0% found this document useful (0 votes)
389 views42 pages

Pump & Pressure Drop Calculation

The document discusses the calculations required to size an air receiver tank. It provides the input parameters like diameter, pressure, temperature, material properties. It then shows the calculations to determine the minimum required thickness for the shell and head of the tank according to design codes. The maximum allowable working pressure and hydrotest pressure are also calculated based on the input data and design standards.

Uploaded by

Muhammad Rizky
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
389 views42 pages

Pump & Pressure Drop Calculation

The document discusses the calculations required to size an air receiver tank. It provides the input parameters like diameter, pressure, temperature, material properties. It then shows the calculations to determine the minimum required thickness for the shell and head of the tank according to design codes. The maximum allowable working pressure and hydrotest pressure are also calculated based on the input data and design standards.

Uploaded by

Muhammad Rizky
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 42

PUM

Hydraulic Pump Power

The ideal hydraulic power to drive a pump depends on

the mass flow rate the


liquid density
the differential height

Ph(kW) = q ρ g h / (3.6 10 6)                                  (1)

where

Ph(kW) = hydraulic power (kW)

q = flow capacity (m3/h)

ρ = density of fluid (kg/m3)

g = gravity (9.81 m/s2)

h = differential head (m)

The hydraulic Horse Power can be calculated as:

Ph(hp) = Ph(kW) / 0.746                                  (2)

where
Ph(hp) = hydraulic horsepower (hp)

Shaft Pump Power

The shaft power - the power required transferred from the motor to the shaft of the pump - d

Ps(kW) = Ph(kW) / η                                     (3)

where

Ps(kW)  = shaft power (kW)

η = pump efficiency

Pressure drop calculation


PUMP & PRESSURE DROP CALCULATION

q -flow capacity = 400


427.81
ρ - density of fluid = 935

g - gravity = 9.81

h - differential head = 50.868

Ph(kW) = q ρ g h / 3600                              = 55,446

Shaft Pump Power = 115,513


or to the shaft of the pump - depends on the efficiency of the pump and can be calculated as
TION

Massa jenis CPO 0,915 kg/liter


TPH 935
(m3/h) 0.935 1 kg/m3 = 0.001 kg/L
(kg/m3) 1000

m/s2 1 ton 1000 kg

Pemilihan Diameter Pipa

kW Q = v . A, dimana :
Q : kapasitas/flowrate (m3/s)
A : Luas area (m2) = phi/4*d2
v : kecepatan aliran/velocity (m/s)
=
kW Q = 0.118835 m3/s 7.1301247772
V = 3.8 m/s
D = 0.199543 m
19.95429 cm
7.856018 inch

A = 0.031272 m2
Wall thickness calculations - using B31.4 Code

Tabel 1

Table 1
Pipe Schedule
PIPE WALL THICKNESS

B31.4 Code

abel 1
Pipe Schedule
Calculation Pipe Thickness
Material ASTM 106 B
Sy = 35,000 psi

d = 8 in
F = 0.72
p = 7 bar 1 Bar = 14.5038 psi
101.5266 psi
E = 1
1 inch = 2,54 cm
t = 0.001111 inch
0.000437 cm 1mm 0.03937
tm = t + c
c = 3 mm
0.11811023622 inch

tm = 0.119221 inch
mil.tol = 0.125
Tebal Pipa = 0.244221 inch
. .
Vcomp Vreq
Vreciver

Compressor Receiver

Pressure drop plan = 4.788

Pressure minimum reciever tank = 5.788


83.9479944
Pressure maksimum reciever = 100
Panjang pipa = 580
Volume pipa, π.r² .L = 18.1380367139
640.53932514
Blowing time = 180
3

Kebutuhan Udara = 306

= 8.659

Pemilihan kompresor

Tipe : V75-7
Jenis : Kompresor screw
Kapasitas : 13,5 m3/min = 476.74845
Tekanan : 7,5 Bar-g = 108.75
Daya : 75 kW

NOTE: PEMILIHAN KOMPRESOR MERUJUK PADA DATA KOMPRESOR

Pressure maksimum reciever 96.42904 psia


6.650279 Bar

Volume Reciever

V= tBuffer *  Vreq_S * patm / (pinitial_g - pfinal_g)


tbuffer = 180 s
tbuffer = 3 min
Vreq_S = 306 Scfm
8.659 m3/min
patmS = 14.7 psia
pinitial_g = 100 psi
6.894745 Bar
pfinal_g = 75 psi
5.171059 Bar
V= 539.3855 ft³
15.27368

Reciever Volume = 15.274 m3 Volume pipa, π.r² .L


Diameter = 2m
Tinggi 4.86176398505974
Compressor & Sizing Air Reiciever

Piping Isodrawing

Vreq

Psupply = Preceiver_final

Bar-g Konversi Satuan

Bar 1 Bar = 14.5038 psi


psia 1 m3=35,3147 ft3
psia
m3
m3
ft3
s
mnt

ft3/menit

m3/menit

ft3/min
Psia

me pipa, π.r² .L
Air Reiciever

DATA KOMPRESOR
Document Number

IPC-1AS-S-400-2

Ellipsoidal Head 2:1


Ellipsoidal head inside diameter, D =

Depth of head for 2:1 ellipsoidal, H =


=

Operating Pressure =
Internal design pressure, P =
=
Design Temperatur =
Semi-Elliptical head inside diameter, D =
Depth of head, H =
Efficiency of longitudinal welded joints, E =
Maximum allowable stress value at operating temperature, S =
The corrosion allowance, C =
Shell
Ellipsoidal shell minimum required thickness, t =
=
Actual thickness, t =

Head
Ellipsoidal head minimum required thickness, t =
=
Thickness tolerance for metal forming =
Actual thickness, t =

Crown radius, L =
Knuckle radius =
Stright line =

Maximum Allowable Working Pressure (MAWP)


MAWP (Shell) =
=
=
MAWP (Head) =
=
=

For Hydrotest pressure, used MAWP + static head +


safety factor pressure for hydrotest static head pressure =
=
=
=

Hydrotest, P =
=
=
STRENGHT CALCULATION

Rev. 0
AIR RECEIVER Document Number
1 dari 3

Input
2 mm
Calculate
D/4
1 mm
Input
7.5 Bar
1.00 MPa
9.0 Bar
60 Celcius
2000 mm
707.5 mm
1
138 MPa
3 mm
Calculate
(P*D/ (2*S*E - 2*0,6*P) ) + C
10.278 mm
10 mm

(P*D / (2*S*E - 0.2*P) ) + C


10.252 mm
11.277 mm
12 mm

1800 mm
340 mm
50 mm

(t*2*S*E)/(D+1,2*t)
1.410 MPa
204.403 Psi
(t*2*S*E)/(D+0,2*t)
1.692 MPa
245.357 Psi

ρ (water) x g x h horizontal position


68670 Pa
0.06867 Mpa
9.95715 Psi

MAWP + static head + safety factor pressure (hydrotest)


1.761 MPa
255.315 Psi
Data Pipe dimensions
Nominal pipe size (NPS) The schedule is to be determined
dn = 200 mm
Material: A 106 Schedule initially assumed
Pipe pressure and temperature Sch =
P= 7 bar
t= 50 ºC Material A106 pipe
Pipe filled with water do =
di =
It will be considered the weight di =
of two men at the center of di =
the pipe.
Concentrated weight
mc = 200 kg
wc = 1962 N
Pipe insulation weigth
wi = 0 N/m

Water load
ww = rw * g * V
rw = 1000 kg/m³
V= 0.000 m³/m
ww = 0.0 N/m

Pipe load (steel)


wp = rp*g*(p/4)*(de^2-di^2)

rp = 8000 kg/m³
de = 0.219 m
di = 0.203 m
wp = 425.34 N/m

Insulation load (no insulation)


wi = N/m N/m

Total load
w= ww + w p + w i
ww = 0.0 N/m
wp = 425.3 N/m
wi = N/m N/m
w= 425.3 N/m

sallow sy st

Beam simply supportedat ends


M aximum deflection at beam center

a) Uniformly distributed load w


5  w  L4
y
384  E  I
b) Concentrated load P at the center
8  P  L3
y
384  E  I
c) Both cases, a and b
5  w  L4  8  P  L3
y
384  E  I
384  E  I
c) Both cases, a and b
5  w  L4  8  P  L3
y
384  E  I
Span Calculation

Pipe dimensions Pipe yield strength


The schedule is to be determined Table A-1 (ASME B3.1.1-2007)
st = 35 ksi
Schedule initially assumed
40 Pipe basic allowable stress at
given temperature
Material A106 pipe Ref. 2a. Table A-1
219.06 mm t= 122 ºF
0.21906 m sallow = 17.1 ksi
202.7 mm sallow = 117.9 MPa
0.2027 m
Maximum bending stress
sb = sallow * 0.3
sallow = 117.9 MPa
sb = 35.37 MPa
sb = 3.5E+07 Pa

Steel elasticity module

E= 2E+11 Pa

Concentrated weight
wc = 1962 N

Pipe Span
Lcalc = (-b + (b^2 - 4*a*c)^0.5 ) / (2*a)
w 2 wc  I b= 245
L  L- b 0
16 8 d a= 26.58
a= w/16 c= -4,871
w= 425 N/m Lcalc = 9.688 m
a= 26.6 Let
Lselected = 5 m
b= wc /8 (Jarak piperack to piperack)
wc = 1962 N The selected length Lselected

b= 245 hast to meet two conditions:

1. Lselected <= Lcalculated to meet

c= -sb * I /de the condition for the maximum


sb = 3.5E+07 Pa bending stress.

I= 3.02E-05 2. ycalc <= Lselected / 600 to meet

de = 0.2191 m the additional design condition.

c= -4,871.3

nter

ter
note: Fluida yang digunakan air, sebab air lebih
Equatorial inertia moment tinggi masa jenisnya dari pada CPO dan
I= (p/64) *( de^4-di^4) saat pengujian hidrotest mengunakan air
do = 0.2 m
di = 0.203 m
I= 3.02E-05 m4

Area of pipe section


A= (p/4) * di^2
di = 0.0002 m
A= 0.0000 m²

Water volume per meter pipe


V= A*1
A= 0.000 m²/m
V= 0.000 m³/m

Deflection Result
Deflection at ther center of a simple For
supported beam with a uniform load Lselected = 5 m
w and a concentrated load "wc". there is a deflextion
ycalc = 1.42 mm

Requirement
5  w  L4  8  w c  L3
y ycalc <= Lselected / 600
384  E  I Lselected = 5 m
Deflection value for the Lselected / 600 = 0.0083 m
selected length Lselected / 600 = 8.33 mm
ycalc = (5*w*L^4 + 8*wc*L^3) / (384*E*I)
w= 425.3 N/m Check
Lselected = 5.0 m ycalc = 1.42 mm
wc = 1962 Lselected / 600 = 8.33 mm
E= 2.00E+11 Pa thus
I= 3.02E-05 m4 ycalc <= Lselected / 600

ycalc = 0.0014 m Correct


ycalc = 1.42 mm
Daya Compressor
Tekanan operasi
psi kPa Bar
Tekanan, P P 101 696.3708 6.96371

Debit
scfm m3/s
Qmax 470 0.2115

Kompresibel Faktor
k 1.4
z 1

Temperatur Tekanan awal


T1 30 oC 303 K (k-1)/k
P2 696.3708 kPa 797.6958 kPa.abs P2/P1

P1 101.325 kPa.abs
T2 525.5583 K

Efesiensi
Efisiensi compressor 0.72 s/d 0.85
reciprocating
Z 0.9

Stage 1
Ts 20 oC 293 K

Ps 100.3581 kPa.abs

3.5 378.75 0.2115 0.342519029 0.803161


320.8235
Power 77.12911 kW 65.33289 kW
103.3902 HP 87.5776 HP
0.285714
6.872645

You might also like