0% found this document useful (0 votes)
499 views58 pages

Indefinite Integration

The document contains several mathematics integration problems. Problem 1 asks for the value of g(limx→0(f(x))) given an integral expression involving f(x). Problem 2 asks for the integral of x3g(x2)dx given an integral expression for ∫g(x)dx. Problem 3 asks for the value of an integral involving x(x-2)-x2)3/2dx. Problem 4 asks to identify the function f(x) given an integral expression involving f(x).

Uploaded by

Subrata Karmakar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
499 views58 pages

Indefinite Integration

The document contains several mathematics integration problems. Problem 1 asks for the value of g(limx→0(f(x))) given an integral expression involving f(x). Problem 2 asks for the integral of x3g(x2)dx given an integral expression for ∫g(x)dx. Problem 3 asks for the value of an integral involving x(x-2)-x2)3/2dx. Problem 4 asks to identify the function f(x) given an integral expression involving f(x).

Uploaded by

Subrata Karmakar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 58

MATHEMATICS

cos x  sin x  1  x

2 x  e sin x  1
Q.1 If dx = n(f(x)) + (A) n +C
e x  sin x  x 2 x  e sin x  1
g(x) + c. Where c is the constant of integration
xe sin x  1  1
(B) n +C
xe sin x  1  1
and f(x) is positive, then g (lim
x )0
(f ( x )) is –
2 xe sin x  1  1
(A) 1 (B) 2 (C) 0 (D) 1/2 [A] (C) n +C
2 xe sin x  1  1

2 xe sin x  1  1
Q.2 Let  g ( x ) dx = F(x), then (D) 2n +C [C]
2 xe sin x  1  1
x
3
g ( x 2 )dx =

e
sec x
1 2 Q.7 Let [secx . tan x . f(x) + (sec x . tan x
[x (F(x))2 –  ( F( x )) dx ]
2
(A)
2 +
1 2
(B) [x F(x2) –  F( x ) 2 d ( x 2 ) ] sec2 x)] dx = esecx . f(x) + C then f(x) may be equal
2 to -
1 2 1
 (F( x )) (A) sec x + tan x (B) sec x – tan x
2
(C) [x F(x) – dx ]
2 2 (C) – x sec x + tan x (D) sec x – x tan x [A]
(D) None of these [B]

dx
x 2  x 2 Q.8  ( x  2) =
 x(x 2  x 2 )3 / 2
7/8
Q.3 dx = .( x  3) 9 / 8
1/ 8 1/ 8
x x 8 x2 5 x2
(A)    c (B)   c
(A) 2
+c (B) 4
+c 5 x 3 8 x 3
1 x 1 x
1/ 8 1/ 8
x 5 x 3 8 x 3
(C) +c (D) None of these [B] (C)    c (D)   c
1 x 8 x2 5 x2
[A]

 (1 – x
2 x dx f (x)
Q.4 = , then f(x) is - x 2
2
) x 4
–1 x2 –1 6 0
 
Q.9 Let A = 1 –5 1 and B =
(A) x 4
1 (B) x 4
–1  2 0 x
 
(C) – 1– x4 (D) None of these [B]

4 0 0
2x  1 0 0
Q.5 If x 4
 2x 3  x 2  1
dx = A n 

1 .
8
0 0 
If a function is defined as f(x) = tr (AB), then
x2  x 1
+ C then the value of A can be -
1 x2  x
3dx
(A) 1 (B) 1/2 (C) – 1/2 (D) – 1 [C]
 f (x) is equal to

( x cos x  1)dx
Q.6  2 x 3 e sin x  x 2
is equal to –

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 1
1 2x  1 cos ec 2 x  2005 A( x )
(A)
4
n
2x  5
C (B) Q.11 If
 cos 2005
x
dx = –
( B( x )) 2005
+ c, then number of solutions of the equation
1 2x  5
n C
4 2x  1 A( x )
={x} in [0, 2] is (where {.} represents
B( x )
1 1  2x
(C) n C (D) fractional part function)
3 2x  5
(A) 0 (B) 1 (C) 2 (D) 3
1 1  2x
n C cos ec 2 x  2005
3 2x  3
[A]
Sol.[A]
 cos 2005 x
dx

Sol.  cos ec x  (cos x ) 2005


2
= dx – 2005
4 x 2 6 0
  1
AB =  4
 8
–5
0
8
8x 
 (cos x ) 2005 dx = I1 – I2
 
Applying by parts on I1, we get
 f(x) = tr(AB) = 4x2 + 8x – 5
3 dx cos ec 2 x  2005
  4x 2
 8x  5
=
 cos 2005 x
dx

3 dx cot x
=  C
 (2x  5)(2x  1) (cos x ) 2005
A(x) = cotx and B(x) = cos x
1  1 1 
=
2     dx
 (2 x  1) ( 2 x  5)  
A( x )
= cosec x = {x} for x [0, 2] the
B( x )
1 2x  1
= n C equation has no solution as clear from the
4 2x  5
graph
sec x . cos ecx (,1)
Q.10  2 cot x  sec x cos ecx dx is equal to-

1 (1,0)
(A) n | sec2x + tan 2x | + C
2
(B) n | secx + cosec x | + C
(C) n | sec x + tan x | + C Q.12 Let x2 n –1, n  N, then
1
(D) n | sec x + cosec x | + C [A] 2 sin( x 2  1) – sin 2( x 2  1)
2  x
2 sin( x 2  1)  sin 2( x 2  1)
dx is
sec x cos ecx
Sol. I = 
2 cot x  sec x cos ecx
dx =
equal to:
1
dx (A) n sec( x 2  1) + C
 2 cos 2
x 1
2

 x2 1
1 (B) n sec  +C
=  sec 2 x dx =
2
n | sec 2x + tan 2x | +  2 

C 1
(C) n |sec(x2 + 1)| + C
2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 2
1 2 2x
(D) n +C f(x) = s =
1  2x 2
2
2 sec( x  1)

1 2x
Sol.[B] I =
2 so  1  2x 2 dx put 1 – 2x2 =

t
2 2
2 sin( x  1) – sin 2( x  1)
 2x 2 sin( x 2  1)  sin 2( x 2  1)
dx – 4x dx = dt
2x dx = – 1/2 dt
x2 + 1 = t  2x dx = dt 1 dt 1
=–
2  t
= –
2
log (t) + c
1 2 sin t – sin 2 t
I=
2  2 sin t  sin 2 t
dt
=–
1
log (1 – 2x2) + c
2
1 2 – 2 cos t 1 t
=
2  2  2 cos t
dt =
2  tan 2 dt = log 
 1
 +c
2 
 1  2x 
t
n sec
1 2  x2 1
= + c = n sec  +  3x  4 
2 1  2 
Q.14 If f   = x + 2 then
 3x  4 
 f ( x )dx is
2
equal to
c
3x  4
(A) ex+2 ln +c
3x  4
Q.13 If f(x) = nlim

(2x + 4x3 +……..+ 2nx 2n–1)
8 2
(0 < x < 1) then  f ( x ) dx is equal to (B) 
3
ln |(1 – x)| +
3
x+c
 
1
(A) log   +c
8 x
2  (C) ln |x – 1| + +c
 1 x 
3 3
(B) log 1  2x 2 + c
(D) None of these
 1 
(D) log   +c
 3x  4
2 Sol.[B] =t
 1  2x 
3x  4
(D) None of these
3x – 4 = 3xt + 4t

Sol.[C] Solve series 4t  4


x=
3(1  t )
s = 2x + 4x3 +…+ 2nx2n–1  Total term (n)
4t  4
 G.P. f(t) = +2
3(1  t )
[(2 x 2 ) n  1]
s = 2(x)  first term = 2x 4x  4 4( x  1)  8
(2 x 2  1) f(x) = +2= +2
3(1  x ) 3(1  x )
 C.R. = 2x2
4 8 2 8
f(x) = 2 – – = 
( 2 x ) [ 2 n x 2n  1] 0  x 1 3 3( x  1) 3 3( x  1)
s = (2x) , n
( 2 x 2  1)
2 8
x 02n  f ( x )dx =
3
x–
3
ln |x – 1| + c

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 3
(sin x ) n  (sin x )  n | e ibx | = cos 2 bx  sin 2 bx =1
Q.15 If f(x) = nlim
 (sin x ) n  (sin x )  n
,0<x<

/2, Q.17
 (cos x )[f ( x )]
3
n  N, then dx is equal to
cos 2 x sin 3 xdx
(A) +c (B) sin 2x + c
2  (cos 4
x  3 cos 2 x  1) tan 1 (sec x  cos x )
(C) – sinx + c (D) None
Sol.[C] 0 < x < /2 , 0 < sinx < 1 =
lim (sin x)n  0 (A) tan–1 (sec x + cos x) + c
n 
(B) log tan–1 (sec x + cos x) + c
(sin x ) 2n  1
f(x) = nlim
 =–1 (C) 1/(sec x + cos x) + c
(sin x ) 2 n  1 (D) None of these

 cos x ( 1)dx = – sin x + c Sol.[B] Put tan–1 (sec x + cos x) = t


1
(sec x tan x – sin x) dx =
ax ax 1  (sec x  cos x ) 2
Q.16 If P =  e cos bx dx and Q =  e sin
bx dx, then (P2 + Q2) is equal to (neglect dt
integration constant)
cos 2 x  1
eax e bx 2 2 2 sin x 1
2
(A) B) cos x  (1  cos x )  cos x 
a 2  b2 a 2  b2
dx = dt
e 2ax e (a  b) x
(C) (D)
a 2  b2 a 2  b2 (1  cos 2 x )
cos 2 x sin x
Sol.[C] P + iQ = e
ax
cos bxdx + i cos 2 x dx = dt
2 4 2
cos x  1  cos x  2 cos x
ax
e sin bx dx
sin 3 x
dx = dt
P + iQ =  e ax (cos bx  i sin bx ) dx cos 4 x  3 cos 2 x  1
dt
P + iQ =  (e ax eibx ) dx I=  t
 log | t | + c

P + iQ =  e (ax ibx ) dx  log |tan–1 (sec x + cos x)| + c

e ( a  ib ) x
P + iQ =
(a  ib) Q.18 The indefinite integral of (12 sin x + 5 cos x) –1
is, for any arbitrary constant -
e ax eibx
(P + iQ) =
(a  ib) x 1 5 
(A) 1/13 log tan  tan 1  +c
Take modulus on both side 2 2 12 
x 1 12 
e ax (B) 1/13 log tan  tan 1  +c
P 2
Q 2 = 2 2 5 
a 2  b2
1 5 
2ax
(C) 1/13 log tan  x  tan  +c
e  12 
P2 + Q2 =
(a  b 2 )
2
1 12 
(D) 1/13 log tan  x  tan  +c
 5 
 eibx = cos bx + i sin bx

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 4
5 5
Sol.[A] With = tan–1 , sin  = and cos  =
12 13 (/2, 1)

12
13
dx dx (1, 0)
 12 sin x  5 cos x
=  13 sin( x  )
1 x
sec 2
1
=
13  2
x
2 dx
dx
tan
2
Q.20 If I =  cos5 x  sin 5 x , then I equals
1 x 1 1 5  2t 1
= log tan  tan  +c (A) 2 log + log
13  2 2 12  2 t (2  b 2 ) b 3

bt
cos ec 2 x  2005
Q.19 If
 cos 2005 x
dx = – bt

1 2
t
+ tan–1  
2 3
(2  b ) b b
A( x )
+ C,
( B( x )) 2005 +C

then number of solutions of the equation 5t 1 bt


(B) 5 log + log
5 t 2  b2 bt
A( x )
= {x} in [0, 2] is (where {.} 2 t
B( x ) + 3
tan–1   + C
b b
represents fractional part function) -
5 t t
(A) 0 (B) 1 (C) 2 (D) 3 (C) 5 log + sin–1   + C
5t b
cosec 2 x  2005
Sol.[A]
 cos 2005 x
dx
(D) 5 log
2 t
2 1
t  2 
+ sin–1   +  3  tan–1
b b 
 cosec x.(cos x ) 2005
2
= dx
1 t
– 2005  (cos x ) 2005 dx = I1 – I2   +C
b
Applying by parts on I1, we get
where t = sin x – cos x and b = 51/4
2
cosec x  2005 cot x
 cos 2005
x
dx = –
cos 2005
x
+c Sol.[A] cos5 x + sin5 x = (cos x + sin x) [cos 4 x –cos3x
sin x + cos2 x sin2 x –cos x sin3 x + sin4 x]
= (cos x + sin x) [(cos 2x + sin2x)2 – cos2 x sin2 x
 A(x) = cot x and B(x) = cos x – cos x sin x (cos2 x + sin2 x)]
A( x ) = (cos x + sin x) (1 –cos x sin x – cos2 x sin2 x)
 = cosec x = {x} for x  [0, 2] the
B( x ) I=
equation has no solution as clear from the graph

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 5
dx
Q.22 If I = x 1 x3
, then I equals:
sin x  cos x
 (1  2 sin x cos x ) (1  cos x sin x – cos 2 x sin 2 x ) (A)
1
log
1  x3 1
+C
3 1 x3 1
dx
1 1 x3 1
Put sin x – cos x = t, so that (cos x + sin x) dx = (B) log +C
3 1 x3 1
dt, and t2 = 1 –2 sin x cos x 2
(C) log |1 – x3| + C
Thus 3
dt 1
  2 
(D)
3
log x 3/ 2  1 x3 +C
I= (2  t ) 1  t  1  1 ( t 2  1) 2 
2

 2 4  x 2 dx
dt
Sol.[B] Write I =  x3 1 x3
and 1 –x3 = t2, so that
=4  (2  t 2 ) (5  t 4 )
–3x2 dx = 2t dt and
=4 ( 2 / 3) t dt 2 dt
 1 1 1 1 1 1 1 
I=  (1  t ) t2 =–
3  1 t 2
  2  t 2  2  5 2 5 5 t 2

2 5 2 5

5t  2
2 1 1 t
= –   log + C = 3 log
dt 3 2 1 t

2t 1 1
= 2 log log
2 t 2 5 5 3/ 4
1 x3 1
+C
1 x3 1
51 / 4  t 1 2  t 
+ tan–1  + x5
5 1/ 4
t 2 5 5 3/ 4
 51 / 4  Q.23 If I =  1 x3
dx, then I is equal to:

C
2 2
where t = sin x – cos x (A) (1 + x3)5/2 + (1+ x3)3/2 + C
9 3
Q.21 If I =  tan x  
cot x dx, then I equals: 2 2
(B) (1 + x3)3/2 – (1 + x3)1/2 + C
(A) –1 9 3
2 sin (sin x + cos x) + C

(B) –1 (C) log x  1 x3 +C


2 cos (sin x –cos x) + C

(C) –1 (D) x2 log (1 + x3) + C


2 sin (sin x –cos x) + C
–1
Sol.[B] Put 1 + x3 = t2, 3x2 dx = 2t dt, so that
(D) 2 cos (sin x + cos x) + C
( t 2  1) 2 2  t 3 
 t + C
Sol.[C] I = 
sin x  cos x
dx
I=  t
.
3
t dt =
3  3 

cos x sin x
Put sin x – cos x = t, so that (sin x + cos x) dx = dt 2 2
= (1+ x3)3/2 – (1 + x3)1/2 + C
9 3
and 1 – 2 sin x cos x = t2
1 1 x
I= 2 
dt
= –1
2 sin (t) + C
Q.24 If I = x 1 x
dx, then I equals:
1 t2

= –1 (A) log |x| + log 1 1 x2 + sin–1 x +C


2 sin (sin x – cos x) + C
(B) log |x| – log 1 1 x2 + tan–1 x + C
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 6
(C) log |x| – log 1 1 x2 – sin–1 x + C  2t 
 I = sin–1   + C = sin–1

(D) log 1 1 x 2
– log |x| + cos–1 x + C
 2x     
1 x   + C
1   
Sol.[C] I = x 1 x2
dx
x 2  1 dx, then I equals
dx dx Q.26 If I =

= x 1 x2
–  1 x2
x4
1 ( x 2  1) 3 / 2
(A) – +C
1 3 x3
In the first integral, put x = , so that
t (B) x3 (x2 + 1)–1/2 + C
( 1 / t 2 ) dt x 2 1 + C
I=  1 1
–1
– sin x = – 
dt (C)
1 2 t 2 1 x2
t t
1 ( x 2  1) 3 / 2
–1
– sin x (D) – +C
3 x2
–1
= – log | t + t 2  1 | – sin x + C
Sol.[A] Put x = tan  so that x 2  1 = sec , dx = sec
2

2
1 1 x
= – log  – sin–1 x + C = log |x| – d
x x
sec  sec 2  cos 
log |1 + 1 x 2 | – sin x + C–1 I =  tan  4
d =  sin 4  d
1 1
dx =– +C
Q.25 If I =  ( x   ) (  x )
. (< ) then 3 sin 3 

1 sec 3  1 ( x 2  1) 3 / 2
value of I is: =– +C=– +C
3 tan 3  3 x3
 2x     
(A) sin–1   + C
  
dx
(B) sin –1
 x   
 
Q.27 If I =  sec x  cosec x ' , then I equals :
  
1  1 
 2x      (A)  cos x  sin x  log(cos ec x – cos x ) 
(C) sin  –  2  2 
  
+C
(D) None of these
1  1 
1 (B)  sin x  cos x  log | cosec x  cot x | 
Sol.[A] Put t = (x –  + x – ) 2  2 
2
1 +C
=x– ( + ), so that
2 1  1 
(C)  sin x  cos x  log | cosec x  cos x |  +
 1  2  2 
(x – ) ( – x) =  t  (  )   
 2 
C
 1 
  2 (  )  t  (D) None of these
 
sin x cos x
=
1
( – )2 – t2
Sol.[D] I =  sin x  cos x dx
4

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 7
1 (sin x  cos x ) 2  1 = –
=
2  sin x  cos x
dx

  dn (  x )  
=
1 
 sin x  cos x 
1 
 

n (  x ) x dx  
 dx   xdx  dx 
2 2 sin( x   / 4) 
dx  x2 1 x2 
1 1 =–  n (  x )   . dx 
= [sin x – cos x] – log |cosec (x + /4)  2 x 2 
2 2
– cot (x + /4)| + C x2 x2 
=–  n ( x )  +c
 2 4 
Q.28  (x – 10C1 x2 + 10C2x3 –10C3x4 .....+ 10C10x11)
dx equals: 1 1
= x |x| n |x| – x |x| + c ( x < 0)
(1  x ) 11
(1  x ) 10 2 4
(A) – +c
11 10
12
when, x > 0; I =  xnx dx
(1  x ) (1  x )11
(B) – +c  dnx 
12 11 = nx  x dx –   dx  xdx dx
10
(1  x ) (1  x )11
(C) – +c
10 11 x2 x2
11
= nx – +c
(1  x ) (1  x )12 2 4
(D) – +c
11 12 1 1
= x |x| n |x| – x |x| + c (x > 0)
2 4

Sol.[B] Given expression Q.30 I (cos x)4 dx = Ax + B sin 2x + C sin4x then


10 10 2 10 10
= x (1– C1 x + C2x + .....+ C10x )
{A, B, C} equals-
= x(1– x)10
3 1 1  3 1 1 
(A)  , ,  (B)  , , 
 x (1  x )
10
I= dx  8 4 32  8 2 6 
Let I –x = t – dx = dt
3 1 1  3 1 1 
(C)  , ,  (D)  , , 
I=–  (1  t ) t 10 dt  4 4 16   8 4 32 
2
 t 11 t 12  1  cos 2 x 
=
11
+
12
+c Sol.[D] I =   2  dx
1
=  (1  cos 2 2 x  2 cos 2 x ) dx
Q.29  |x| ln |x| dx equals (x 0) 4
1  1  cos 4x 
(A)
1
x |x| ln |x| –
1
x |x| + c
=
4 
 1 
2
 2 cos 2x  dx

2 4
1
1 1 =
8
 (3  cos 4 x  4 cos 2x ) dx
(B) x |x| ln |x| + x |x| + c
2 4 3x sin 4 x 4 sin 2 x
= + +
1 2 1 8 32 8 2
(C) x ln |x| – x |x| + c
2 4 dx 3
(D) None of these
Q.31  x 3 ( x n  1) equals:
Sol.[A] If x < 0, I = –  xn (  x ) dx

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 8
 xn   n  3
(A)
3
ln  n  (B) 1 ln  x  (A) x2/3 + 6 tan–1 6
x +c
  x n 1  2
n  x 1  n  
3
(B) x2/3 + 6 tan–1 x +c
3  x n 1  x n 1  2
(C) ln  
n  (D) 3n ln

 xn 

n  x    3
(C) x2/3 + tan–1 x + c
2
dx 3 x 2 dx 3
Sol.[A]  x 3 ( x n  1) = 3  x 3 ( x n  1) (D)
2
x2/3 + 6 tan–1 x1/3 + c

dx Sol.[A] Let t6 = x
=3  x ( x n  1) then 6t5 dt = dx

x n 1 dt ( t 6  t 4  t )6 t 5 dt t5  t3 1
=3
x n ( x n  1)
dx =
3
 t ( t  1)
I=  6
t (1  t ) 2 =6  (1  t 2 )
dt
n

3 ( t  1)  t 3 1 1  t 3 ( t 2  1)  1
=
n
 t ( t  1)
dt =
n
  t  t  1  dt =6  (1  t 2 )
dt

3 1
t  1 t2
3
= (nt – n (t + 1)) + c =6 dt  6 dt
n
3  t  6t 4 3 4
= n  +C = + 6 tan–1 t = t + 6 tan–1 t + c
n  t 1  4 2

Q.32  ( cot x + tan x ) dx. equals:


=
3 2/3
x + 6 tan–1 6
x +c
–1
2
(A) 2 . sin (sin x – cos x)
dx
(B) –1
2 sin (sin x + cos x) Q.34  ( x 2  1) ( x 2  4) equals:
(C) 2 sin–1 (sin x – cos x)
1 1
(D) None of these (A) tan–1 x + tan–1 x + c
3 6
 cos x sin x 
Sol.[A] I =   sin x

cos x
 dx


(B)
1
tan–1 x –
1
tan–1
x
+c
3 6 2
cos x  sin x x
=  sin x cos x
dx (C) tan–1 x –tan–1 +c
2
cos x  sin x 3 x
= 2  sin 2 x
dx (D) 3 tan–1 x –
2
tan–1
2
+c

put t = sin x – cos x dx


dt = (cos x + sin x) dx
Sol.[B]  ( x 2  1) ( x 2  4)
also t2 = 1 –sin 2x ( x 2  4)  ( x 2  1)
1
dt
=
3  ( x 2  1) ( x 2  4)
dx
I= 2  1 t2
= –1
2 sin t
1 dx 1 dx
= –1
2 sin (sin x –cos x) + c
=
3  x2 1 – 3  x2  4
3
x  x2  6 x 1 1 x
Q.33  x (1  3 x )
dx equals: =
3
tan–1 x –
6
tan–1
2
+c

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 9
Questions Add (24–6-09) e x dx
Q.37  cos hx  sin hx
is
sec x. cos ecx
Q.35  2 cot x  sec x cos ecx dx is equal to
(A)
1 2x
e +c (B) x + c
2
1
(A) n | sec2x + tan2x | + C (C) log (cot hx) + c (D) log (tan hx) + c
2
(B) n | sec x + cosec x | + C Sol.[B] sin hx = (e – e )/ 2, cos hx = (ex + e–x)/2
x –x

(C)n | sec x + tan x | + C


1
(D) n | sec x + cosec x | + C ( x  1)dx
2 Q.38  (x  1) x ( x 2  x  1)
is
Sol.[A]
sec x cos ecx dx 1
 2 cot x  sec x cos ecx dx   2 cos 2
x 1
(A) tan 1 x
x
1 + c

1
=  sec 2x dx  2 n | sec2x + tan2x | + C (B) 2 tan 1 x 
1
x
1 + 

Q.36 Let x2 n – 1, n  N then


1
(C) 2 tan –1 x 1 + c
2 sin ( x 2  1) – sin 2 ( x 2  1)
x dx x
2 sin ( x 2  1)  sin 2 ( x 2  1)
1 1
equals (D) tan 1 x 1 + c
2 x
1
(A) n sec ( x 2  1) +C ( x  1) dx
2
 1
 x 2 1  Sol.[C] I = ( x  1) x x 
1
(B) n sec  
 +C x
 2  ( x 2  1) dx
(C)
1
n | sec(x2 + 1) | + C
2 1
= ( x  2 x  1) x x   1
2 x
1  1 
(D) n
2
+C 1  2  dx
 x 

2 sec ( x 2  1)

1  1 
=  x   2 x   1
1
Sol.[B]
2  x  x
put x + 1/x + 1 = t2
2 sin ( x 2  1) – sin 2 ( x 2  1)
 2x 2 sin ( x 2  1)  sin 2 ( x 2  1)
 sec 2 x  1 
dx
Put x2 + 1 = t 2xdx = dt
Q.39  x sec 2x  1  dx =
1 2 sin t – sin 2 t x2
=
2  2 sin t  sin 2 t
dt (A) x tan x – log |sec x| 
2
c

1 2 – 2 cos t
=
2  2  2 cos t
dt
(B) x tan x – log |sec x| +
x2
c
2
1
1 t n | sec t / 2 |  C

2  tan
2
dt = 2
(C) x tan x + log |sec x| 
x2
c
1/ 2 2
x 2
1 
= n sec   +C x2
 2 

(D) x tan x + log |sec x| + c
2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 10
 1  cos 2 x  (C) 2.4 (D) 2.5
I =   1  cos 2 x  dx =  tan x dx
x x 2
dx
Sol.[A]
use integration by parts Sol.[C] f(x) =  sin1 / 2 x
. cos 4 x
1/ 2
cos x

x r 2r
Q.40  dx = sec 4 x
r0
r f(x) =  tan x
dx =

e 2x
(A) ex + c (B) +c
2 (1  tan 2 x ) sec 2 x dx
e 2x
 tan x
(C) +c (D) 2e2x + c 
4
1 t2
  (t
1 / 2
 f(x) = dt =  t 3 / 2 ) dt
x r 2r
Sol.[B] 
r 0
r
= e2x
t

f(x) = 2t1/2 + 2/5 t5/2 = 2 tan x + 2/5 (tan x)5/2


1– x 2  1 x 2
Q.41  dx = 
1– x4 f  – f(0) = 2 + 2/5 = 2.4
4
(A) log ( x  1  x 2 ) + sin–1 x + c Q.44  1  cos ecx dx =
–1 –1
(B) sin h x – sin x + c –1
(A) ± sin (tan x – sec x) + c
(C) cos–1 x – sin–1 x + c (B) 2sin–1 (cos x) + c
(D) tan–1 x + sin–1 x + c   x x
(C) sin–1  cos  sin  + c
1– x2 1 x 2  2 2
Sol.[A]  1– x4

1– x 4
dx
 x x
(D) ± 2 sin–1  sin  cos  + c
dx dx  2 2
=  1 x2
  1– x2
Sol.[D] I =  1  cos ecx dx

e 3x  e x 1  sin x
Q.42 e 4x
–e 2x
1
dx = I =  sin x
dx = ±

(A) tan–1 (ex – e–x) + c


(B) tan–1 (ex + e–x) + c
(C) 2 tan–1 (ex – e–x) + c x x
sin  cos
(D) 2 tan–1 (ex + e–x) + c   2
x
2
x
dx
Sol.[A] Put ex = t 2 sin cos
2 2
 1 
2 1  2  dt x x
(t  1) dt  t 
I = t 4
–t 2
1
=
 t 2 – 1 2
1
I=± 
sin
2
 cos
2
2 dx
t  x x
1   sin  cos 
1  2 2
put t – =z
t
x x  x x
Put sin – cos = t,  cos  sin  dx
2 2  2 2
dx 
Q.43 If f(x) =  sin1/ 2 x cos7 / 2 x then f   –
4 = 2dt
f(0) is equal to
(A) 2.2 (B) 2.3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 11
2dt 1
I= ±  1 t 2
= ± 2 sin–1(t) (C)
2
(sin x – cos x + x) + c

(D) None of these


 x x
= ± 2 sin–1  sin  cos  + c
2 2 sinx cosxdx
 Sol.[B] I =  1  sinx  cosx 

x 2x  sin x
e  sec x  tan x  1 dx
 1  .dx is equal to
Q.45  tan x 
 (1  x 2 ) 2 
 1 1  sin x (1  tan x  sec x )
(A) ex  cot

x  +c
1 x2 
I=  (1  tan x ) 2  sec 2 x
dx

 1 1 
sin x (1  tan x  sec x )dx
(B) ex  tan x   +c
 1 x2    2 tan x
 1 1 
(C) ex  tan x   +c 1
 1 x2  I=
2
 cos x (1  tan x  sec x ) dx
(D) ex tan–1 x + c
 2x  1
Sol.[C]  e  tan x 
x 1  dx


2
 (cosx + sin x – 1) dx
 (1  x 2 ) 2 
1
= [sin x – cos x – x] + c
 1  2
 tan 1 x  
 1 x2 
= e Q.47 If f(x) = tan–1 x + n 1  x – n 1  x . The
x
dx –
  integral of 1/2 f ' (x) with respect to x4 is -
f (x) f ' (x) 4
(A) e  x  c (B) – n (1 – x4) + c
(C) e 1 x 4  c (D) n(1 + x2) + c
 1 2x 
 
 1  x 2  (1  x 2 ) 2  Sol.[B] f(x) = tan–1 x + n 1  x – n 1  x
 
e
x

  1 1 1
f '(x) = + +
1 x 2 2(1  x ) 2(1  x )
g(x ) g ' (x)
1 1 2
1 =  
= ex tan–1(x) – ex +c 1 x 2
1 x 2
(1  x 4 )
2
1 x
1 1
f ' (x) =
2 1 x4
 1 
1 1 dx 4
= ex  tan x  +c
 1 x  2
2
f ' ( x )dx 4 
1 x4 
dt
– 
t
– nt + c 1 – x4 = t
dx
Q.46  tan x  cot x  sec x  cos ecx
= – n (1 – x4) + c – dx4 = dt

1 cos 3 x
(A)
2
(sin x – cos x) + c Q.48
 sin 11 x
dx is equal to -

1 2 2
(B) (sin x – cos x – x) + c (A) cot3/2 x – cot9/2 x + c
2 5 9

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 12
2 2 ax
(B)
5
cot5/2 x –
9
cot9/2 x + c Q.55  ax
dx is equal to-

2 2 (A) sin–1 (x/a) – a 2  x 2  c


(C) cot5/2 x – cot3/2 x + c
5 9 (B) cos–1 (x/a) – a 2  x 2  c
(D) None of these (C) a sin–1 (x/a) – a 2  x 2  c
Sol.[B] Since sum of powers of (D) a cos–1 (x/a) – a 2  x 2  c [C]
3  11 
cos x and sin x = +   = – 4, x
2  2  Q.56  xe dx is equal to-
we will put tan x = t (A) (x + 1) e–x + c (B) (x – 1) e–x + c
(C) – (x + 1) e–x + c (D) (1 – x) e–x + c [C]
4  5 sin x
Q.49  cos 2 x
dx equals-
Q.57  (log x )
2
dx equals-
(A) 4 tan x – sec x + c (B) 4 tan x + 5 sec x + c (A) (x log x)2 – 2x log x + 2x + c
(C) 9 tan x + c (D) None of these [B]
(B) x (log x)2 – 2x log x + 2x + c
(C) x (log x)2 + 2x log x + 2x + c
1  cos 2 x
Q.50  1  cos 2x dx equals- (D) None of these [B]
x  sin x  cos x 
(A) tan x + x + c (B) tan x – x + c Q.58 e 
 cos 2 x
 dx is equal to-

(C) sin x – x + c (D) sin x + x + c [B]
(A) ex cos x + c (B) ex sec x + c
x x 2
(a  b ) (C) ex sin x + c
Q.51  a bx x
dx equals- (D) None of these [B]

x
2
(A) (a/b)x + 2x + c (B) (b/a)x + 2x + c Q.59 tan 3 x 3 sec 2 x 3 dx is equal to-

(C) (a/b)x – 2x + c (D) None of these [D] 1 1


(A) tan4 x3 + c (B) tan4 x3 + c
4 8
3x 2 1
Q.52  x 6  1 dx equals- (C)
12
tan4 x3 + c (D) None of these [C]

(A) log (x6 + 1) + c (B) tan–1 (x3) + c 3x  1


(C) 3 tan–1 (x3) + c (D) 3 tan–1 (x3/3) + c [B] Q.60  2x 2  2x  3 dx equals-
1 5  2x  1 
tan (log x ) (A) log(2x2–2x+3)– tan–1  +
Q.53 The value of  is- 4 2  5 
x C
(A) log cos (log x) + C
3 5  2x  1 
(B) log sin (log x ) + C (B) log(2x2–2x +3)+ tan–1  
(C) log sec (log x ) + C 4 2  5 
(D) log cosec (log x) + C [C] +C
3 5  4x  2 
dx (C) log(2x2–2x+3) + tan–1  
Q.54  ex  ex equals-
+C
4 2  5 

(A) log (ex + e–x) + c (D) None of these [B]


(B) log (ex – e–x) +c
x3 – x – 2
(C) tan–1 (ex) +c Q.61  (1 – x 2 )
dx =
(D) tan–1 (e–x) +c [C]
 x 1 x2
(A) log   – +c
 x 1  2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 13
 x 1  x 2 dx
(B) log 
 x 1
+
2
+c Q.66  3  sin 2 x equals-

 x 1 x2 1  2 tan x 
(C) log  + +c (A) tan–1  +c
 x 1  2 2 3  3 
 x 1  x 2 1  tan x 
(D) log  – +c [D] (B) tan–1   + c
 x 1 2 3  3 
x
Q.62  ( x 2  1)( x 2  2) dx equals- (C)
1
tan–1 (2 tan x) + c
2
1  x2 1  (D) None of these [A]
(A) log  2 +c

2 x 2 sin x
x 2 2
Q.67 The value of  sin x  cos x dx equals-
1
(B) log  2 +c

2  x  1  1 1
(A) x+ log ( sin x – cos x ) + C
2 2
 x2 1 
(C) log  2 +c
 1 1
x 2 (B) x– log ( sin x – cos x ) + C
2 2
 x2  2  (C) x + log (sin x + cos x) + C
(D) log  2 +c
 [A]
 x 1  (D) None of these [A]

x 2 1
Q.63 The value of  x 4 1 dx equals- dx
Q.68  a sin x  b cos x equals-
1  x  2x  1 
2
(A) log  2  +C

1  1 1 b  
2 2  x  2x  1  (A) log  tan  x  tan  + C
a b2

2 2 a 
1  x 2  2x  1  1
(B) log  2  +C
 (B) log
2 2  x  2x  1  a  b2
2

1 x 2 1   1 b  
(C) tan–1 +C  tan  x  tan  + C
2 2x   a 
(D) None of these [A] 
1 1 1 b  
dx (C) log  tan  x  tan  +
Q.64  equals- a 2  b2  2 a 
5x  6  x 2 C
(A) sin–1 (2x + 5) + c (D) None of these [A]
(B) cos–1 (2x + 5) + c 1
(C) sin–1 (2x – 5) + c Q.69 Evaluate  ( x  3) x 1
dx-
(D) None of these [C]
1 x 1  2
(A) – log +C
2x  3 2 x 1  2
Q.65  dx is equal to -
x2 1 1 x 1  2
(B) log +C
2 x 1  2
(A) 2 x 2  1 + 3 n | x  x2 1 | + c
1 x 1  2
(B) (C) log –C
x 2  1 + 3 n | x  x2 1 | + c 3 x 1  2

(C) 2 (D) None of these [B]


x 2  1 + 3 n | x  x2 1 | + c

(D) None of these [A]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 14
1 1 1 x2  2x
Q.70 Evaluate  ( x 2  4) x 1
dx (D) – log – [D]
2 1 x 2
 2x
1 x 1  3 1
(A) n – tan–1 ( log |x + 1 x2 | + C
4 3 x 1  3 4
x  1 ) +c
1 1 dx
(B) – tan–1( x  1 )+ n Q.73  2
=
4 4 x x  2x  2
x 1  3
+c (A) loge |x + 1 + x 2  2x  2 | +
x 1  3
1 1 2
(C) – tan–1( x  1 )+ n +C
4 3 4 x  2  x 2  2x  2
x 1 1
+c (B) loge |x + 1 + x 2  2x  2 | –
x 1 1
(D) None of these [C] 2
+C
x  2  x 2  2x  2
1
Q.71 Evaluate  dx (C) loge |x + 1 – x 2  2x  2 | +
( x  1) x2  4
2
1 1 1 x2  4 +C
(A) – log   +
5 x 1 5 5 ( x  1) 2 x  2  x 2  2x  2

C (D) None of these [A]


1 1 1 x2  4 dx
(B)
5
log  
x 1 5 5 ( x  1) 2 +C Q.74  1 x 2 1
=

2 1 x
(C)
1
log
1 1
 
x2  4
+C (A) 1  1  x – 2 tan–1 +C
5 x 1 5 5 ( x  1) 2 x 1 x
2 1 x
1 1 1 x2  4 (B) 1  1  x – 2 tan–1 +C
(D) log   – C x 1 x
5 x 1 5 5 ( x  1) 2
2 1 x
[A] (C) 1  1  x + 2 tan–1 +C
x 1 x

1  x 2 dx 2 1 x
(D) 1  1  x + 2 tan–1
Q.72 Evaluate  1 x2 x 1 x
+C [C]

15
1 1 x2  2x x 
 1 x 2 

(A) – log + Q.75   dx =
2 1 x2  2x 
1 x2
log |x + 1 x2 | + C 15 15
x  1  x 2   x  1 x2 
1 2 (A) 
  + C (B)  

1 x  2x
(B) log + 30 15
2 1 x 2
 2x
+C
log |x + 1 x 2 |–C 15
x  1  x 2 

1 (C)   +C (D)
1 x2  2x
(C) – log – 30 x
2 1 x2  2x
15
log |x –  x  1 x2 
1 x2 | – C  
+ C [B]
 
15 x

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 15
Q.76 If x = f  (t) cos t + f  (t) sin t, y = – f  (t) sin t + 1
1/ 2 (A) [f(x)]2 (B) [f(x)]3
 dx  2  dy  2  2
f t) cos t, then    
 dt 
 
 dt  
dt is
1
(C) [f(x)]3 (D) [f(x)]2 [A]
equal to - 3
(A) f (t) + f  (t) + c (B) f (t) + f  (t) + c Q.81 x
n
log x dx equals -
(C) f(t) + f  (t) + c (D) f  (t) – f  (t) + c [C]
x n 1 log x  1 
(A)   +c
n 1  n  1
 x 
e sin    dx is equal to –
x/2
Q.77
2 4 x n 1 log x  2 
(B)   +c
n 1  n  1
(A) ex/2 sin x/2 + c
(B) ex/2 cos x/2 + c x n 1 2 log x – 1 
(C)   +c
(C) 2 ex/2 sin x/2 + c n 1  n 1 
(D) 2 ex/2 cos x/2 + c [C] x n 1 log x – 1 
(D)   +c [D]
n 1  n 1 
dx
Q.78  sin( x – a ) cos(x – b) is equal to - log( x  1  x 2 )
sin( x – a )
Q.82  1 x2
dx equals-
(A) cos (a – b) log +c
cos( x – b)
1
sin( x – a ) (A) [log(x+ 1  x 2 )]2 + c
(B) sec (a – b) log +c 2
cos( x – b)
(B) log (x+ 1  x 2 ) + c
cos(x – a )
(C) sin (a – b) log +c (C) log [(x+ 1  x 2 )]2 + c
sin( x – b)
cos( x – a ) (D) None of these [A]
(D) cosec (a – b) log +c [B]
sin( x – b) d2v d 2u
Q.83
 u
dx 2
dx –  v
dx 2
dx is equal to -

1
Q.79 If  ( x –  )( – x )
dx ( < x < ) is equal
(A) uv + c (B) u
dv
–v
du
+c
dx dx
to -
du dv dv du
(i) 2sin–1 ( x –  ) /( –  ) (C) 2 + +c (D) u +v + c
dx dx dx dx
(ii) 2sin–1 ( – x ) /( –  )
[B]
(iii) –2cos–1 ( – x ) /( –  )
x
51
Q.84 (tan –1 x  cot –1 x ) dx is equal to-
 1 
 x – 2 (  ) x 52
–1   (A) (tan–1 x + cot–1 x) + c
(iv) sin 52
1 
 2 ( – ) x 52
  (B) (tan–1 x – cot–1 x) + c
Then which of the above are correct – 52
(A) (i) only (B) (i) and (ii) only x 52 
(C) + +c
(C) (ii) & (iii) only (D) All [D] 52 2
x 52 
(D) + +c [A]
If  f ( x ) dx = f(x), then  [f ( x )]
2
Q.80 dx is 104 2
equal to
cos 4 x  1
Q.85  cot x – tan x dx equals-
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 16
1 1 sin x
(A) –
2
cos 4x + C (B) –
2
cos 4x + C Q.90  sin x – cos x dx equals-

1 (A) x + log (sin x – cos x) + c


(C) – cos 4x + C (D) None of these [C]
8 (B) 2 [x + log (sin x – cos x)] + c
cos 2 x  x  1 1
Q.86 x 2
 sin 2 x  2 x
dx equals- (C)
2
[x + log (sin x – cos x)] + c

(D) None of these [C]


(A) log (x2 + sin 2x + 2x) + c
dx
(B) – log (x2 + sin 2x + 2x) + c
Q.91  (x – 1) 3
( x  2) 5 
1/ 4 is equal to -

1 4  x – 1 1/ 4
(C) log (x2 + sin 2x + 2x) + c (A)   +c
2 3  x2
(D) None of these [C] 1  x  2 1/ 4
(B)   +c
3  x –2
x
55 x
Q.87 5 .5 5 .5 x dx is equal to-
1  x – 1 1/ 4
x
(C)   +c
55 3  x –2
(A) +c (B) 55
5x
(log 5)3 + c
(log 5) 3 1  x  2 1/ 4
(D)   +c
5x
3  x –1 
(C) 55 +c (D) None of these [C] [A]
(log 5)3
cos x – cos 3 x
Q.88 x 4
x
2
dx equals-
Q.92
 1 – cos3 x
dx equals-
 x 1
2
1  2x 2  1  (A) sin–1 (cos 3/2 x) + c
(A) tan –1   +c 3
3  3 

3
1  2x 2  1  (B) sin–1 (cos 3/2 x) + c
(B) tan–1   +c 2
3  3 
 
2
(C) cos–1 (cos3/2 x) + c
2  2x  1  2
3
(C) tan–1   +c
3  3  (D) None of these [C]
1  2x  1  2
(D) tan–1   +c
 [D]
3 3 x
  Q.93 x 4
–1
dx equals-
x
Q.89
 a – x3
3
dx is equal to –
(A)
1  x2 –1
log  2  +c
2 x 1 
3/ 2  
x
(A) sin–1   +c
a 1  x2 1
(B) log  2  +c

2 x
3/ 2 2  x –1
(B) sin–1   +c
3 a  x2 1
1
3/ 2 (C) log  2  +c

3 x 4  x –1
(C) sin–1   +c
2 a
1  x2 –1
3 x
2/3 (D) log  2  +c

(D) sin–1   +c 4  x 1 
2 a [D]
[B]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 17
 
dx  (A) –  x sin –1 x  1 – x2   c
Q.94 If f(x) =  sin 1/ 2
x cos 7 / 2 x
, then f   –f
4

(B) x sin–1x + 1 – x 2 + c

(0) =
x2
(A) 2.2 (B) 2.3 (C) +c
2
(C) 2.4 (D) 2.5 [C]
1
(D) (sin–1x)2 + c [A]
2
dt
Q.95 The value of t 2
 2 xt  1
(x2 > 1) is -
Q.100 Consider the following :
1  tx 
(A) tan –1  +c ax 2 – b
1– x2  1 x
2 
 If x c 2 x 2 – (ax 2  b) 2
dx =

1  t  x – x2 –1  ax  bx ax  b / x
  (i) sin–1 + k (ii) sin–1 +k
(B) log   +c
2 x2 –1 t  x  x 2
– 1 c c
 
ax 2  b ax 2  b
1 (iii) sin–1 +k (iv) sin–1 +k
(C) log (t2 + 2xt + 1) + c cx c
2
then which of the above are correct-
(D) None of these [B] (A) (ii) & (iii) only (B) (i) & (iii) only
(C) (ii) & (iv) only (D) (iii) & (iv) only [A]
dx
Q.96  (1  e x
)(1 – e – x )
equals -  3x – 4 
Q.101 If f   = x + 2, then
 3x  4 
 f ( x ) dx is
 ex –1   x 
(A) log  x  + c (B) log  e  1  + c equal to
  x 
 e 1   e –1 (A) ex +2 n
3x – 4
+c
3x  4
1  ex 1  1
(C) log  x +c
 (D) log 8 2
2  e –1 2 (B) – n |(1–x)|+ x+c
3 3
 ex – 1 8 x
  (C) n |(x – 1)|+ +c
 e x 1  +c [D]
3 3
 
(D) None of these [B]

dx
Q.97  2e x – 1
equals- Q.102
 
Let f : 0,   R be such that f(0) = 3 and
 2
(A) sec–1 2e x  c (B) sec–1  
2e x  c 1 
(C) 2sec –1
 2e x
c (D) 2sec –1 f '(x) =
1  cos x
.if a < f   <b, then a and
2
2e x
 c [D] b can be -

(A) , (B) 3 , 4
e x ( x  1) 2
Q.98  ( x  2) 2 dx is equal to-
(C) 3 +

,3 +

(D) 3 +

, 3 +
3
4 2 2 4
ex 2e x
(A) +c (B) +c [C]
( x  2) ( x  2)
ex 2e x e x ( 2 – x 2 )dx
(C)
( x  2) 2
+c (D)
( x  2) 2
+c [A] Q.103  (1 – x ) 1 – x2
-

ex
x n – x –n (A) +c (B) ex 1– x2 + c
Q.99 If f(x) = nlim

, 0 < x < 1, n  N then 1– x2
x n  x –n
 (sin
–1
x) f(x) dx is equal to -
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 18
e x (2 – x 2 ) e x (1  x ) 2  1 
3/ 2
  1  2
(C) + c (D) + c [D] (C) 1  2  log1  2    + c
1 – x2
2
1– x 3  x    x  3
(D) None of these [B]
x 4 1 2

–1
Q.104 If dx = tan f(x) – tan–1 g(x) + c,
6
x 1 3 Q.108
then -
1 sin 3 xdx
(A) f(x) = x +
x
, g(x) = x3  (cos 4
x  3 cos 2 x  1) tan –1 (sec x  cos x )
1 =
(B) f(x) = x2 + 2 , g (x) = x–3
x (A) tan–1(sec x + cos x) + c
1 (B) log tan–1 (sec x + cos x) + c
(C) f(x) = x2 – 2 , g (x) = x–3
x 1
1 (C) +c
(D) f(x) = x – , g(x) = x3 [D] (sec x  cos x ) 2
x
(D) None of these. [B]
10 x 9  10 x log 10
Q.105
 x 10  10 x
dx is equal to -
Q.109 The value of the integral
cos 3 x  cos 5 x
 sin 2
x  sin 4 x
(A) 10x – x10 + c
dx
(B) 10x + x10 + c
is - [IIT-1995]
(C) (10x – x 10)–1 + c
(D) log (10x + x10) + c [D] (A) sin x – 6 tan–1 (sin x) + c
(B) sin x – 2 (sin x)–1 + c
(C) sinx – 2 (sin x)–1 – 6 tan–1 (sin x) + c
1
Q.106 If  f (x) sin x cos x dx = log (D) sin x – 2 (sin x)–1 + 5 tan–1 (sin x) + c [C]
2( b 2 – a 2 )
1
(f(x)) + c, then f(x) is equal to -
1
Q.110  1  sin x
dx = ? [REE -2000]
(A)
a 2 sin 2 x  b 2 cos 2 x (A) 2 log tan(x/4 + /8)
1 (B) 2 log cot(x/2 + /8)
(B) 2 2 2 2
a sin x – b cos x (C) 2 log cos(x/2 + /8)
1 (D) None of these [A]
(C)
a 2 cos 2 x  b 2 sin 2 x
1
(D) [A] x2 1
a 2 cos 2 x – b 2 sin 2 x Q.111  x3 2 x 4  2x 2  1
dx is equal to–


x 2  1 log(x 2  1) – 2 log x  [IIT- 2006]
Q.107
 x4
dx is
(A) 2x 4  2x 2  1 + c
equal to - 2x 2
1  1 
1/ 2
  1  2 2x 4  2x 2  1 + c
(A) 1  2  log1  2    + c (B)
3  x    x  3 x3
1  1 
3/ 2
  1  2 2x 4  2x 2  1 + c
(B) – 1  2  log1  2  –  + (C)
3  x    x  3 x2
c 2x 4  2x 2  1 + c
(D) [A]
x

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 19
x {where ex 1 =
Q.112 Let f(x) = n 1/ n for n  2 and
(1  x ) t}
(fofo.........of ) = 2t–2 tan–1 t + C = 2 –1
g(x) =       (x).Then e x  1 –2 tan
f occurs n times
–1
( e x  1 ) + C = 2 fog (x) – 2 tan (fog (x)) +
x
n 2
g ( x ) dx equals-
[IIT-2007] C
1 1  A + B = 2 + (– 2) = 0
1
(A) n +K
n ( n  1) (1  nx ) n

dx
(B)
1
(1  nx n
)
1
1
n +K
Q.115  (x  1) x2 1
is equal to
n 1
1 1
1 x 1 x 1
(C) n +K (A) +c (B) 2 +c
n (n  1) (1  nx ) n x 1 x 1
1 1
1 x 1 x 1
(D) (1  nx n
) n +K [A] (C) +c (D) 2 +c
n 1 x 1 x 1
Sol.[C]
dx dx
Q.113 Let
 (x  1) 3/ 2
( x  1) 1/ 2
   x 1  1/ 2
p
  ( x  1) 2
e x  x 1
I =
 e4x  e2x  1 dx, J =
x 1
ut =t
x 1
e x
 e4x  e2x  1 dx Q.116  ( x  2) 7/8
dx
=
( x  3) 9 / 8
Then for an arbitrary constant C, the value of
1 1
J – I equals- [IIT-2008]
(A) 8  x  2  8  c (B) 5  x  2  8  c
1  e 4x  e 2x  1  5 x 3 8  x3
(A) log  4 x 2x
+C

2  e  e 1 1

(C) 5  x  3  8  c (D)
1  e2x  e x  1  8  x2
(B) log  2 x x
+C

2  e  e 1 
1

1  e2x  e x  1  8  x 3 8
(C) log  2 x x
+C


5 x2
 c
2  e  e  1 
Sol.[A]
1  e 4x  e2x  1 
(D) log  4 x 2x
+C
 [C]
2  e  e 1 1
Q.114 If f(x) = x , g(x) = ex –1, & fog (x) dx =A fog Q.117  tan 2   2
d( tan 2   1 ) is equal to
(x) + B tan–1(fog (x)) + C, then A + B is equal to
(A) 1 (B) 2 (A) n | tan 2   1  tan 2   2 |  c
(C) 3 (D) None of these (B) n | tan 2   1  tan 2   2 |  c

Sol.[D] fog (x) = ex 1 (C) n | tan 2   1  tan 2   1 |  c


(D) None of these
2t 2
 I=  ex 1 dx =
t 2
1
dt Sol.[A] Let tan2  – 1 = t2
dt
I= 
t2  3
= n | t + t2  3 | + c

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 20
(A) n | tan 2   1  tan 2   2 |  C
 ((e / x )
x x
Q.118  ( x / e) ) n x dx =
(B) n | tan 2   1  tan 2   2 |  C
x x x x
(A) (x/e) – (e/x) + c (B) (x/e) + (e/x) + c (C) n | tan 2   1  tan 2   1 |  C
x x x x
(C) (e/x) – (x/e) + c (D) (x/e) + 2 (e/x) + c (D) None of these
x Sol. [A]
x
Sol.[A] Let   =t
( x cos x  1)
 x 
e
x x 1
1
Q.122  2 x 3 e sin x  x 2
dx is equal to
   n x  x. x  .  dx = dt
 e  e e e 2 x  e sin x  1
  C
(A) n
x 
x
x  x
x
2 x  e sin x  1
   n  1 dx = dt    n x dx
e  e  e x e sin x  1  1
(B) n C
=dt x e sin x  1  1
 1  1
So I =   t 2
 1 dt =  + t + C
 t (C) n
2 x e sin x  1  1
C
x x 2 x e sin x  1  1
x e
=     C
e x 2 x e sin x  1  1
(D) 2n C
2 x e sin x  1  1
x 2  x –2 Sol. [C]
Q.119  x(x –2
–x ) 2 3/ 2
dx is –
Q.123  1  sin 2 x dx is
x x (A) sin x + cos x
(A) C (B) C
2 4
1– x 1– x (B) (sin x – cos x) sgn (sin x – cos x) + C
x (C) (sin x + cos x) sgn (cos x – sin x) + C
(C) C (D) None of these (D) (cos x + sin x) sgn (cos x + sin x) + C
1– x
Sol. [C]
Sol. [B]
 2x  3 
Q.124 If 3f   = 2x – 3, then
 2x  3 
 f ( x )dx is
( x cos x  1)dx
Q.120  2 x 3e sin x  x 2
is equal to equal to-
(A) ln(x – 1)2 + C (B) ln |(x – 1)3| + C
(C) ln (x – 1)6 + C (D) ln |(x – 1)| + C
2 x  e sin x – 1
(A) n C
2 x  e sin x  1 2x  3 3  1 t 
Sol. [A] Let =tx=  
2x  3 2  1 t 
x e sin x  1 – 1 2
(B) n C  f(t) =   f ( x )dx  ln(x – 1)2 +
x e sin x  1  1 t 1
C
2 x e sin x  1 – 1
e
tan 1 x
(C) n C Q.125 (1 + x + x2)d(cot–1 x) is equal to-
sin x
2x e 1 1
1 1
(A)  e tan x
C (B) e tan x
C
sin x
2x e 1 –1 1 1
(D) 2 n C (C)  x e tan x
 C (D) x e tan x
C
2 x e sin x  1  1
x
1 x  x 2 

1
e tan
Sol. [C] Sol. [C] I = –  1  x 2 dx
 
Let tan–1x = t
So I = –  e 1  tan t  tan 
t 2
1 t dt
Q.121  d ( tan 2   1) is equal to
 e  tan t  sec t dt
2
tan   2 =–
t 2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 21
= – et . tan t + C = – x e tan x  C
1
(D) None of these

 x.x Let x2 = t 
2
sin x 1  sin x Sol.[B] g ( x 2 )dx
Q. 126 
sin 4 x
dx = A log
1  sin x 1
+ B log 2  tg( t )dt
1 2 sin x 1 1 2
C = [tF(t)–  F( t ) dt ] = [x F(x2)–
1 2 sin x
2 2
1 1
 F( x
2
) d( x 2 ) ]
(A) A = 8 , B = 4 2
dx
1
(B) A = – 8 , B = – 4 2
1 Q.130 The value of the integral  x n (1  x n )1 / n ;

1 1 nN is :
(C) A = – 8 , B = 4 2
1
1
1 1 (A) 1  1  n
(D) A = 8 , B = – 4 2 1 n 1  n 
  C
 x 
sin x sin dx
Sol.[C] sin 4 x
dx = 
2 sin 2 x cos 2 x (B)  1  1 
1  n 
1
1
n
C
1 n  x 
sin xdx
= 4 cos x sin x cos 2 x
=
1
1
(C) 1  1  n
1 cos x dx 1  n 
 C
 1 n 
 x 
4 cos 2 x cos 2 x
1
Q.127  x 3 (sin–1 (n x) + cos–1 (n x)) dx is
(D)  1  1 
1
n
1 n 1  n 
  C
 3/ 2  x 
(A) ( x  3) C (B)
3 Sol. [A]

(C) ( x  3) 3 / 2  C defined  ((e / x ) x
(D) NotQ.131  ( x / e) x ) n x dx :
2
Sol.[D] (A)(x/e) x – (e/x) x +C
Q.128 Let  e x {f ( x ) – f ' ( x )}dx = (x) then
(B) (x/e) x + (e/x) x +C

e
x
f (x) dx is (C) (e/x) x – (x/e) x +C

1 (D) (x/e) x + 2(e/x) x +C


(A) (x) + e f(x) x
(B) (x) + exf(x))
2 Sol. [A]
(C) (x) – e f(x) x
(D) e (x)
x
1
Q.132 
If I = e x tan–1 (ex) dx, then I equals:
e e
x x
Sol.[B] f ( x )dx – [exf(x) – f (x) dx] = (A) – e–x tan–1 (ex) + log (1 + e2x) + C
(x) 1
1 x (B) x – e–x tan –1 ex – 2 log (1 + ex) + C
e (e f(x) + (x)).
x
f ( x )dx =
2 1
(C) x – e–x tan–1 (ex) – 2 log (1 + e2x) + C
Q.129 Let  g ( x ) dx = F(x), then
(D) None of these
Sol.[C] put ex = t to get
x
3
g ( x 2 )dx equals to -
1
1 2 I=  t2 tan–1 (t) dt

2
(A) [x (F(x))2 – ( F( x )) dx]
2 1 1  1
1 2 2 = (tan–1 t) t –  1  t 2   t  dt
 (F( x
2
(B) [x F(x ) – )) d (x2)] 1 1
2
= – t tan–1 t +  t (1  t 2 ) dt
1 2 1
 (F( x ))
2
(C) [x F(x) – dx]
2 2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 22
1 1 t  a 2 x  b 2 x  2a x b x
 
= – t tan–1 t +  t 1  t 2 
 dt =  a xbx
dx
1 1
= – t tan–1 t + nt – 2 n (1+ t2) + C  ax bx 
=   b x  a x  2  dx
Q.133 If xf(x) = 3f 2(x) + 2, then  

2 x 2  12xf ( x )  f ( x ) 
 a 
x
b
x 

 (6f (x )  x )(x 2  f ( x )) 2 dx equals- =   b      2 dx
a
  
 
1 1
(A) +c (B) +c (a / b ) x (b / a ) x
x 2  f (x) x 2  f (x) = + + 2x + c.
log e (a / b) log e ( b / a )
1 1
(C) +c (D) +c Hence (D) is the correct answer.
x  f (x) x  f (x)
f (x)
Sol.[A] f  (x) =
6f ( x )  x
sin n x
2 x ( x  6f ( x ))  f ( x ) Q.136  3
cos n  6 x
dx, n  N is equal to -
Now I =  (6f (x )  x )(x 2  f ( x )) 2 dx
n
2 x  f ( x ) 1
1 (A) 3 (tan x ) 3  c (B)
I=–  ( x 2  f (x )) 2 dx =
x 2  f (x)
+C n

n
e x  e  x  (e x  e  x ) sin x 3 1
Q.134
 1  cos x
dx =
3 n
(tan x ) 3  c

(A) (ex + e–x) tan (x/2) + C 3


x –x (C) (cos x ) n 1  c (D) None of
(B) (e – e ) cot (x/2) + C n
(C) (ex – e–x) sec (x/2) + C these
(D) (ex – e–x) cosec (x/2) + C
sin n x sin n x
Sol. [A] Sol.[B]  3 dx = 3 cos n x . cos 6 x
dx
(a x  b x ) 2 cos n  6 x
Q.135  a xbx
dx is equal to –
3
=  tan n x sec 2 x dx

(b / a ) x (a / b ) x
(A) + +x+c
 (tan x )
n/3
log e (a / b) log e ( b / a ) = d (tan x)

n
(a / b ) x (b / a ) x 1
(B) + +x+c (tan x ) 3
log e ( b / a ) log e (a / b) = +c
n
1
(a / b ) x (b / a ) x 3
(C) + + 2x + c
log e ( b / a ) log e (a / b)
n
(a / b ) x (b / a ) x = 3 1
(D) + + 2x + c (tan x ) 3 + c.
log e (a / b) log e ( b / a ) 3 n

(a x  b x ) 2
Sol.[D]  a xbx
dx Hence (B) is the correct answer.

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 23
1 1 x 1
Q.137  3 dx is equal to - We get I =  dx
sin x sin( x  a ) 1 x x

2 1  cos 2 1
(A) –
sin a
cos a  cot x sin a  c =  1  cos 2
×
cos 2
× (–2 sin 2)

2 d
(B) cos a  cot x sin a  c
sin a
2 sin 2    4 sin  cos  
(C) –
1
cos a  cot x sin a  c
=  2 cos 2 
× 
 cos 2
 d

sin a
4 sin 2 
(D)
1
cos a  cot x sin a  c
=–  cos 2
d
sin a
1  cos 2
Sol.[A] We have 
1
dx
= –2  cos 2
d
sin 3 x sin( x  a )
= –2 (sec 2 – 1) d
1
=  dx
sin 3 x (sin x cos a  cos x sin a ) = –2 log |sec 2 + tan 2| + 2 + c
1 1  sin 2
=  4 dx = –2 log
cos 2
+ 2 + c
sin x (cos a  cot x sin a )

1  sin 2
cos ec 2 x = –2 log + 2 + c
=  cos a  cot x sin a
dx 1  sin 2 2

1 1 1  sin 2
=–
sin a
 cos a  cot x sin a
d (cos a + = –2 log
1  sin 2
+ 2 + c

cot x sin a) 1 1 x2
= – log 2
+ cos–1 x + c
1 1 1 1 x
=–
sin a
 t
dt, where t = cos a + cot x
Hence (C) is the correct answer.
sin a 1
2
Q.139  (sin 2 x  cos 2 x ) dx = 2
sin (2x – a) +
=– cos a  cot x sin a  c .
sin a b
Hence (A) is the correct answer.
5 5
(A) a = , b  R (B) a = – ,bR
1 x 1 4 4
Q.138  1 x
·
x
dx is equal to -

(C) a = ,bR (D) None of these
1 x  1 x 4
(A) –2 log + cos–1 x + c
1 x  1 x
1
1 x  1 x Sol.[B]  (sin 2x – cos 2x) dx = sin (2x – a) + b
(B) – log –1
+ cos x + c 2
1 x  1 x
 1 1 
(C) – log
1 1 x2 –1
+ cos x + c
 2   2
sin 2 x 
2
cos 2 x  dx

1 1 x2
1
(D) None of these = sin (2x – a) + b
2
Sol.[C] On putting x = cos 2, and dx = –2 sin 2 d,

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 24
 1 1   3y  2 
– 2   2
cos 2 x 
2
sin 2 x  dx

x3 = ln 
 3 

1  3y  2 
= sin (2x – a) + b or x= 3 ln .
2  3 
1
– 2  cos (2x + /4) dx = 2
sin (2x –
cos 4 x  1
a) + b
Q.141  cot x  tan x dx is equal to -
2 1 (A) –1/2 cos 4x + c (B) –1/4 cos 4x + c
– sin (2x + /4) + c = sin (2x – a) +
2 2 (C) –1/2 sin 2x + c (D) None of these
b
 2 sin 2 2 x
1  5  1 Sol.[D] 
cos 4 x  1
dx =  cos 2 x dx
 sin  2 x   +c= sin (2x – cot x  tan x
2  4  2 sin x cos x
a) + b sin 2 x (1  cos 2 2 x )
5
=–  cos 2 x
dx
a=– , b  R.
4 dt
Put cos 2x = t  – sin 2x dx =
2
Q.140 Let the equation of a curve passing through the 1 1 t 2 1 t2
3
=
2  t
dt =
2
log t –
4
x
2
point (0, 1) be given by y = .e x dx. If
+c
the equation of the curve is written in the form x
1 cos 2 2 x
= ƒ(y) then ƒ(y) is - = log cos 2x – + c.
2 4
 3y  2   2  3y 
(A) ln 
 3 
 (B) 3 ln 
 3 
 Q.142 If  cosec 2x dx = ƒ (g(x)) + c, then -

 3y  2  (A) range g(x) = (–, )


(C) 3 ln  (D) None of these
 3  (B) dom ƒ(x) = (–, )
3 (C) g (x) = sec2 x
x
2
Sol.[C]  y= .e x dx
(D) ƒ(x) = 1/x for all x  (0, )
1 x3
 3x
2
= .e dx
3 Sol.[A]  cosec 2x dx = ƒ (g(x)) + c

1 3
y= . ex + c
3  cosec 2x = ƒ(g(x)) g(x)
it is passing through (0, 1) then 1
 × sec2 x = ƒ (g(x)) g(x)
1 2 2 tan x
1= +cc=
3 3 1
  ƒ(x) = , g(x) = sec2 x
1 x3 2 2x
Then y = e +
3 3 Dom. ƒ(x) = (–, ) – {0}, g (x) = tan x + c
3 (3y  2) Range g(x) = (–, ).
 ex =
3

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 25
Q.143 If 
xe x
dx = ƒ(x) (1  e x ) – 2 log
Q.144  x sin 2x . cos 3x dx is -
x
(1  e )
x cos 5x sin 5x
g(x) + C, then - (A) – + +c
10 50
(A) ƒ(x) = x – 1 (B) g (x) =
x cos 5x sin 5x x cos x
(B) – + + –
10 50 2
1 ex 1
1 ex 1 sin x
+c
1 ex 1
2
(C) g(x) = (D) ƒ(x) =
1 ex 1 x cos 5x sin 5x x cos x
(C) – + – +
10 50 2
2(x – 2)
xe x sin x
Sol.[B] Let I =  x
dx
2
+c
(1  e )
(D) None of these
ex
=  x · dx
Sol.[B] I = x sin 2x . cos 3x dx =
(1  e x )

I II
1 1
=x.2 (1  e x ) –  1.2 (1  e x ) dx
=
2
 2x cos 3x . sin 2x dx =
2
x (sin 5x –

sin x) dx
= 2x (1  e )x
–2 (1  e x ) dx
1 1
in second integral
=
2
x sin 5x dx–
2
x sin x dx

put 1 + e x = t2 …(1)

 dx =
2 t dt
2 Let I1 =  xI sin
5
 cos 5x 
 x dx = x  
5
 –
t 1 II  

then = 2x (1  e x ) – 4 1 .

t 2 11  cos 5x 
 (t 2
 1)
dt 
 5 
 dx

 1  x cos 5x sin 5x
= 2x (1  e x ) –4 1   dt =– +
2 5 25
 t 1 


& I2 =  xI sin
 x dx = x(–cos x) –  1 . (–
 1  t  1  II
= 2x (1  e ) x
– 4 t  log  + c

 2  t  1  cos x)

 1  ex 1  dx = –x cos x + sin x
 
= 2x 1  e x –4 (1  e ) – 2 log 
x +c Put I1 & I2 in equation (1)
 1  e x  1 
 
On comparing

1 ex 1
ƒ(x) = 2x – 4, g(x) = .
1 ex 1

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 26
 I = –
x cos 5x sin 5x x cos x
+ + –
1 x 11  1
(B) log +c
10 50 2 2 x 11  1

sin x (C) 2 1  X11 + c


+c
2 (D) None of these
11 9/2
Sol.[D] Let x11/2 = t  x dx = dt
e ax 2
e
ax
Q.145 .sin bx dx is (a sin bx – b cos bx)
l
2 dt 2
+ c. Then l is -  I =  2 = log
11 1 t 11
(A) a2 + b2 (B) (a 2  b 2 ) t  1 t2 




+c
2 2 2
(C) (a + b ) (D) None of these
2  11 / 2 
1  x11 
= log x  + c.
e ax

ax sin bx  
Sol.[A] I = e .    dx = sin bx . – 11
II I a
 dx 
Q.147   sin x  sec x  is -
e ax
 b cos bx . a
dx
1 tan x  3
(A) ln + tan–1 (sin x + cos
2 3 tan x  3
ax b
e . sin bx
e
ax
= – . cos bx dx
a a x) + c
1 sin x  cos x  3
e ax . sin bx b (B) ln + tan–1
= – 2 3 sin x  cos x  3
a a
(sin x + cos x) + c
 e ax e ax 
 . cos bx   (  b sin bx )dx 
 a a  1 tan x  3
(C) ln + tan–1 (sin x – cos
2 3 tan x  3
e ax . sin bx b . e ax b2
= – . cos bx – x) + c
a a2 a2
(D) None of these
dx cos x dx
 e  sin
ax
bx dx
  
Sol.[B] I =  (sin x  sec x ) =  1  sin x cos x
I

 b2  e ax 1 cos x  sin x 1
 I 1  2  = 2 (a sin bx – b cos bx) =  1  sin x cos x dx +
 a  a 2 2

e ax cos x  sin x
I= 2
(a  b ) 2 (a sin bx – b cos bx) + c
 1  sin x cos x dx
Hence l = (a2 + b2). Let sin x – cos x = t Let sin x + cos x = u

x9 / 2  (cos x + sin x) dx = dt  (cos x – sin x) dx = du


Q.146  dx is -
1  x11

2  x7 / 2  x7 1 
(A) log 



+c
11

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 27
e
dt t
+
So I =
1  1 t2  + 1
2 1  
 2  2
  1
dt
t2

du II I II I
  u 2 1  1 1
 e
t
1   = (log t) e t – . et dt + . dt +
 2  t t
 

dt du 1 t 3
=  3  t2 +  u2 1 = 2 3
ln
t 3
 1 t
  e
 t
+ tan–1 u + c
1 1
 t2 e
t
– . et dt + dt +
1 sin x  cos x  3 –1 t2
= ln +tan (sin x +
2 3 sin x  cos x  3
c
cos x) + c
1 t
= et . log t – e +c
 (B) is correct t

 1 
 x
Q.148  log(log x )  (log x ) 2  dx is equal to - = x log (log x) –
log x
+ c.
 
Hence (A) is the correct answer
x
(A) x log (log x) – +c 1 1
log x Q.149  cot (1 – x + x2) dx = x tan–1 x –
2
log (1 +

x
(B) x log x – +c x2) + A, Then A is equal to -
log x
1
(A) – (1 – x) tan–1 (1 – x2) + log {1 + (1 – x)2} +
x 2
(C) xx log x – +c
log x c

x (log x ) 1
(D) x log x – +c (B) (1 – x) tan–1 (1 – x2) + log {1 + (1 – x)2} +
log x 2
c

 1 

Sol.[A] Let I =  log(log x )  2  dx 1

 (log x )  (C) – (1 – x) tan–1 (1 – x) + log {1 + (1 – x)2} +
2
 1
 I=  log t  t 2  e dt, where t = log x
t c
(D) None of these
 1 1 1 t

 log t     e dt
t t t2  Sol.[C] We have,  cot
1
(1 – x + x2) dx

 1  1 1 1
  log t  t  e t
dt +  – t  t 2  e t =  cot {1 – x (1 – x)} dx

dt 1  1 
=  tan   dx
1 1  x (1  x ) 
  e log t dt + e e
t t t
. dt +
t
(–1/t) dt
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 28
 x  (1  x )  Hence (C) is the correct answer.
=  tan 1   dx
1  x (1  x ) 
x 3  3x  2 1
=  {tan
1 –1
x + tan (1 – x)} dx
Q.150  (x 2  1) 2 (x  1) dx = 4
log (x2 + 1) +

1 1
=  tan x dx +  tan (1 – x
+
3
tan–1 x – A. Then A is equal to -
2
x) dx x 1 2
3 2
(A) log |x + 1| + c (B) log |x + 1| + c
= I1 + I2 … (1) 2 3
1 1
1 1 (C) log |x + 1| + c (D) log |x2 + 1| + c
where I1 =  tan x dx and I2 =  tan (1 – 2 2
x) dx. x 3  3x  2
1
Sol.[C] Let I =  (x 2  1) 2 (x  1) dx, then
Now, I1 =  tan x dx
1 ( x 3  x )  2( x  1)
=  tan x 1 dx I=  dx
( x 2  1) 2 ( x  1)
I II x 1
=  ( x 2  1)(x  1) dx + 2  ( x 2  1) 2
x
= x tan–1 x –  1 x2 dx dx
= I1 + 2I2, where
1 1
= x tan x – –1
 1 x2 d (1 + x
2 I1 =  ( x 2  1)( x  1) dx and I2 =
x2)
1 1
= x tan–1 x – log (1 + x2) … (2)
2  ( x 2  1) 2 dx
and
x
I2 =  tan 1 (1 – x) dx Now, I1 =  ( x 2  1)( x  1) dx
1
= –  tan (1 – x) d (1 – x) 1  x 1 1 
= –
= 2    dx
 x 1 x 1
2
[Using partial

fractions]
 1 1 2 
(1  x ) tan (1  x )  2 log{1  (1  x ) } 1 x 1 1 1
  =
2  x 2  1 dx + 2  x 2  1 dx – 2
[using (2)]
1
Substituting the values of I1 and I2 in (1), we get  x  1 dx
1 1
 cot (1 – x + x2) dx = x tan–1 x –
2
log (1
=
1
log (x2 + 1) +
1
tan–1 x –
1
log |x + 1|
4 2 2
+ x2)
+ c1
1
– (1 – x) tan–1 (1 – x) + log {1 + (1 – x)2} + c
2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 29
1 1
and, I2 =  ( x 2  1) 2 dx
=
1  1
2  1
dx  
2 x    2  x
 x
1 x 1
= 2 + tan–1 x + c2
2 ( x  1) 2 1

1  1
2  1
d x  
Hence, I = I1 + 2I2 2 x    2  x
 x
1 x
= log (x2 + 1) + 2
4 x 1 1 du 1 dv
=
2
 u2  ( 2) 2 –
2
 v2  ( 2 )2
,

3 1
+ tan–1 x – log |x + 1| + c. 1 1
2 2 Where u = x – and v = x +
x x
Hence (C) is the correct answer.
1 1  u  1
= × tan–1   – 1 × log
 x2 1 2 2  2 2 2 2
1 1
Q.151 If  x4 1 dx =
2 2
tan–1 
 2 x
 +A


v 2
+ c. Then A is equal to - +c
v 2
1 x2  2x  1
(A) – log 1  x 2 1  1
2 2 x 2
 2x  1 = tan–1   – log
2 2  2x  4 2
 
1 x2  2x  1
(B) – log
4 2 x2  2x  1
x2  2x  1
2 +c
1 x2  2x  1 x  2x  1
(C) – log
2 x2 – 2x  1 Hence (B) is the correct answer.

1 x2  2x  1
(D) – log 2
 sec
4 2 4/3
x – 2x  1 Q.152 x cosec8/3 x dx is equal to -
1 3
Sol.[B]  x 4  1 dx (A) –
5
tan–8/3 x + 3 tan–2/3 x + c

1/ x 2 3
=  x 2  1/ x 2 dx (B) –
5
tan–5/3 x + 3 tan1/3 x + c

3
1 2 / x2 (C) tan–8/3 x + 3 tan–2/3 x + c
=
2  x 2  1/ x 2 dx 5
3
 1   1  (D) – tan–8/3 x – 3 tan–2/3 x + c
1  2   1  2  5
1  x   x 
=
2  1
dx Sol.[B] We have, I =  sec
4/3
x cosec8/3 x dx
x2  2
x 1
 cos 4 / 3 x sin 8 / 3 x dx =  cos
4 / 3 –
= x sin
1 1
1 1–
x 2 dx – 1
8/3
1 x2 x dx
= 
2 2
dx
2 x2  1 x 
1
x2 x2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 30
4 8 of ƒ(x) does not have an extremum at x = 0, then
Since –    = –4, which is an even
 3 3
ƒ( x )
integer. So, we divide both numerator and the value of the integral  x 3 1 dx is -
denominator by cos4 x.
x2
sec 4 x (A) c (B) x + c
I=  tan 8 / 3 x dx 2
x3
(1  tan x ) 2 (C) c (D) None of
=  tan 8 / 3 x
sec2 x dx b
these
2
1 t Sol.[B] Let ƒ(x) = ax 3 + bx2 + cx + d. Then,
=  t 8/3
dt where t = tan x
ƒ(0) = –1 and ƒ(1) = 0
 d = –1 and a + b + c + d = 0
3
=  (t
–8 / 3
t 2 / 3
) dt = – t – 5 / 3  3t 1 / 3 +
5  d = –1 and a + b + c = 1 … (1)

c It is given that x = 0 is a stationary point of ƒ(x)


but it is not a point of extremum. Therefore,
3
=– tan 5 / 3 x  3 tan1/3 x + c.
5 ƒ(0) = 0, ƒ(0) = 0 and ƒ(0)  0

Hence (B) is the correct answer. Now ƒ(x) = ax3 + bx2 + cx + d


 ƒ(x) = 3ax2 + 2bx + c, ƒ(x) = 6ax + b and ƒ(x) =

77
x
x 6a
Q.153 7 . 77 . 7x dx is equal to -
 ƒ(0) = 0, ƒ(0) = 0 and ƒ(0)  0
x x
77 77
(A)
7
+c (B)
7
+c  c = 0, b = 0 and a  0 …(2)
3
(log e 7) (log e 7) 2 From equations (1) and (2), we get
7x a = 1, b = c = 0 and d = –1.
(C) 7 7 . (loge 7)3 + c (D) None of these
7x x  ƒ(x) = x3 – 1
Sol.[A] We have, 7 . 77 . 7x dx
7

ƒ( x )
1  77 x   7 7 log 7 
x
Hence,  x 3 1 dx =  1 dx = x + c.
=   7 log e 7 
 .  e 
(log e 7) 3   
Hence (B) is the correct answer.
.

7 x
log e 7 dx  Q.155 If  ƒ( x ) dx = ƒ(x), then  {ƒ( x )}
2
dx is
7x equal to -
1 77
3  1 . d( 7
= 7x ) = +
(log e 7) (log e 7) 3 1
(A) {ƒ(x)}2 (B) {ƒ(x)}3
2
c.
Hence (A) is the correct answer. {ƒ( x )}3
(C) (D) {ƒ(x)}2
3

Q.154 Let ƒ(x) be a polynomial of degree three satisfying Sol.[A] We have,  ƒ( x ) dx = ƒ(x),
ƒ(0) = –1 and ƒ(1) = 0. Also, 0 is a stationary point d
 (ƒ(x)) = ƒ(x)
dx

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 31
1 dt

ƒ( x )
d (ƒ(x)) = dx = t t 1

 log (ƒ(x)) = x + log c ydy


 ƒ(x) = cex
=2  ( y 2  1) y (where y2 = t – 1)

{ƒ(x)}2 = c2e2x = 2 tan–1 y + C = 2 tan–1 sec x – 1 + C

c 2e 2x  ƒ(x) = tan–1 x and g(x) = sec x – 1 .


  {ƒ( x )} dx = c
2 2
e 2 x dx = =
2 dx
Q.158 If  =  (goƒ) (x) + C, then -
x 5x 2  3
1
{ƒ(x)}2.
2 5 2 1
(A) g(x) = tan–1x, ƒ(x) = x 1 ,  =
Hence (A) is the correct answer. 3 3

Q.156  x | x | dx = (B) g(x) =


5 2
x  1 , ƒ(x) = tan–1 x,  =
3
x3 x2 | x |
(A) (B)
3 3 1
2 3
x |x|
(C) (D) None of
2 1
(C) g(x) = tan–1 x, ƒ(x) = 5x 2  3 ,=
these 2
Sol.[B] I = x . |x| dx = | x | . x dx
1
(Integrating by parts taking |x| as first function) 5
(D) None of these
x2 | x | x2 x2 | x |
= |x| .
2
–  x . 2 dx = 2 Sol.[A] Put 5x2 – 3 = t 2  5x dx = t dt
x 1 5t dt

1
 | x | x dx I=  2 2 dx =
5
 ( t 2  3) t
2 x 5x 3

 1 x2 | x | dt
 I 1   =
 2
1 2
I= x |x|.
3
=  t2  3
2

1 t 1
= tan–1 + C = tan–1
Q.157 If  1  sec x dx = 2 (ƒog) (x) + C, then - 3 3 3

(A) ƒ(x) = sec x – 1 (B) ƒ(x) = 2 tan–1x


(C) ƒ(x) = sec x  1 (D) None of 5x 2  3
+ C.
3
these
sec x. tan x 5 2
 g(x) = tan–1 x and ƒ(x) = x 1 .
Sol.[C]  1  sec x dx =  sec x. sec x 1
dx 3

tan x x2
=  sec x – 1
dx Q.159 If ƒ(x) =
1 x2
and g(x) = sin x, then

(Put sec x = t  sec x tan x dx = dt)


 (ƒog ) (x) cos (x) dx =

(A) sin x – tan–1 (sin x) + c


Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 32
(B) cos x – tan–1 (sin x) + c (C) cos x – sin x + c (D) None of these
(C) cos x + tan–1 (sin x) + c Sol.[B] Do your self.

(D) sin x – tan–1 (cos x) + c Q.162  cos 2 x sin4x dx is equal to -


1
Sol.[A] I =  (ƒog ) (x) cos (x) dx = (A) (cos 6x + 3 cos 2x ) + c
12
 (ƒ(g ( x ))) cos x dx 1
(B) (cos 6x + 3 cos 2x) + c
6
sin 2 x 1
=  ƒ(sin x ) cos x dx =  1  sin 2 x cos x (C) –
12
(cos 6x + 3 cos 2x) + c

dx. (D) None of these


Sol.[C] Do your self.
t2
=  1  t 2 dt (where sin x = t  cos x dx =
sin x
dt)
Q.163  1  cos x
dx equals -

1 (A) 2 cos(x/2) + c
= 1 – dt = t – tan–1 t + c
1 t 2 (B) 2 sin(x/2) + c

= sin t – tan–1 (sin t) + c. (C) 2 2 cos(x/2) + c


(D) – 2 2 cos(x/2) + c
Sol.[D] Do your self.
Q.160 If l r means log log log ….. x the log being r

 tan
3
Q.164 x sec 2 x dx-
times then  [x l(x) l2 (x) l3 l4 (x)…. l r (x)]–1 dx =
1
 (tan x )
3
r+1 l r 1 ( x ) (A) tan4 x + c
d (tan x) =
4
(A) l (x) (B)
r 1 1
(B)  (cos x ) d (tan x) =
3
tan4 x + c
(C) lr (x) (D) None of these 3
1
1 (C)  (tan x ) d (tan x) = –
3
tan4 x + c
Sol.[A] I1 =  x log x dx 4
(D) None of these
1 Sol.[A] Do your self.
Put log x = t  dx = dt
x
(log x )
 I1 = 
1
dt  log t = log (log x) = l2 (x)
Q.165  x2
dx =
t
1 1
(A) (log x + 1) + c (B) – (log x + 1) + c
1 2 x
I2 =  x (log x ) log(log x ) dx 1
(C) (log x – 1) + c (D) log (x + 1) + c
Put log (log x) = l2x = t x
Sol.[B] Do your self.
1 1 {f ( x ).'( x ) – f '( x )( x )}
 . dx = dt Q.166  {log(x)–
log x x f ( x ).( x )
logf(x)}dx =
1
 I2 =  t dt = log t = log log (log x) = l3 x (A) log
( x )
+K
f (x )
 Ir = lr + 1 (x)  (A). 2
1  ( x ) 
(B) log  +K
Q.161  1  sin 2 x dx equals- 2  f (x) 
(A) sin x + cos x + c (B) sin x – cos x + c
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 33
( x ) ( x )  x sec x
(C) .log +K (B) + tan x + c
f (x ) f (x ) x sin x  cos x
(D) None of these  x sec x
(C) + sec x tan x + c
( x )  ( x )  x sin x  cos x
Sol.[B] I = log d log
f (x)  f (x) 

 x sec x
(D) + 1 – tan2 x + c
1  ( x ) 
2 x sin x  cos x
= log  +K
2  f (x)  [B]

Q.167 e
x
{f ( x ) – f ' ( x )} dx = (x) then (1  x ) 2
Q.135  ex
(1  x ) 2
dx is equal to
e
x
.f ( x ) dx =
1 ex
(A) (x) + ex . f(x) (B) (x) – ex . f(x) (A) 2
c (B) c
x 1 x2 1
1 1
(C) {(x) + exf(x)} (D) {(x) + ex f '(x)} ex 1 1 ex
2 2 (C) c (D) c [B]
x2 1 x2 1
e (f(x) – f '(x)) dx = (x)
x
Sol.[C] Here

e
x
& (f(x) – f '(x)) dx = ex.f(x) dx
Q.136  x(x n
 1)
is equal to :
 .e
x
Add  2 . f(x)dx = (x) + ex f(x)
1  xn 
(A) log n +C
 (B)
dx n  x 1 
Q.168  ( x  1)( x – 2)
= A log (x + 1) + Blog(x–
1  xn 1
2) +c then - log n
 +C

n  x 
(A) A + B = 0 ; A : B = – 1
(B) A B = 1 ; A : B = – 1  xn 1
(C) log n
 +C (D) None of these
 [A]
(C) A – B = 0 ; A : B = – 1  x 
(D) None of these e x (1  sin x )
Sol.[A] I =
1 ( x  1) – ( x – 2)
 dx
Q.137
 1  cos x
dx is equal to –
3 ( x  1)( x – 2)
1
1  1 1  (A) log tan x (B) ex tan x
= 
 –
3  ( x – 2) x 1 
 dx
(C) sin log x
2
(D) ex cot x. [B]
1 1
= log(x – 2) – log(x + 1) + c Q.138 If x sin x dx = – x cos x + , then  =
3 3
1 (A) sin x + c (B) cos x + c
B= & A = – 1/3 (C) x cos x + c (D) cos x – sin x + c. [A]
3

e ( x 4  1) 1 dx 
3 log x
x  sin x Q.139
Q.133  1  cos x
dx is equal to
(A) log (x4 + 1) + c (B) 3 log(x4 + 1) + c
x x
(A) – x cot +c (B) cot +c 1
2 2 (C) – log(x4 + 1) + c (D) log(x 4  1)  c
4
x
(C) – cot +c (D) None of these [A] [D]
2
x2 x
Q.134  (x sin x  cos x ) 2
dx is equal to Q.140  a  x3
3
dx  g ( x )  c , then g(x) =

x sec x
(A) + tan x + c
x sin x  cos x
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 34
2 2  x3   x7  1  x7 
(A) cos –1 x (B) sin  3  (A) log 7  + C(B)
 log 7  +

a 
3 3    x 1  7  x 1 
2 C
(C) sin –1 ( x 3 / a 3 ) (D)
3  x7 1  7 
2 (C) log  + C(D) 1 log x  1  +
cos –1 ( x / a ) 7  7  x7 
[C]  x   
3
C
sin x [B]
Q.141 If  sin( x  ) dx  Ax + B log sin(x – ) dx
+ c, then value of (A, B) is –
Q.145 x 2
 4x  13
is equal to -
(A) (– sin , cos ) (B) (cos , sin )
(A) log(x2 + 4x + 13) + C
(C) (sin ,cos ) (D) (– cos , sin ) [B]
1  x2
2 (B) tan –1   +C
x2 3  3 
Q.142   x  4  ex dx is equal to -
(C) log(2x + 4) + C
x x  x x  2 2x  4
(A) e  c (B) e  c (D) +C [B]
x4 x4 ( x  4 x  13) 2
2

x x – 2  x
2 xe  
(C) e  c (D)  
c Q.146  cos
–3 / 7
x sin–11/7 x dx is equal to -
 x4  x4
4
xx  4x  4 
2 (A) log | sin4/7 x | + C (B) tan4/7 x + C
Sol.[A]  e  2 
 ( x  4) 
dx
 =
7
7
 x 4  (C) – tan–4/7 x + C (D) log | cos3/7 x | + C [C]
 ex  
 x  4 ( x  4) 
2  dx 4
1 x  x  x2

F( x )

F( x )
Q.147  x  1 x
dx is equal to -

= ex (x/x+ 4) + C 1 2
(A) 1 x + C (B) (1 + x)3/2 + C
2 3
(sin   cos )
Q.143  sin 2
d is equal to - (C) 1 x + C (D) 2(1 + x)3/2 + C

1 x  x  x2
(A) log | cos  – sin  + sin 2 |  c Sol.[B] I=  x  1 x
dx=

(B) log | sin  – cos  + sin 2 |  c


(C) sin–1 (sin  – cos ) + c (1  x ) 2  x 1 x
(D) sin–1 (sin + cos ) + c
  x  1 x  dx

Sol.[A] In =  tan
n–2
x tan 2 x dx
1 x  x x 1  2
=  tan
n –2
x (sec 2 x – 1)dx In
=   x x 1  dx =
3
(1 + x)3/2

=  tan
n –2
x sec 2 xdx – I n – 2 +C
tan n –1 x
tan x = t 2 I
sec xdx = dt n  – In –2
n –1

Put n = 6I6 + I4 = tan5x/5 Both state. are correct
and correct expla.

dx
Q.144  x(x 7
 1)
is equal to -

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 35
Q.148 dx
Q.150  (sin x – 2 cos x)(2 sin x  cos x ) is
dx
 x (log x )(log log x )...(log log ...x )
    
equal to -

8 times tan x – 2
(A) log e 5 +C
is equal to - 2 tan x  1

(log log ...x )  C 1  tan x – 2 


(A)      (B) (B) log  +C
8 times 4  tan x  2 

(log log ...x )  C


1  2 sin x  cos x 
     (C) – log  +C
7 times
4  sin x  2 cos x 
(D) None of these [A]
(log log ...x )  C
(C)      (D) None of
9 times

these
Sol.[C]

dx Q.151 If f(0) = f '(0) = 0 and f ''(x) = tan2x, then f(x) is


 x (log x )(log log x )...(log log ...x )
     x2 x2
8 times
(A) log sec x – (B) log cos x +
2 2
log log ...x
put      = t x2
8 times (C) log sec x + 2 (D) None of these [A]
I =
1 x 24
 x10  1 dx ; where t = x .
5
Q.152 The value of
(log log ...x ).....(log log x )(log x ) x
    
7 times
1  t3 1 
= dt (A)   t  tan t  (B)
5  3 
dt (log log ...x )
I=  t
= log t + C = log     
8 times  t3


 t  tan 1 t 
 3 
+C  
x2 –1 1  t3 
Q.149  (x 4  1  dx is equal
(C)
5

 3

 t  tan 1 t  (D)


 3x 2  1) tan –1  x  
 x
 t3 
to -   t  tan 1 t 
 3 
 
–1  1
(A) tan  x    C x 24 x 20 .x 4
 x Sol.[A]  x 10  1 dx =  ( x 5 ) 2  1 dt Put x 5
=t

–1  1
(B) cot  x    C 1 t4 1 t 4 1  1
 x 
5  t 2 1 dt =
5  t2 1
dt
 1
(C) log x    C 1  1  1
  t
2
 x = 1  dt =
2
5 1 t  5
 –1  1 
(D) log  tan  x     C [D]  t3
  x   1 

 3  t  tan t  , t = x
5

 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 36
cos 4 x  1  2 1 1
Q.153 If
 cot x  tan x
dx = a cos22x + b cos 2x  2 x log x  x .  dx =
 x t
dt

+  t (2 log x + 1) x dx = dt
x
c log | cos 2x | +  being a constant of  ( x x ) (2 log x + 1) x dx = dt
integration then -
1
so question becomes =  1.dt =t+c
(A) a = – (B) b = –
8 sin x
1 Q.155 If  sin(x  ) dx = Ax + B log sin (x – )
8 + c then value of (A, B) is
5 (A) (– sin , cos ) (B) (cos , sin )
(C) c = (D) a + b + c = 0 (C) (sin , cos ) (D) (– cos , sin )
8
sin( x     )


cos 4 x  1
1
Sol.[B]  sin( x   )
dx
Sol.[B] cos x sin x dx =
 2 sin(x   ) cos   cos(x   ) sin 
sin x cos x =  sin(x   )
(cos 4 x  1) sin 2 x
 cos 2 x
dx dx
= cos   dx  sin   cot( x  )dx

 1  cos 2 x 
2 

1    1 = (cos ). x + sin . log {sin (x – )} + c
= 2 sin 2x dx
2    

 cos 2 x
1  (1  cos 2 x ) 2  4 
  
 1 

=
8  

 cos 2 x
 sin 2x dx


Q.156  log(log x )  (log x ) 2  dx =


put cos 2x = t  (– sin 2x) 2dx = dt (A) log (log x) + c
dt (B) x log (log x) + c
sin 2x dx = –
2  1 
(C) x log(log x )   +c
 log x 
1 (1  t ) 2  4
=–
16  t
dt =
(D)
x
+c
1 log x
– Sol.[C] put log x = t, x = et, dx = et dt
16
t 1 

 1  t 2  2t  4 


 t
 dt



 e  log t 

dt
t2 
 1 1 1


1 5 1
  2  t  t  dt
t
= – = –  e log t     dt [et (f(t) + f '
16 16  t t t2 
 t 2  (t))]
2t   5 log | t | + 
 1
 2  = et  log t   + c =
1 1 5  t
=– cos2 2x – cos 2x – log |cos 2x| +
32 8 16  1 
x log(log x )   +c
  log x

x
 x.( x
x
Q.154 ) (2 log x + 1) dx
x x
Q.157  (sin 2x  cos 2x )dx =
(A) ( x ) + c (B) log (x)x + c
(C) xx + c (D) None 1
x
Sol.[A] put ( x x ) = t  x log xx = log t sin(2 x  a )  b , then-
2
 x2 log x = log t

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 37
x x
5 5 2 3
(A) a =
4
, b  R (B) a = –
4
,bR Sol.[B]
      dx
5 5
=

 ( 2 / 5) x (3 / 5) x
(C) a = ,bR (D) none of these [B]  +C
4 log(2 / 5) log(3 / 5)

d (cos ) Q. 163  tan 2x tan 3x tan 5x dx is equal to -


Q.158  1  cos 2 
=
1 1 1
(A) log|sec 2x| – log|sec 3x| – log|sec
2 3 5
(A) cos–1 + c (B)  + c
(C) sin–1 + c (D) sin–1(cos) + c [D] 5x|+C

2x 1 1 1
Q.159 If  1 4x
dx = K sin–1(2x) + C then K is (B)
2
log|sec 2x|+
3
log|sec 3x|+
5
log|sec 5x|

+C
equal to-
1 1 1
1 (C) log|sec5x|– log|sec 2x|– log|sec
(A) log 2 (B) log 2 5 2 3
2
1 1 3x|+C
(C) (D)
2 log 2 (D) None of the above
[D] tan 2 x  tan 3x
Sik.[C] tan 5x = tan (3x + 2x) =
Q.160 Evaluate  {{[ x ]}} dx , where {  } and [  ] 1 – tan 2 x. tan 3x
 tan 5x – tan2x. tan 3x. tan 5x = tan 2x + tan 3x
denotes fractional part of x and greatest integer   tan2x. tan3x. tan5x dx =  tan5x – tan2x – tan3x.
function of x dx
Now solve.........
(A) 0 (B) 1 (C) 2 (D) – 1 1
x x
Q.164  (x  1) x2 –1
dx is equal to -
2 3
Sol.[B]
      dx
5
  5
=
(A)
1 x –1
+ C (B)
x 1
+C
( 2 / 5) x
(3 / 5) x 2 x 1 x –1
 +C
log(2 / 5) log(3 / 5) 1 x 1 x –1
(C) +c (D) +C
Q.161 The value of  [{x}] dx , where [  ] and { 2 x –1 x 1

 } denotes greatest integer and fractional part of 1 1


Sol.[D] Let x + 1 = t then dx = – t 2 dt
x is equal to 1
(A) 0 (B) 1 (C) 2 (D) – 1
1 1 
2  1
– 2 
I =  – 1 – 1 ×  t  dt = –
t  t 
2 x  3x
Q.162
 5x
dx is equal to -

dt
1 – 2t
( 2 / 5) x (3 / 5) x (1 – 2 t )1 / 2 x –1
(A)  +C = –  (1 – 2 t ) –1 / 2 dt = – +C =
log 3 (3 / 5) log 3 (2 / 5) (–2)(1 / 2) x 1
(2 / 5) x (3 / 5) x +C
(B)  +C
log 3 ( 2 / 5) log 3 (3 / 5)
sin 4 x
(C)
(3 / 5) x

(2 / 5) x
+C
Q.165
 cos 8
x
dx is equal to -
log 3 (2 / 5) log 3 (3 / 5)
(D) None of the above (1  tan 5 x ) tan 5 x
(A)  +C
5 7
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 38
tan 5 x tan 7 x 1 1/ m
 C =  (2x d (2x3m + 3x2m +
3m
(B)  3x 2 m  6 x m )
5 7 6m
6xm)dx
tan 7 x tan 5 x
(C)  +C
5 7 1
– (2x3m + 3x2m + 6xm)1/m+1 + C
6( m  1)
(D) None of these
d (cos )
sin 4 x Q.168  1 – cos 2 
d
cos 4 x .dx =  tan4x. sec4x dx
Sol.[B]  cos 8 x (A) cos–1 + c (B)  + c
cos 4 x
(C) sin–1 + c (D) sin–1(cos ) + c
=  tan4 x (1 + tan2x)sec2x dx =  tan4x.
t5 t7 d (cos )
(1 + tan2x) d(tanx) = t4(1 + t2)=
5
+
7
+ Sol.[D]  1 – cos 2 
d
C
sin  d
1  sin x cos x 
=–  1 – cos 2 
Q.166  ex 
 cos 2 x
 dx is equal to -
 put t = cos 
dt = – sin  d
(A) ex cos x + c (B) ex sec x . tan x + c
dt
(C) ex tan x + c (D) ex cos2x –1 + c =  1– t2
x
1 sin x. cos x 
Sol.[C] 
e  2
 (cos x )

cos 2 x 
 = sin–1t + c
= sin–1 (cos ) + c
=  e { sec2x + tanx} = ex tan x + c
x

Q.167 If m any natural number, then the value of the 1 1


Q.169 lim + + ......
n  2
2n – 1 4n – 2 2
integral  ( x
3m 2m m
x x ) (2x 2m m
+ 3x + 6) 1/m
1 1
2
+ .........+ is equal to :
dx is – 6n – 3 n
1  
(A) (B)
(A) {2x3m + 3x2m + 6xm}(1/m)+1 + C 4 2
6( m  1)
 
(C) (D)
1 6 3
(B) {2x3m + 3x2m + 6xm} (1/m)+1 + C
6m 1 1
Sol.[B] lim + +
n  2
1 2n – n 2 .2 n – 2 2
(C) {2x3m + 3x2m + 6xm}1/m + C
6m 1
(D) None of the above 3.2n – 32
Sol.[A]  ( x3m  x 2 m  x m) 1/ m 1
3m 2m m

 ( 2 x  3x  6 x )  + ..........
  .dx n.2n – n 2
 x 
  n
1

dx
( x 3m –1  x 2 m –1  x m –1 ) (2x3m +3x 2m m 1/m
+6x ) lim
n  
r 1 2rn – r 2
1 n
1

1/ m
 (2 x (6x3m–1 + 6x2m–1 +
3m
 3x 2 m  6 x m )
6 lim 2
n  r 1 r r
6xm–1)dx n 2 – 
n n

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 39
1
 
x1 
dx
=  (put r/n = x)
1 4
tan–1 
0 2x – x 2
I= 4 +C
1 2 7  7 
dx  
= 
0 1 – ( x – 1) 2  4 
2  4x  1 
= sin 
1  I= tan–1  +C
7 
–1
( x – 1) = 7
0
2 

x
x
Q.172 (1  log x ) dx =
cot x
Q.170
 sin x cos x
dx = P cot x + Q, then P x
(A) x log x + C (B) xx + log x + C
(C) xx + C (D) log (xx) + C [C]
equals to :
(A) 1 (B) 2 (C) –1 (D)
dx
–2 Q.173 If  ( x 2  1) (x 2  4)
cot x dx x
Sol.[D]
 sin x cos x = K tan–1 x + L tan–1
2
+ C, then

divide by sin2x 1 2
(A) K = (B) L =
cot x 3 3
 cot x
.cosec2x dx
(C) K = –
1
(D) L =
1
3 6
t
 t
. (– dt) (t = cot x) [A]

= –2 t +c sin 2 x
=–2 cot x + c
Q.174 If  sin 5x sin 3x dx = A log |sin3x| +

B log |sin 5x| + C. Then


1 1 1 1
dx (A) A = ,B= (B) A = – ,B=
Q.171  2x 2
 x 1
equals : 3
1
5
1
3 5
1
(C) A = ,B=– (D) A = ,
2  4x  1  3 5 3
(A) tan 1 C
7  7  B=–
1
[D]
5
1  4x  1 
(B) tan 1  C
2 7  7  e x (1  sin x )
Q. 175
 1  cos x
dx =
1 1  4 x  1 
(C) tan  C x
2  7  (A) log |tan x| + C (B) ex tan   + C
2
(D) None (C) sin ex cot x + C x
(D) e cot x + C [B]
dx
Sol.[A] I =
1 x 2 x 1
 
Q. 176 The value of  cos (log x ) dx is:
2 1
2 2 (A) [sin (log x) + cos (log x)] + C
dx 2
I=
1  1
2
 7
2
x
2  x     
 (B) [sin (log x) + cos (log x)] + C
 4  4  2
x
(C) [sin (log x) – cos (log x)] + C
2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 40
1 sin 8 x  cos 8 x
(D)
2
[sin (log x) – cos (log x)] + C [B] Q.182  1  2 sin 2 x cos 2 x dx is equal to-
1 1
3
(A) sin 2x + c (B) – sin 2x + c
x 2 2
Q. 177
 x  1 dx = (C) –
1
sin x + c (D) – sin2 x + c [B]
2
x3 x4 10x 9  10 x log e 10
(A)
3
+
4
+C Q.183
 x10  10 x
dx equals-

x3 x2 (A) 10x – x10 + C (B) 10x + x10+ C


(B) – + x – log (x + 1) + C
3 2 (C) (10x – x10)–1+ C (D) log (10x + x10) + C [D]
x3 x2 Q.184
(C) – + x + log (x + 1) + C
3 2
1
(D)
x4
+C [B]  xl (x )l 2
( x )l ( x ).....l n 1 ( x )l n ( x )
3
dx
2( x  1) 2
, is equal to :
(1  x )
Q. 178  x (1  xe x ) 2 dx is where ln (x) = loge

 

 log e (log e ....(log e x ).....) 

x 1   n  times  
xe
(A) log + +c
1  xe x 1  xe x (A) l n (x) + c (B) l n + 1 (x) + c
x
xe (C) l n – 1 (x) + c (D) None of these [B]
(B) (1+ xex) + log x +c
1  xe
1
(C) + log |xex(1+ xex)| + c 1
1  xe x
(D) None of these [A]
Q.185  e5x 4
(e 2 x  e  2 x ) 3
dx is equal to :

1
x  x 2 / 3  x1 / 6 (A) – (1 + e–4x)1/4 + c (B)
Q. 179 I =  x (1  x1 / 3 )
dx is equal to- 4

3 2/3 (1  e 4 x )1/ 4
(A) x + 6 tan–1 (x1/6) + c  c
2 1/ 4
3 2/3 (C) – (1 + e–4x)1/ 4 + c (D) None of these [C]
(B) x – 6 tan–1 (x1/6) + c 49 1 50
2 x tan (x )
3 2/3
Q.186  (1  x 100
)
dx  k(tan–1(x50))2 + C,
(C) x + tan–1 (x1/5) + c
2 then k is equal to
(D) None of these [A]
:
2
1 (1  x  x )
Q. 180 The value of  e tan x dx is 1 1
1 x2 (A) (B) 
50 50
(A) xe tan 1 x + C (B) tan–1 x + C
1 1
(C) (D) 
(C) e tan 1 x + 2x + C (D) None of these [A] 100 100
[C]
x  sin x
Q. 181 
1  cos x
dx is equal to-
Q.187
x  sin x
 1  cos x dx is equal to
x x
(A) x tan +C (B) cot +C x x
2 2 (A) – x cot +c (B) cot +c
(C) log (1+ cos x) + C (D) log (x + sin x) + C [A] 2 2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 41
x 1 –2x
(C) – cot +c (D) None of these [A] (A) e [sin 3x + cos 3x ] + c
2 13
x2 1 –2x
Q.188  (x sin x  cos x ) 2
dx is equal to (B) –
13
e [sin3x + cos 3x] + c

x sec x 1 –2x
(A) + tan x + c (C) e [2sin 3x + 3 cos 3x] + c
x sin x  cos x 13
 x sec x 1 –2x
(B) + tan x + c (D) – e [2sin 3x + 3 cos 3x] + c
x sin x  cos x 13
e
ax
Sol.[D] Use formula . sin( bx  c) dx
 x sec x
(C) + sec x tan x + c
x sin x  cos x e ax
= [a sin(bx + c) – b cos(bx + c)] + c
 x sec x a 2  b2
(D) + 1 – tan2 x + c
x sin x  cos x
[B] x
3
Q.193 logx dx =
2
(1  x )
e x 4 log x 1
x
Q.189 2
dx is equal to (A) +c (B) [4x4logx– x4] + c
(1  x ) 16
4
1 ex 1 4 1
(A) c (B) c (C) [x logx – 4x2] +c (D)
x2 1 x2 1 8 16
ex 1 1 ex [4x4 logx + x4] + c
(C) c (D) c [B]
x2 1 x2 1 Sol.[B]  x logxdx=logx  x dx
3 3

dx
Q.190  x(x n
 1)
is equal to :  d
  dx (log x ). x dx dx
3 

1  xn  x4 1 x4 x4 1
log n +C
(A)
n 
 x 1 
(B) =
4
logx –
 .
x 4
dx =
4
log x –
4
 x dx
3
1  xn 1
log n
 +C

n  x  x4 1 4 1
= log x – x + c  [4x4 log x –
 xn 1 4 16 16
(C) log n
 +C (D) None of these
 [A] x4] + c
 x 
d
Q.194 If f(x) = x cosx + sinx and f(0) = 2, then f(x)
dx
sin 2 x
Q.191  sin x  cos 4 x
4 dx = =
(A) x sin x (B) x cosx + sinx + 2
(A) cot–1(tan2x) + c (B) tan–1(tan2x) +c (C) x sinx + 2 (D) x cosx + 2
(C) cot–1(cot2x) + c (D) tan–1 (cot2x) + c Sol.[C] Integrating both sides :
2 sin x cos x 2 tan x sec 2 x d
Sol.[B]  sin 4 x  cos 4 x
dx =
 1  tan 4 x
 dx f(x) =  x cos xdx   sin xdx
dx f(x) = x  cos x dx –  1. cos xdx  dx +
Put tan2x = t 2tanx. sec2x dx = dt
dt  sin x dx
  1 t2
= tan–1(t) + c = tan–1(tan2x) + c f(x) = x sinx –  sin x dx +  sin x dx
f(x) = x sin x + c f(0) + 2
2 = 0 + c  c = 2  f(x) = x sin x + 2
e
–2 x
Q.192 sin 3x dx =

e
x
Q.195 (tanx – log(cos x)) dx =
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 42
(A) ex log (sec x) + c (B) ex log (cosec x) + c (C) 2  e x – 1  tan –1 e x – 1  c


(C) ex log (cos x) + c (D) ex log (sin x) + c
–1
(D) e x – 1 + tan ex – 1 + c
e
x
Sol.[A] use (f(x) + f '(x)) dx = ex . f(x) + c
Sol.[A] Put ex–1 = t2 ex dx = 2t dt
 sin 2 t dt 2t

–1
Q.196 (3x – 4 x 3 ) dx 
dx = 2  t. 2 dt
t 1 t 1
–1
(A) x sin x + 1– x 2 +c
2t 2 2t 2  2 – 2
(B) x sin–1x – 1 – x2 + c
=
 t2 1
dt =
 t2 1
dt

2( t 2  1) 1
(C)2[x sin–1x + 1 – x 2 ] + c =
 2
t 1
dt – 2 2
t 1
dt
–1
(D) 3[x sin x + 1 – x 2 ] + c = 2  dt – 2 tan –1 ( t )  c = 2t – 2 tan–1(t) + c
Sol.[D] Put x = sin = 2 e x – 1 – 2 tan–1( e x – 1 ) + c
dx = cos d
 sin (3sin – 4 sin3) cos d
–1

d2
=  sin (sin 3) . cos
–1
d= Q.200
 dx 2
(tan–1x) dx is equal to -
3 . cos .d
1
= 3 [  cos  d – {d (). cos d}d]
d (A) +c
1 x2
= 3 [ sin  –  sin  d] = 3[ sin  + (B) tan–1x + c
cos] + c 1
(C) x tan–1x – log (1+x2) + c
= 3[x sin–1x + 1– x 2 ]+c 2
(D) None of these

x
x d  d 
Q.197 . (1 + logx) dx =
 dx  dx (tan
–1
Sol.[A] x ) dx
(A) xx (B) x2x 
1 d 1
(C) xxlogx (D) (1 + log x)2 = tan–1x + c = +c
2 dx 1 x2
Sol.[A] Put xx = t
sin x
xx(1+ logx) dx = dt   dt = t + c = xx + c Q.201 The value of  x
dx is

(A) 2cos x +C (B) – 2 cos x +C


cos 4 x  1
Q.198 If  cot x – tan x
dx = k cos 4x + c, then (C) cos x +C (D) – cos x +C
Sol. Let x =t
(A) k = – 1/2 (B) k = – 1/8
(C) k = – 1/4 (D) None of these 1
dx = 2dt
2
x
2 cos 2 x
Sol.[B]
 cos
2
x – sin 2 x
. cos x. sin x dx
 2  sin t dt = 2 cos x +C
1
=  cos 2 x sin 2x dx = – cos4x + c  k = – 1
1/8
8 Q.1 The value of  1  5x dx is

(A) log (1–5x) + C (B) – log (1 – 5x) + C


1
Q.199  ex – 1 dx (C) – 5 log (1– 5x) + C (D) 
5
log (1 – 5x) + C
 e x – 1  c
(A) 2 
e x – 1 – tan –1
 n (1  5x )
 
Sol. C
–1
( 5)
(B) e x – 1 – tan ex – 1 + c
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 43
sin x
Q.90 If  sin( x  ) dx  Ax + B log sin(x – )
3
x2
Q.1 dx is equal to
+ c, then value of (A, B) is –
3x  2
(A) 3x+2 + c (B) +c
log 3 (A) (– sin , cos ) (B) (cos , sin )
x 2
3 (C) (sin ,cos ) (D) (– cos , sin ) [B]
(C) +c (D) none
log 2
3x  2
Sol. +c (tan x )
log 3 Q. 92  sin x cos x dx =

(A) 2 (tan x ) + c (B) 2 (sec x ) + c


Q.2 Evaluate  1  cos 2 x dx
(C) 2 / (tan x ) + c (D) None of these [A]
(A) 2 sin x + c (B) 2 cos x + c
(C) 2 tan x + c (D) none
2 x  1  sin 2 x
Sol.  2 cos 2
x dx = 2  cos x dx Q.98 e   dx =
 1  cos 2 x 
= 2 sin x + c 1 2x 1 2x
(A) e cot x + c (B) e tan x + c
2 2
1 2x
e x (1  sin x ) (C) – e cot x + c (D) None of these [B]
Q.86
 1  cos x
dx is equal to – 2
1
(A) log tan x (B) ex tan x Q.99 The value of constant of integration which
2 vanish the integral of sin 3x cos 5x at x = 0 is
(C) sin log x (D) ex cot x. [B] given by-
(A) 3/16 (B) –3/16
Q.87 If x sin x dx = – x cos x + , then  = (C) 1/8 (D) 0 [B]
(A) sin x + c (B) cos x + c
(C) x cos x + c (D) cos x – sin x + c. [A]
 tan
3
Q.100 2 x sec 2 x dx =
(A) sec32x + 3 sec 2x + c
e
3 log x 4 1
Q.88 (x  1) dx 
1
(B) [sec32x – 3 sec 2x] + c
(A) log (x4 + 1) + c (B) 3 log(x4 + 1) + c 6
(C) sec3 2x – 3 sec 2x + c
1
(C) – log(x4 + 1) + c (D) log(x 4  1)  c (D) None of these [B]
4
[D]
Q.101 Integral of f(x) = (1  x 2 ) with respect to
x
Q.89  a3  x3
dx  g ( x )  c , then g(x) = x2 is-
2 (1  x 2 ) 3 / 2 2
(A) +k (B) (1 +
2 2  x3  3 x 3
(A) cos –1 x (B) sin  3  x2)3/2 + k
3 3 a 
  2
2 (C) x(1 + x2)3/2 + k (D) None of these [B]
(C) sin –1 ( x 3 / a 3 ) (D) 3
3
2 Q.102 If r means (log log log......), the log being
cos –1 ( x / a ) [C] repeated r times, then
3
 {x( x ) ( x ) ( x ).... ( x )} dx is
2 3 r 1

equal to
r 1 ( x )
(A) r+1 (x) + c (B) +c
r 1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 44
(C) r (x) + c (D) None of these [A] x 49 tan 1 ( x 50 )
Q.112  (1  x100 )
dx  k(tan–1(x50))2 + C,
Q.103  sin 2x log cos x dx =
then k is equal to
1 
(A) cos x   log | cos x |  + k
2 :
2 
1 1
(B) cos2 x log |cos x| + k (A) (B) 
50 50
1 
(C) cos2 x   log | cos x |  + k 1 1
2  (C) (D) 
(D) None of these [C] 100 100
[C]
3
cos x  cos x
Q.104
 1  cos 3 x
dx =
Q.133
x  sin x
 1  cos x dx is equal to
(–/2 < x < 0)
2 x x
(A) – sin–1(cos3/2x) + c (A) – x cot +c (B) cot +c
3 2 2
3 x
(B) sin–1 (cos3/2 x) + c (C) – cot +c (D) None of these [A]
2 2
2
(C) cos–1 (cos3/2x) + c
3 x2
(D)
2
sin–1(cos3/2x) + c
Q.134  (x sin x  cos x ) 2
dx is equal to
3
[D] x sec x
(A) + tan x + c
x sin x  cos x
Q.110  x sec x
(B) + tan x + c
x sin x  cos x
1
 xl (x )l 2
( x )l ( x ).....l n 1 ( x )l n ( x )
3
dx
(C)
 x sec x
x sin x  cos x
+ sec x tan x + c

, is equal to :  x sec x
(D) + 1 – tan2 x + c
where l n
(x) = loge x sin x  cos x
[B]
 

 log e (log e ....(log e x ).....) 

  n  times   x5
(A) l n (x) + c (B) l n + 1 (x) + c
Q.85  1 x2
dx =

(C) l n – 1 (x) + c (D) None of these [B] 1 4 2


(A) 1  x 2 (3x + 4x + 8)
15
1
Q.111  e 5x 4
(e 2x
 e 2x )3
dx is equal to :
(B)
1 4 2
1  x 2 (3x – 4x + 8)
15
1
(A) – (1 + e–4x)1/4 + c (B) (C) 4 2
1  x 2 (3x + 4x + 8)
4
(D) none of these [B]
(1  e 4 x )1/ 4
 c
1/ 4
 (1  x – x
–1

(C) – (1 + e–4x)1/ 4 + c (D) None of these [C] Q.86


–1
) ex x dx =

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 45
(A) (x + 1) e x  x
–1
+C (B) (x – 1) (D) None of these [B]

–1
ex x +C Q.91 If the equation of a curve passing through the
–1 –1
(C) – xe x  x +C (D) xe x  x + C [D]
x
3
2
point (0, 1) is given by y = . e x dx and

the equation of the curve is written as


Q.87 If In =  (log x ) n dx, then In + nIn – 1 = x = f(y) then f(y) =

(A) (x log x)n (B) x ( log x)n (A) log e (3y – 2) (B)
n n –1
(C) n (log x) (D) (log x) [B]
3 log e (3y – 2)

Q.88 If  g ( x ) dx  g ( x ), (C) 3 log e ( 2 – 3y ) (D) None of these [B]

then  g ( x ) (f ( x )  f ' ( x )) dx =
dx
(A) g(x) f2(x) Q.92 x 3
( x 3  1)1/ 3
=

(B) g(x) f(x) – g(x) f '(x)


1
(C) g(x) f''(x) (A) – (1 + x3)2/3 + C (B) – (1 + x–3)2/3 + C
2
(D) g(x) f(x) [D]
(C) – (1 + x3)–2/3 + C (D) None of these [B]

Q.89 If f(x) is a polynomial satisfying

1 1
f(x) . f   = f(x) + f   , and f(3) = 82, Q.93  (log (log x )  (log x )
–1
) dx =
x x
then (A) x log (log x) + C
x
f (x )
x 2
1
dx =
(B) x log (log x) +
log x
+C

x
(A) x3 – x + 2 tan–1 x + C (C) x log (log x) – +C
log x
1 3
(B) x – x + tan–1 x + C (D) None of these [A]
3

x3
(C) – x + 2 tan–1 x + C 
3 Q.94 The primitive of x | cos x | when < x <  is
2
1 3 -
(D) x + x + 2 tan–1 x + C. [C]
3
(A) cos x + x sin x (B) – cos x – x sin x

f (x) (C) x sin x – cos x (D) None of these [B]


Q.90 If f ' (x) = f(x) and f(0) = 2, then  3  4f ( x )
e
x log a
dx = Q.95 . ex dx =
(A) log (3 + 8 ex) + C
(ae) x
1 (A) (ae)x (B)
(B) log (3 + 8 ex) + C log (ae)
4
1 ex
(C) log (3 + 8 ex) + C (C) (D) None of these [B]
1  log a
2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 46
e x (1  sin x ) 5 3
Q.96  1  cos x
dx = (B) x5 –
3
x + 5x +c

(C) 3x4 – 5x2 + 15x + c


1 1
(A) ex cot x+C (B) ex tan x+C (D) 5tan–1 (x2 + 1) + log(x2 + 1) + c
2 2
5( x 6  1)
(C) ex tan x + C (D) ex cot x + C [B] Sol.[B]
 x2 1
dx =

dx
Q.97  sin x  cos x =
5( x 2  1)( x 4 – x 2  1)
(A)
1  x 
log tan    + C
 ( x 2  1)
dx

2 2 8
5 3
 5( x x + 5x + c
4
 x  = – x 2  1)dx = x5 –
(B) log tan    + C 3
2 8
ax –2  bx –1  c
(C)
1
2
 x 
log tan    + C
2 8
Q. 69
 x –3
dx =

(A) 2ax2 + 3bx3 + 4cx4 + k


1   (B) 6ax2 + 4bx3 + 3cx4 + k
(D) log tan  x   + C [A]
2  4 (C) a + b + cx2 + k
1 2 1 3 1 4
(D) ax + bx + cx + k
x –1 2 3 4
Q.98  ( x – 3)(x – 2) dx =
ax –2  bx –1  c
(A) log (x – 3) – log (x – 2) + C
Sol.[D]
 x –3
dx =

(B) log (x – 3)2 – log (x – 2) + C


 (ax  bx
2
 cx 3 )dx

(C) log (x – 3) + log (x – 2) + C


1 4 1 3 1 2
(D) log (x – 3)2 + log (x – 2) + C [B] = cx  bx  ax  k
4 3 2

dx
Q. 70  sin x  3 cos x
=

Q. 67 a
x
da   x 
(A) log tan   +c
2 2
ax
(A) c (B) ax logea + c 1  x 
log e a (B) log tan    + c
2 2 6
a x 1  x 
(C) c (D) xax–1 + c (C) log cot    + c
x 1 2 6
a x 1  x 
Sol.[C]
 a x da 
x 1
c (D)
1
2
log cot    + c
2 6

5( x 6  1)
Q. 68
 x2 1
dx =

(A) 5(x7 + x)tan–1x + c

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 47
dx 1 1
Sol.[B]  sin x  3 cos x
=
2
=
6
log (sec 6x + tan6x) + c

sin 3x
Q. 79  sin x
dx =
dx
 sin x 3
(A) x + sin2x + c
(C) 3x + sin2x + c
(B) 3x + sin 2x + c
(D) None of these
 cos x
2 2 sin 3x 3 sin x – 4 sin 3 x
1 dx
Sol.[A]  sin x
dx =
 sin x
dx

= 2  sin x    =
1

 
cos ec x    3dx – 4  sin
2
xdx = 3x –2
  2  3
 3  (1 – cos 2 x ) dx +c
= 3x – 2x + sin2x + c = x + sin2x + c
1  x 
= log tan    c f ( x )dx
2 2 6 Q. 80 If  log sin x = log log sin x, then f(x) =

x2  x – 6
Q. 77  ( x – 2)( x – 1)
dx =
(A) sin x (B) cos x
(A) x + 2log(x – 1) + c (C) log sin x (D) cot x
f ( x )dx
(B) 2x + 2log(x – 1) + c
(C) x + 4log(1 – x) + c
Sol.[D]  log sin x = log log sinx

(D) x + 4log(x – 1) + c
Differentiating both sides, we get
x2  x – 6 ( x  3)( x – 2)
Sol.[D]  ( x – 2)( x – 1)
dx =  ( x – 2)( x – 1) f (x) cot x
=  f(x) = cotx.
log sin x log sin x
dx
1
= 
x 3
dx
Q.87 x 2
(2 x  1)3 dx =
x –1
1
(A) 4x2 + 12x + 6logx – +c
x –1 4 x
=  x – 1 dx   x – 1 dx = x + 4log (x – 1) (B) 4x2 + 12x – 6logx –
2
+c
x
+c 2
(C) 2x2 + 8x + 3logx – +c
x
2 2
dx (D) 8x + 6x + 6logx   c
Q. 78  4 cos 3
2 x – 3 cos 2 x
= x
1
(A)
1
log[sec6x + tan6x] + c
Sol.[A] x 2 (2x + 3
1) dx =
3
1
(B) log[sec6x + tan6x] + c (8x 3  1  12 x 2  6 x )
6
(C) log[sec 6x + tan 6x] + c
 x2
dx

(D) None of these  6 1 


dx dx
=   8x  12  x  x 2  dx
Sol.[B]  3
4 cos 2 x – 3 cos 2 x
=  cos 6 x
= 
1
 sec 6 x dx = 4x2 + 12x + 6 logx –
x
+c

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 48
(ae) x
e 5 log x – e 4 log x  (ae)
x
= dx = + C.
Q.88
 e 3 log x – e 2 log x
dx = log(ae)

(A) e.e–3x + c (B) e3logx + c

x3
Q.81 If  2 1  sin x dx = – 4 cos (ax + b) + C,
(C) c (D) None of then (a, b) =
3
1  
these (A) , (B) 1,
2 4 2
e5 log x – e 4 log x x5 – x4 (C) 1, 1 (D) none of these
Sol.[C]
 e3 log x – e 2 log x
dx =
 x3 – x2
dx
Sol. [A] 2  1  sin x dx =
 x x
= 
x 4 ( x – 1)
dx =

2
x dx 
x3
c 
2  cos  sin  dx
 2 2
x 2 ( x – 1) 3
x 
x4 – x2 1
= 2  sin  2  4  dx = 2
Q.89
 x2 – x 1
dx =
x 
1 3 1 2
 – cos 2  4  +C
(A) x  x xc (B) 1
3 2
2
1 3 1 2
x – x xc   x  
3 2 = – 4 cos     C
  2 4 
1 3 1 2
(C) x  x – x  c (D) None of
3 2
1– x
these Q.82
 1 x
dx =
x4  x2 1
Sol.[A]
 x2 – x 1
dx
(A) sin–1 x –
1
1– x2 + c
2
 (x
2
=  x  1)dx 1
(B) sin–1 x + 1– x2 + c
2
x3 x2 (C) sin–1 x –
=  xc 1– x2 + c
3 2
(D) sin–1 x + 1– x2 + c
1– x
e 
x log a
Q.90 .ex dx is equal to -
Sol. [B] 1  x dx , multiply and divide by
1 x
 ae  x 1– x
(A) (ae)x + c (B)
log(ae)
c
= 1– x2
 dx =
dx x
(C)
ex
c (D) None of these  1– x 2

1– x2

dx
1  log a
(–2 x )
Sol.[B] e
x log a
e x dx = e
log a x
.e x dx = –1
1
= sin x + 2 1 – x 2 dx

1 2
= sin–1x + 2  2 1 – x + c
a
x x
e dx

a
3 x 3
Q.83 dx =

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 49
a 3x  3 a 3x  3 dx
(A)
log a
c (B)
3 log a
c Sol. [D]  sin x – cos x  2
3x + 3 3x + 3
(C) a log a + c (D) 3a log a + c dx
  = 
Sol. [B] a 3x
 a 3
dx = a 3
a3xdx =  1 
1
a 3x 2  sin x – cos x   2
a3   2 2 
3 log a
a 3x  3 1 dx
2) 
c
= 3 log a = (–  
cos x   – 1
x
 4
5
55 5x x
Q. 84 5  5 dx 

1 dx
2) 
x
55 5x
(A) C (B) 55 3
(log 5) + C = (   =
(log 5) 3 1 – cos x  
 4
5x
55
(C) C (D) none of these
1 dx
2
(log 5) 3
x 
Sol. [C] Do yourself 2 sin 2   
2 8
log( x  1) – log x
Q. 85  x ( x  1)
dx is equal to - 1 2x 
2
= cos ec   dx =
2
2 2 8
1   x  1 
(A) – log   C
2   x 
 x 
(B) C – [{log (x + 1)}2 – (log x)2] cot  dx
  x  1  –  2 8 C
(C) – log log
  x 
  C
 1
2 2  
2

 x 1
(D) – log  +C
 x  1  x 
= – cot    + C
Sol. [A] Put log (x + 1) – log x = t 2 2 8
1 1 dt x – ( x  1) dt
–  
 x  1 x dx  x ( x  1) dx Q. 87  [1 + tan x  tan (x + )] dx is equal to -
– dx dx
sin x
 x ( x  1) = dt  x ( x  1) = – dt (A) cot . log C
sin( x   )
so question becomes
t2 sin x
–  t dt = – 2  C (B) tan  . log
sin( x   )
C

dx
Q. 86 
sin x – cos x  2

(C) cot  . log
cos x
C
cos( x   )
1  x  (D) none of these
(A) – tan     C
2 2 8
 sin x sin( x  ) 
(B)
1 x 
tan     C
Sol. [C]  1  cos x  cos(x  )  dx
2 2 8
=
1 x 
(C) cot     C
2 8  cos x cos( x   )  sin x sin( x   ) 
2
  cos x. cos( x   )
 dx

1  x 
(D) – cot     C
2 8 cos( x    x )
2
=  cos x. cos(x  ) dx
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 50
dx x
= cos   cos x. cos(x  ) =
2 sin   dx
2 = –2dt
Multiply denominator and numerator by sin  So Integral becomes
dt
=
cos 

sin 
dx =
2 
t 2  1 = –2 log
t 2 1  t
+C
sin  cos x. cos( x  )
sin( x    x )
= cot   cos x. cos( x  ) dx Q.89 If  (1  x )
1
x
dx = f (x) + A, where A is
= any arbitrary constant, then the function f (x) is
sin( x  ) cos x  cos(x   ) sin x -
cot   cos x. cos(x   )
dx
(A) 2 tan–1x (B) 2 tan–1 x
–1
(C) 2 cot (D) loge (1 + x)
= 
cot  {tan( x  )  tan x} dx x

cot  log | sec(x  ) |  log | sec x |  C


Sol.[B] Put x =t
=
1 dt dx
sec( x   ) 2 x = dx  x = 2dt
= cot  log C
sec x 1
cos x
2  1 t 2
dt
= 2 tan–1t + C
= cot  log C
cos( x   ) cos x
Q.90 If  sin(x – ) = A log sin (x – ) – Bx +

Q. 88  sec x – 1 dx is equal to - C then (A, B) =


(A) (cos , sin ) (B) (sin , cos )
 x 2 x 1
(A) 2 log  cos  cos – C (C) (– cos , sin ) (D) ( – sin , cos )
 2 2 2 
cos( x     )
 x
(B) log  cos  cos
2 x 1
– C
Sol.[A]  sin( x   )
dx

 2 2 2  =
cos(x  ) cos   sin( x  ) sin 
 x
(C) – 2 log  cos  cos
2 x 1
– C
 sin( x  )
dx

 2 2 2 
= cos   cot( x  ) dx  sin   dx
(D) none of these
1 1  cos x
Q.91  sin4x dx, = ax + b sin 2x + c sin 4x + d
Sol.[C]  cos x
 1 dx
=  cos x
dx then 8a + 4b + 32 c =
(A) 0 (B) 1
x
2 sin 2   (C) 2 (D) none of these
 2  dx
 x
2 cos 2    1 Sol.[D]  sin 4 x dx
= 
 1  cos 2 x 
 
2
dx
= =  2 
2 1
 (1  cos
2
x = 4 2 x  2 cos 2 x ) dx
sin  
2
2  2 x 
dx x
= 4 – 2. 2
1 sin 2 x

4 2
1

1  cos 4 x
dx
2 cos    1
2 x sin 2 x x sin 4 x
–   C
= 4 4 8 32
x
2 cos  3x sin 2 x sin 4 x
Put 2 =t –  C
= 8 4 32
x 1 dt
2 sin   .
=– 2 2 = dx
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 51
    (f ( x )) 2 x  x sin 2 x 
Q.92  sec x –  sec x –  dx =
 3  6  2 =
 –
2 – 2 4 
C
sin 2 x
cos( x –  / 3)
(A) log C (f(x))2 = 2 + C, f(x) =
cos( x –  / 6)
| sin 2 x |
cos( x –  / 3) C
(B) 2 log C 2
cos( x –  / 6) 2
cos( x –  / 6) period of f(x) is 2 = 
(C) 2 log C
cos( x –  / 3) dx
cos( x –  / 6)
Q.94  x 2  2x  1
= A log |x + 1| + C for x < –
(D) log C
cos( x –  / 3) 1 then A is -
dx (A) 0 (B) 1 (C) – 1 (D) None
Sol.[B]      dx dx
cos x –  cos x – 
 3  6 Sol 
( x  1) 2 = | x  1 | = log|x + 1| + C
1
=  
sin  / 6 3 4
1  x  x  x  ..... dx equals to-
     
Q.105  
 3 4 

sin  x –  –  x – 
  6  3  1 x
   
cos x –  cos x – 

dx (A) ex + c (B)
2
e +c

 3  6 (C) 2ex + c (D) None of these


= 2  x3 x4 
        Sol.[D]
  1  x  3

4
 ..... dx

sin x –  cos x –  – cos x –  sin  x –  
 6  3  6  3
     
cos x –  cos x – 

dx
= 
 x x2
e 
 2


6
3
dx = ex – x + c
 
 3  6
     
=2  tan x –  – tan x – dx
  6  3  Q.106 
d ( x 2  1)
=
= 2 x2  2

      
 (A)
 – log cos x –   log cos x –    C x2  2 + c (B) 2 x 2  2 + c

  6   3 
 (C) (x2 + 2)–3/2 + c (D) None of these
 
cos x –  d ( x 2  1) 2x
 3 Sol.[B]  x 2
2
dx =  x2  2
dx = 2
 
= 2log cos x –  +C
 6 x2  2 + c
1
– sin 2 x
Q.93 If the derivative of f(x) w.r.t x is 2 sec 2 x tan x
f (x)
Q.107
 sec 2
x  tan 2 x
dx =

then period of f(x) is- (A) log(sec2 x + tan2 x) + c


(A) 2 (B)  (C) /2 (D) None
1 (sec 2 x  tan 2 x ) 2
(B) +c
– sin 2 x 1 2
Sol.[B] f (x) = 2  f(x) f  (x) = –
2
f (x) 1
2
(C) log (sec2 x + tan2x) + c
sin x 2
 (D) None of these
1 
 f (x )f (x )dx    2 – sin
2
x dx

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 52
sec 2 x tan x x
x
Q.110 (1 + log x) dx is equal to-
Sol.[D]
 sec 2
x  tan x 2
dx t =
(A) xx log x + k (B) e x
x
+k
sec2 x + tan2x
dt / 4 dt (C) xx + k (D) None of these
=  t dx
=2secx.secx tan x
Sol.[C] x
x
(1  log x )dx = xx + c
+ 2 tan x.sec2 x
1
= log (sec2 x + tan2x) + c = 4 tan x sec2x x 2  cos 2 x
4
dt
Q.127
 1 x2
cosec2 xdx =
= tan x sec2x dx
4 (A) cot x + tan–1 x + c (B) cot x – tan–1 x + c
(C) – cot–1 x – tan–1 x + c (D) None of these
2
 1 x  x 2  cos 2 x
Q.108  ex   dx =
1 x2 
Sol.[C]  (1  x 2
) sin 2 x
dx =

ex ex
(A) +c (B)  +c
(1  x 2 ) 2 1 x2 (1  x 2 )  sin 2 x
 (1  x 2 ) sin 2 x
dx
ex
(C) +c (D) None of these
1 x2  1 
  cos ec x  1  x
2
= 2
 dx = – cot x– tan–1x
x x  2 x 
2 
1
Sol.[C] e  (1  x 2 ) 2 
 
dx
+c
x 1 2x 
= e 
 1  x 2  (1  x 2 ) 2

dx

 tan 1 x
1
Q.128  (1  x ) x
dx 
= e . x
c
1 x2 (A) tan–1 x + c (B) (tan–1 x)2 + c
(C) (tan–1 2
x ) +c (D) None of these
1
e tan x
x
Q.109 (log x  (1 / x 2 ))dx 
Sol.[C]  (1  x ) x
dx t = tan –1
(A) ex log x + c (B) ex (log x – 1/x) + c
(C) ex(log x + 1/x) + c (D) (ex /x2) + c x

 1  dt
Sol.[B]  e x  log x  2 dx =  t .2dt dx
=
 x 
1
 log x . e x
x
= dx + ex dx 1 1
I II 2 .
2
1 ( x ) 2 x
1 x
= log x . ex –  x
e dx +
x
1
2
e x dx = t2 + c 2dt =
I II

1 x 1  dx
= log x ex –
x
e  x 2
e x dx 

+ (1  x ) x

1
x 2
e x dx

1 x
= log x ex – e +c
x

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 53
Q.129 If f(x) is the primitive of 2x 2  3  x 1
Q.132 If  (x 2
 1)( x  4)
dx = A log 
2
+
 x 1 
sin 3 x log(1  3x )
x
(tan 1 x ) 2 (e
3
x
 1) B tan–1   , then (A, B) is-
2
(A) (– 1/2, 1/2) (B) (1/2, –1/2)
(x  0), then xlim f ( x ) is-
0 (C) (–1, 1) (D) (1, –1)
(A) 0 (B) 3/5 (2 x 2  3)dx
(C) 5/3 (D) None Sol.[A]  (x 2
 1)( x 2  4)
=

sin x1/ 3 log(1  3x )dx


Sol.[B] f(x) =  (tan 1
x ) 2 (e 5 x
1/ 3
 1)  1  1
lim f ' ( x ) lim
  x 2
1
  dx
2
x 4
x 0
= x 0
1  x 1  1 x
= log   + tan–1 +c
2  x 1 2 2
sin x1 / 3 log(1  3x )
1/ 3
1 1
(tan 1 x ) 2 (e 5 x  1)  a=– , b=
2 2
sin x1 / 3 log(1  3x )
x1 / 3 . .3x
x1 / 3 3x 1 x4
lim
= x 0 2
 tan 1 x   e5 x  1  1 / 3
1/ 3
Q.133 If  xx 5
dx = f(x) + c then
 xx 5
dx =
x.   .5x
 x   5x1 / 3  (A) log |x| – f(x) + c1 (B) log |x| + f(x) + c1
   
(C) x f(x) + c1 (D) None of these
1.1.3
=  3/5 dx
1.1.5 Sol.[A] I1 =  xx 5
= f(x)

( 2 x  sin 2 x )
Q.130  1  cos 2 x
dx =
I2 =
xx
x4
5
dx  I1 + I2 =
1 x 4
xx 5
dx
(A) x tan x + c (B) x cot x + c
1
(C) x(tan x + cot x) + c (D) None of these =
 x dx  I2 = log |x| + c1 – I1

2 x  2 sin x cos x
Sol.[A]  2 cos 2 x
dx
cos 2 x  cos 2
Q.134  cos x  cos 
dx =
 

2
=  x sec x  tan x dx = x tan x + c (A) 2(sin x + x cos ) + c
xf  ( x ) f (x) 
(B) 2(sin x – x cos ) + c
ex
Q.131
 x2
{1 + (x + 2) log (x + 2)} dx = (C) 2 (sin x + 2x cos ) + c
(D) None of these
(A) ex log (x + 2) + c (B) ex /(x + 2) + c cos 2 x  cos 2
(C) ex (x + 2) + c (D) ex (x – 2) + c
Sol.[A]  cos x  cos 
dx

 1  ( 2 cos 2 x  1)  (2 cos 2   1)
Sol.[A]  ex 
 x  2
 log(x  2)  dx = ex log (x + 2)

=
 cos x  cos 
dx

+c

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 54
cos 2 x  cos 2  (1  nx n –1 – x 2 n )
= 2  cos x  cos 
dx = Q.73  ex
(1 – x n ) 1 – x 2 n
dx =

2   cos x  cos  dx 1– xn 1 x n
(A) ex +c (B) ex +c
= 2(sin x + x cos ) + c 1 xn 1– xn

1– xn 1 x n
(C) – ex + c (D) – ex +c
e 1 xn 1– xn
x
Q.62 [log(sec x  tan x )  sec x ] dx =

(A) ex log tan x + c  (1 – x 2 n )  nx n –1 


x
(B) e log (sec x + tan x) + c Sol.[B]  ex 
 (1 – x n ) 1 – x m 

(C) ex log sec x + c


 1 x n nx n –1 
e   dx
(D) None of these x

 1– xn (1 – x n ) 1 – x 2 n 
Sol.[B] Log (sec x + tan x) = t  
sec x dx = dt 1 x n
f(x) =
 e log (sec x + tan x) + c
x
1– xn
nx n –1
Q.63 The value of  for which f ' (x) =
(1 – x n ) 1 – x 2 n
3 x
4x   4
 4 x x 4
dx = log (4x + x4) is -
  ex
1 x n
+c
1– xn
(A) 1 (B) log e 4
(C) log 4 e (D) 4
Q.74 If f(x) is the primitive of
Sol.[B] 4x + x4 = t
 (4x3 + 4x ln e4) dx = dt
sin 3 x log(1  3x )
dt (x  0), then xlim
  t
= log |t| + c
(tan –1 2
x ) (e
3
x
– 1)
0
f'

   log e 4 (x) is -
(A) 0 (B) 3/5

e log( x 1/ x ) (C) 5/3 (D) None


Q.64  ( x  1) 2 dx is equal to -
sin x1 / 3 log(1  3x )
(A) elog(x+1/x) (B) x
Sol.[D]  f(x) =  (tan –1
x ) 2 (e x
1/ 3
– 1)
(C) log |x| (D) None
 xlim
0 f'(x)
1
1  lim

Sol.[C] x dx x 0
2
x 1
1
 x dx  sin x1/ 3

 x1/ 3
 1/ 3  cos(1  3x ) 
x
   (3x )
   3x 
log |x| + c
2
 tan –1 x   x1 / 3 – 1  1 / 3
  .x. e .x
 x   x 1/ 3 
   
=3

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 55
= nlim

2x [1 + 2x2 + ……… + nx2n–2]
4
Q.75 Let f(0) = f ' (0) = 0 and f " (x) = sec x + 4, then
 1 1 x 2 
f(x) = = 2x   
2
1 – x (1 – x 2 ) 2 
2 1
(A) log sec x + tan2 x + 2x2 ( given progression is A.G.P.)
3 6
2x
2 1 f(x) =
(B) log cos x + tan2 x + 2x2 (1 – x 2 ) 2
3 6
2x
(C)
2
3
log sec x +
1
6
tan2 x   f ( x )dx =  (1 – x 2 2
)
dx

1 – x2 = t
(D) None of these 2xdx = – dt
Sol.[A] Integrate we have dt
f ' (x) =  sec
2
x.(1  tan 2
x )dx + 4x + C1
=– t 2

1
tan 3 x = +c
f ' (x) = tan x + + 4x + c1 t
3 1
= +c
put x = 0 1– x2
a0
ex
again integrate
Q.81 Let I =
e 4x
 e 2x  1
dx, J =

1 e–x
 tan e
3
f(x) = log sec x + xdx + 2x2 + c2 dx. Then, for an arbitrary
3 – 4x
 e – 2x  1
1 tan 2 x 1 constant C, the value of J – I equals -
= log secx + – log sec x + c2
3 2 3 1  e 4x – e 2x  1 
(A) log  4 x 2x
 +C

+ 2n2 2  e  e 1
put x = 0 1  e 2x  e x  1 
c2 = 0 (B) log  2 x 2x
 +C

2  e – e 1
1 2
2
 f (x )  2x  tan 2 x  log sec x 1  e 2x – e x  1 
6 3 (C) log  2 x x
 +C

2  e  e  1 

 e 4x  e 2x  1 
Q.76 If f(x) = nlim

[2x + 4x3 + ………. + 2nx2n–1], (D)
1
log  4 x  +C
2x 
2  e – e 1
(0 < x < 1) then  f ( x ) dx is equal to - e 3x – e x
1
Sol.[C] J – I =
 1 e 2x
 e 4x
(A) – (1 – x 2 ) (B) Let ex = t
1– x2
 exdx = dt
1 t2 –1
(C)
x2 –1
(D) J-I =
 1 t 2
 t4
dt =

 1
1 t 2 1 – 2 
 t  dt
1– x2   1
t 2  t 2 1 2 
Sol.[D] f(x) = nlim

2 [x+ 2x3 + ……. + nx2n–1], 0 < x <  t 
1

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 56
1  (log x )
n
Q.100 If In = dx then In + n In–1 is equal
1–
t2
=  1
2 dt to
 t   –1 (A) x (log x)n(B) (x log x)n
 t
(C) (log x) n –1 (D) n(logx) n
1  1 
t+ = u  1 – 2  dt = du
 (log x )
n.
t  t  Sol.[A] In = 1dx

du
= u 2
–1
= (log x ) nx 
 n (log x )
n 1
.
1
x
.x dx
1 u –1
= log
u 1
+c = (log x ) n x  nI n 1
2
1  In + nI n 1 = x (log x ) n
–1ex 
=
1
log
ex +c
2 x 1
e  x 1 Q.65 If  g ( x ) dx = g(x), then
e
e 3x – e x  g ( x ){f ( x )  f ( x )} dx
Sol.[C] J – I =
 1 e 2x
 e 4x is equal to-
Let ex = t (A) g(x) f(x) – g(x) f (x) + c
 exdx = dt
(B) g(x) f (x) + c
t2 –1
J-I =
 1 t 2
 t4
dt = (C) g(x) f(x) + c
(D) g(x) f2 (x) + c

Sol. [C] I =  g( x ) {f ( x ) f ( x )} dx
 1
t 2 1 – 2  using ILATE, we get
 t  dt
  1
I = f(x)  g ( x ) dx –
t 2  t 2 1 2 
 t   (f ( x ).  g ( x ) dx ) dx
1 +  g ( x ) f ( x ) dx
1–
t2 I = f(x) g(x) –  g ( x ) f ( x ) dx
=  1
2 dt
+

 t   –1
t
 g ( x ) f ( x ) dx

I = f(x) g(x) + c
1  1 
t+ = u  1 – 2  dt = du
t  t 
du
= u 2
–1
1 u –1
= log +c
2 u 1

1
x
ex 
–1
1 e
= log +c
2 1
ex  x 1
e

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 57
Q.s

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 INDEFINITE INTEGRATION 58

You might also like