0% found this document useful (0 votes)
588 views3 pages

1.7 All Transformations

This document discusses sketching graphs of functions by applying transformations to parent functions. The key points are: 1. Graphs can be derived from parent functions by applying transformations in sequential order, from left to right. 2. The general form of a transformed function is y = af(k(x - d)) + c, where a stretches vertically, k stretches horizontally, d translates horizontally, and c translates vertically. 3. Examples are provided to demonstrate describing transformations from equations and writing equations from descriptions of transformations.

Uploaded by

Ashley Elliott
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
588 views3 pages

1.7 All Transformations

This document discusses sketching graphs of functions by applying transformations to parent functions. The key points are: 1. Graphs can be derived from parent functions by applying transformations in sequential order, from left to right. 2. The general form of a transformed function is y = af(k(x - d)) + c, where a stretches vertically, k stretches horizontally, d translates horizontally, and c translates vertically. 3. Examples are provided to demonstrate describing transformations from equations and writing equations from descriptions of transformations.

Uploaded by

Ashley Elliott
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

MHF4U Unit 1 Lesson 7 1

1.4  Sketching  Graphs  of  Functions    


Learning  Goal  
 
•   To  apply  transformations  to  parent  functions:  𝒚 = 𝒂𝒇%𝒌(𝒙 − 𝒅), +  𝒄          
•   To  be  able  to  describe  each  transformation  when  given  a  function  using  the  correct  
terminology  –  vertical/horizontal  stretch/compressions,  vertical/horizontal  translations  and  
reflections  
•   To  be  able  to  determine  an  equation  when  given  the  transformations  in  a  statement  
 
 
Order  of  Transformations  
 
Graphs  of  functions  can  be  derived  from  their  parent  functions  by  applying  transformations  in  
sequential  order.      
The  general  form  of  a  transformed  function  is  
 
𝒚 = 𝒂𝒇(𝒌(𝒙 − 𝒅) +  𝒄  
 
Translations  are  applied  in  the  order  from  left  to  right  and  can  be  described  as:  
 
1.      
 
 
     
2.  
 
 
 
3.  
 
 
 
4.  
 
 
 
5.  
 
 
6.  
 
 
 
 
 
 
MHF4U Unit 1 Lesson 7 2
Example    –  State  the  transformations  defined  by  each  equation  given  below:  
 
 
 
𝟏     5𝒙6𝟐
a)  𝒚 =    𝒇(𝒙 − 𝟑) + 𝟕              
𝟒  
    b)    𝒚 =   −𝒇 4 9   𝟓
 
 
 
 
 
 
 
 
 
Example    –  the  point  (8,2)  is  on  the  graph  of  y  =  f(x).    Determine  the  corresponding  coordinates  of  
this  point  on  the  graph  of  𝒚 =   −𝟐  𝒇%𝟐(𝒙 + 𝟏), −  𝟒  
 
 
 
 
 
 
 
 
 
 
 
 
Example    -­‐  State  the  name  and  equations  of  the  parent  function.    Describe  the  given  transformation  in  
words.    State  the  domain  and  range  of  each  function.  
 
?
a)    𝑓(𝑥 ) =     (𝑥 − 3)= + 7                                                          b)    𝑓(𝑥 ) =     A2(𝑥 + 5)   − 4  
@
 
 
 
 
 
 
 
 
 
 
 
 
MHF4U Unit 1 Lesson 7 3
5G
c)    𝑓(𝑥 ) =   −6(25F ) −  3                                                          d)    𝑓 (𝑥 ) = =(F6?) + 8  
 
 
 
 
 
 
 
 
 

?
Example  –  Given:    𝑓 (𝑥 ) =   F      The  graph  of  the  given  function  is  transformed  as  stated  below.    Write  

the  equation  of  the  new  function.  

a)   Reflection  across  the  x-­‐axis,  horizontal  stretch  by  a  factor  of  2,  up  7  units.  

? ?
b)   vertical  compression  by  a  factor  of  I,  horizontal  compression  by  a  factor  of  J,  left  3  units  and  
down  6  units  
 
 
 
 
 
Example-­‐  Given  𝑔(𝑥 ) = √𝑥    Express  the  given  functions  using  g(x)  notation.  
 
?
a)      𝑦 =   √𝑥 − 2                                        b)    𝑦 =   √𝑥 + 1                                        c)    𝑦 =   O  A– (𝑥 + 1) − 2  

You might also like