RIGID
Connection system for rigid frame corners.
Innovative timber connection systems for highest requirements.
General
With the Pitzl - RIGID system connector allows to build bending resistance connec-
tions between timber columns and beams (frame corners). The combination of the
well - known HVP connector with an tension plate on the upper side replaces braces for
example in carports. Larger versions may are also able to brace hall constructions in
combination.
With the Pitzl - RIGID, the designer has the possibility to work with joints with a very
high rotational spring stiffness. Due to the assembling of the beam to the column near-
by the totally height of the inner lever can be used. This is one of the great advantages
compared to other systems where the beams are directly supported on the head of the
columns. Since in most of the constructions the height of the beams are greater than
the dimensions of columns, the sideward connection enables a optimized joint method.
By a combination with the HVP connector, which enables to hang in the beam and after-
wards the fixing of the tension plate - the system is very easy to install.
2 Source: www.holzon.de RIGID
Functionality
The acting bending moment My is devided into a couple of forces with an inner lever
distance e. The tension forces are transmitted with inclined screws in the tension plate.
Shear forces Vz and tension forces N in the beam are transmitted with
the HVP-connector.
HVP Tension plate
Beam
Column
Version, minimum dimensions of the timber parts
and characteristic parameters
The load carrying-capacities were experimentally determined at the TVFA-Innsbruck.
Dimension w x h x d Minimum dimensions b x h Characteristic value
Version HVP Tension plate Column Beam NRk VRk My,Rk Kφ
[mm] [mm] [cm] [cm] [kN] [kN] [kNm] [kNm/rad]
88318.4000 80 x 180 x 12 80 x 215 x 15 14 x 14 14 x 24 31,4 72,6 6,5 249
88430.4000 120 x 300 x 15 120 x 250 x 15 16 x 16 16 x 36 48,3 93,2 10,9 415
88555.4000 140 x 550 x 20 120 x 325 x 15 16 x 21 16 x 68 59,8 345,9 18,2 692
Functionality 3
Assembly and installation
The HVP connector is mounted to the column and girding beam (milled into the column).
During assembling, the columns are mounted and then the girders are hang in with the HVP-connectors.
Afterwards the the tension plate is screwed in with inclined screws. Also in that case the plate can milled in.
Installation drawing 88318.4000 with a beam height between 240 - 280 mm
mounting screw
tension plate
Transverse thread screw
HVP-connector with screws
ø 5 x 100 mm and 2 x ø 5 x 60 mm
Beam
Column
Drawing tension plate
Tension plate 215 x 80 x 15
215
58 49 44 30
16
23
48
80
34
23
16
15
250
Tension plate 250 x 120 x 15 33 27 32 45 38 41
31
29
Ø17
120
Ø9
29
31
17
15
325
Tension plate 325 x 120 x 15
31
Ø17
120
Ø9
58
31
48 60 59 45 38 41 34
17
15
4 RIGID
Modelling of the RIGID joint
In the calculation the rotational bending stiffness must be taken into account. At a negatic bending moment in the
frame corner the RIGID system is working. The rotational stiffness Kφ can be taken from the table. For example for the
88318.4000 the characteristic value is 249 kNm/rad. In the other direction the bending stiffness of the HVP-connec-
tor can be calculated according to the ETA-15/0187. So the PITZl RIGID is a joint with a bilinear bending moment-ro-
tation behavior, and can be calculated with the following diagram:
Example carport
Description
The carport is 3.5 m wide, 5.0 m long and 2.7 m high. The long side is braced diagonally.
The narrow side (entrance) is stiffened with the RIGID 88318.4000.
1: ST-solid timber 140/140; softwood C24
2: ST-solid timber 140/240; softwood C24
3: ST-solid timber 100/160; softwood C24
4: ST-solid timber 120/120; softwood C24
Modelling of the RIGID joint 5
Load assumption
Permanent load: Ribbed roof gk = 0,35 kN/m²
Lastannahmen
Snow load:
Ständige Last:
Zone 2,Wellblechdach
altitude 480 m, flat roof s = 0,8 * 1,53 kN/m² = 1,22 kN/m²
gk = 0,35
k kN/m²
Wind load:
Schneelast: Zone 2,Zone
wind suction
2, Höhe 480 m,and pressure sk = 0,8
Flachdach wk*=(0,5+0,8)*0,65 kN/m² = 0,85 kN/m²
1,53 kN/m² = 1,22 kN/m²
onto the columns: 0,85 kN/m² * 0,14 m = 0,12 kN/m
Windlast: onto the
Zoneroof:
2, Windsog und Winddruck 0,85 kN/m²kN/m²
wk=(0,5+0,8)*0,65 * 0,4= 0,85
m =kN/m²
0,34 kN/m
auf Stützen: 0,85 kN/m² * 0,14 m = 0,12 kN/m
auf Dachseite: 0,85 kN/m² * 0,4 m = 0,34 kN/m
Modellierung Rigid Gelenk
Modelling RIGID joint
RIGID joint Rigid Gelenk
Load case
LF 1: Permanent
Lastfälle
load
Lastfälle LF 2: Snow load LF 3: Wind in x - direction
Lastfälle Lastfälle
LF 1: ständige Last LF 2: Schneelast LF 3: Wind in x - Richtung
LF 1: ständige Last LF 2: Schneelast LF 3: Wind in x - Richtung
LF 1: ständige Last LF 2: Schneelast LF 3: Wind in x - Richtung
LF 4: Wind
LF 1:in y - direction
ständige Last LF 2: Schneelast LF 3: Wind in x - Richtung
LF 4: Wind in y - Richtung
LF 4: Wind in y - Richtung
LF 4: Wind in y - Richtung
Schnittgrößen in der Ergebniskombination im GZT
LF 4: Wind Schnittgrößen in der Ergebniskombination im GZT
in y - Richtung
Schnittgrößen in der Ergebniskombination im GZT
Schnittgrößen in der Ergebniskombination im GZT
N Vy Vz
N Vy Vz
N Vy Vz
6 RIGID
N Vy Vz
LF 4: Wind in y - Richtung
LFLF4:4:Wind
Windininy4:
LF y- -Richtung
Richtung
Wind in y - Richtung
LF 4: Wind in y - Richtung
Stress resultant for the decisive load combination in the ultimate limit state (ULS)
Schnittgrößen in der Ergebniskombination im GZT
Schnittgrößen
Schnittgrößen ininder Schnittgrößen
derErgebniskombination
Ergebniskombination
Schnittgrößen imin
im der Ergebniskombination
GZT
GZT
in der Ergebniskombination im GZT im GZT
N Vy Vz
N Vy Vz
N NN Vy VVyy Vz Vz Vz
N Vy Vz
My Mz
My Mz
My My Mz Mz
My My Mz Mz
Utilization of the cross sections for ULS Ausnutzung im GZT
Ausnutzung im GZT Ausnutzung im GZT
Ausnutzung im GZT
Verformung in der maßgebenden Ergebniskombination char. /quasi ständig
Deformations
in x
Verformung inVerformung
der maßgebenden Verformung inErgebniskombination
maßgebenden der maßgebenden
in der Ergebniskombination Ergebniskombination
char. /quasi ständigchar. /quasi ständig in z
in y /quasi ständig
char.
in x in y
in x in x in x in y in y in yin z in z in z
Nachweis Rigid 88318.4000
Nachweis Rigid 88318.4000 Nachweis Rigid 88318.4000
Die maßgebende Beanspruchung resultiert aus der Einwirkung Wind
Nachweis Rigid 88318.4000
Die maßgebende Beanspruchung resultiert
Die aus der Einwirkung
maßgebende KLEDWind
= k./s.k,
Beanspruchung Nutzungsklasse
resultiert 1 -> kmod
aus der Einwirkung = 1,0
Wind
Proof of the DieRIGID connector
maßgebende Beanspruchung resultiert aus der Einwirkung Wind
KLED = k./s.k, Nutzungsklasse 1 -> KLED
kmod ==1,0
k./s.k, Materialsicherheitsbeiwert:
Nutzungsklasse 1 -> k mod = 1,0 γ = 1,3
Decisive stress situation
KLED = k./s.k, γdue
Materialsicherheitsbeiwert:
to wind forces
Nutzungsklasse 1 -> kmod = 1,0 m
m = 1,3Materialsicherheitsbeiwert: γm = 1,3
LDC=short/instantaneous
Materialsicherheitsbeiwert: γm = 1,3service class 1 -> kmod = 1,0
action,
Beanspruchung:Material partial safety-factor:
Tragfähigkeit:
Beanspruchung:
γm = 1,3 Nachweis:
Tragfähigkeit: Nachweis:
Beanspruchung:
NEd = 2,87 kNBeanspruchung:NRd =N31,4 kN * Tragfähigkeit:
1,0/1,3 = kN2,87 Tragfähigkeit:
N=Ed24,2 kN2,87/24,2 = 0,12 Nachweis:
<1,0
Nachweis:
NRd = 31,4 kN * 1,0/1,3 = 24,2 kN 2,87/24,2 = 0,12 <1,0
Ed = 2,87 kN N Rd = 31,4 kN * 1,0/1,3 = 24,2 kN 2,87/24,2 = 0,12 <1,0
VStresses: N = 2,87 kN VRd = 72,6 kN * 1,0/1,3
z,Ed = 1,72 kN Ed V=z,Ed
NRd = 31,4 =
kN * 1,72 kN
1,0/1,3 =
Bearing Vcapacity:
55,8 kN 24,2
1,72/55,8kN = 0,03 V =
2,87/24,2
<1,0
Rd 72,6
= kN
0,12* 1,0/1,3
<1,0 = 55,8
Proof: kN 1,72/55,8 = 0,03 <1,0
Vz,Ed = 1,72 kN Rd = 72,6 kN * 1,0/1,3 = 55,8 kN 1,72/55,8 = 0,03 <1,0
M = -2,34
NEd = 2,87 kN V
kNmz,Ed = 1,72 kN My,Rd = 6,5 kN * 1,0/1,3
V Rd = 72,6
M = kN
5,0= *
kN 1,0/1,3
-2,34 =
kNm 55,8
2,34/5,0 kN= 0,47 1,72/55,8
M
<1,0 = =
6,50,03
kN * <1,0
1,0/1,3 = 5,0 kN 2,34/5,0
< 1,0 = 0,47 <1,0
y,Ed My,Ed = -2,34 kNm NRd = 31,4
y,Ed kN= *6,51,0/1,3
My,Rd = 24,2
kN * 1,0/1,3 y,Rd
= 5,0kNkN 2,34/5,02,87/24,2 = 0,12
= 0,47 <1,0
My,Ed = -2,34 kNm My,Rd = 6,5 kN * 1,0/1,3 = 5,0 kN 2,34/5,0 = 0,47 <1,0
Vz,Ed = 1,72 kN VRd = 72,6 kN * 1,0/1,3 = 55,8 kN 1,72/55,8 = 0,03 < 1,0
My,Ed = -2,34 kNm My,Rd = 6,5 kN * 1,0/1,3 = 5,0 kN 2,34/5,0 = 0,47 < 1,0
Modelling of the RIGID joint 7
Fast, easy and
precisely to the best
solution
• Wood connectors
• Post bases
• Balcony/fence posts
• Tools / accessories
• Sound insulation for timber constructions
• always up to date with www.pitzl-connectors.com
We recommend our distribution partner:
Pitzl Metallbau GmbH & Co. KG Tel.: +49 (0) 8703 9346-0 Downloads, technical Need help? Contact to our
Siemensstraße 26 Fax: +49 (0) 8703 9346-55 Information, installation videos: competent employees:
DE-84051 Altheim, Germany info@pitzl-connectors.com www.pitzl-connectors.com +49 (0) 8703 9346-0
All rights reserved. Reproduction and publication - even in part - only with the permission of Pitzl Metallbau GmbH & Co. KG. Changes and errors excepted. Similar pictures. Date 05/2019.