0% found this document useful (0 votes)
169 views13 pages

Effect of Snail

The study assessed the effects of including snail (Achatina fulica) meal in broiler diets as a substitute for fish meal. Eleven diets were formulated with snail meal replacing fish meal from 0-10%. Growth rates decreased with increasing snail meal in starter diets but were maintained with up to 30% replacement and then declined. In grower diets, growth rates slightly decreased then increased with higher snail meal replacement. A sensory analysis found no effect of snail meal level on taste of broiler meat. The study concluded that snail meal can be used as a protein source in broiler diets in Côte d'Ivoire.

Uploaded by

Elvy Chardila
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
169 views13 pages

Effect of Snail

The study assessed the effects of including snail (Achatina fulica) meal in broiler diets as a substitute for fish meal. Eleven diets were formulated with snail meal replacing fish meal from 0-10%. Growth rates decreased with increasing snail meal in starter diets but were maintained with up to 30% replacement and then declined. In grower diets, growth rates slightly decreased then increased with higher snail meal replacement. A sensory analysis found no effect of snail meal level on taste of broiler meat. The study concluded that snail meal can be used as a protein source in broiler diets in Côte d'Ivoire.

Uploaded by

Elvy Chardila
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 13

Effect of snail (Achatina fulica) meal on broiler production and

meat sensorial quality


M Diomandé, M Koussemon*, K V Allou** and A Kamenan
Laboratory of Biochemistry Food Sciences and Technology, University of Abobo-Adjame,
09 P.O.Box 2312 Abidjan 09, Côte d'Ivoire
diomassey@yahoo.fr
*Laboratory of Microbiology, University of Abobo-Adjame,
P.O.Box 801 Abidjan 02, Côte d'Ivoire
koussemonmarina@yahoo.fr
**Laboratory of Animal Nutrition, Ministry of Animal Production and Sea Ressources,
PO Box 989 Abidjan 06, Côte d'Ivoire

Abstract

Snail meal (Achatina fulica) was assessed for its nutritive value in diets of broilers. The study was based upon 330 chicks of a day old which were fed on diets
containing 1 to 10 % of snail (Achatina fulica) meal, in substitution of fish meal. The levels of protein (62.4 vs. 58.2%), ash (22.7 vs. 20.0%), and calcium (7.7
vs. 7.0%) were higher in snail meal than in fish meal. Eleven diets whose snail meal content varied from 0 to 10% were fed over a period of eight weeks  to the
broilers. For the sensorial analysis, the thighs of 4 slaughtered chickens per cage were cooked in oil for 20 minutes. The tasting staff was composed of people
chosen randomly in the commune of Adjame (Abidjan) with 10 men and 10 women.
 
Growth rates in the starter phase showed a negative curvilinear response (R2 = 0.90) to increasing proportions of snail meal . Growth rates were maintained as
snail meal replaced up to 30% of the fish meal followed by a steady decline up to 100% replacement of the fish meal. In the grower stage there was an indication
(R2 = 0.44) of  a slight decrease in growth rate as the snail meal was raised from 0 to 30% replacement of fish meal followed by an increase as snail meal
replacement increased from 30 to 100% of fish meal.  The sensorial analysis showed no consistent effect of the level of snailmeal on the taste of broiler thigh
meat.
 
It is concluded that snail meal (Achatina fulica) can be used as a protein source in broiler diets in Côte d’Ivoire.

Key words: chemical analysis, côte d’ivoire, poultry, sensoriel analysis, snail meal, zootechnical performances
Introduction

During these last days, different raw materials not often used by the human being have been used in the fowls living in the tropics
(Bassuel 1983; Gualtiéri and Rapaccini 1990; Barcelos and Barcello 1991; June et al 1991; Hardouin and Stiévenart 1991; Gicogna
1992; Agbede et al 1994; Kamatali 1996; Munyuli and Balezi 2002). Indeed the fish and  meat meals frequently used as protein source
in these diets have a high cost and this urged tropical countries like Côte d’Ivoire to import those dietary components for their fowl
production. So it seems judicious to consider the use of local sources of animal proteins which are available and whose costs are
lower. Thus, Agbede et al (1994) have conducted some tests with fowls fed on a diet containing 3.6% of meal from Edrillus engeniae
in comparison with some chickens fed on a diet containing 5% of meat meal.  These studies showed that the chickens fed on Edrillus
engeniae had the same feed intake, the same average daily gain and the same body weight.  The introduction of the snail or the meat
meal in the fowls’ diet was studied by different teams. Barcelos and Barcello (1991) determined the chemical composition of the meat
of the gilded snail (Pila leopoldoilleusis) which on the one hand was raw and then on the other hand was cooked. Those snail meals
were given to broilers fed on fish meal. These experiments showed that on the one hand that the cooked snail weal was more eaten by
the chickens than the meal of raw snail, and on the other hand that the weight put on by the chickens fed on the snail meal and the
weight put on by the chickens fed on the fish meal were identical. June et al (1991) have also conducted a dietary experiment about
broilers first fed on snail meal (Pomecea caniculata) compared to the second group fed on fish meal and bone and  meat meal . These
experiments underlined the fact that the snail meal which is less expensive than the fish and bone and meat meal can easily replace the
last two feeds in the fowls' diet. However, attempts to use snail (Achatina fulica ) in the broilers’diet are limited or even absent in Côte
d’Ivoire.
 
This research aims at finding the best way of introducing snail (Achatina fulica) meal as an important source of protein and as a cheap
feed in broiler diets in Côte d’Ivoire and also aims at revealing the impact of such meal on the sensorial quality of the chicken meat.
 

Material and methods    

Snail meal production


 
The snails (Achatina fulica) collected in the parish called Anyama (a suburb of Abidjan in Côte d’Ivoire) were extracted from their
shells with an iron stick. The flesh that came out of the shells was put in plastic bags with holes and squeezed by means of a squeezer
machine. Squeezed as it was the snail flesh was then cut into pieces which in their turn were put into aluminium containers. Next the
whole stuff was set in the hot room at a temperature of 70° C. Twenty four hours later, the dried snail pieces were then ground in a
grinder equipped with separation grates and many propellers. Thus, the obtained meal was incorporated into the chicken diet.
 
Chemical analysis of snail and fish meal
 
From the snail meal and the fish meal bought at market, five samples of each, weighing 100g were analysed and the analysis was
repeated three times for each sample. The bromatological analysis of snail meal (Achatina fulica) was about the estimation of the
whole nitrogen by way of the Kjeldhal method, the crude fibre and fat by the methods of AOAC 1980). The  level of dry matter  was
estimated on a fraction of the sample which had been dried in the hot room. The ashes were determined after incineration of the dry
material under 550°C for 24 hours.  The content of  the sugars  was determined (AOAC 1980). 
 
Experimental diets
 
Eleven different diets were prepared (Tables 1 and 2).  

Table 1.  Composition of experimental starter diet (%)


  SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10
Maize 60 60 60 60 60 60 60 60 60 60 60
Wheat bran 4 4 4 4 4 4 4 4 4 4 4
Cake of cotton 13 13 13 13 13 13 13 13 13 13 13
Cake of soya 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25
P and Ca salts 1 1 1 1 1 1 1 1 1 1 1
Lysine 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Methionine 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Premix 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Salt 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fish meal 10 9 8 7 6 5 4 3 2 1 0
Snail meal 0 1 2 3 4 5 6 7 8 9 10
Total 100 100 100 100 100 100 100 100 100 100 100
SM0: contol diet  , SM: snail meal level in diet            

Table 2.  Composition of experimental grower diet (%)


  SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10
Maize 63 63 63 63 63 63 63 63 63 63 63
Wheat bran 4 4 4 4 4 4 4 4 4 4 4
Cake of cotton 12 12 12 12 12 12 12 12 12 12 12
Cake of soya 9.25 9.25 9.25 9.25 9.25 9.25 9.25 9.25 9.25 9.25 9.25
P and Ca salts 1 1 1 1 1 1 1 1 1 1 1
Lysine 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Methionine 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Premix 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Salt 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fish meal 10 9 8 7 6 5 4 3 2 1 0
Snail meal 0 1 2 3 4 5 6 7 8 9 10
Total 100 100 100 100 100 100 100 100 100 100 100
SM0: contol diet  , SM: snail meal level in diet            

A sample of 100g of each diet was analysed. The metabolic energy was estimated after the equation  of Larbier and Leclercq  (1992):
 
ME= 3951 + 54.4F - 88.8CF - 40.8A
 
with ME: metabolisable energy, F: fat , CF: crude fiber,  A: ash.
 
Management of the experiment
 
The 330 chicks of a day old weighing between 32 and 35 g were andomly put in eleven cages on wood shaving litter, and were fed at
will on the 11 dietary treatments (SM0 to SM10).   Each treatment included 3 repetitions. The starter diet was fed up to 28 days,
followed by the grower diet from 29 to42 days. Before the beginning of the test a 3 days period of adaptation during which the
chickens consumed the experimental diet and clean water was observed. The feeding was ad libitum with natural lighting. At the end
of the experiment, 4 chickens randomly chosen in each repetition were slaughtered after they had been fasted for 24 hours in order to
estimate the characteristics of the carcasses. We focused on the empty carcass, the yield of the carcass and the abdominal fat. All these
details were translated into the percentage of the body weight.
 
Economic evaluation of experimental diets
 
The costs of the diets have been calculated in taking into account, the respective proportion of each ingredient, the average price of
raw materials and the cost in relation to their transformation, especially for the snail meal.
 
Sensorial evaluation of the chickens’ meat
 
The thighs of the 4 slaughtered chickens per cage were cooked in oil for 20 minutes. The tasting staff was composed of people chosen
randomly in the commune of Adjame (Abidjan) with 10 men and 10 women. The hedonic approach was used. The scale of  5 points
was chosen ( 5-very pleasant, 4-pleasant, 3-neither pleasant nor unpleasant, 2- unpleasant, 1-very unpleasant).
 
Statistical analysis
 
The collected data were analysed using the ANOVA program in the statistics software (SAS, version 6.12). The means were separated
using the test of Newman Keuls (SAS/STAT  1996).
 

Results 

Chemical composition of snail meal, fish meal and diets


 
The snail meal was higher in protein (62.4 vs. 58.2%) in ash (22.7 vs. 20.0%) and in calcium (7.7 vs. 7.0%) than the fish meal. The
snail meal was on the contrary poorer in fat (4.3 vs. 10.0) than the fish meal. The dry matter levels of the meals were appreciably
identical (Table 3).

Table 3.  Chemical composition and cost price of snail meal (Achatina fulica ) and fish meal

 
Price DM, Protein, Fat, Ash, Calcium, 
 fcfa/kg CP  % % DM % DM % DM % DM
Snail meal 130 88.0 62.4 4.3 22.7 7.7
Fish meal 240 88.0 58.2 10.0 20.0 7.0

The levels of crude protein, ash and calcium increased with the increase of the content of snail meal in the diets (Tables 4 and 5). 
 
Growth performance and feed conversion
 
At the starting period, the diet with 3, 4 and 5% of snail meal showed some signs of consumption which were higher (1.4 and 1.6 %)
whereas the others had lower signs of consumption (1.2 to 1.4 %) during the first week. But from the 2nd week, the signs of
consumption were appreciably identical and constant (Table 4). Growth rates in the starter phase showed a negative curvilinear
response to increasing proportions of snail meal (Figure 1; R2 = 0.90). Growth rates were maintained as snail meal replaced up to 30%
of the fish meal followed by a steady decline up to 100% replacement of the fish meal. In the grower stage (Table 5) there was also an
indication of a curvilinear response with a slight decrease as the snail meal was raised from 0 to 30% replacement of fish meal
followed by an increase as snail meal replacement increased from 30 to 100% of fish meal (Figure 2; R2 = 0.44).

Table 4: Chemical composition of the diets, feed cost and growth performance of broiler chicken fed increasing levels of snail meal
replacing fish meal (starter phase 0-28 days)
  Snail meal in the diet, %
  SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10
Dry matter ,% 90 91 90 91 89 90 89 88 88 89 88
DM basis                      
Protein ,% 20.7 21.0 21.6 21.7 21.8 22.6 22.6 22.7 22.8 22.8 22.9
Fat ,% 8 6 10 8 8 8 9 9 10 9 10
Crude fiber ,% 5.1 5.4 5.0 5.1 5.2 5.3 5.3 5.3 5.1 5.4 5.0
Sugars ,% 0.9 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.9
Ashes ,% 14 14 16 16 14 16 14 16 19 18 20
Calcium ,% 1.0 0.9 1.2 1.0 1.2 1.2 1.3 1.2 1.3 1.3 1.3
Phosphorus ,% 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3
Feed cost 
353 351 349 347 345 342 340 338 336 333 331
(FCFA/kg)
Live weight, g
Initial 34.7 35.3 36.7 40.3 42.1 42.8 32.9 32.1 33.1 33.9 32.1
Final 397 436 449 452 359 430 397 344 311 303 290
Increase 362 400 412 411 317 388 364 312 277 269 258
Feed intake, g 866 993 1096 1111 888 1159 1111 967 804 822 794
Feed DM conversion 2.39 2.48 2.66 2.70 2.80 2.99 3.05 3.10 2.90 3.06 3.08

Table 5 : Chemical composition of the diets, feed cost and growth performance of broiler chicken fed increasing levels of snail meal replacing fish
meal (grower phase 29-42 days)
  SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10
DM , % 90.3 92.1 91.7 92.9 91.8 91.7 90.9 89.2 88.5 89.4 88.3
Protein , % 19.1 19.1 20.2 20.1 21.1 21.1 21.7 21.3 21.7 21.8 22.7
Fat , % 8.33 10.56 8.79 8.52 10.15 8.59 9.18 10.11 9.16 10.51 10.45
CF, % 4.57 4.62 4.62 4.61 4.62 4.61 4.63 4.55 4.58 4.58 4.57
Sugars ,% 1.15 1.06 1.06 1.03 1.07 1.11 1.13 1.08 1.09 1.07 1.14
Ash, % 14.4 14.6 14.5 14.3 14.4 14.5 14.1 16.1 20.1 20.1 21.1
Calcium ,% 1.31 1.52 1.22 1.36 1.59 1.58 1.18 1.54 1.13 1.36 1.55
Phosphorus ,% 0.59 0.53 0.47 0.47 0.45 0.49 0.49 0.51 0.53 0.46 0.43
ME (kcal /kg) 3395 3494 3391 3396 3502 3392 3463 3437 3220 3272 3233
Feed cost  354 352 350 348 345 343 341 339 337 334 332
(FCFA/kg)
Live weight, g             
Initial 397 436 449 452 359 430 397 344 311 303 290
Weight 1075 1031 1022 1056 892 1011 920 1015 918 1026 978
Increase 678 596 574 605 533 580 523 671 606 724 688
Feed intake, g 1891 1596 1554 1723 1493 1381 1234 1597 1426 1729 1774
Feed DM 2.79 2.68 2.71 2.85 2.80 2.38 2.36 2.38 2.35 2.39 2.58
conversion

Figure 1. Effect of level of snail meal in the diet on growth Figure 2. Effect of level of snail meal in the diet on growth
rate during the starter phase rate during the grower phase

 The diet with 6, 7, 8, 9 and  10% of snail meal revealed the lowest abdominal fat level of chicken (1.8 to 0.6) whereas for those diets
with 0, 1, 2, 3, 4 and 5% of snail meal the fat decreased from 3 to 2% (Table 6).
 
The yields in carcass were higher for the diets with more than 60% replacement of fishmeal by snail meal (Table 6).

Table 6.  Effect of  the diet on the main growth parameters of the broilers and meat taste
  SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10
Carcass yield,
70.1 b 69.6 b 70.7 b 64.4 a 66.2 a 65.8 a 94.4 a 90.9 b 94.2 a 87.8 b 91.4 c
%
Fat level, % 2.1c 3.1 c 2.9 c 3.0 c 2.3 c 1.9 b 1.3 b 1.2 b 1.5 b 1.0 a 0.6 a
e c d a a c b
Meat .taste 6.2 5.2 5.8 3.4 3.2 5.4 4.4 4.2 b 6.4 e 5.4 c 6.0 e
Mortality, % 15 10 15 15 15 10 15 15 10 10 10
abcd Means without common superscript are different at P<0.05

Sensorial characteristics of the chickens’ meat


There were differences (p<0.05) in the taste of the broiler meat among treatments but the trends were not consistent (Table 6).
 

Discussion 

There is no obvious explanation for the reduction in broiler growth rate caused by replacing fish meal with snail mal in the starter
phase, other than a poorer amino acid balance possibly caused by partial denaturation of certain essential amino acids during the
drying of the snail meat. . The positive response to the higher levels of snail meal in the grower phase, when amino acid requirements
are lower, supports this suggestion.  Similar nutritive values for snail meat and fish meal in pig diets were reported by Kaensombath
Lampheuy and Ogle (2005). These authors  replaced fish meal with ensiled or fresh meat from Golden Apple Snails (Pomacea spp) in
the diets of growing - finishing pigs and reported no differences in growth rate. It was concluded that the meat of the Golden Snail was
comparable in nutritive value to fish meal.
 

Conclusions

 Meal from snails (Achatina fulica) can be included in diets for broilers at up to 3 % replacing fish meal (starter  phase), and at
10% in the grower phase replacing fish meal completely, with no reduction in growth performance but a saving in feed costs.

 The sensorial quality of broiler meat was not affected by the presence of snail meal in the diet..
 

References 

Agbede G, Nguekam et Mpoame M 1994 Essai d’utilisation  de la farine de vers de terre, Eudrilus engeniae dans l’alimentation de poulets de chair en finition.
Tropicultura 12: 3-5
 
AOAC 1980 Official Methods of Analysis. Editor: Horowitz W. Association of Official Analytical Chemists, Washington, D.C. 
 
Barcelos P M and Barcello J R 1991 The potentiel of snail (Pila leopoldoilleusis) meal as supplement in broilers diets. Tropicultura 9:11-13
 
Bassuel F M 1983 Processing toad (Buffo marinus) as protein source on the performance of broiler and layer rations. Ph. D.Dissertation, University of
Philippines at los Bagnos College, Lagima. Philippines 154 p.
 
Gicogna M 1992 First international Seminar on faming of invertebrales and other minilivestock (18-19 novembre 1992). Tropicultura 10: 155-159
 
Gualtiéri M and Rapaccini S 1990 Date stones in broiler’s feeding. Tropicultura 8: 165-168
 
Hardouin J et Stiévenart C 1991 Le mini-élevage dans les pays tropicaux CTA, Bruxelles 34p.
 
Kaensombath Lampheuy and Ogle B 2005 Effect of ensiled or fresh Golden Apple Snails (Pomacea spp) on pig growth performance and production
economics.
MSc Thesis, SLU, Sweden.  http://www.mekarn.org/msc2003-05/theses05/lamp3.pdf
 
June L, Ulep P and Buanefe M M 1991 Performance of broilers fed with snail (Pomecea caniculata) meal as substitute to fish meal or meat and bone meal.
Tropicultura 9: 58-60
 
Kamatali P 1996 Note de cours d’alimentation des monogatriques. Faculté des sciences agronomiques et de l’environnement, Département de Zootechnie, U. E.
A, Bukavu (République Démocratique du Congo) 430p.
 
Larbier M et Lecclercq B 1992 Nutrition et alimentation des volailles In : INRA. Paris 355p.
 
Munyuli B M T et Balezi N 2002 Utilisation des blattes et des termites comme substituts potentiels de la farine de viande dans l’alimentation des poulets de
chair au Sud Kivu , République Démocratique du Congo, Tropicultura 20: 10-16 http://www.bib.fsagx.ac.be/tropicultura/pdf/v20n1.pdf
 
SAS/STAT  1996 User’s guide, Version 6.12. In : Cary NC, USA, SAS Institute

Received 24 March 2008; Accepted 28 October 2008; Published 5 December 2008

Pengaruh makan bekicot (Achatina fulica) terhadap produksi ayam pedaging dan kualitas sensoris daging
M Diomandé, M Koussemon *, K V Allou ** dan A Kamenan
Laboratorium Biokimia Ilmu dan Teknologi Pangan, Universitas Abobo-Adjame,
09 P.O.Box 2312 Abidjan 09, Côte d'Ivoire
diomassey@yahoo.fr
* Laboratorium Mikrobiologi, Universitas Abobo-Adjame,
P.O.Box 801 Abidjan 02, Côte d'Ivoire
koussemonmarina@yahoo.fr
** Laboratorium Nutrisi Ternak, Departemen Produksi Hewan dan Sumberdaya Laut,
PO Box 989 Abidjan 06, Côte d'Ivoire
Abstrak
Makan bekicot (Achatina fulica) dinilai karena nilai gizinya dalam makanan ayam pedaging. Penelitian ini didasarkan pada 330 anak ayam
berumur satu hari yang diberi makan dengan diet yang mengandung 1 hingga 10% makanan siput (Achatina fulica), sebagai pengganti makanan
ikan. Tingkat protein (62,4 vs 58,2%), abu (22,7 vs 20,0%), dan kalsium (7,7 vs 7,0%) lebih tinggi pada makan siput daripada pada tepung ikan.
Sebelas diet yang kandungan makanan bekicotnya bervariasi dari 0 hingga 10% diberikan selama delapan minggu kepada ayam pedaging. Untuk
analisis sensoris, paha dari 4 ayam yang disembelih per kandang dimasak dalam minyak selama 20 menit. Staf mencicipi terdiri dari orang-orang
yang dipilih secara acak di komune Adjame (Abidjan) dengan 10 pria dan 10 wanita.
 
Tingkat pertumbuhan pada fase starter menunjukkan respons lengkung negatif (R2 = 0,90) terhadap peningkatan proporsi makan bekicot.
Tingkat pertumbuhan dipertahankan sebagai bungkil siput diganti hingga 30% dari tepung ikan diikuti oleh penurunan stabil hingga 100%
pengganti tepung ikan. Pada tahap penanam ada indikasi (R2 = 0,44) dari sedikit penurunan tingkat pertumbuhan karena bungkil bekicot
dinaikkan dari 0 menjadi 30% penggantian bungkil ikan diikuti oleh peningkatan karena penggantian bungkil bekicot meningkat dari 30 menjadi
100% dari makanan ikan. Analisis sensoris tidak menunjukkan efek yang konsisten dari tingkat makan bekicot terhadap rasa daging paha ayam
pedaging.
 
Disimpulkan bahwa makan bekicot (Achatina fulica) dapat digunakan sebagai sumber protein dalam diet ayam pedaging di Pantai Gading.
Kata kunci: analisis kimia, côte d’ivoire, unggas, analisis sensoriel, makan siput, pertunjukan zootechnical

pengantar
Selama hari-hari terakhir ini, bahan baku berbeda yang tidak sering digunakan oleh manusia telah digunakan dalam unggas yang hidup di daerah
tropis (Bassuel 1983; Gualtiéri dan Rapaccini 1990; Barcelos dan Barcello 1991; Juni et al 1991; Hardouin dan Stiévenart 1991; Gicogna 1992;
Agbede et al 1994; Kamatali 1996; Munyuli dan Balezi 2002). Memang makanan ikan dan daging yang sering digunakan sebagai sumber protein
dalam diet ini memiliki biaya tinggi dan ini mendesak negara-negara tropis seperti Pantai Gading untuk mengimpor komponen makanan tersebut
untuk produksi unggas mereka. Jadi tampaknya bijaksana untuk mempertimbangkan penggunaan sumber protein hewani lokal yang tersedia
dan yang biayanya lebih rendah. Dengan demikian, Agbede et al (1994) telah melakukan beberapa tes dengan unggas yang diberi makanan yang
mengandung 3,6% makanan dari Edrillus engeniae dibandingkan dengan beberapa ayam yang diberi makanan yang mengandung 5% makanan
daging. Studi-studi ini menunjukkan bahwa ayam yang diberi makan Edrillus engeniae memiliki asupan pakan yang sama, kenaikan rata-rata
harian yang sama dan berat badan yang sama. Pengenalan siput atau tepung daging dalam makanan unggas dipelajari oleh berbagai tim.
Barcelos dan Barcello (1991) menentukan komposisi kimia dari daging keong emas (Pila leopoldoilleusis) yang di satu sisi mentah dan kemudian
di sisi lain dimasak. Makanan siput itu diberikan kepada ayam pedaging yang diberi makan ikan. Eksperimen-eksperimen ini menunjukkan bahwa
di satu sisi bahwa makan bekicot yang dimasak lebih banyak dimakan oleh ayam daripada makan keong mentah, dan di sisi lain bahwa bobot
yang dikenakan oleh ayam yang diberi makan pada makanan bekicot dan berat yang dikenakan oleh ayam-ayam yang diberi makan tepung ikan
itu identik. June et al (1991) juga telah melakukan percobaan diet tentang ayam broiler pertama kali diberi makan siput (Pomecea caniculata)
dibandingkan dengan kelompok kedua yang diberi makan ikan dan tepung tulang dan daging. Eksperimen-eksperimen ini menggarisbawahi fakta
bahwa makanan bekicot yang lebih murah daripada ikan dan tepung tulang dan daging dapat dengan mudah menggantikan dua pakan terakhir
dalam makanan unggas. Namun, upaya untuk menggunakan siput (Achatina fulica) di ayam broiler terbatas atau bahkan tidak ada di Pantai
Gading.
 
Penelitian ini bertujuan menemukan cara terbaik untuk memperkenalkan makan bekicot (Achatina fulica) sebagai sumber protein yang penting
dan sebagai pakan murah dalam diet ayam pedaging di Pantai Gading dan juga bertujuan untuk mengungkapkan dampak dari makanan tersebut
pada kualitas sensorik dari daging ayam.
 
Bahan dan metode
Produksi tepung bekicot
 
Siput (Achatina fulica) yang dikumpulkan di paroki bernama Anyama (pinggiran Abidjan di Pantai Gading) diekstraksi dari cangkang mereka
dengan tongkat besi. Daging yang keluar dari cangkangnya dimasukkan ke dalam kantong plastik berlubang dan diperas dengan mesin pemeras.
Remas seolah daging siput itu kemudian dipotong-potong yang pada gilirannya dimasukkan ke dalam wadah aluminium. Selanjutnya seluruh
barang diatur di ruang panas pada suhu 70 ° C. Dua puluh empat jam kemudian, potongan siput kering kemudian ditumbuk di penggiling yang
dilengkapi dengan pintu pemisah dan banyak baling-baling. Dengan demikian, makanan yang diperoleh dimasukkan ke dalam makanan ayam.
 
Analisis kimia terhadap siput dan tepung ikan
 
Dari tepung bekicot dan tepung ikan yang dibeli di pasar, masing-masing lima sampel, dengan berat 100g dianalisis dan analisis diulang tiga kali
untuk masing-masing sampel. Analisis bromatologis tepung siput (Achatina fulica) adalah tentang estimasi seluruh nitrogen dengan metode
Kjeldhal, serat kasar dan lemak dengan metode AOAC 1980). Tingkat bahan kering diperkirakan sebagian kecil dari sampel yang telah
dikeringkan di ruang panas. Abu ditentukan setelah pembakaran bahan kering di bawah 550 ° C selama 24 jam. Isi gula ditentukan (AOAC 1980).

Manajemen percobaan
 
330 anak ayam berumur satu hari dengan berat antara 32 dan 35 g ditempatkan di sebelas kandang di atas serpihan kayu, dan diberi
makan sesuka hati pada 11 perawatan makanan (SM0 hingga SM10). Setiap pengobatan termasuk 3 pengulangan. Diet pemula diberi
makan hingga 28 hari, diikuti oleh diet petani dari 29 hingga 42 hari. Sebelum awal pengujian, 3 hari periode adaptasi selama ayam
mengkonsumsi makanan eksperimental dan air bersih diamati. Makanannya ad libitum dengan pencahayaan alami. Pada akhir
percobaan, 4 ekor ayam yang dipilih secara acak dalam setiap ulangan disembelih setelah mereka berpuasa selama 24 jam untuk
memperkirakan karakteristik bangkai. Kami fokus pada bangkai kosong, hasil dari bangkai dan lemak perut. Semua detail ini
diterjemahkan ke dalam persentase berat badan.
 
Evaluasi ekonomi dari diet eksperimental
 
Biaya diet telah dihitung dengan mempertimbangkan, proporsi masing-masing bahan, harga rata-rata bahan baku dan biaya
sehubungan dengan transformasi mereka, terutama untuk makanan siput.
 
Evaluasi sensoris terhadap daging ayam
 
Paha dari 4 ayam yang disembelih per kandang dimasak dalam minyak selama 20 menit. Staf mencicipi terdiri dari orang-orang yang
dipilih secara acak di komune Adjame (Abidjan) dengan 10 pria dan 10 wanita. Pendekatan hedonis digunakan. Skala 5 poin dipilih
(5-sangat menyenangkan, 4-menyenangkan, 3-tidak menyenangkan atau tidak menyenangkan, 2- tidak menyenangkan, 1-sangat tidak
menyenangkan).
 
Analisis statistik
 
Data yang dikumpulkan dianalisis menggunakan program ANOVA dalam perangkat lunak statistik (SAS, versi 6.12). Berarti
dipisahkan menggunakan tes Newman Keuls (SAS / STAT 1996).
 
Hasil
Komposisi kimia dari bekicot, tepung ikan dan diet
 
Tepung siput lebih tinggi protein (62,4 vs 58,2%) dalam abu (22,7 vs 20,0%) dan kalsium (7,7 vs 7,0%) daripada tepung ikan.
Sebaliknya, makan siput lebih miskin lemak (4,3 vs 10,0) daripada tepung ikan. Tingkat bahan kering dari makanan cukup identik
(Tabel 3).
Kadar protein kasar, abu dan kalsium meningkat dengan meningkatnya kandungan tepung keong dalam makanan (Tabel 4 dan 5).
 
Performa pertumbuhan dan konversi pakan
 
Pada periode awal, diet dengan 3, 4 dan 5% dari makan siput menunjukkan beberapa tanda konsumsi yang lebih tinggi (1,4 dan 1,6%) sedangkan
yang lain memiliki tanda-tanda konsumsi yang lebih rendah (1,2 hingga 1,4%) selama minggu pertama. Tetapi sejak minggu ke-2, tanda-tanda
konsumsi cukup identik dan konstan (Tabel 4). Tingkat pertumbuhan pada fase starter menunjukkan respon lengkung negatif terhadap
peningkatan proporsi tepung bekicot (Gambar 1; R2 = 0,90). Tingkat pertumbuhan dipertahankan sebagai bungkil siput diganti hingga 30% dari
tepung ikan diikuti oleh penurunan stabil hingga 100% pengganti tepung ikan. Pada tahap grower (Tabel 5) ada juga indikasi respon lengkung
dengan sedikit menurun karena bungkil bekicot dinaikkan dari 0 menjadi 30% penggantian bungkil ikan diikuti dengan peningkatan seiring
dengan penggantian bungkil bekicot meningkat dari 30 menjadi 100%. tepung ikan (Gambar 2; R2 = 0,44).

Diskusi
Tidak ada penjelasan yang jelas untuk pengurangan tingkat pertumbuhan ayam pedaging yang disebabkan oleh penggantian tepung
ikan dengan siput mal dalam fase starter, selain keseimbangan asam amino yang lebih buruk yang mungkin disebabkan oleh
denaturasi parsial asam amino esensial tertentu selama pengeringan daging bekicot. . Respons positif terhadap kadar siput yang lebih
tinggi pada fase grower, ketika kebutuhan asam amino lebih rendah, mendukung saran ini. Nilai gizi yang serupa untuk daging ikan
dan tepung ikan dalam makanan babi dilaporkan oleh Kaensombath Lampheuy dan Ogle (2005). Para penulis ini mengganti tepung
ikan dengan daging segar atau daging dari Golden Apple Snails (Pomacea spp) dalam makanan babi yang sedang tumbuh dan tidak
melaporkan perbedaan dalam tingkat pertumbuhan. Disimpulkan bahwa daging siput emas sebanding dalam nilai gizi dengan tepung
ikan.
 
Kesimpulan
• Makanan dari siput (Achatina fulica) dapat dimasukkan dalam diet untuk ayam pedaging hingga 3% menggantikan tepung ikan (fase
starter), dan pada 10% pada fase petani mengganti tepung ikan sepenuhnya, tanpa pengurangan kinerja pertumbuhan tetapi
penghematan dalam biaya pakan.

• Kualitas sensoris daging broiler tidak terpengaruh oleh kehadiran bekicot dalam makanan.

You might also like