SOLUTION
Your input: approximate the
integral ∫‾‾‾‾‾‾‾‾‾‾√∫0310x2+189x2+18 dx using n=6 rectan
gles.
The Simpson's rule states
that ∫≈−−∫abf(x)dx≈Δx3(f(x
0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+...+2f(xn−2)+4f(xn−1)+f(xn))
where −Δx=b−an.
We have that a=0, b=3, n=6.
Therefore, −Δx=3−06=12.
Divide the interval [0,3] into n=6 subintervals of length Δx=12, with the
following
endpoints: a=0,12,1,32,2
,52,3=b.
Now, we just evaluate the function at these endpoints:
f(x0)=f(a)=f(0)=1=1
‾‾‾√4f(x1
)=4f(12)=4829=4.02461561694996
‾‾‾√2f(x2)=2f(1)=4219=2.03670030886926
‾‾‾√
4f(x3)=4f(32)=123417=4.11596604342021
‾‾‾√2f(x4)=2f
(2)=2879=2.0727509006864
‾‾‾‾‾‾√
4f(x5)=4f(52)=41062699=4.16494914096215
‾‾‾√
f(x6)=f(b)=f(3)=23311=1.04446593573419
Finally, just sum up the above values and multiply
by Δx3=16:
16(1+
4.02461561694996+2.03670030886926+...
+4.16494914096215+1.04446593573419)=3.07657465777036
Answer: 3.07657465777036.
(1+(((9*x^2)/4)^(1/3))^2)^0.5
Your input: approximate the
integral ∫‾√‾√‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√∫0233422333(x2)23+1
dx using n=6 rectangles.
The Simpson's rule states
that ∫≈−−∫abf(x)dx≈Δx3(f(x
0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+...+2f(xn−2)+4f(xn−1)+f(xn))
where −Δx=b−an.
We have that a=0, ‾√b=23, n=6.
Therefore, ‾√−‾√Δx=23−06=33.
Divide the interval ‾√[0,23] into n=6 subintervals of length ‾√Δx=33,
with the following
endpoints: ‾√‾√‾√‾√‾√‾√a=0,33,233,3,433,533,23
=b.
Now, we just evaluate the function at these endpoints:
f(x0)=f(a)=f(0)=1=1
‾√‾‾‾‾‾‾‾√
4f(x1)=4f(33)=46234+1=5.40441569418735
‾√‾‾‾‾‾‾‾√
2f(x2)=2f(233)=21+323=3.51003351724846
‾√‾‾‾‾‾‾‾‾‾√
4f(x3)=4f(3)=41+94223=8.55256908015686
‾√‾√⋅‾‾‾‾‾‾‾‾‾‾‾‾√
2f(x4)=2f(433)=21+223⋅323=4.99659195388929
‾√‾‾‾√‾‾‾‾‾‾‾‾‾‾‾‾√
4f(x5)=4f(533)=41+54223453=11.35448472
92039
‾√‾‾‾√f(x6)=f(b)=f(23)=10=3.16227766016838
Finally, just sum up the above values and multiply
by ‾√Δx3=39: ‾√
39(1+5.40
441569418735+3.51003351724846+...
+11.3544847292039+3.16227766016838)=7.30932612155179
Answer: 7.30932612155179.
3)
Pregunta 4
Pregunta5