Normal Distribution
Normal Distribution:
The probability density function of normal distribution is:
−∞ < 𝑥 < ∞,
1 (𝑥−µ)2
−
𝑓(𝑥 ) = 𝑒 2𝜎 2 − ∞ < µ < ∞,
√2𝜋𝜎 2
0 ≤ 𝜎2 < ∞
Expectation: 𝐸 (𝑥 ) = µ
Variance: 𝑉(𝑥 ) = 𝜎 2
Standard normal distribution: When µ = 0 and 𝜎 2 = 1 then the
normal distribution is called standard normal distribution.
The probability density function of standard normal distribution is:
1 1
− 𝑧2
𝑓(𝑧) = 𝑒 2 −∞<𝑧<∞
√2𝜋
Property of a normal distribution:
1) It is symmetric.
2) Mean=Mode=Median.
3) It is unimodal.
4) The total area under the curve is equal to one.
5) The normal curve approaches, but never touches, the x-axis
Transformation:
(𝑥−µ)2
∞ ∞ 1 −
∫−∞ 𝑓(𝑥 ) 𝑑𝑥 = ∫−∞ √2𝜋𝜎2 𝑒 2𝜎2 𝑑𝑥
1 2
∞ 1 𝑥−µ
= ∫−∞ 𝑒 −2𝑧 𝜎 𝑑𝑧 Let, 𝑧 =
√2𝜋 𝜎 𝜎
1
∞ 1 − 𝑧2 𝑥 µ
= ∫−∞ √2𝜋 𝑒 2 𝑑𝑧 => 𝑧 = −
𝜎 𝜎
𝑑𝑧 1
=> =
𝑑𝑥 𝜎
=> 𝑑𝑥 = 𝜎 𝑑𝑧
𝑥 −∞ ∞
𝑧 −∞ ∞
That is if 𝑋 ~𝑁(µ, 𝜎 2 ) and if you want to transform the normal
distribution to standard distribution then the transform random variable
𝑥−µ
is 𝑍 = (Z score)
𝜎
Probability Calculations for Normal Distributions:
𝑃(𝑎 < 𝑥 < 𝑏)
𝑎−µ 𝑥−µ 𝑏−µ
= 𝑃( < < )
𝜎 𝜎 𝜎
𝑎−µ 𝑏−µ
= 𝑃( <𝑍< )
𝜎 𝜎
𝑏−µ 𝑎−µ
= 𝐹( ) − 𝐹( )
𝜎 𝜎
𝑃(𝑥 < 𝑏)
= 𝑃(−∞ < 𝑥 < 𝑏)
−∞ − µ 𝑥 − µ 𝑏 − µ
= 𝑃( < < )
𝜎 𝜎 𝜎
𝑏−µ
= 𝑃(−∞ < 𝑍 < )
𝜎
𝑏−µ
= 𝐹( )
𝜎
𝑃(𝑥 > 𝑎)
= 𝑃(𝑎 < 𝑥 < ∞)
𝑎−µ 𝑥−µ ∞−µ
= 𝑃( < < )
𝜎 𝜎 𝜎
𝑎−µ
= 𝑃( < 𝑍 < ∞)
𝜎
𝑎−µ
= 𝐹 (∞) − 𝐹( )
𝜎
𝑎−µ
= 1 − 𝐹( )
𝜎
Example: A company manufactures concrete blocks that are used for
construction purposes. Suppose that the weights of the individual concrete
blocks are normally distributed with a mean value of μ = 11.0 kg and a
standard deviation of σ = 0.3 kg.
i) Calculate the probability that a concrete block weight is less than
10.5kg.
ii) Calculate the probability that a concrete block weight is within 10kg to
12kg.
iii) Calculate the probability that a concrete block weight is greater than
10.5kg.
Solution:
i)
𝑃(𝑥 < 10.5)
= 𝑃(−∞ < 𝑥 < 10.5)
−∞ − 11 𝑥 − 11 10.5 − 11
= 𝑃( < < )
0.3 0.3 0.3
= 𝑃(−∞ < 𝑍 < −1.67)
= 𝐹(−1.67)
= 0.0475
ii)
𝑃(10 < 𝑥 < 12)
10 − 11 𝑥 − 11 12 − 11
= 𝑃( < < )
0.3 0.3 0.3
= 𝑃(−3.33 < 𝑍 < 3.33)
= 𝐹 (3.33) − 𝐹(−3.33)
= 0.99957 − 0.00043
= 0.99914
iii)
𝑃(𝑥 > 10.5)
= 𝑃(10.5 < 𝑥)
= 𝑃(10.5 < 𝑥 < ∞)
10.5 − 11 𝑥 − 11 ∞ − 11
= 𝑃( < < )
0.3 0.3 0.3
= 𝑃(−1.67 < 𝑍 < ∞)
= 𝐹 (∞) − 𝐹(−1.67)
= 1 − .04746
= 0.95254