0% found this document useful (0 votes)
51 views21 pages

GEOL30005 Applied Geophysics: About Me

This document provides an introduction to a university course on applied geophysics. It discusses the lecturer, assessments, textbooks, software, Australian resources, and what geophysics is. Geophysics uses physics-based methods to understand the Earth, including measuring properties like density, magnetism, and conductivity. It is used for mineral and gas exploration, hazard mitigation, and other purposes.

Uploaded by

Martin Nguyen
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
51 views21 pages

GEOL30005 Applied Geophysics: About Me

This document provides an introduction to a university course on applied geophysics. It discusses the lecturer, assessments, textbooks, software, Australian resources, and what geophysics is. Geophysics uses physics-based methods to understand the Earth, including measuring properties like density, magnetism, and conductivity. It is used for mineral and gas exploration, hazard mitigation, and other purposes.

Uploaded by

Martin Nguyen
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 21

31/07/2013

GEOL30005 Applied Geophysics

Lecture 1:  Introduction

About me…

• Mark McLean

• AGOS / CO2CRC office (level 3)

• But best to contact me by email:
• m.mclean@unimelb.edu.au

1
31/07/2013

About me…
• I currently work at both The University of 
Melbourne 1‐2 days, and the remainder of the 
week at the Geological Survey of Victoria.
week at the Geological Survey of Victoria.

• I have worked in:
 Gawler Craton, South Australia
 Broken Hill block, Curnamona
Broken Hill block Curnamona Province
 Lambert Rift, East Antarctica
 Theoretical work with Airborne Gravity Gradiometry
 All over Victoria

About me…
• Life member of the Hawthorn City Pipe Band

2
31/07/2013

About me…

When are the lectures going to be?
• Currently 10‐11 and 12‐1

• Change to 10‐11 and 11‐12?

Or

• Change to 11‐12 and 12‐1?

• Decision must be unanimous

3
31/07/2013

Lectures
• I’ll be giving the majority of lectures
• We’ve had to swap 2 because of a clash with the Australian 
Society of Exploration Geophysics (ASEG) conference
Society of Exploration Geophysics (ASEG) conference. 
• A/Prof Tim Rawling will give a lecture on my behalf during week 
3, and he’ll most likely start the prac for that week too.
• Possible guest lecture for seismicity during week 9
• Any questions, any time – please ask! 

 Pracs begin in week 2

Assessment
• Geophysical interpretation/modelling exercises and 
accompanying report due two weeks following the relevant 
practical class (30%)
• Assessment of selected practical exercises due two weeks 
following the relevant practical class (15%)
• Practical assessment in the form of a short test during the 
semester (5%) 
• 2‐hour written examination in the examination period (50%)
2‐hour written examination in the examination period (50%)

Late work will be accepted but will be penalised (5% per day)

4
31/07/2013

Textbooks ‐ Not a great selection unfortunately

Telford – Applied Geophysics
• Covers most aspects of geophyiscs
Covers most aspects of geophyiscs
• Good overview, but getting old

Blakely – Potential theory in gravity and 
Potential theory in gravity and
magnetic applications
• Great for gravity/magnetics
• Clear and concise, but limited to potential 
fields only.

Readings for each week
• Most textbooks cover the principles 
ok, but most are quite old
• All readings come from this journal
• These are peer reviewed publications
These are peer reviewed publications 
and more up to date. 
• Each paper is available on the LMS
• You will find some differences 
between these papers and the 
lectures (mostly regarding 
specifications /technology (eg. Flying 
specifications /technology (eg Flying
height, spacing, computers, digital 
media)
 In these cases lectures are the  A

more up to date reference.

5
31/07/2013

Mathematics requirements
• Most of this course is about understanding concepts
• Some maths is required – but not much
• Nothing beyond high school maths is required
• Will help if you understand what a derivative is (the concept)
p y ( p)

Calvin and Hobbes

Computers
• Reason why we don’t need a solid maths background is because 
computers will do most of the work for us.
• Almost all pracs will be using computers
• Practical exercises will be held in the PC lab (room 313) at 14:15

Unfortunately, this 1950s 
prediction of modern day 
computers is a hoax

• Scientists from the  1954 RAND 
Corporation have created this model to 
illustrate how a “home computer” 
could look like in the year 2004. 
However the needed technology will 
not be economically feasible for the 
average home.
• With teletype interface and Fortran 
language, the computer will be easy to 
use

6
31/07/2013

Software
• Geosoft (Oasis Montaj) will be the main 
software package used for this course
• Geosoft is the industry standard for geophysical data manipulation, 
processing, and interpretation/modelling
• Objective is partly to learn the software, but mostly we’ll be using it 
to learn principles of geophysics

Australian resources
• The prosperity of Australia (and indeed the world) has come to 
depend on the Earth’s natural resources
• Iron, aluminium, copper, zinc, tin, tungsten just to name a few are 
all essential for manufacture of cars, aircraft, computers, fridges, 
TV t
TVs etc.
• Oil, gas and coal are depended upon as sources of energy for 
heating, cooling, lighting, transport etc.
• Clay, limestone, granite, sand and gravel are used for building 
materials for buildings, roads, infrastructure etc.
• Groundwater is required for irrigation and urban water supply

 Australia has all these resources in varying quantities. To 
continue our lifestyle, they not only need to be found, but also 
managed in a sustainable way.

7
31/07/2013

Victorian resources
• Victoria is seen as resource poor compared to states like WA and 
QLD, but it is not without its share of earth resources.
 Gold, coal, oil, gas, mineral sands (and potentially copper)

Resources
• Problem is regolith covers 85% of the Australian continent
• Shaded areas represent areas where outcrop occurs, however 
even these areas are mostly covered

• We need a technique that can 
‘see through’ the overlying 
cover, and help us understand 
covered resources. 
• Geophysics helps us do this
• Starting
Starting to get better at it, but 
to get better at it but
still a long way to go.

8
31/07/2013

Deeper discoveries starting to appear

North of Chile

What is geophysics?
• Geophysics is a branch of earth science which tries to 
understand the earth using physics related methodologies
• Often cutting edge technology in instrumentation, data 
acquisition and computing is required.
acquisition and computing is required.
• Continually evolving field – boundaries are continually being 
pushed 
 More detailed, high resolution data collection
 More sensitive instruments
 Manipulation of larger datasets
 Sophistication of software
• Geophysics is a very broad subject ‐ this course (Applied 
Geophysics) concentrates on geophysical applications which 
are intended for a practical use.

9
31/07/2013

What is geophysics?
• Geophysics is all about measuring rock properties

Property Technique
Density Gravity
Magnetic susceptibility Passive magnetics
Acoustic impedance Seismic
Electrical conductivity Electromagnetics
MT
Resistivity
Radioactivity Radiometrics

Why do it?
• Primary objective is to “see through” overlying regolith 
profile
• Mostly used for mineral / oil and gas exploration 
Mostly used for mineral / oil and gas exploration
• Also used for mitigation of natural hazards and 
environmental protection, locate groundwater, find 
archaeological relics, determine the thickness of glaciers 
and soil profiles etc.

10
31/07/2013

Why do we use gravity and magnetic data?
Magnetic and gravity data are commonly used geophysical 
techniques because they are:
• Relatively cheap to collect (at different scales).
• They measure properties in the Earths crust that can be 
used to indicate a variety of geological processes.
• Magnetics – distribution of magnetic minerals in the 
upper crust.
• Gravity – density contrasts between different rocks.
• Alteration
• 3D geometry
3D geometry
• Overprinting
• Extent of rock packages
• Used by many different geological disciplines.

Mineral exploration and


targeting
• Target anomalies
• Crustal architecture
• Dilation zones (fluid flow)
• Alteration

11
31/07/2013

Alteration

Alteration can effect petrophysical properties


• Oxygen
yg fugacity
g y (fluid flow and magma emplacement)
• Mass flux transfer (mineralisation)
• Metamorphism (contact and regional
metamorphism)

Petroleum exploration
• Basement mapping
• Structural architecture of basins
• Immature exploration programs
• Compliment seismic data
• not a stand alone tool

12
31/07/2013

What the course covers
• Maps • Datums
• Projection systems • Coordinate systems

What the course covers
• Global Positioning System (GPS)
• How it works
How to deal with GPS data
• How to deal with GPS data
• Applications in geoscience

13
31/07/2013

What the course covers
Potential Field datasets

Gravity data (Bouguer)

Magnetic data (TMI)

What the course covers
• Magnetic theory, the Earth’s magnetic field and implications 
for magnetic surveying
• Gravity theory, and what it can tell us about geology.

14
31/07/2013

What the course covers

Airborne 
acquisition

What the course covers
Airborne 
acquisition

15
31/07/2013

What the course covers
• Geophysical image analysis
 Data types
 Image enhancement
 Processing methods
 Modeling in 2D and 3D

What the course covers
• Qualitative interpretation

16
31/07/2013

What the course covers
10 km
C’ – shear bands

C’ – shear bands

Passchier & Trouw, 1996

•C
C’ – bands defined by foliation
characterised by magnetite depletion
• S – foliation defined by a magnetic foliation
- lithological (?)
0.5 mm
C’ – shear bands

What the course covers
Quantitative interpretation – 2D profile modelling

17
31/07/2013

What the course covers
Quantitative interpretation ‐ 3D modelling

GSV’s 3D visualisation facility

18
31/07/2013

GSV’s 3D visualisation facility

What the course covers

Seismic acquisition/processing Land Operations
Vibrators Generate a Disturbance
Geophones Detect Motion

Source Receivers
Direct Arrival
S1
R1 R2 R3 R4 R5

2
Reflections
Marine Operations
Air Guns Generate a Disturbance
3
Hydrophones Detect Pressure

19
31/07/2013

What the course covers
Golden Beach Field Line GL88B‐13 Line GNX05‐12

Seismic data / interpretation
Golden Beach Tie

What the course covers
• Geophysical well logging
• Resistivity, electromagnetics, magnetotellurics
• Induced polarisation, Radiometrics, Ground 
penetrating radar

20
31/07/2013

Method Parameter  Units Physical Depth of 


measured property investigation
Gravity Attraction of  Milligals Density All
Earth’s gravity  Gravity units
field
Gravity  Gradient of  Eotvos Density Shallow crust
gradiometry Earth’s gravity 
f ld
field
Magnetic Attraction of  Nanotesla Magnetic  Surface to curie 
Earth’s magnetic  Gamma susceptibility isotherm
field
Gamma‐ray Gamma‐ray  Counts/sec Quantity of  Top 30 cm
photons K, U and Th
Seismic reflection Acoustic  milliseconds Velocity of P  All
impedance travel 
travel or S
or S waves
time
Electromagnetic Ratio of received  Impedance  Conductivity All
methods to applied  (Ohms) (depending on the 
electric and  method)
magnetic fields

Lecture plan

Lecture 1 – Introduction Lecture 13 – Qualitative Interpretation 2


Lecture 2 – Gravity theory  Lecture 14 – Rock properties
Lecture 3 – Gravity Acquisition 
Lecture 3  Gravity Acquisition Lecture 15 – Quantitative interpretation 1
Lecture 15  Quantitative interpretation 1
Lecture 4 – Maps and projection systems Lecture 16 – Quantitative interpretation 2
Lecture 5 – Gravity processing and gridding Lecture 17 – Industry case study
Lecture 6 – Projections datums and GPS. Lecture 18 – Seismic theory and seismology
Lecture 7 – Magnetic theory  Lecture 19 – Seismic acquisition
Lecture 8 – Magnetic Acquisition Lecture 20 – Seismic processing and interp
Lecture 9 – Magnetic Processing Lecture 21 – Geophysical well logging
Lecture 10 – Image enhancement Lecture 22 – Resistivity, EM, MT
Lecture 11 
Lecture 11 – Geophysical data
Geophysical data Lecture 23 
Lecture 23 – IP, Radiometrics, GPR 
IP Radiometrics GPR
Lecture 12 – Qualitative Interpretation 1 Lecture 24 – Review

21

You might also like