Fatigue Analysis of Spread Mooring Line: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh
Fatigue Analysis of Spread Mooring Line: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh
International Scholarly and Scientific Research & Innovation 10(5) 2016 504 scholar.waset.org/1307-6892/10004227
World Academy of Science, Engineering and Technology
International Journal of Geological and Environmental Engineering
Vol:10, No:5, 2016
International Scholarly and Scientific Research & Innovation 10(5) 2016 505 scholar.waset.org/1307-6892/10004227
World Academy of Science, Engineering and Technology
International Journal of Geological and Environmental Engineering
Vol:10, No:5, 2016
TABLE III
WIND SCATTER DIAGRAM
Direction from North (Deg)
Vw a (m/s)
0 22.5 45 67.5 90 112.5 135 157.5 180 202.5 225 247.5 270 292.5 315 337.5
0.5 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02 0.03 0.03 0.01 0.02 0.01 0.01 0.01 0.00
1.5 0.05 0.03 0.06 0.05 0.09 0.15 0.23 0.38 0.49 0.49 0.47 0.34 0.17 0.09 0.05 0.06
2.5 0.04 0.03 0.06 0.07 0.14 0.35 0.70 1.62 2.54 2.86 2.03 1.08 0.50 0.25 0.11 0.07
3.5 0.02 0.01 0.01 0.01 0.06 0.20 0.81 2.93 6.65 7.07 3.96 1.43 0.45 0.12 0.06 0.01
4.5 0.01 0.01 0.01 0.06 0.39 2.90 9.42 10.35 4.88 1.28 0.27 0.06 0.01 0.01
5.5 0.00 0.00 0.01 0.12 1.27 6.09 8.45 3.97 0.86 0.10 0.01 0.01 0.01
6.5 0.00 0.01 0.26 1.83 3.77 2.08 0.28 0.01
7.5 0.02 0.24 0.69 0.42 0.07 0.01
8.5 0.01 0.01 0.07 0.04 0.01
9.5 0.00 0.00
a
Vw = averaged wind velocity for one hour
International Science Index, Geological and Environmental Engineering Vol:10, No:5, 2016 waset.org/Publication/10004227
TABLE IV
CURRENT SCATTER DIAGRAM
Direction from North (Deg) Direction from North (Deg)
Vcr a (m/s) Vcr a (m/s)
0 45 90 135 180 225 270 315 0 45 90 135 180 225 270 315
0.01 0.11 0.12 0.09 0.10 0.10 0.08 0.09 0.07 0.37 0.25 0.30 0.30 0.19 0.05 0.06 0.20 0.44
0.03 0.33 0.29 0.32 0.29 0.27 0.28 0.28 0.32 0.39 0.26 0.21 0.32 0.17 0.02 0.05 0.18 0.37
0.05 0.50 0.58 0.57 0.49 0.40 0.38 0.46 0.47 0.41 0.24 0.13 0.18 0.10 0.01 0.03 0.11 0.33
0.07 0.69 0.84 0.78 0.64 0.57 0.56 0.58 0.57 0.43 0.15 0.08 0.11 0.03 0.01 0.02 0.11 0.25
0.09 0.84 1.11 1.01 0.78 0.74 0.63 0.71 0.60 0.45 0.16 0.08 0.10 0.04 0.01 0.09 0.18
0.11 0.88 1.18 1.21 0.84 0.73 0.74 0.73 0.71 0.47 0.11 0.05 0.07 0.02 0.01 0.07 0.16
0.13 0.96 1.31 1.33 0.88 0.80 0.69 0.75 0.81 0.49 0.11 0.04 0.05 0.01 0.00 0.07 0.15
0.15 0.99 1.54 1.27 1.01 0.93 0.62 0.72 0.80 0.51 0.10 0.04 0.03 0.01 0.06 0.13
0.17 0.97 1.41 1.39 0.98 0.85 0.67 0.74 0.75 0.53 0.08 0.01 0.03 0.01 0.01 0.04 0.08
0.19 0.98 1.28 1.37 0.90 0.75 0.54 0.66 0.81 0.55 0.07 0.01 0.04 0.00 0.03 0.07
0.21 0.84 1.32 1.22 0.94 0.60 0.42 0.56 0.78 0.57 0.03 0.01 0.03 0.02 0.05
0.23 0.73 1.00 1.16 0.93 0.58 0.39 0.48 0.67 0.59 0.03 0.05 0.00 0.02 0.05
0.25 0.61 0.97 1.10 0.71 0.47 0.32 0.44 0.61 0.61 0.01 0.05 0.01 0.04
0.27 0.54 0.81 0.99 0.67 0.39 0.26 0.39 0.64 0.63 0.01 0.02 0.01 0.06
0.29 0.51 0.77 0.97 0.55 0.28 0.22 0.42 0.58 0.65 0.00 0.02 0.05
0.31 0.46 0.56 0.76 0.50 0.19 0.15 0.35 0.57 0.67 0.01 0.00 0.01
0.33 0.42 0.50 0.55 0.41 0.13 0.12 0.25 0.55 0.69 0.01 0.01
0.35 0.35 0.35 0.41 0.33 0.07 0.12 0.20 0.53 0.71 0.00 0.00
a
Vcr = current velocity
n
A. S-N Curve
According to API RP 2SK [4], S-N curve presents the The fatigue damage Di in the i-th short-term sea state is
number of cycles to failure for a specific mooring component as calculated from (3):
a function of a constant normalized tension range, based on the
results of experiments. For mooring lines, T-N approach which
N n
only considers the tension fatigue and ignores the bending
D i
j N
j
1
(3)
j
fatigue is normally used. Equation (1) presents the T-N curve:
where nj is number of cycles within the j-th tension range, Nj is
NR M
K (1) allowable number cycles at the j-th normalized tension range
given by T-N curve.
where N is the number of cycles, R is the ratio of tension range For fatigue analysis, the values of M = 3.0 and K = 316 for
to reference breaking strength, and M and K are material chain, and M = 5.05 and K = 10(3.25 - 3.42 Lm) for wire, were
parameters in the T-N curve. chosen from [1]. Lm is the ratio of mean load to reference
According to Miner’s linear cumulative damage rule, the breaking strength for wire rope.
annual cumulative fatigue damage D can be summed up from
the fatigue damage Di arising in a set of short-term sea states as B. Numerical Simulation
shown in (2): For fatigue analysis, cyclic loading of mooring line needs to
be obtained firstly. To calculate dynamic tension of mooring
International Scholarly and Scientific Research & Innovation 10(5) 2016 506 scholar.waset.org/1307-6892/10004227
World Academy of Science, Engineering and Technology
International Journal of Geological and Environmental Engineering
Vol:10, No:5, 2016
line, dynamic analysis was performed to generate a time where M(p,a) is the system inertia load, C(p,v) is the system
simulation of 6 DOF motions of model using equation of damping load, K(p) is the system stiffness load and F(p,v,t) is
motion. The equation of motion applied is shown in (4): the external load. Also p, v, a and t are the position vectors,
velocity vectors, acceleration vectors and simulation time,
M (p ,a ) C (p ,v ) K (p ) F (p ,v ,t ) (4) respectively.
TABLE V
WAVE SCATTER DIAGRAM
No. Inc1 Hs1 Tp1 Inc2 Hs2 Tp2 Inc3 Hs3 Tp3 Occ No. Inc1 Hs1 Tp1 Inc2 Hs2 Tp2 Inc3 Hs3 Tp3 Occ
1 225 1.3 13 203 0.8 9 180 0.3 7 230 43 225 0.3 11 203 0.8 9 203 0.3 5 46
2 203 1.3 13 203 0.8 9 203 0.3 5 228 44 225 1.3 15 203 1.3 9 203 0.8 7 46
3 203 0.8 11 203 0.8 7 180 0.3 5 218 45 203 1.3 15 203 1.3 11 180 0.8 9 44
4 203 1.3 11 0 0.0 0 0 0.0 0 198 46 203 0.8 9 203 0.8 7 203 0.8 5 43
5 225 0.8 13 203 0.3 9 180 0.3 5 184 47 203 0.3 11 203 0.3 9 180 0.3 5 42
International Science Index, Geological and Environmental Engineering Vol:10, No:5, 2016 waset.org/Publication/10004227
6 225 0.8 13 203 0.8 9 180 0.3 5 184 48 225 1.8 15 203 0.8 9 203 0.3 9 42
7 225 1.3 13 203 0.3 7 158 0.8 5 179 49 203 0.3 17 203 0.8 11 180 0.3 9 40
8 203 0.8 11 203 0.3 7 338 0.8 5 146 50 225 0.3 17 225 0.8 11 180 0.3 5 40
9 225 0.3 15 203 0.8 11 203 0.3 5 146 51 203 1.3 13 180 0.3 7 180 0.3 7 39
10 203 1.3 9 0 0.0 0 0 0.0 0 141 52 203 2.3 15 0 0.0 0 0 0.0 0 39
11 203 0.8 13 203 0.8 9 180 0.3 7 131 53 225 0.8 15 225 0.8 11 203 0.8 7 39
12 203 1.3 13 0 0.0 0 0 0.0 0 126 54 203 0.3 13 203 0.3 9 203 0.3 5 38
13 203 1.3 11 203 0.8 7 180 0.3 5 102 55 225 0.3 15 225 0.3 11 203 0.3 7 38
14 225 0.3 13 203 0.8 9 203 0.3 5 102 56 203 1.3 13 180 0.8 9 180 0.3 5 36
15 203 1.3 13 203 0.3 7 180 0.3 5 91 57 225 0.3 13 203 1.3 9 180 0.3 7 36
16 225 0.8 11 203 0.8 7 135 0.8 5 90 58 225 1.8 13 0 0.0 0 0 0.0 0 36
17 203 0.8 13 203 0.3 9 203 0.3 5 88 59 203 1.8 13 203 0.8 9 203 0.3 7 35
18 203 1.3 11 203 0.3 5 225 0.3 5 88 60 225 1.3 15 203 0.3 9 180 0.3 9 35
19 203 1.3 13 203 1.3 9 180 0.3 9 85 61 203 0.8 11 180 0.3 7 180 0.3 5 34
20 225 0.8 15 203 0.8 9 180 0.3 9 85 62 203 1.3 11 225 0.3 5 203 0.3 5 34
21 225 1.3 15 203 0.8 9 203 0.3 9 85 63 225 0.8 13 203 1.3 9 225 0.3 5 34
22 203 1.8 13 0 0.0 0 0 0.0 0 84 64 225 1.3 13 180 0.8 7 203 0.8 5 34
23 225 0.3 15 225 0.8 11 203 0.3 5 83 65 225 2.3 15 0 0.0 0 0 0.0 0 34
24 225 0.3 15 203 1.3 11 203 1.3 9 79 66 203 2.3 13 0 0.0 0 0 0.0 0 33
25 203 0.8 9 203 0.3 7 203 0.3 3 77 67 225 1.3 13 180 0.3 7 203 0.3 5 33
26 225 1.3 13 203 1.3 9 90 0.8 5 75 68 203 0.8 9 0 0.0 0 0 0.0 0 31
27 225 0.8 11 203 0.3 7 180 0.3 5 74 69 203 0.8 11 0 0.0 0 0 0.0 0 31
28 225 1.3 13 0 0.0 0 0 0.0 0 73 70 203 1.3 11 180 0.3 7 225 0.3 5 30
29 203 0.8 13 203 1.3 9 203 0.3 7 70 71 203 0.8 11 225 0.3 7 180 0.3 7 29
30 203 0.3 15 203 0.8 11 203 0.3 7 67 72 203 1.8 15 0 0.0 0 0 0.0 0 29
31 203 1.3 15 203 0.8 9 203 0.8 9 58 73 203 0.3 15 203 0.3 11 203 0.3 7 28
32 225 0.3 17 203 0.8 11 180 0.3 7 58 74 225 0.8 15 203 1.3 9 180 0.8 7 27
33 225 0.3 13 203 0.3 9 203 0.3 5 56 75 225 1.3 11 203 0.3 7 90 0.8 5 27
34 225 1.8 15 0 0.0 0 0 0.0 0 56 76 225 1.8 13 203 0.8 7 225 0.3 7 27
35 225 0.8 15 203 0.3 9 203 0.3 7 53 77 203 0.8 15 203 1.3 9 180 0.8 9 26
36 203 0.8 15 203 0.8 11 203 0.8 7 51 78 203 2.3 11 0 0.0 0 0 0.0 0 26
37 203 0.3 13 203 1.3 9 203 0.3 7 48 79 203 1.8 15 203 1.3 9 0 0.0 0 25
38 203 0.3 15 203 1.3 11 203 0.3 9 48 80 225 0.3 17 203 1.3 11 203 0.8 9 25
39 203 0.3 11 203 0.8 7 180 0.3 5 47 81 225 1.3 17 225 0.8 13 180 0.8 9 24
40 203 0.3 13 203 0.8 9 180 0.3 7 47 82 203 1.8 15 203 0.8 7 203 0.8 9 23
41 203 1.8 11 0 0.0 0 0 0.0 0 47 83 225 0.8 15 225 0.3 11 203 0.3 7 23
42 225 0.3 15 203 0.3 11 203 0.3 7 47 84 203 0.3 15 225 0.8 11 203 0.3 7 22
Inc = wave heading, Hs = significant wave height, Tp = peak period, Occ = occurrence.
International Scholarly and Scientific Research & Innovation 10(5) 2016 507 scholar.waset.org/1307-6892/10004227
World Academy of Science, Engineering and Technology
International Journal of Geological and Environmental Engineering
Vol:10, No:5, 2016
The dynamic behavior of mooring lines can be split into two the effects of fatigue damage. In fatigue analysis, because of the
modes as shown in Fig. 3; wave frequency (WF) from the six most critical point, first chain link connected with fairleads of
degrees of freedom of vessel motion, and low frequency (LF) FPSO was selected as the target segment. In this study, the only
due to second order drift forces [5]. representative intermediate condition was mainly taken into
account for sensitivity study.
A. Environmental Loads
Fatigue analysis of mooring system should consider the
environmental conditions of wind, current, and wave.
Reflecting the sea states of West Africa offshore, fatigue
damages at the first chain link position from fairleads of FPSO
were calculated as shown in Fig. 6. The fatigue damage in wave
is much higher than others. And fatigue damage in current is
significantly smaller than that of wind. In terms of mooring line
International Science Index, Geological and Environmental Engineering Vol:10, No:5, 2016 waset.org/Publication/10004227
Fig. 5 Tension time series of P1 mooring line for wave scatter No. 183
International Scholarly and Scientific Research & Innovation 10(5) 2016 508 scholar.waset.org/1307-6892/10004227
World Academy of Science, Engineering and Technology
International Journal of Geological and Environmental Engineering
Vol:10, No:5, 2016
C. Vessel Offsets
The primary purpose of mooring system is to maintain an
FPSO on station within a specified tolerance, typically based on
an offset limit determined from the configuration of the risers.
The mooring system provides a restoring force that acts against
the surrounding environmental loads as wind, current and wave.
The horizontal components of the mooring line tension give
such restoring force. Until horizontal restoring forces by
mooring lines are balanced from environmental loadings, the
FPSO will be offset as shown in Fig. 12.
International Scholarly and Scientific Research & Innovation 10(5) 2016 509 scholar.waset.org/1307-6892/10004227
World Academy of Science, Engineering and Technology
International Journal of Geological and Environmental Engineering
Vol:10, No:5, 2016
V. CONCLUSION
International Science Index, Geological and Environmental Engineering Vol:10, No:5, 2016 waset.org/Publication/10004227
REFERENCES
[1] DNV, Offshore standard—position mooring, DNV-OS-E301; 2001.
[2] Orcina Ltd., OrcaFlex Manual version 9.6C. Orcina Ltd., Daltongate,
Ulverston, Cumbria. UK, 2013.
[3] M. Matsuishi and T. Endo, Fatigue of metals subjected to varying stress,
Presented to the Japan Society of Mechanical Engineers, Fukuoka, Japan.
[4] API, Recommended practice for design and analysis of stationkeeping
systems for floating structures, API RP 2SK; 1997.
[5] Pinkster, J.A., “Low-frequency phenomena associated with vessels
moored at sea”, Soc. Petroleum Engineers Journal, Dec. 1975, pp.
487-94.
[6] H. Ormberg, N. Sødahl, and O. Steinkjer, “Efficient analysis of mooring
systems using de-coupled and coupled analysis”, OMAE98-0351, 1998.
International Scholarly and Scientific Research & Innovation 10(5) 2016 510 scholar.waset.org/1307-6892/10004227