0% found this document useful (0 votes)
109 views13 pages

Lunar Eclipse (UKM)

This document provides calculations for a lunar eclipse that occurred on July 26, 1934 in Mandalay, Myanmar. It includes determining the true positions of the sun and moon, the time and duration of conjunction, the moon's latitude during eclipse, and the size and percentage of the moon eclipsed. The calculations are shown over 25 pages and provide high precision results, with the document serving to document the eclipse calculations for historical records.

Uploaded by

Ko Ko Aung
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
109 views13 pages

Lunar Eclipse (UKM)

This document provides calculations for a lunar eclipse that occurred on July 26, 1934 in Mandalay, Myanmar. It includes determining the true positions of the sun and moon, the time and duration of conjunction, the moon's latitude during eclipse, and the size and percentage of the moon eclipsed. The calculations are shown over 25 pages and provide high precision results, with the document serving to document the eclipse calculations for historical records.

Uploaded by

Ko Ko Aung
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

Ko Ko Aung: Lunar eclipse calculation 1296 2nd Wazo 16/

AD 1934 July 26
Page 1

True Tandeikhta longitudes


(1) Sun 3, 9;46
(2) Moon 9,12;44
(8) Rahu 9,17;19
(9) Ketu 3,17;19

3,17;19
–3, 9;46
0, 7;33 Sun's distance from node, less than 12˚, thus there is an eclipse

BE 1296 (15:14) 0; 14 Tithis at midnight


Kaliyuga 5035 –14; 8 Tithis at day before
NY kyamat 85 1; 6 Tithi difference
Ata 1 1; 6 X 60 = 66
Sutin 102 66 is the tithi change during one day
Page 2

60
–8
52 X 24 = 1248
1248/66 = 18;54,32

14/60 tithi = 0.233 tithi


1 tithi is 60/66 day, 0.233 tithi =0.212 day
0.212 day = 5;05,24 hours
Conjunction 24 – 5;05,24 = 18;54,36
This is the preliminary time of the middle of the eclipse
JPlanet for Mandalay has 18;41
Page 3 Mean longitude of the sun

102 (sutin) X 800 (parts in a day) = 81600


81600 + 85 (kyamat, sun's value at NY day) = 81685

81685 X 21600 = 1764396000 (conversion to arcmins)


1764396000 / 292207 = 6038;10 (3,10;38,10 cf. SEAC mean 3,10;38)
Page 4 Moon's mean longitude

5035 (KY years) X 7219167 = 36348505845


36348505845 / 25 = 1453940233:48
1453940233 / 21600 = 67212:1021

Moon's mean position at the beginning of the year 1021;48'

The Tandeikhta mean solar year is 365.2587565 days (Note typo in Irwin)
The mean lunar month is 29.530587946 days
The movement in elongation is then 12.19074949˚ = 731.4449694'/day
The mean motion of the sun is 0.985602654˚ = 59.13615926'/day
The mean motion of the moon is then 790.5811287'/day
In a mean year this is 288766.68'
In 25 year it is 7219167'. This is the number used above
The SurS has 57753336 revolutions in 4320000 years,
57753336 / 8 = 7219167 (4320000/25/360/60 = 8)

Page 5 Continued

85 (kyamat) X 79058 (Moon's mean motion X 100) = 6719930


6719930 / 800 = 8399:55

Extra correction 102 (sutin)/9 = 11:3 (corrects for the extra 0.0011286'/day)

102 (sutin) X 79058 (Moon's mean motion X 100) = 8063916


8063916 + 8399 = 8072315
8072315 + 11 (extra correction) = 8072326

8072326 / 100 = 80723:26


26X60 = 1560
1560 + 55 = 1615
1615 / 100 = 16:15

1021;48 + 80723;16 = 81745; 4


81745; 4 / 21600 = 3:16945; 4 Skip entire turns
Mean moon 16945; 4
Page 6 Moon's apogee

5035 (KY) X 488203 = 2458102109


2458102109 / 200 = 12290510;31
12290510 + 5140 = 12295650 5140 epoch value?
12295650 / 21600 = 569:5250

85 (kyamat) X 675 = 57375


57375 / 800 = 71:43

Extra correction 102 / 51 = 2


The factor 675 comes from 6.682974624' X 101 = 6.749804370' ≈ 675/100
The extra correction (X 100) is –0.019563 ≈ –1/51

102 (sutin) X 675 = 68850


68850 + 71 = 68921
68921 – 2 (extra correction)= 68919
68919 / 101 = 682:37

37X60 = 2220
2220 + 43 = 2263
2263 / 101 = 22:41

Thus the apogee is 5250;31 + 682;22 = 5932;53

The period is 3232.093673611 days


This is 6.682974624'/day or 2441.015003'/year
or 488203' in 200 years.
SurS has 488203 revolutions in 4320000 years
(4320000/200/360 /60 = 1)
Page 7 Lunar node

5035 (KY) X 116121 = 584669235


584669235 / 100 = 5846692;21
5846692 + 10945 = 5857637 10945 epoch value?
5857637 / 21600 = 271:4037

SurS with bija has 232242 revolutions in 4320000 years


This is 5.37597222 revolutions in a year
This is 116121' in a year and 3.179143493' /day

85 (kyamat) * 318 = 27030


27030 / 800 = 33:47

Extra correction fro 3.18: –0.000857 X 100 = –0.0857 ≈ –1/12


102 / 12 = 8:6

102 (sutin) X 318 = 32436


32536 + 33 = 32469
32469 – 8 (extra correction) = 32461
32461 / 100 = 324;37,7

The position of the lunar node: 4037;21 + 324;37 = 4361;58


Page 8 True longitude of the sun

Chaya
1 2 3 4 5 6 7 8 9
13 45 66 85 101 113 123 129 131

4640 Sun's apogee 77.333˚


+21600 360˚
26240
– 6038 Sun's mean longitude
20202 Anomaly

20202 / 5400 = 3:4002 Reduction to quadrant


5400 – 4002 = 1398

1398 / 600 = 2:198


Chaya interpolation
66 – 45 = 21 chaya difference
198 X 21 = 4158
4158 / 600 = 6:558
558 / 10 = 55:8 rounded to 56
45 + 6;56 = 51;56 equation of centre
True longitude of the sun 6038;10 – 51;56 = 5986;14
Page 9 True longitude of the moon

Chaya
1 2 3 4 5 6 7 8 9
53 104 152 195 232 262 285 298 303

Extra correction (??)


51;56 / 27 = 1;55 (solar equation of centre / 27 ???)

16945; 4 Mean moon From where comes this correction??


– 1;55
16943; 9

5932;53 Moon's apogee


+21600 360˚
27532;53
–16943; 9 Moon's mean longitude
10589;44 Anomaly

10589;44 / 5400 = 1:5189;44 Reduction to quadrant


5400 – 5189;44 = 210;16
210 / 600 = 0:210
Chaya interpolation
53 – 0 = 53 chaya difference
210;16 X 53 = 11144;8
11144;8 / 600 = 18;344
344 / 10 = 34:4 rounded to 34
18;34 equation of centre
True longitude of the moon 16943; 9 + 18;34 = 16961;43
Page 10 Location of the node

21600
–4361;58 Lunar node (ascending node)
17238; 2

True daily motions

59; 8 Sun's mean daily motion


790;35 Moon's mean daily motion

59; 8 X 21 (interpolation factor) = 1241;48


1241;48 / 600 = 2; 4
59; 8 - 2; 4 = 57; 4 True daily motion of the sun

Page 11

783:54 X 53 (interpolating factor) = 41546;42 (why the value 783:54)


41546;42 / 600 = 69; 15

790;35 + 69;15 = 859;50 Moon's daily motion

Moon's daily motion 859;50


Daily motion of the node 3;11

859;50 – 57; 4 =802;46 Daily motion in elongation


802;46 X 60 = 48120 + 46 = 48166
Page 12 Precession

5035 (KY) + 88 (epoch value) = 5123


5123 / 1800 = 2:1523
1523 X 9/10 =1370:7
7 X 6 = 42
The precession is 1370;42

5986;14 + 1370;42 = 6356;56


6356;56 / 60 = 122;27 (rounded) Sun's true tropical longitude

16961;42 + 1370;42 = 18332;24


18332;24 /60 = 305;32 Moon's true tropical longitude

Modern has 122;48 and 302;38

Page 14 (page 13 is identical to page 12) Noon shadows

122;27 / 90 = 1, 32;27 Sun's true tropical longitude

Computation of noon shadow (Mandalay parameters in Sin-Tel)

90 – 32;27 = 57;23 Degrees to go in rasi


57;23 / 30 = 1:27;23
159 – 92 = 67 Bhawa difference between rasis
27;23 X 67 = 1834;41
1834;41 / 30 = 61:4;41 Interpolated bhawa correction
92 + 61 = 153 Noon bhawa
165 - 153 = 12 Equinoctial shadow 165
12/60 = 0:12 Noon shadow (sun)

, JPlanet gives a solar noon shadow of 0;16


The Burmese Shadow application gives 0;17

Page 15 same for the moon

305;32 / 90 = 3, 35;32 Moon's true tropical longitude

Computation of noon shadow


90 – 35;32 = 54;28 Degrees to go in rasi
54;28 / 30 = 1:24;28
214 – 110 = 104 Bhawa difference between rasis
24;28 X 104 = 2544;32
2544;32/ 30 = 84:24;32 Interpolated bhawa correction
110 + 84 = 194 Noon bhawa
165 + 194 = 359 Equinoctial shadow 165
359/60 = 5:59 Noon shadow (moon)
For Mandalay JPlanet gives a lunar noon shadow of 6; 1
The Burmese Shadow application gives 6; 5
Page 16 Conjunction time

5986;14 Sun's true sidereal longitude


+10800 180˚
16786;14 Longitude of shadow

16961;42 Moon's true sidereal longitude


–16786;14 Longitude of shadow
175;25 Difference

175;25 X 60 =10529
10529 X 60 = 631740
631740 / 48166 = 13; 7 (rounded)

48166 is the true daily motion in elongation

13; 7 is the time of the conjunction in nadis before midnight

30; 0 – 13; 7 = 16;53 Time in nadis after noon

Page 17 Conjunction longitude

13; 7 X 60 = 787

859;50 (moon's true motion) X 787 = 676688;50

676688;50 / 60 = 11278:8;50
11278 / 60 = 187:58

16961;42 – 187;58 = 16773;45, conjunction longitude

Page 18 Conjunction position of the node

3;11 X 787 = 2505;17


2505;17 / 60 = 41; 45;17 rounded to 42

17238; 2 + 0; 42 = 17238;44 Node position at conjunction

Page 19 Moon's latitude

17238;44 Node position


–16773;45 Conjunction longitude
464;59 Distance from node

464;59 / 13 = 35;46 Moon's latitude, negative because the moon is


approaching the ascending node. Modern has –40

60/13 = 4.615.. Inclination of the orbit of the moon


Page 20 Diameters

790;35 X 60 = 47435 Moon's mean motion


859;50 X 60 = 51590 Moon's true motion

51590 X 31 = 1566290
1566290 /47435 = 33;43 (rounded)

This is the moon diameter given that the mean diameter is 31'

33;43 X 10 = 227;10
227;10 / 4 = 84;18 (rounded)

This is the shadow diameter 10/4 = 2.5 times the moon diameter

Page 21 Eclipse size

33;43 + 84;18 = 118; 1


118; 1 /2 = 59; 1 (rounded) Sum of radii

84;18 – 33;43 = 50;35


50;35 / 2 = 25;18 (rounded) Difference of radii

59; 1 – 35;46 = 23;15 Eclipsed part


33:43 – 23;15 = 10;28 Crescent

In digits this would be 12 X 23;15/33;43 = 8.27


Modern has 8.2

Page 22 Eclipse duration

59; 1 X 60 = 3541
3541 X 3541 = 12538681 Sum of radii squared

35;46 X 60 = 2146
2146 X 2146 = 4605316 Latitude squared

12538681 – 4605316 = 7933365 Difference


2816.62 Square root, length of eclipsed part

Page 23 Conversion to time

2816 X 60 = 168960
168960 / 48166 = 3;30 Half eclipse duration

25;18 X 60 = 1518 Difference of radii

Total duration
1518 X 1518 = 2304324, this is less than 4605316 so the eclipse is partial, there
is no total phase.
Page 24 Correction for the change in latitude during the eclipse

859;50 + 3;11 = 863; 1 3;30 X 60 = 210


863; 1 X 210 = 181200
181200 / 60 = 3020;33,30

3020 / 60 = 232:4
232 / 60 = 3:52

35;46 + 3;52 = 39;38 Latitude at the beginning of the eclipse


35;46 – 3;52 = 31;54 Latitude at the end of the eclipse

Page 25 Procedure with larger latitude

Repeating the procedure on page 22 gives 2623.699 and a half duration of 3;16

Page 26 Procedure with smaller latitude

Repeating the procedure on page 22 gives 979.141 and a half duration of 3;43

Page 27, 28 Beginning and end of the eclipse

16;53 – 3;16 = 13;37 Beginning of the eclipse


16;53 + 3;43 = 20;36 End of the eclipse

Conversion to hours and minutes by multiplying by 2 and dividing by 5

Beginning of the eclipse 5;26:48 (p.m.)


Middle eclipse 6;45,12 (p.m.)
End of the eclipse 8;14,24 (p.m.)

For Mandalay Modern has local times:

Beginning of the eclipse 17;19


Middle eclipse 18;41
End of the eclipse 20; 0

You might also like