0% found this document useful (0 votes)
42 views13 pages

Low Power Quad Operational Amplifiers: LM124 LM224 - LM324

The document describes low power quad operational amplifiers. It provides details on their electrical characteristics such as wide gain bandwidth up to 1.3MHz, low input bias current of 20nA, low input offset voltage of 5mV maximum, and ability to operate from a single power supply from +3V to +30V or dual supplies from ±1.5V to ±15V.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
42 views13 pages

Low Power Quad Operational Amplifiers: LM124 LM224 - LM324

The document describes low power quad operational amplifiers. It provides details on their electrical characteristics such as wide gain bandwidth up to 1.3MHz, low input bias current of 20nA, low input offset voltage of 5mV maximum, and ability to operate from a single power supply from +3V to +30V or dual supplies from ±1.5V to ±15V.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

LM124

LM224 - LM324
LOW POWER QUAD OPERATIONAL AMPLIFIERS

■ WIDE GAIN BANDWIDTH : 1.3MHz


■ INPUT COMMON-MODE VOLTAGE RANGE
INCLUDES GROUND
■ LARGE VOLTAGE GAIN : 100dB N
DIP14
■ VERY LOW SUPPLY CURRENT/AMPLI : (Plastic Package)
375µA
■ LOW INPUT BIAS CURRENT : 20nA
■ LOW INPUT OFFSET VOLTAGE : 5mV max.
(for more accurate applications, use the equiv-
alent parts LM124A-LM224A-LM324A which D
feature 3mV max.) SO14
(Plastic Micropackage)
■ LOW INPUT OFFSET CURRENT : 2nA
■ WIDE POWER SUPPLY RANGE :
SINGLE SUPPLY : +3V TO +30V
DUAL SUPPLIES : ±1.5V TO ±15V

DESCRIPTION
P
TSSOP14
These circuits consist of four independent, high (Thin Shrink Small Outline Package)
gain, internally frequency compensated operation-
al amplifiers. They operate from a single power
supply over a wide range of voltages. Operation
PIN CONNECTIONS (top view)
from split power supplies is also possible and the
low power supply current drain is independent of
the magnitude of the power supply voltage.
Output 1 1 14 Output 4
ORDER CODE
Inverting Input 1 2 - - 13 Inverting Input 4
Package
Part Temperature + +
Number Range Non-inverting Input 1 3 12 Non-inverting Input 4
N D P
VCC + 4 11 VCC -
LM124 -55°C, +125°C • • •
LM224 -40°C, +105°C • • • Non-inverting Input 2 5 + + 10 Non-inverting Input 3
LM324 0°C, +70°C • • • Inverting Input 2 6 - - 9 Inverting Input 3
Example : LM224N
Output 2 7 8 Output 3
N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape
&Reel (PT)

December 2001 1/13


LM124-LM224-LM324

SCHEMATIC DIAGRAM (1/4 LM124)

ABSOLUTE MAXIMUM RATINGS


Symbol Parameter LM124 LM224 LM324 Unit
VCC Supply voltage ±16 or 32 V
Vi Input Voltage -0.3 to +32 V
Vid Differential Input Voltage 1) +32 V
Power Dissipation N Suffix 500 500 500 mW
Ptot
D Suffix 400 400 mW
Output Short-circuit Duration 2) Infinite
Iin 3) 50 50 50 mA
Input Current
Toper Opearting Free-air Temperature Range -55 to +125 -40 to +105 0 to +70 °C
Tstg Storage Temperature Range -65 to +150 °C
1. Either or both input voltages must not exceed the magnitude of VCC+ or VCC-.
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent
of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP
transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on
the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive)
for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3V.

2/13
LM124-LM224-LM324

ELECTRICAL CHARACTERISTICS
VCC+ = +5V, VCC-= Ground, V o = 1.4V, Tamb = +25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
1)
Input Offset Voltage - note
Tamb = +25°C 2 5
Vio LM324 7 mV
Tmin ≤ Tamb ≤ Tmax 7
LM324 9
Input Offset Current
Iio Tamb = +25°C 2 30 nA
Tmin ≤ Tamb ≤ Tmax 100

Input Bias Current - note 2)


Iib Tamb = +25°C 20 150 nA
Tmin ≤ Tamb ≤ Tmax 300
Large Signal Voltage Gain
VCC+ = +15V, R L = 2kΩ, Vo = 1.4V to 11.4V
Avd V/mV
Tamb = +25°C 50 100
Tmin ≤ Tamb ≤ Tmax 25

Supply Voltage Rejection Ratio (Rs ≤ 10kΩ)


VCC+ = 5V to 30V
SVR dB
Tamb = +25°C 65 110
Tmin ≤ Tamb ≤ Tmax 65

Supply Current, all Amp, no load


Tamb = +25°C VCC = +5V 0.7 1.2
ICC VCC = +30V 1.5 3 mA
Tmin ≤ Tamb ≤ Tmax VCC = +5V 0.8 1.2
VCC = +30V 1.5 3
Input Common Mode Voltage Range
VCC = +30V - note 3)
Vicm VCC -1.5 V
Tamb = +25°C 0
Tmin ≤ Tamb ≤ Tmax 0 VCC -2

Common Mode Rejection Ratio (Rs ≤ 10kΩ)


CMR Tamb = +25°C 70 80 dB
Tmin ≤ Tamb ≤ Tmax 60
Output Current Source (Vid = +1V)
Isource mA
VCC = +15V, Vo = +2V 20 40 70
Output Sink Current (Vid = -1V)
Isink VCC = +15V, Vo = +2V 10 20 mA
VCC = +15V, Vo = +0.2V 12 50 µA
High Level Output Voltage
VCC = +30V V
Tamb = +25°C RL = 2kΩ
26 27
Tmin ≤ Tamb ≤ Tmax 26
VOH Tamb = +25°C RL = 10kΩ 27 28
Tmin ≤ Tamb ≤ Tmax 27
VCC = +5V, RL = 2kΩ
Tamb = +25°C 3.5
3
Tmin ≤ Tamb ≤ Tmax

3/13
LM124-LM224-LM324

Symbol Parameter Min. Typ. Max. Unit


Low Level Output Voltage (RL = 10kΩ)
VOL Tamb = +25°C 5 20 mV
Tmin ≤ Tamb ≤ Tmax 20
Slew Rate
SR VCC = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity Gain V/µs
0.4
Gain Bandwidth Product
GBP VCC = 30V, f =100kHz,Vin = 10mV, RL = 2kΩ, CL = 100pF MHz
1.3
Total Harmonic Distortion
THD %
f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VCC = 30V 0.015
Equivalent Input Noise Voltage nV
en ------------
f = 1kHz, Rs = 100Ω, VCC = 30V 40 Hz
DVio Input Offset Voltage Drift 7 30 µV/°C
DIIio Input Offset Current Drift 10 200 pA/°C
4)
Vo1/Vo2 Channel Separation - note dB
1kHz ≤ f ≤ 20kHZ 120
1. Vo = 1.4V, Rs = 0Ω, 5V < VCC + < 30V, 0 < Vic < V CC+ - 1.5V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change
exists on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the
common-mode voltage range is VCC + - 1.5V, but either or both inputs can go to +32V without damage.
4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically
can be detected as this type of capacitance increases at higher frequences.

4/13
LM124-LM224-LM324

5/13
LM124-LM224-LM324

6/13
LM124-LM224-LM324

TYPICAL SINGLE - SUPPLY APPLICATIONS

AC COUPLED INVERTING AMPLIFIER AC COUPLED NON INVERTING AMPLIFIER

Rf
100kW Rf
R1 R2
A V= - 100kW 1MW
R1 A V= 1 + R2
R1
R1 (as shown AV = -10) (as shown AV = 11)
CI 10kW C1
0.1m F
Co Co
1/4
2VPP 1/4 2VPP
LM124 0 0
eo CI LM124 eo
RB RL RB RL
6.2kW 10kW 6.2kW 10kW
eI ~ R2 R3
VCC 100kW 100kW eI ~
R3
1MW
R4
100kW

VCC
C1 C2 R5
10m F 10m F 100kW

7/13
LM124-LM224-LM324

TYPICAL SINGLE - SUPPLY APPLICATIONS

NON-INVERTING DC GAIN DC SUMMING AMPLIFIER

e1 100kW

A V = 1 + R2
R1
eO
10kW (As shown A V = 101) 100kW 1/4
LM124
1/4 eO +5V
LM124 e2 100kW

e3 100kW
R2
(V)

1MW
R1 100kW
O

10kW
e

e4 100kW
0
e I (mV)

e0 = e1 +e2 -e3 -e4


Where (e1 +e2) ≥ (e3 +e4)
to keep e0 ≥ 0V

HIGH INPUT Z ADJUSTABLE GAIN DC LOW DRIFT PEAK DETECTOR


INSTRUMENTATION AMPLIFIER

R1
100kW

R3 R4
1/4 100kW 100kW
LM124
e1 IB

1/4 eO
1/4
LM124 IB LM124
eo
R2 Gain adjust 1/4

2kW
LM124
Zo
R5 eI C 2IB
100kW 1m F *
ZI
2N 929 0.001m F
R6 R7
100kW 100kW 2IB IB
1/4
LM124 R 1/4
3R
1MW 3MW LM124
e2
Input current
IB compensation

if R1 = R5 and R3 = R4 = R6 = R7 * Polycarbonate or polyethylene


2R
1
e0 = 1 + ----------- (e2 -e1)
R
2

As shown e0 = 101 (e2 - e1).

8/13
LM124-LM224-LM324

TYPICAL SINGLE - SUPPLY APPLICATIONS

ACTIVER BANDPASS FILTER HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER

R1
100kW
R R
C1 1 4
330pF For ------- = -------
R R
1/4 2 3
R5
LM124 470kW
e1 R4 (CMRR depends on this resistor ratio match)
10MW
1/4
LM124
C2
330pF R2 R4
R3 R6 100kW 100kW
10kW 470kW R1
eO 100kW
1/4 R3
LM124 R7 100kW
100kW 1/4
V CC LM124 1/4
R8 C3 +V1 LM124 Vo
100kW 10m F
+V2

Fo = 1kHz
 1 + R-------4
 R3
Q = 50 e0 (e2 - e1)

Av = 100 (40dB)
As shown e0 = (e2 - e1)

USING SYMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT (GENERAL CONCEPT)

1/4
I IB LM124 eo
I
eI
IB
2N 929

0.001m F

IB
IB
1/4
3MW LM124

Aux. amplifier for input


IB current compensation
1.5MW

9/13
LM124-LM224-LM324

MACROMODEL VIN 17 5 0.000000e+00


** Standard Linear Ics Macromodels, 1993. DINR 15 18 MDTH 400E-12
** CONNECTIONS : VIP 4 18 2.000000E+00
* 1 INVERTING INPUT FCP 4 5 VOFP 3.400000E+01
* 2 NON-INVERTING INPUT FCN 5 4 VOFN 3.400000E+01
* 3 OUTPUT FIBP 2 5 VOFN 2.000000E-03
* 4 POSITIVE POWER SUPPLY FIBN 5 1 VOFP 2.000000E-03
* 5 NEGATIVE POWER SUPPLY * AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
.SUBCKT LM124 1 3 2 4 5 (analog) FIN 5 19 VOFN 3.600000E+02
******************************************************* RG1 19 5 3.652997E+06
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 RG2 19 4 3.652997E+06
CJO=10F
CC 19 5 6.000000E-09
* INPUT STAGE
DOPM 19 22 MDTH 400E-12
CIP 2 5 1.000000E-12
DONM 21 19 MDTH 400E-12
CIN 1 5 1.000000E-12 HOPM 22 28 VOUT 7.500000E+03
EIP 10 5 2 5 1 VIPM 28 4 1.500000E+02
EIN 16 5 1 5 1 HONM 21 27 VOUT 7.500000E+03
RIP 10 11 2.600000E+01 VINM 5 27 1.500000E+02
RIN 15 16 2.600000E+01 EOUT 26 23 19 5 1
RIS 11 15 2.003862E+02 VOUT 23 5 0
DIP 11 12 MDTH 400E-12 ROUT 26 3 20
DIN 15 14 MDTH 400E-12 COUT 3 5 1.000000E-12
VOFP 12 13 DC 0 DOP 19 25 MDTH 400E-12
VOFN 13 14 DC 0 VOP 4 25 2.242230E+00
IPOL 13 5 1.000000E-05 DON 24 19 MDTH 400E-12
CPS 11 15 3.783376E-09 VON 24 5 7.922301E-01
DINN 17 13 MDTH 400E-12 .ENDS

ELECTRICAL CHARACTERISTICS
Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified)
Symbol Conditions Value Unit
Vio 0 mV
Avd RL = 2kΩ 100 V/mV
Icc No load, per amplifier 350 µA
Vicm -15 to +13.5 V
VOH + +13.5 V
RL = 2kΩ (VCC =15V)
VOL RL = 10kΩ 5 mV
Ios Vo = +2V, VCC = +15V +40 mA
GBP RL = 2kΩ, CL = 100pF 1.3 MHz
SR RL = 2kΩ, CL = 100pF 0.4 V/µs

10/13
LM124-LM224-LM324

PACKAGE MECHANICAL DATA


14 PINS - PLASTIC DIP

Millimeters Inches
Dimensions
Min. Typ. Max. Min. Typ. Max.
a1 0.51 0.020
B 1.39 1.65 0.055 0.065
b 0.5 0.020
b1 0.25 0.010
D 20 0.787
E 8.5 0.335
e 2.54 0.100
e3 15.24 0.600
F 7.1 0.280
i 5.1 0.201
L 3.3 0.130
Z 1.27 2.54 0.050 0.100

11/13
LM124-LM224-LM324

PACKAGE MECHANICAL DATA


14 PINS - PLASTIC MICROPACKAGE (SO)

L G
c1

C
a2
A
b e

b1
a1
s
e3 E

D
M

14 8

F
1 7

Millimeters Inches
Dimensions
Min. Typ. Max. Min. Typ. Max.
A 1.75 0.069
a1 0.1 0.2 0.004 0.008
a2 1.6 0.063
b 0.35 0.46 0.014 0.018
b1 0.19 0.25 0.007 0.010
C 0.5 0.020
c1 45° (typ.)
D (1) 8.55 8.75 0.336 0.344
E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 7.62 0.300
F (1) 3.8 4.0 0.150 0.157
G 4.6 5.3 0.181 0.208
L 0.5 1.27 0.020 0.050
M 0.68 0.027
S 8° (max.)
Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.

12/13
LM124-LM224-LM324

PACKAGE MECHANICAL DATA


14 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)

c k
0,25 mm
.010 inch
GAGE PLANE

L1
E1

SEATING
PLANE
C
A E
A2
A1

e
b

8 7
D

C
aaa

14 1

PIN 1 IDENTIFICATION

Millimeters Inches
Dimensions
Min. Typ. Max. Min. Typ. Max.
A 1.20 0.05
A1 0.05 0.15 0.01 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.15
c 0.09 0.20 0.003 0.012
D 4.90 5.00 5.10 0.192 0.196 0.20
E 6.40 0.252
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.025
k 0° 8° 0° 8°
L 0.450 0.600 0.750 0.018 0.024 0.030
L1 1.00 0.039
aaa 0.100 0.004

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved


STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com

13/13

You might also like