ=1.3

Localized normal shock wave


Credit: Selkirk College Professional Aviation Program

3
MAE 5420 - Compressible Fluid Flow
Supersonic Airfoils (cont’d)
• To eliminate this leading edge drag caused by detached bow wave
γ=1.1
Supersonic wings are typically quite sharp at the leading edge

• Design feature allows oblique wave to attach to the leading edge


γ=1.3
eliminating the area of high pressure ahead of the wing.

• Double wedge or “diamond”


Airfoil section
Credit: Selkirk College Professional Aviation Program

4
MAE 5420 - Compressible Fluid Flow
Supersonic Airfoils (cont’d)
•When supersonic airfoil is at positive
angle of attack shock wave
γ=1.1
at the top leading edge is weakened
and the one at the bottom is intensified.

γ=1.3 • Result is the airflow over the top


of the wing is now faster.

• Airflow will also be accelerated


through the expansion fans.

• The fan on the top will be stronger


than the one on the bottom.

• Result is faster flow and therefore


Credit: Selkirk College Professional Aviation Program
lower pressure on the top of the airfoil.
• We already have all of the tools we need to analyze the flow on this wing

5
MAE 5420 - Compressible Fluid Flow
Supersonic Flow on
Finite Thickness Wings at zero α

Drag = b [ p2 ! p3 ] t

• Symmetrical Diamond-wedge airfoil, zero angle of attack


t /2
Drag = 2b [ p2l sin(! ) " p3l sin(! )] # sin(! ) =
l
Drag = b [ p2 " p3 ] t
6
MAE 5420 - Compressible Fluid Flow
Supersonic Flow on
Finite Thickness Wings at zero α

Drag = b [ p2 ! p3 ] t

• Look at pressure difference, p2-p3


• Oblique shock wave from region 1->2 .. p2 >p∞
¥ Expansion fan from region 2---> 3 ... p3 < p2
... p2 >p∞ −−> Drag > 0 7
MAE 5420 - Compressible Fluid Flow
Supersonic Flow on
Finite Thickness Wings at zero α
Lift Fp

α
Drag

• Compare to Flat Plate


# pl pu &
%p " p (
CL = $ ! ! '
cos 0 CD = 0
*) 2-
,+ M /
2 ! .

8
MAE 5420 - Compressible Fluid Flow
Compare to wing in subsonic flow
2
Mach 1
3

A0 A1 A0

A0 A1 A0

• from Bernoulli 2 2
! dx
" %
! pdx = P0 !
_
P0 = p + Cpmax q = p $1 + Cpmax M 2 ' (
# 2 & 1 1
f [M ]
3 3 2 3
P0 P0 dx dx
p=
"
1 + Cp M '
=
! 2 % f [M ] ! pdx = P !
0
f [M ]
= "P0 !
f [M ]
# ! pdx = 0
$# max
2 &
2 2 1 1

9
MAE 5420 - Compressible Fluid Flow
Compare to wing in subsonic flow (cont’d)

2 2
dx • at zero lift .. Subsonic wings in
! pdx = P !
1
0
1
f [M ] inviscid flow have No-drag!

3 3 2 3
dx dx
! pdx = P !
2
0
2
f [M ]
= "P0 !
1
f [M ]
# ! pdx = 0
1

• Known as d'Alembert's Paradox …

• Subsonic flow over wings


… induced drag (drag due to lift) + viscous drag

10
MAE 5420 - Compressible Fluid Flow
Supersonic Wave Drag
• Finite Wings in Supersonic Flow have drag .. Even
at zero angle of attack and no lift and no viscosity…. “wave drag”

• Wave Drag coefficient is proportional to thickness ratio (t/c)

C D wave =
Drag
=
[ p
2! p3 ] $ t '
" & ) c
2 % c(
_
bc q p# M
2
t

• Supersonic flow over wings


… induced drag (drag due to lift) +
viscous drag + wave drag
11
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
• 5° ramps, M∞ = 2.00 Airfoil
• Total chord: 2 meters • Look at flow properties across
each of the numbered regions
• Fineness ratio (t/c): 0.08749

3 5 7
1
4 6
2

12
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil (cont’d)
• Across region 1-2 … Oblique shock
δ2 = 5°−−>β2=34.302°, p2/p1=1.3154, M2=1.8213

M∞ = 2.00

3 5 7
1
4 6
2

13
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil (cont’d)
• Across region 2-4 … expansion fan M2=1.8213
δ4 = -10°−−> p4/p2=0.5685, p4/p1=0.7478, M4=2.1848

M∞ = 2.00

3 5 7
1
4 6
2

14
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil (cont’d)
• Across region 1-3 … Oblique shock
δ3 = 5°−−>β3=34.302°, p3/p1=1.3154, M3=1.8213

M∞ = 2.00

3 5 7
1
4 6
2

15
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil (cont’d)
• Across region 3-5 … expansion fan M3=1.8213
δ5 = -10°−−> p5/p3=0.5685, p5/p1=0.7478, M5=2.1848

M∞ = 2.00

3 5 7
1
4 6
2

16
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil … Drag
• Calculate Drag Coefficient
p2/p1=1.3154 M∞ = 2.00
p3/p1=1.3154
p4/p1=0.7478 3 5 7
p5/p1=0.7478 1
2 4 6

) 1 " p2 p3 % 1 " p4 p5 % , $ 1.3154 + 1.3154 ! 0.7478 + 0.7478 % 0.08749


+ ( $ + " #
+ $ ' ' . 2 2
* 2 # p! p! & 2 # p! p! & - " t %
C D wave = $# '& = 1.4 2
/ 2 c 2 =0.01774
M 2
2

17
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil … Drag (cont’d)
• Plot wave drag Mach 2.0
versus thickness ratio 0° α

C D wave =
Drag
=
[ p
2! p3 ] $ t '
_
" &% )(
bc q p# M 2 c
2

Thickness ratio
18
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil … Drag (cont’d)
• Look at mach number
Effect on wave drag

Increasing mach • Mach Number tends


to suppress wave drag

Thickness ratio 19
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil … Drag (cont’d)
• How About The
Compression effect of angle of
“Induced” drag attack on drag

Wave drag

+ α=0°

=
20
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil … Drag (cont’d)
Mach 2.0 Total drag

Increasing t/c

21
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil … Lift
• Calculate Zero α Lift Coefficient
p2/p1=1.3154
M∞ = 2.00
p3/p1=1.3154
p4/p1=0.7478
p5/p1=0.7478 3 5 7
1
4 6
2

) 1 " p2 p4 % 1 " p3 p5 % ,
+ $ + ' ( $ + '& .
2 # p p & 2 # p p
( )
Lift
= _ =*
! ! ! ! - •Makes sense
C L wave cos[5 o ] = 0
/ 2
bc q M
2
22
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (1)
Consider airfoil
@ positive
δ = wing half angle angle of attack,
… length … L

• Lower forward
Ramp Angle
… θ=δ + α

• Upper Forward
Ramp Angle
… θ=δ − α
L
θ > 0 “oblique shock”
θ < 0“expansion fan”
23
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (2)
• Angle from
δ = wing half angle 3-5 and 2-4
Is always convex
(expansion), 2δ

• Use Shock-Expansion
Theory to calculate
Ramp pressures

Upper: { P3, P5}


Lower: {P2, P4}

24
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (3)
δ = wing half angle
• Upper: { P3, P5}
Lower: {P2, P4}

• Calculate Normal
And Axial Pressure
Forces on Wing …

Normal Force

*$ L/2 L /2' $ L/2 L /2' -


Fnormal = b ! ,& P2 ! # P3 ! ) cos " + &% 4
P ! # P ! ) cos " /
+% cos " cos " ( cos " cos " (
5
.
* L L- b!L
= b ! ,( P2 # P3 ) + ( P4 # P5 ) / = *+( P2 + P4 ) # ( P3 + P5 ) -.
+ 2 2. 2
25
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (4)
δ = wing half angle
• Upper: { P3, P5}
Lower: {P2, P4}

• Calculate Normal
And Axial Pressure
Forces on Wing …

Axial Force

*$ L/2 L /2' $ L/2 L /2' -


Faxial = b ! ,& P2 ! # P4 ! ) sin " + &% 3
P ! # P ! ) sin " /
+% cos " cos " ( cos " cos " (
5
.
* L L- b!L
= b ! ,( P2 # P4 ) + ( P3 # P5 ) / tan " = *+( P2 + P3 ) # ( P4 + P5 ) -. tan "
+ 2 2. 2
26
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (5)
δ = wing half angle b&L
Fnormal = "#( P2 + P4 ) ! ( P3 + P5 ) $%
2
b&L
Faxial = "#( P2 + P3 ) ! ( P4 + P5 ) $% tan '
2

• Transform to wind axis


To calculate Lift, Drag

Drag = Faxial cos(! ) + Fnormal sin(! )


Lift = Fnormal cos(! ) " Faxial sin(! )

27
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (6)
δ = wing half angle b&L
Fnormal = "#( P2 + P4 ) ! ( P3 + P5 ) $%
2
b&L
Faxial = "#( P2 + P3 ) ! ( P4 + P5 ) $% tan '
2

• Transform to wind axis


To calculate Lift, Drag

Drag = Faxial cos(! ) + Fnormal sin(! )


Lift = Fnormal cos(! ) " Faxial sin(! )

( b&L + ( b&L+
Drag = * "#( P2 + P3 ) ! ( P4 + P5 ) $% tan ' - & cos(. ) + * "#( P2 + P4 ) ! ( P3 + P5 ) $% - & sin(. )
) 2 , ) 2 ,
( b&L+ ( b&L +
Lift = * "#( P2 + P4 ) ! ( P3 + P5 ) $% - & cos(. ) ! * "
# ( P + P ) ! ( P + P )
5 %$ tan ' - & sin(. )
) 2 , ) 2 3 4
2 ,

28
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (7)
δ = Terms
• Collect wing half angleEquation
on Drag
( b&L + ( b&L+
Drag = * "#( P2 + P3 ) ! ( P4 + P5 ) $% tan ' - & cos(. ) + * "#( P2 + P4 ) ! ( P3 + P5 ) $% - & sin(. )
) 2 , ) 2 ,
/
# b!L & # b!L& # b!L & # b!L&
Drag = % P2 tan " ( ! cos() ) + % P2 ( ! sin() ) + % P3 tan " ( ! cos() ) * % P3 ( ! sin() )
$ 2 ' $ 2 ' $ 2 ' $ 2 '
# b!L& # b!L & # b!L & # b!L&
+ % P4 ( ! sin() ) * % P4 tan " ( ! cos() ) * % P5 tan " ( ! cos() ) * % P5 ( ! sin() ) =
$ 2 ' $ 2 ' $ 2 ' $ 2 '
# b!L& # b!L&
%$ 2
P ( %$ P3 (
2 ' 2 '
cos "
[sin " ! cos() ) + cos " sin() )] + cos " [sin " ! cos() ) * cos " sin() )] +
# b!L& # b!L&
%$ 4
P ( %$ P5 (
2 ' 2 '
cos "
[ cos " ! sin() ) * sin " cos() )] * cos " [sin(" ) cos() ) + cos(" ) ! sin() )]

29
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (8)
• CollectδTerms
= wing half angle
" b!L% " b!L%
$# 2
P ' $# P3 '
2 & 2 &
Drag =
cos (
[sin ( ! cos() ) + cos ( sin() )] + cos ( [sin ( ! cos() ) * cos ( sin() )] +
" b!L% " b!L%
$# 4P ' $# P5 '
2 & 2 &
cos (
[ cos ( ! sin() ) * sin ( cos() )] * cos ( [sin(( ) cos() ) + cos(( ) ! sin() )]

+
[sin ( ! cos() ) + cos ( sin() )] = sin (( + ) ) +
[ cos ( ! sin() ) * sin ( cos() )] = sin (( * ) ) Trigonometric Identity
b!L
Drag = 2 P2 sin (( + ) ) + P3 sin (( * ) ) * P4 sin(( * ) ) * P5 sin (( + ) ) =
cos (
b!L
,( P2 * P5 ) sin (( + ) ) + ( P3 * P4 ) sin (( * ) ) ./
2 cos ( -

30
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (9)
• Similarδ Reduction forangle
= wing half Lift

' b&L* ' b&L *


Lift = ) "#( P2 + P4 ) ! ( P3 + P5 ) $% , & cos(- ) ! ) "
# ( P + P ) ! ( P + P )
5 %$ tan . ,+ & sin(- )
( 2 + ( 2 3 4
2
/
" P2 & [ cos . cos(- ) ! sin . & sin(- )] + $ " P2 & cos (. + - ) + $
0 1 0 1
b&L 0 3 !P [ cos . cos(- ) + sin . & sin(- ) ] + 1 b&L 0 3!P cos (. ! - ) + 1=
= =
2 cos . 0 P4 [ cos . cos(- ) + sin . & sin(- )] + 1 2 cos . 0 P cos (. ! - ) + 1
0 1 0 4 1
0# !P5 & [ cos . cos(- ) ! sin . & sin(- )] 1% 0# !P5 & cos (. + - ) 1%
b&L
"#( P2 ! P )5 & cos (. + - ) + ( P4 ! P3 ) cos (. ! - ) $%
2 cos .

!
[ cos " # cos($ ) + sin " sin($ )] = sin (" % $ ) !
Trigonometric Identity
[ cos " # cos($ ) % sin " sin($ ) ] = sin (" + $ )
31
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (10)
δ = Coefficients
• Lift/Drag wing half angle
b!L
Drag = %( P2 # P5 ) sin (" + $ ) + ( P3 # P4 ) sin (" # $ ) '(
2 cos " &
b!L
Lift = %&( P2 # P5 ) ! cos (" + $ ) + ( P4 # P3 ) cos (" # $ ) '(
2 cos "

!CD $ 1 ! Drag $ b)L 1 ! ( P2 + P5 ) sin (* + , ) + ( P3 + P4 ) sin (* + , ) $


#C & '= # Lift & = 2 cos * ) ' # &=
" L% P( M ( ) ( b ) L ) "
2 % (
P( M ( ) ( b ) L ) " 2
2 P + P5 ) ) cos (* + , ) + ( P4 + P3 ) cos (* + , ) %
2 2
! -P P 0 -P P 0 $
- 0 # / 2 + 5 2 sin (* + , ) + / 3 + 4 2 sin (* + , ) &
!CD $ / 1 1 2 # . P( P( 1 . P( P( 1 &
= )
# C & / 2 cos * ' 2 # &
" L% / M (2 2 #- P2 + P5 0 ) cos (* + , ) + - P4 + P3 0 cos (* + , ) &
. 1 /
2 #". P( P( 21 /. P
( P( 21 &%

32
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (11)
δ+ = wing half. !#angle
+ P2 P5 . +P
sin (' + 2 ) + 3
P4 . $
1
-, P 0/ -, P 1 P 0/ sin (' 1 2 ) &
! D$ - 1
C 1 0# * P* * * &
= (
# C & - 2 cos ' ) 0 # &
" L% - M *2 0 #+ P2 1 P5 . ( cos (' + 2 ) + + P4 1 P3 . cos (' 1 2 ) &
, / -
2 #", P* P* 0/ -, P
* P* 0/ &%

33
MAE 5420 - Compressible Fluid Flow
Pulling it All Together (12)
δ+ = wing half. !#angle
+ P2 P5 . +P
sin (' + 2 ) + 3
P4 . $
1
-, P 0/ -, P 1 P 0/ sin (' 1 2 ) &
! D$ - 1
C 1 0# * P* * * &
= (
# C & - 2 cos ' ) 0 # &
" L% - M *2 0 #+ P2 1 P5 . ( cos (' + 2 ) + + P4 1 P3 . cos (' 1 2 ) &
, / -
2 #", P* P* 0/ -, P
* P* 0/ &%

• Check against flat plate


Formulae … (δ=0)
# - Pl Pu 0 - Pu Pl 0 &
% / , 2 sin (3 ) , / , sin (3 ) (
# P3 = P5 = Pu & #C D & 1 1 % . P+ P+ 1 . P+ P+ 21 (!
!" = 0! % ( ! % (! )
$ P2 = P4 = Pl ' $ C L ' 2 * M 2 %- Pl Pu 0 - Pl Pu 0 (
2
+ %
/ , 2 ) cos (3 ) + / , 2 cos (3 ) (
%$. P+ P+ 1 . P+ P+ 1 ('

# - Pl Pu 0 &
%/ , 2 sin (3 ) (
#CD & 1 % . P+ P+ 1 ( .........Q.E.D
!% ( =
$ C L '" =0 * 2 %- P P 0 (
M + % l , u ) cos (3 ) (
2 %$/. P+ P+ 21 ('

34
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil … Drag (cont’d)
Lift Coefficient Climbs • How About The
Almost Linearly with α effect of angle of
attack on Lift

+
=
35
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil … L/D
• For Inviscid flow
Supersonic
t/c = 0.035 Lift to drag ratio
almost infinite
for very thin
airfoil

• But airfoils do not

+ fly in inviscid flows

=
36
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
Airfoil … L/D (cont’d)
• Friction effects
t/c = 0.035 have small effect
on Nozzle flow
or flow in “large
“ducts”

• But contribute

+ significantly
to reduce the

=
performance of
supersonic wings

37
MAE 5420 - Compressible Fluid Flow
Effect of Wing Sweep on Supersonic Airfoils
• Supersonic airflow turns corners very easily.
That is why sharp corners are OK on a supersonic
aircraft such as the F117 shown to the left, whereas
such corners would cause flow separation and a lot
of drag in subsonic flow.

38
MAE 5420 - Compressible Fluid Flow
Effect of Wing Sweep on Supersonic Airfoils
(cont’d)

• Problem with sharp leading edges is poor performance in


subsonic flight.

• Lead to very high stall speeds, poor subsonic handling


qualities, and poor take off and landing performance for
conventional aircraft

• Why JSC uses


VSTOL thrust
vectoring and Lift
Fan

39
MAE 5420 - Compressible Fluid Flow
Wing Design 101

• Subsonic Wing in Subsonic Flow • Subsonic Wing in Supersonic Flow

M>1

M<1

• Supersonic Wing in Subsonic Flow • Supersonic Wing in Supersonic Flow

Flow Separation

M>1

M>1
• Wings that work well sub-sonically generally
Don’t work well supersonically, and vice-versa

40
MAE 5420 - Compressible Fluid Flow
Wing Design 101 (cont’d)

• Compromise Delta design


generates lift at low speeds by • The exception is the Highly-Swept
increasing the angle-of-attack, Delta-Wing design … works “pretty well”
but also has sufficient sweepback in both flow regimes
and slenderness to perform very
efficiently at high speeds. Supersonic Subsonic
• On a traditional aircraft wing
a trailing vortex is formed
only at the wing tips.

• On a delta-wing at low speeds,


the vortex is formed along the
entire wing surface and produces
most of the lift.

• This vortical-lift generation at


high angles-of-attack is
fundamental for reentry vehicles
like the Space Shuttle
to be able to fly at slow speeds. 41
MAE 5420 - Compressible Fluid Flow
Wing Sweep Reduces Wave Drag
• One way to augment the performance of supersonic
aircraft is with wing sweep …
• Lowers the speed of flow
Normal to the wing …

• Decreasing the strength


Of the oblique shock wave

• Result is a Decrease in wave


Drag and enhanced L/D

42
MAE 5420 - Compressible Fluid Flow
Equivalent 2-D Flow on Swept Wing

• Freestream Mach number resolved into 3 components


i) vertical to wing …
ii) in plane of wing, but tangent to leading edge
iii) in plane of wing, but normal to leading edge
43
MAE 5420 - Compressible Fluid Flow
Equivalent 2-D Flow on Swept Wing
(cont’d)

i)M vert = M ! sin "


ii)M || = M ! cos " sin #
ii)M $ = M ! cos " cos #
44
MAE 5420 - Compressible Fluid Flow
Equivalent 2-D Flow on Swept Wing
(cont’d)

• Equivalent Mach Number normal to leading edge

M eq = M ! + M vert =
2 2
( M " sin # ) + ( M " cos # cos $ )
2 2
=

M" (1 % cos # ) + cos # (1 % sin $ ) = M


2 2 2
" 1 % sin 2 $ cos 2 #
45
MAE 5420 - Compressible Fluid Flow
Equivalent 2-D Flow on Swept Wing
(cont’d)

• Equivalent angle of attack normal to leading edge

M # sin ! tan (! )
( )
tan ! eq =
M vert
M"
= =
M # cos ! cos $ cos $
46
MAE 5420 - Compressible Fluid Flow
Equivalent 2-D Flow on Swept Wing
(cont’d)

• Equivalent chord and span


ceq = c [ cos ! ]
• Chord is shortened

b • Span is lengthened
beq =
cos !
47
MAE 5420 - Compressible Fluid Flow
Equivalent 2-D Flow on Swept Wing
(cont’d)

• Equivalent 2-D Lift Coefficient

L L
C L eq = = =
! $ b ' ! p M 2 cb
p" M eq c [ cos # ] &
2
) " eq
2 % cos # ( 2
L CL
=
!
p" M " cb (1 * sin # cos + )
2 2 2 (1 * sin 2
# cos 2
+)
2

48
MAE 5420 - Compressible Fluid Flow
Equivalent 2-D Flow on Swept Wing
(cont’d)

• Equivalent 2-D
Drag Coefficient

D / cos ! D / cos !
C D eq = = =
" $ b ' " p M 2 cb
p# M eq c [ cos ! ] &
2
) # eq
2 % cos ! ( 2
D / cos ! C D / cos !
=
"
p# M # cb (1 * sin ! cos + )
2 2 2 (1 * sin 2
! cos 2
+)
2
49
MAE 5420 - Compressible Fluid Flow
Equivalent 2-D Flow on Swept Wing
(cont’d)

• Solve for CL, CD, L/D

% L(
(
C L = C L eq 1 ! sin " cos # 2
L
2
) '& *)
D eq
$ =
C D = C D eq (
cos " 1 ! sin " cos #
2 2 D cos " )

50
MAE 5420 - Compressible Fluid Flow
Example: Symmetric Double-wedge
• 5° ramps, M = 2.00
Airfoil

• Total chord: 2 meters • 30 deg wing sweep

• Fineness ratio (t/c): 0.08749

• α = 5°

3 5 7
1
4 6
2

51
MAE 5420 - Compressible Fluid Flow
Example: Swept Symmetric Double-wedge
• 5° ramps, M∞ = 2.00 Airfoil
• Total chord: 2 meters

• Fineness ratio (t/c): 0.08749 • 30 deg wing sweep

• α = 5°

M eq = M ! 1 " sin # cos $ = 2 2

$ ! ! 2% 0.5
2 ' 1 & $" $" sin $" 30%# %# cos $" 5 %# %# ( = 1.7342
" 180 180 #

52
MAE 5420 - Compressible Fluid Flow
Example: Swept Symmetric Double-wedge
• 5° ramps, M∞ = 2.00 Airfoil (cont’d)
• Total chord: 2 meters

• Fineness ratio (t/c): 0.08749 • 30 deg wing sweep

• α = 5°
$ $ ! % %
$ tan (! ) ' & tan " 5# '
! eq = tan & "1
) = atan &
180 & 180 '
'
% cos # ( ! & cos $" !
30 %# '
" 180 #

= 5.769°

53
MAE 5420 - Compressible Fluid Flow
Example: Swept Symmetric Double-wedge
• 5° ramps, M∞ = 2.00 Airfoil (cont’d)
• Total chord: 2 meters

• Fineness ratio (t/c): 0.08749 • 30 deg wing sweep

• α = 5°

ceq = c [ cos ! ] = $
2 cos "
!
180
30%#

= 1.732

54
MAE 5420 - Compressible Fluid Flow
Example: Swept Symmetric Double-wedge
Airfoil (cont’d)
• Effective parameters

(
C L = C L eq 1 ! sin " cos # =
2 2
)
$ ! ! 2% 0.5
0.29212 ' 1 & $" $" sin $" 30%# %# cos $" 5 %# %# (
" 180 180 #

= 0.2533

55
MAE 5420 - Compressible Fluid Flow
Example: Swept Symmetric Double-wedge
Airfoil (cont’d)
• Effective parameters

(
C D = C D eq cos ! 1 " sin 2 ! cos 2 # = )
! $ ! ! % % 2%
0.5
$ $
0.05205 " cos " % % $ $ $
30# # ' 1 & " " sin " % % $
30# # cos " 5# # (
180 " 180 180 #

= 0.03909

L/D = 0.2533/0.03909=6.4799

56
MAE 5420 - Compressible Fluid Flow
Example: Swept Symmetric Double-wedge
Airfoil (cont’d)
• Compare to Unswept airfoil

• 5° ramps, M∞ = 2.00

• Total chord: 2 meters

• Fineness ratio (t/c): 0.08749

• α = 5°

• 0 deg wing sweep

57
MAE 5420 - Compressible Fluid Flow
Example: Swept Symmetric Double-wedge
Airfoil (cont’d)
• Unswept Wing • 30° Swept Wing

C L: 0.205 C L: 0.2533
C D: 0.3606 C D: 0.03909
L/D: 5.68441 L/D: 6.4799

• WOW! … 14% IMPROVEMENT IN PERFORMANCE

58
MAE 5420 - Compressible Fluid Flow
Next section: Overview of Turbulent
Compressible Boundary Layers and Friction
Induced Drag

59
MAE 5420 - Compressible Fluid Flow
Section 7: Home Work

P"=26.436 kPa • Calculate Freestream


Mach Number
3
1 5
10°
2 10° 7
4 6 • Assume
γ=1.40

!=12° P04sensed=143.062kPa

Shock wave
P4=30.454 kPa

60
MAE 5420 - Compressible Fluid Flow

You might also like