0% found this document useful (0 votes)
439 views67 pages

High School Trigonometry Quiz

This document is a summary of a student's quiz on key concepts of circular functions, trigonometric identities, inverse trigonometric functions, and polar coordinate systems. The quiz contained 8 multiple choice questions testing the student's ability to determine coterminal angles, angles' quadrants, and converting between degree and radian measures of angles. The student answered all questions correctly within the allotted time and received full marks.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
439 views67 pages

High School Trigonometry Quiz

This document is a summary of a student's quiz on key concepts of circular functions, trigonometric identities, inverse trigonometric functions, and polar coordinate systems. The quiz contained 8 multiple choice questions testing the student's ability to determine coterminal angles, angles' quadrants, and converting between degree and radian measures of angles. The student answered all questions correctly within the allotted time and received full marks.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 67

WEEK 11 8/10

" ShortQuiz9 X a - QI -
J
C
~------===============================================,--------
i Secure I https://blended.amauonline.com/mod/quiz/attempt.php?attempt=19211842 0.*@1 0
• How to Virtual Unary Pml Sludenl Concern MARK !VAN NAROO ■
Oa shbo1ml SHS-GR11-15 PREC-111 Week 11 Key Concepb of Circular Functions Trigonomelrit Iden lilies, ln ve~e Tri9onome tric: Functions and Pol ar Coordinate System - Part 001 ShortOuiZ9

QUIZ NAVIGATION C-Jul>Ol\ 1 Determine two coterminal angles (one positive and one negative) for each angle Give your answer in degrees using the foDovting forma t ex. 34. -25

Finish attempt

Timelefl0:15:48
L
Answe r : 405, -315

Determine !he quadrant in which each angle kes The answer should be in the folowing formal ex_ Quadrant I

:.:~
M1rtedout,;,I
a.1 30 "

--
,00 Answer: OuadrantH
"Flag

C:lub0n 3 Determine the quadrant in winch each angle &es The answer should be m the folowmg format ex. Quadrant I

::.:::., d-336'

"""'M" Answer: Quadrant!


"'
l"fllg
"'""Dan
'9 x---'==============================================a=,--:_:--c-i ---
...1 ShortQuri' _' _ _ _ _
C i Secure I https://blended.amauonline.com/mod/quiz/attempt.php?attempt=19211842 El. * '2J 8
• How to Virtual Unary Pml Sludenl Coni::em MARK !VAN NARDO ■
SHS-GR11-15 PREC-111 Week 11 Key Concept$ of Circular Functions Trlgonomebic Identities, In ve rse Trigonometric Functions and Polar Coordinate System P;>irt 001 ShortOuiZ9

Determine th e quadrnnl m which each ;mgle ~es The answer should be in the fol owi n9 formal ell'.. Ouadr;,nt I
c. -132 " 50

Answer: Ouadrantm

a.a..oon5 Determine the qu;,dr;,111 m which e;,ch ;,119le Ues The ;,nswershould be in the fol owmg format ell'.. Qu;,dr;,nt I
b.2ss·
"""'
M ......

~ruc! Olll of
Answer: OuadrantlV
"'
I'"'•
.,H_

Findlhe;,n9leinro1di<1ns

'9 ShortQuri' _' _ _ _ _ x___'c==============================================a=,_-_ai___ _


-E- C i Secure I https://blended.amauonline.com/mod/quiz/attempt.php?attempt=19211842 El. * [§J 8

How lo Virtual Lilrary Post Sludenl Concem MARK !VAN NARDO ■


O.nhbo;,rd SHS-GR11-1S PREC-111 Week 11 Key Concepts of Circu!;,r Functions. Trigonomebic Identities, In verse Trigonometric Functions ;,nd Polar Coordinate System P;,rt 001 Short0uiz9

Answe r : 5

..-
~
Cl<titxx1 7
,. Findlhe ;,n11le inro1di;,ns.

G
~ ruc!Olll of

"'
.,H _
f' Flag

Answer: 1

-
o..= 8 Determ111e two coterminal angles (one p ositive ;>ind one negative) for each an11 le Give your answer 10 degrees usIn11 the fo~owin11 format: ell'._34, -25
Nol~

M~ outof
, oo
I'"'•
"'"-
Answer. 324, -396

Finishaltempl

■■
•• CJ . . r:::11~1
11=i1 L:M~ ll-?•1 ...
,
1
• ?;i ·•)>
1~32PM
1012012011
WEEK 12
Dn hc-oard • SHS -O'l:11 -1S PRE C-111 Wee~ 12: Key Coi,cepu ofC>!'Cular FwnellOl"<S Tngooorrun;; k!ennt'.Ei, lnvem1 Tng<l<"olN!toc: F1.rt'II01'5 ai,dPola r Coordlf\ate System - FanOJ2 S~onC.i.: 10

Smtedon TYe5di.y, 170etober2017, 1 ~2FM


QUIZ NAVIGATION

Comple1edon TY1!roay, 170ctober201i'. \ · ~ F M


r1meQken 7rrun•2Dsecs
Grade 10.00outol 10 00 (100~~)

=:va,.. ate fd panibll!) the soc tngonomelllC t.mc':Klns or tte 1nl ~umber If not possiba, answer w,:11 ·undemed

'= .:;

d c~(-i) = -1

., 5C:C(-i)" i,nd,...-..,.,;

: va!i,ate!hesJ11 e. cos.neandwgen:oft!:eiealr.umberW!rte · ll!'defined"tlll'ino1pos.ible

I •ln(-1f) = ·,2,2

2 ro{-Zf) = 212

l ~(-If) = 1

Cva.1.. at;: ihe ~onome::ric function t. Q Jl5 J)='.riod as a.r a d.


c11mi:1: 1: sin 5r
r.t,: rkt CC.O.t\1:1'
, c,
Answe,r: 0

ai:~sr;!::in 4 se th-= value of:he trigonometric fu:11:tion to evaluat': tte dic3'ted fu ctions.
C.:,.mi;l: t~
sin t = H3
,.., ,: rkt CC.OJIC'
•OJ
i. c.sc(-t,
V R.:J:
Answer: -3

S.ta:e tfle q.u 3dra ,1 in vmtcil e lies:


Su: i:f >O a d '.3n 8< 0

Answer: Qua<lrant U

WEEK 13
Dashboard SHS-GR11 -1S PREC-111
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome iric Identities; Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Learning Activity 11

Find the period and amplitude .


-

Select one:
a.. Period: n, Amplitude: 3

b. Period: 2n,. Amplitude: a


Dashboard SHS-GR11 -1S PREC-111
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome iric Identities; Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Short Quiz 11

Find the period and amplitude.

Select one:
a.. Period: 4n, Amplitude: 5/2

b. Period: 2n,. Amplitude: a


Dashboard SHS-GR11 -1S PREC-111
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome iric Identities; Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Learning Activity 11

b.

A= -4

d= 4
Dashboard SHS-GR11 -1S PREC-11 1
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome iric Identities; Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Short Quiz 11

Mark 1.00 out of 1.00


1

Flag question

Find the p,eriod and amplitude.

y= -2 sin x

Select one:
a. Period: 3n, Amplitude: 1/2
b. Period. 1,.Amplitude: 1/ 4
,c. Period: n/.5, .Amplitude: 3
d. Period: 2n, Amplitude: 3
Dashboard SHS-GR11 -1S PREC-111
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome iric Identities; Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Short Quiz 11

Mark 1.00 out of 1.00


Flag question

Find the period and amplitude.

y- 2
= -cos-.
2 3

Select one:
a.. Period: 2n, AmpUtude: 3
b. Period: n/5, Amplitude: 3
c. Period: 3~ Amplitude: 1/2

d. Period. 1, Amplitude. l/4


Dashboard SHS-GR11 -1S PREC-111
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome iric Identities; Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Learning Activity 11

Find a and d for the funcUon f(x) -


a cos x + d such that the graph of f
:m atches the figure.

a.

.A= 2

d= 1
Dashboard SHS-GR11 -1S PREC-111
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome 1ric Identities, Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Short Quiz 11

Mark 1;.00 out of 1.00


Flag ,question

Find the period and ampJitude-


Y = 3sin 1.0x

Select one::
a. P.eriod: 1, Am:plitude:. 1/ 4

b. Period: 3n, .Amplitude: 1/2


,c. Period: 2tt Amplitude..3
d. Period: n/5, Amplitude. 8

WEEK 14
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2

Find a form ula fo r the sum of the


fi rst n terms of t he sequenoe.

l 1 1
' .-
12 ,,-
2 J•-0.

Select one:
n
a. sn -- -
2(n --)

. n
b. Sn= - -
(n-1)

, n
c. Sn= - -
2(11 )

n
d. Sn = - -
n+l
Dashboard SHS-GR11-1 S PREC-111
Week 14: Long Test Long Quiz 2

Use the Binomial Theorem to


expand and simplify the
.
expression .
(3a -4b) 5

Select one·
a. 243a5 - 1·620a4b + 4320a3b2 -
5760a2b8 + 3840ab4 - 1024b5

b. 243a5 - 1620a2b2 + 4320a3b2 +


1

5760a2 b8 + 3840ab3 + 1024b5

,c. 243a5 + 162Oa4b + 432Da2b3 -


5760ab4 + 3840ab4 + 1024b5

d. 243a5 + 16,20a4 b - 4320a3b2 -


57 60a2b8 + 8840ab4 - 1024b5
1

Question 14
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2

Mark 2.00 out of 2.00


Flag question

Determ ine two coterminal ang les


(one positive and one negative) for
each ang:le.

Select one·
a.
b.

d.
Dashboard SHS-GR11-1 S PREC-111
Week 14: Long Test Long Quiz 2
Complete
Mark 2. 00 out of 2. 00

Use the Binomial Theorem to


expand and srmplify the
express:1on.
(a+ 6) 4

Select one:
a. a 4 + 12a3 + 16a2 + 64a + 12
b. a4 + 4a3 + 36a2 ·+ 144a + 2·16
c. a4 + 24a 3 + 216a 2 + 864a + 1296
d. a4 + 24a3 + 36a2 + 212a + 1290
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2

Deter,m ine two cotermina l ang les


(one posit ive and one nega,tive) for
each angle.

Select one:
·· · ) 17'n; !___
a.. (. u , 6 , 6

b· . .. · 7rc 2 trr
tl ,- - -
6 I 6

. . 17 7,
,c. u ,- - -
6 ' 6

.•..) -
,·d. . u. .15ir 7
,-
6, ,6

Ques· ion 8
Dashboard SHS-GR11-1 S PREC-111
Week 14: Long Test Long Quiz 2
Mark 3.00 out of 3.00
Fl ag ,question

Find the 1:ength of the arc on a


circ le of radius intercepted by a
central angle '8.
Radius: 3 meters Central
Angle.· 1 rad ian

Answer:
3 meters

Question 10
Gompte e

Mark 1;.00 out of 1.00


Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2

Question 10
Complete
Mark 1.00 out of 1.00

Flag question

Find the sum using the form ulas


for the sums of powers of
[ntegers.

- :- n21
Answer·
91

Question 11
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2

Mark 2.00 out of 2.00

Flag question

Ca Icu late the binomial· coefficient.


20C1s

Answer:
15,5 04

Ques:ion ·7
Gomp:lete
Mark 2.00 out of 2.00

Flag question
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2

Calculate the binomial. coefficient.


(85)

Answer.
56

Question 5
Complete

Mark 2.00 out of 2.00

D
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2

Question 3
Complete
Mark 1:.00 out O'f 1.00

Find the sum using the formu las


for the sums of powers of
integers.

Answer·
979
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
G0ll1pi1ete

Mark 2.00 out of 2.00

Flag question

Ca Icu late the binomial· coefficient.


(10098)

Answer:
4 ,950

Ques:jon 12
Gompilete
Mark 2.00 out of 2.00

Flag question
Dashboard SHS-GR11-1 S PREC-111
Week 14: Long Test Long Quiz 2

Use the Binomial Theorem to


expand and sf mplify the
express1 on.

Select one:
a..
1
.rs

b.
1 lOy Sy3 , yl 1,o y
-I -X + yS
xS x• 2X X

1 10)' 5,y y3 Sy"


s - .+ yS
z4 X 2%' X
Dashboard SHS-GR11-1 S PREC-111
Week 14: Long Test Long Quiz 2

Determ ine two coterminal ang les


(one positive and one negative) for
each a ngle .

.., fJ-
u. = -2 1t

Select one:

. ") 2 57r
. 23:n
b. 1( ,U - - -
,2 ' 12

. 36 - 23 -
,c · ll -- - - -
' 2 2
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
\. IOOloJ

Question 1.
Complete
Mark 2.00 out of 2.00

Find the tength of the arc on a


circle of radius intercepted by a
central angle 8 1

Radius: 15 inches Central


.Angle: 1ao 0

Answer~
47.12 inches
WEEK 15
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Trigonometric dentities, Inverse Trigonometric Functions
and Polar Coordinate System - Part 005
Short Quiz 13

Find t he exact value o f the


trigonometric function given that
sin u = _!__
13
and cos 11. = - 3 .
5
(Both are in Quad rant IL) Note that
answers in fractions must be
entered like so: 4/5, 1/2, 3/ 4, -
(5/10)

cos (u + v)

Answer.
1·6/65
WEEK 16
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Trigonometric !Identities, Inverse Trigonometric Functions
Polar Coordinate System - Part 005
Learn 'ng Activity 13

Mark 1..00 out of 1.00


Flag quest ion

Find the exact value of each


expression.

a ..,CO' (n_;_ n)
-
.3 .

Select one:
l
a.

b.

C.
4G ,111ll 10:22 AM ~ O' 4G1 40% •I ■I

How to Virtual Library Post Student Concern

Dashboard SHS-GRl -1S PREC-1111


Week 16: Key Concepts of Circular Functions,
Tri,g onometric !Identities, Inverse Trigonometric Functions
Polar Coordinate System - Part 005
Learning Activity 13

Find the exact value of the


trigonometrlc function given that
sin u = - 2-
2sand cos v = - ---s
. (Both u and v are in Quadrant Ill.)
Note that answers in fractions
must be entered like so: 4/5, 1/2,.
3/4, -(5/10)

tan (u-v)

Answer.
-(44/117)

Fini~h rPvi,P w
Dashboard SHS-GR11-1S PREC-111
Week 16: Key Concepts of Circular Functions,
Tri,g onometric Identities; Inverse Trigonometric Functions
and Polar Coordinate Syst em - Part 005
Short Quiz 13

Fjnd the exact value of the


trigono,metr1c function given that
smu = -s and cos v = - -3 .
3 S
(Both are in Quadrant IL) Note that
answers in fract ions must be
entered like so: 4/5, 1/2, 3/4,. -
(5/1 O)

sec (v- u)

Answer:
65/56
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Tri,g onometric !Identities; Inverse Trigonometric Functions
and Polar Coordinate Syst em - Part 005
Short Quiz 13

Find the exact value of the sine of


the angle by using a sum or
difference formu1a..
105° = 60° + 45°

Select one:
a. sin 105° =

b. sin 105° =

c. sin 1:05° =

d. sin l05° =
i 1 lended.amauonline.co!m /r II]

How to Virtual Library · Post Student Concern

Dashboard SHS-GR11 -1S PREC-1111


Week 16: Key Concepts of Circular Functions,
Trigonometric Identities., Inverse Trigonometric Functions
Polar Coordinate System - Part 005
Learning Activity 13

Question 1
Complete

Mark 1.00 out of 1.00

Write the expression as the sine,


cosine, or tangent of an ang le.

0
Answer: tan 239

Question 2
4G ,11lll 10:22 AM ~ • 4G1 40% •I ■I

How to Virtual Library - Post Student Concern

Dashboard SHS-GR11 -1S PREC-111


Week 16: Key Concepts of crrcular Functions,
Trigonometric !Identities, Inverse Trigonometric Functions
Polar Coordinate System - Part 005
Learn 'ng Activity 13
MarK I . OU out Of I . OU

Flag question

Find the exact value of each


expression .
.
a sin 1
1n
- .
rr,. )
3
b· 1.n7-· :ir
6 6

Select one:

a. l

b.. .

e.
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Tri,g onometric Identities, Inverse Trigonometric Functions
and Polar Coordinate System - Part 005
Short Quiz 13

Find the exact value of the


trigonometric function given that
.
sm u = -s an d cos v. = - -3 .
13 - 5
(Both are in Quadrant It) Note that
ans·w ers in fractions must be
entered like so: 4/5, 1/2, 3/4, -
(5/10)

tan (u + v)

Answer.
-(63/16)
Dashboard SHS-GR11-1S PREC-111
Week 16: Key Concepts of Circular Functions,
Tri,g onometric Identities, Inverse Trigonometric Functions
and Polar Coordinate Syst em - Part 005
Short Quiz 13

Find the exact value of the tangent


of the angle by using a sum or
difference formula .
285°

Select one:
a. tan 285° =·

b. tan 285° =

d. tan 285° =
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Trigonometric !Identities, Inverse Trigonometric Functions
Polar Coordinate System - Part 005
Learn 'ng Activity 13
comp1,ete
Mark 1.00 out of 1.00

Find the exact value of the


trigonometric functi:on given that
. u
sin = ,_ -2S, an d· cos v = - -S,
. (Both u and v are in Quadrant 111.)
Note that answers in fractions
must be entered like so: 4/5, 1/2,
3/4, -(5/1 O)

sec (u + v)

Answer.
5/3
Dashboard SHS-GR11-1 S PREC-111
Week 17: Key Concepts of Cfrcular Functions. Trigonometric Identities. Inverse Trigonometric
Functions, and Pola r Coord inate System• Part 006
Learning Activ ity 14

Quesfion 3 So!ve each equation for exact solutions over the interval [O.
complete 2n].
Mark 1.00 oot of
1.00 2sinx + 3 = 4
Y Fla,;i
quesllon Select one:
a• { -ll -57-}
,6 ; ,6

b. (!!:}
2

c. £3", Tit}
4 4

d. (i, 53,r}

Quest1on 4 Solve each equation for exact solutions over the interval [O,
Complete 2n).
Mane 1.00 oot of
U)O sinx + 2 =3
'f' Flag
queslion Select one:

a, { -31!' . -7rr}
. 4 ' 4

Finish review

u -

WEEK 17 <l O
Dashboard SHS-GR11-1 S PREC-111
\ilfoek 17: Key Concepts of Circular Functions, Trigonometric Identities, Inverse Trig onometric
:Functions., a 11d Pola r Coord inate System • Part 006
Learning Activ ity 14

Q1:1estTon 1' So ve each equation for exact solutions over the i11t1:.rval [O,
Compr@ie 2n].
Marl<: 2.00 oo of
2.00
2 sec x + 1 = sec x + 3
V Fla,;i
question Select one:

a. (!:.J
2

b. (!E, 5" }
3 3
1f Sn
c. [:;' 6}
d. {sn:, 111}
4 4

Question 2 So ve each equatron for exact solutions over the interval [O,
Comprete 2nl
Malik 1.00 out of
1.00 2cotx + 1 = - 1
l" Flag
question Select one:

c. (i's;}
d. {3 rr -, 11}
4 ' 4

Question 3 So ve each equatton for exact soluitjons over the interval [O,
Comprere 2R].
Mai 1.00 out of
1 ,00 Zsinx + 3 =4
Q1:1estTon 5 Solve the equation forexac solutions over the i!"lterval (0,
Compr.ete 2n].
Mark 1.00 out of
1.00 cot3x = {3
'f' Flag
que-s1ion Select one:

1r 7'" l31r 19:n- 2 7r 31 rr}


a.
{
"ii· 18· 18 LB'18.18

Question 6 Give all exact solutions overthe interval [0°, 360,.


Comprete

Mark 1.00 Oil of


sin 0 - sin 20 =O
1.00
Select one;
'f" Fla11
question a.
22.5° + 360° n, 112.5° + 360° n, 202.5° +360° n, 292.5 ° +
b.
11.8° + 360° n, 78.2° + 360° n, 191.8° + 360° n, 2ss.2° + ~
C.

30° + 360° n, 90° + 360° n, 1500 + 360° n, 210° + 360° n, :


where n i, s any Integer.
d.
0° + 360° n, 60° + 360° n, 180° + 360°, 300° + 360° n, whi
G Edimar Agcao1\1 Costates and Roschelle Cons!ant1110 asked to Join ANSWER'S.

Que~ton 7 Give all exact solutions over the interval ;t0°, 360'11.
Comptete
Mark 1.00 out of
4 cos 28 =8 sin fJ cos fJ
1.00
Select one:
"f'Flag
question a.
30° + 360° n, 90° + 360° n, 1500 + 360° n, 210° + 360° n, :
where n fs any integer.
b.
0° + 360° 11, 60° + 360° n, 180° + 360°, 300° + 360° n, whi
c.
11.8° ... 360iJ n, 78.2° + 360° n, 191.8° + 360° n, 258.2° + ~
d.
22.5° + 360° n, 112.5°' + 360° n, 202 .5° +360° n, 292.5° +

Qu~~tlon 8 Solve the equation for -exact solutrons over1he interval fO,
Comprete 21t}.
Ma~ 0.00 011 of
1.00 sin 3x =0
'V Flag
question Select one:

a. I :!!.. 11r l 7r 197T 2 7T ~ }


1 ' 18' I 8' 18 ' 18

Give all exact solutions over the interval [0°. 360°1.


. .
<J O □
fJ i;J G @ ~ @ • Q Q • All All ■ 1 o:52

Questlon '9 Give all exact solutions over1he interval ro0, 3600].
COmJ)let~

Mark 1.00 out of


cos 0 = sin 2 !2
1.00
'f f lag, Select on:e:
<i,ues ion
a.
60° + 360° n, 300° + 360° n, where n is any integer.
b.
70.5° + 360° n, 289.5° + 360° n, where n Is any integer
c.
0° + 360° n, 30° + 360°' n, 150° + 360° n, 1,80° + 360° n, wt
d.
45° + 360° n, 90° + 360° n, 225° + 360° n, 270° + 360° n, v.

Question 10 Give all exact solutions over the interval ro0• 3600].
Co111Pl~e
Mer 0.00 ol!I of
2 - sin 2 0 = 4 sin 2 0
1.00
Sel,ect one:
'f FJa9
question a.
o0 + 360° n; 60° + 360° n, 180° + 360°, 300° + 360° n; whe
b.
11.8° -t 360° n, 78.2° 4 360° n; 191.8° + 360° n, 258.2° + 3 1
c.
30° + 360° n, 90° + 360° n, 150° + 360° n, 210° + 360° n, 2
where n is any integer.
d.
22.5° + 360° n, 112.5° + 3-60° n,. 202.5° +360° n, 292.5° + 3

Finish review

Finish ireview
WEEK 18
j i rc ShortQmz15 X f (2)ANSW£R S x --- ~ I

~ C i Secure I https. l blendedamauonlmecom mod/qu1z/reviewphp?attempt 18440012 * l


..
How to Virtual Library Post Student concern
-~
JOHN CARLOS MONSERATE ..~ '.

Dashboard SHS.GR11-1S PREC -111 Week 18: Key Concepts ofCircu!ar Fune lions, Trigonometric Identities, Inverse Trigonometric Functions, and Polar Coordinate Sy stem Part 007 ShortOUIZ 15

b.

(o~) (o-~)
. 6 '
'
' 6

'
(./2,8.64),(- ./2, - 0.78).

• d.
I
'
(2 ✓2. 1owH-2 ✓2.1.8s)

i l l r ( ShortQui.:15 X f {2)ANSWfRS x .....~ I

~ C i Secure I httpsJ blendedamauonhnecom mod/qu1z/reviewphp1attempt=:cl8440012 * !

.
Dashboard
How to

SHS-GR11-1S
Virtual Library

PREC-111
Post Student Concern

Week 18_ Key Concepts of Circular Functions, Trigonometric Identities, Inverse Trigonometric Functions, and Polar Coordinate system Part 007 ShortOuiz 15
·-
JOHN CARLOS MONSERATE ~ •

Oues110n 8 Plot the point giVen in polar coordinates and find two additional polar representations of the point, using -2n c: e < 2n
Complete
(2"2,4.71)
M~r1< 1 OOovtof
,oo
Select one
l'Fla9
question

b.

I
.. ~( ShortQui.,15 X f (2)ANSW£R S x -- ~

~ C i Secure I https./ blendedamauonlmecom mod/qurz/reviewphp?attempt 18440012 * l


..
How to Virtual Library Post Student concern
-~
JOHN CARLOS MONSERATE , ~ '.

Dashboard SHS.GR11-1S PREC -111 Week 18: Key Concepts of Circular Functions, Trigonometric Identities, Inverse Trigonometric Functions. and Polar Coordinate System Part 007 ShortOUIZ 15

Find a polar equation of the conic with 1ts focus at the pole
Complete
Conic: Ellipse. Vertex or vertices: (2. 0), ( 10, TT)
Mar1< 1 00outof

"'
'f'Flag
Select one
,0
que,tion • a. r - - -
J+2cos9

b. T-' 1+2cos8 '


C. T-' 1- ~ s 8

d. r--'-
1-sinB

e . T-' 2+s~nfJ

I
Quesb00 8 Plot the point gr.en in polar coordin ates and find two additional polar represen tations of the point using -2TT < 8 < 2TT

"°"""'"
Mar1< 1 00outof
(2'2,4.71)

Select one
'f'Flag
~ue•tion

~i (-•-~)
( 4' 3 . ' 3

w ~( ShortQui.,15 X f (2)A N SWfR S x ---~ I

Dashboard
C i Secure

How to
I https. l blendedamauonhnecom

SHS-GR11-1S
Virtual Library

PREC-111
mod/qu1z/reviewphp?attempt=:c l8440012

Post Student concern

Week 18. Key Concepts of Circular Functions, Trigonometric Identities, Inverse Tngonomellic Functions, and Polar coordinate s ystem Part 007
-
JOHN CARLOS MONSERATE , ~ '

Short Quiz 15
* !

auestKln 6 Find a polar equation of the conic with its focus at the pole
Complete
Conie• ParaOOla, Vertex or vertices (5, TT)
Mar1< 1 00001of
, oo
Select one:
l'Flag
questiorl a. r -3+2cosli
-"-

b. T = 1-s~nli
c. r = - ' -
1+2cosli

d r= - ' -
. 2+slnfJ

,0
• e . T-' 1-cos8

'

I
t. r= 1-cos-8

Quesoon 7 Find a polar equation of the conic with its focus at the pole.
Complete
Conic : Ellipse, Vertex or vertices (2, 0), (10, TT)
Mal1< 1.00 outof
, oo
Select one
'f'Flag
,0
question
• a. T = 3+2cos9

b r= - '-
. 1+2cos8

c. r= t-~s9

d. r = - ' -
1-sm8

e. T = 2+s~n9

t.r=-"-
.. ~( ShortQui.,15 X f (2)ANSW£R S x -- ~

~ C i Secure I https./ blendedamauonlmecom mod/qurz/reviewphp?attempt 18440012 * l


..
How to Virtual Library Post Student concern
-~
JOHN CARLOS MONSERATE , ~ '.

Dashboard SHS.GR11-1S PREC -111 Week 18: Key Concepts of Circular Fune lions. Trigonometric Identities, Inverse Trigonometric Functions, and Polar Coordinate System Part 007 ShortOUIZ 15

auestion 5 Find a polar equation of the conic with its focus at the pole
Complete
Conk: Hyperbola Eccentrieity: e"' 2, Directrix- x"' 1
Ma~ 1 D00<11ol
, oo
l"Flag
question
Select one

,1 _ r
.
= l+2cos8
b. r= - ' -
1-si nB

c. r = - ' -
t-cos 8

I
~. r =-"-
1-cose

tr=-'-
. 1+2 cos 8

Ounc.on 6 Find a polar equat10n of the conic with its focus at the pole
Complete
Come: Parabola, Vertex or vertices (5, rr)
M1~ 1 D0outof
, oo
Select one:
l"Flag
question
a. r = l+21:os 8
b. r = l-s~n8
c. r = - ' -
1+2cos 6

e. r = t - ~:se
t.r=-'-
w ~( ShortQui.,15 X f (2)A N SWfR S x ---~ I

Dashboard
C i Secure

How to
I https. l blendedamauonhnecom

SHS-GR11-1S
Virtual Library

PREC-111
mod/qu1z/reviewphp?attempt=:c l8440012

Post Student concern

Week 18. Key Concepts of Circu!ar Functions, Trigonometric Identities, Inverse Tngonometrie Functions, and Polar coordinate s ystem Part 007
-
JOHN CARLOS MONSERATE , ~ '

Short Quiz 15
* !

Ouesc.on 4 Find a polar equat10n of the conic with its focus at the pole
Complete
Come: Parabola, Eccentricity: e"' 1 Directrix: x"' -1
Ma~ 1 000<11of
, oo
Select one

"'"'
question a. r=-'°-
t-cos8

b. r = - ' - ' -
H2cos 8
,
c. r

f. T
.
= 1+2cos8
r= - ' -

r=-'-

=
2+sln8

1-cos e

l-;n8
I
Ouesoon 5 Find a polar equat10n or the conic with 1ts focus at the pole
Complete
Conk Hyperbola Eccentr1eIty e: 2, Directnx: x: 1

Select one·
l"Flag
qoen10n 3. r=-"-
. l +2cos8

b. r = - ' -
1-si nB

c. 7 = 1-c~s8
d. r '
= 2+sln8
.. ~( ShortQui.,15 X f (2)ANSW£R S x -- ~

~ C i Secure I https./ blendedamauonlmecom mod/qurz/reviewphp?attempt 18440012 * l


..
How to Virtual Library Post Student concern
-~
JOHN CARLOS MONSERATE , ~ '.

Dashboard SHS.GR11 -1S PREC -111 Week 18: Key Concepts of Circular Functions, Trigonometric Identities, Inverse Trigonometric Functions. and Polar Coordinate System Part 007 ShortOUIZ 15

Ouesoon 2 convert the polar equation to rectangular form


Complete
Mar1< 1 00outof
r2 = cos8
, oo
Select one:
l'Flao

I
quutlon a..X 2 +4y-4" 0
b. 4x 2 - sy 2 -3sy- 36" o

c. (x2 + y2)2 "' sx2y - Zyl


d.y '"4
• e.x2 +y2- xm:o

Ouesoon 3 Convert the polar equation to rectangular form


Complete
T ; -'-
Mar1< 1 00ootof l+si n9
, oo
l'Flllo Select one:
quesuon a.. (x2 + y2)2 ,, sx2y _ 2yl

b. 4x 2 - sy2-3sy-36"' o
• c. X2 +4y-4"' 0
d. x2+y2-xm ,,,o

e.y =4

Ouesoon 4 Find a polar equation of the conic with 1ts focus at the pole
Complete
Conic: Parabola, Eccen!Jicity: e"' 1, Directrtx:: x"' .1
Mar1<100outof
, oo
Select one
l'FlaO
question a. r : - " -
1-cos8

iii ShortQui.,15 X f S.,iugamMsa<JMyou x --- ~ I

~ X i Secure I https. l blendedamauonhnecom mod/qu1z/reviewphp?attempt=:cl8440012 * !

·-
----
How to Virtual Library Post Student concern JOHN CARLOS MONSERATE , ~ '
.
Dashboard SHS-GR11-1S PREC-111 Week 18. Key Concepts ofCircu!ar Functions, Trigonometric Identities, Inverse Tngonomellic Functions, and Polar coordinate system Part 007 Short Quiz 15

FiniSh review Ouesoon 1 PIOt the point given in polar coordinates and find two additional polar representations of the point, using -2TT < e < 2TT
eoo,,,...
(4, - i)
Mart 1 000\llof

l'FIIIO Select one


question

1
(,¥),(-,.-¥)

b.

(✓2,8.64).(- ✓2, - 0.78)


Find a polar equation of the conic with its focus at the pole.
Conic: Ellipse. Vertex or vertices: (2, 0), (10, rr)

Select one:

a. r ~ i+z:o,s
b. '-0-
r= -J-+Jco.sS
t
c.r • - -.-
1+.in ,

d. r;_t_O_
t- cos8

e . r • -1-
1- coss
2
f. r • - -. -
1- 11nfJ

Convert the rectangular ""'ation to polar lorm Assume a > 0


3x - y+2 = 0

Select ooe:
•. r 2 a 16secBcscBM32cK28
b. r a 2acos8
c. r =a
2
d. r • ---- --
Jcos f-·sin 6
4
e. r - - - or - - •-
1- ros I ucos 9

Convert the polar equaboo to rectangular form.


r =4

Select ooe
a. X' • v' • 16
b. X2 ♦ y1 + 2y■O

c• ..f!.x +y=O

d. X2 ty' - 4y •0

Fm a polar equation ol the eonoc v.th Its locus at the pole.


Conic Parabola Eccentricity: e = 1 Directrix: x = -t

Select 008
a. r • -1-
J. ♦ tln f

b. r•--'0-
J•lcotl
2
c. r • - - -
1+zcos1
2
d. r • --
1- 11"'

e. r• -1-
1- c0t:I

f. r = ---1L.
I-COIi

Solve each equation lor exact solutions over the inleMI [o". 360°1
(cot8 - "3)(2 si118 + "3) = 0
Select ooe.
a. {90°, 21 o0, 330"}
b. {300. 210•, 2400, 300o}
c. {15°, 130°, 430"}
d. {0°, 45°, 22s0}
e. {30°, 200°, 310"}
Solve each equation for exact solutions over the intervaJ (00, 360°].
(tan 9 - l)(cos9 - 1) = 0

Select one:
a. {30°, 210•, 240°, 30o'}
b. 1so•, 210°, 330•>
c. {o', 45°, 225°}
d . {30°, 200°, 310°)
e. 11s•, 130•, 430°}

Solve lhe equahon for exact scM,ons over lhe interval (0 2TT)

tan 4x • 0

Select one

0
• • 3• 11 s.. 3,r 711}
•. { • 4 ' 2 ' 4 ' ' 4 ' 2' 4

G.ve all exact solutions over lhe ,nler,al (0 360 J


1 - sin8 = cos 29
Selecl one:
•· 7O.S0 + 360° n, 289.S0 + 360° n, where n Is any lntecer
b. 00 + 360° n, 30' + 360' n, 150° + 360" n, 1so• + 360° n, where n Is a ny Integer.

c. 60° + 360" n, 300° + 360° n, where n Is any integer.


d. 45° + 360" n, 90• + 360° n, 22s• + 360' n, 270° + 360° n, where n is any integer.

Convert lhe polar equal<cn lo reelangular fcnn.

r - 2 sin 36

Selecl one
a. (x2 + y2)' • 6x2y -'tof'
b. X2 + 4y- 4 • 0
c.y=4

d. X2 •r -•"' = 0
e. 4x2 - 5,r - 36y - 36 = o

Convert lhe polar equation lo reclangular form


r = 4csc8
Select one
a.X2 +y'- x"'•0
b. X' • 4y - 4 = 0
c. (x2 • y')2 • 6x'y -2v'
d. y =4
e. 4x2 -5y'-36y-36 = O
Plot the point given in polar coordinates and find two additionaJpolar representations of the poinl using -2n < 8 < 2TT.
(2 ./2, 4.71)

Select one:

a.


( ./i.M4), (- ./i. - 0,78)

'
b.

..
(2./i. 10.9!1~(-2./i.7.85)

ldenlofy lhe conic of r • -2- eo1•


•-

Answer: e l ipse

Conver1 the polar equation to rectangular form.


6
r = 2- h l n 8'

:select c,ne:
a. (x2 • y2 )2 = 6x2y - 2y'
b. X2 + 4y - 4 = 0
c. p4
d . 4X2 -5y 2 - 36y - .l6 = 0

e. x2 + y2 -x2i-s = o

Solve lhe equabon lot exact solutions o,,,, lhe interval {O 2rr].

cos2r =_.!.2
~ed ooe.

b. { ,r .!..!.! 13,r 23,r}


12· 12' 12 ' 12

f • ,r 31r Sir 3tr 7•}


e. l O 7·T·7·"· 4 • 2 · ,
Solve the equation for exact solutions over the interJal (0. 2rr) .

./2 cos 2x = -1
Setect one:

a. {3,r 5,r ~ 13,r}


8' 8' 8 ' 8

d { ,r 7,r 13,r 19,r 25,r 31,r}


. 18' 18' 18 . 18' 18' 18

Find the exact value of lhe cosine of the angle by using a sum Of difference formula
195' = 225' - 30'

Select one

a. cos 195° = -:? (./:1 I)

b. cos 195° = ./z ( I - .J:1)


4

c. cos 195°=- ./2{./J + 1)


4

d. cos 195° = ,/2( .fi + 1)


4
Solve the equation for exact solutions over the inteival (0. 2rr].

cot 3x = ,/3

Selecl one:

a. {3,r 5,r !!_! 13,r}


8' 8' 8 ' 8

b { ,r 7,r 13,r 19,r 25,r 31,r}


18' 18' 18' 18 . 18' 18

d { ff 5,r 13,r 17,r}


iYii·12·12
,r 7,r 13,r 19,r 25,r 3 I"}
•. { 18'J8'18'18'18' t t
Give all exact solutions over the interval (0°, 360°).

sin 6 - s in 26 =0
Select one:

•· o• + 360° n, 60° + 360° n, 180° + 360°, 300° + 360° n, where n Is any Integer.
b. 22.5° + 360° n, 11 2.5° + 360" n, 202.5° +360° n, 292.5° + 360" n, where n is any integer.
c. 30° + 360° n, 90° + 360° n, 150° + 360° n, 210° + 360° n, 270° + 360° n, 330° + 360° n,
where n is any integer.

d. 11.8° + 360° n, 78.2° + 360° n, 191.8° + 360° n, 258.2° + 360" n, where n Is any integer.

Give all excel solutions ever the inlerval (0°, 360°'].


cos8 = sln 1 !2

Select one:
a. 10.S0 + 3603 n, 2&9.S0 + 360' n, where n is ;any integer

b. 45' + 360° n. 90° + 360° n. 22s• + 360° n. 210• + 360' n. where n isanv Integer.
c. o0 +- 350• n, 30° + 360c n, 1so0 + 360° n, 1ao• + 360° n, where n 1s any lnteser.
d. 00° + 3G0° n, 300° -t 3G0~ n , where n i.si)ny integer.

Give all ex~ t solulion-s O\'er h e nterval (O', 3€0°)


2 cos• 20 = 1 - co• 20

•. 30° + 360" n. 90° + 360° n, 150° - 360' n, 210• • 360' n, 270° • 360' n, 330° • 360' n,
where n is any integer.
b. o0 -1- 360c n, 6<:f> + 360° n, 18~ + 360°, 300° -1- 360° n, where n l!i onv Jn.tcger.

c. 11.s• + 360° n, 78.2' + 360' n. 191.8° + 360" n, 258.2° + 360° n, where n ls any Integer.
a. zz.s• - 360' n, 112.5° + 360° n, 202.5' +360' n, 292.5° + 360° n, where n Is any integer.

Determine all solutions of each equation in radians (for x) or degrees (for 8) to the nearest tenth as appropriate.

3sin 2 x - s inx-l =0
~eel one:
a ••9 + 2nn, 2.:3 + 2nTT= 3.6 + 2nn, 5.8 + 2nn, where n is any integer

b. !!: + 2nn, ~ + n, ~ + 2nn, ~ + 2nn where n is any integer


3 l 3 l

c. !!: + 2nn, !!!: + 2mr, ~ + 2nn, !!!: + 2mr where n is any integer
3 l 3 3
d. 1 + n , 2.3 + 2nn, 3.3 . 2nn, 5.8 + 2nrr= where n is any in1eger

•· i + 2nn, ir + 2nn, ¥- + 2nir, where n Is any Integer


Solve the equation for exact solutions over the inteival (0, 2rr).

2v'3sin2x = ,/J

Select one:

a. {37,-8' 5w8. !.!..:!!'


8 . 8
131r}

d { 1r 71r 13.,, 1971' 25,r 311r}


. 18' 18' 18' 18' 18 ' 18

Conver1 the po:Jar equation to rectangular form.

r 2 =cos B

Select one:
a. X2 + 4y - 4 = 0
b. (x2 • y2 )' = 6x2y-2y'
c. y = 4
d. 4x2 - 5y2 - 36y - 36 = 0
e. X2 + y2 - x21-s = o

Comer1 the rectangul ar equation to polar form. Assume a > 0.


f - 3x - 16 = O

Select one:
a. r= 2acos 8
b. r - -2
lcosi- s:in9
c. r =a
d. r 2 = 16sec 8 csc 8 =32csc2 8
4
e. r = -1- cos9
- or - -ltcos9
•-

Find the exact value of the trigonometric function given that sin 1l = i, and cos v = - ! . 180th are in Quadrant IL) Note that answers in fractions must be ente·ed like so: 415. 1,'2,
13 S
3/4. -{5110)

sin (u+v)

Answer: -{63/65)

Convert Ile polar equation to rectangular form

-2 -9
r =1uln

Select one:
a. (x2 • y')' = 6x'y - 1y'
b. 4x2 - 5y2 - 36y - 36 = 0
c. X2 + 4y - 4 = 0
d. X2 + y2 - x2" = O

e. y=4
1/lhite the expression as the sine, cosine. or tangent of an angle.
u n2x+ tan .:r
1-tan2x t anx

Answer: tan 3x

Find the e>:act value of the cosine oflhe ang.e by using a sum or difference forn1ula
195' = 225' . 30'

Select one

a. cos195°= -12(, _ JJ)


4

b. cos 195°= - -l/(JJ - 1)

c. cos195°= - ✓2(✓3 + 1)
4

d. cos 195'= ✓2( ✓3 + 1)


4

Firn.J d µ l ld l t::\1Ud iu11 u f Ult: 1.,'\llli(.; wilh ii:::; ru,i,;u:::; a l U1t: !Joi'=,

Conic: Parabola, Vertex or vertices: (5, rr)

Select ore:
1
ca. r • - -
H•in,
,.
b , r = l♦2<o.s8

d . r:. - 1-0 -
t - t0f8
2
e. r~ i+2<o•8

2
f. r • - -. -
1 - 11118

GI\e all exac1scdu1Ions , ver the Irteiva lt.:0, JO:f i


sll1 zo = z cos• o

Sclcc: ooc:
a, 70.S' + 3603 n. 289.S0 + 360a n, where n is ~n·, inteeer

h o0 + 360c n, 30n+ 360' r,, :tSOO + 36<>° n, 180°+ 360° n 1 where ri iso,ny lnttger.
11 1
c, 60 -t 35d' 11, 300' + 360 n, where n is any integer.

a. 45' t 360° n, 90° + 360° n, 225° t 360° n, 270' t 360° n, where n is any Integer.

=ind the exa:t v aJoe ~ the l ¥19e,t oi the anfle bf using ;i ~um or dfference fomiola.

Sdt,1,;l 011e.

a.tan (-165i° = ./2(1 - ./3)


4

b. ton (-•1651°- - jz(./i - 1)


4
Conver1 the recianguJar equation to polar form. Assume a> 0.
xy = 16

Select one:
4
a. r = -1- cosS
- or - - •-
1+oos9
b. r =a
2
c. r ; - --- - -
3co1 B•sinB
d. r 2 = l6sec 8 csc 8 = 32csc2 8
e. r = 2acos 8

Find the exact value of the trigonometric functionQiven tt at sin u = -fs and cos v o -i.(Both u andv are in Quadranl Ill.) f\ote that answers in fractions rrust be entered like so:
415, 1/2, 314. -(S/10)

t,;~ (u ... v)

Answer: 315

Sol,e each eqJation for exact solutions over the interval (00, 360°].

2 sin0 -1 = c sc O
Select one:
Q , {o', •s<, 225°}
b. {30°, 210•, 240°, 300")
c. {30°, 200•, 310°)
d. 1so•, 210°, 330•1
e. 11s•, 1io•, 430°)

Find the exact vaJue of each expression.

a. cos(120• + 4S' ) b. cos120 • + cos4S•

Select one

.Ji - ./6 ✓2-1 1


• . (1) (b)
4 2
h ...,() (l,)
,/j
b. 'ca)
4 2

c. (a)
I - JI - I
(b)--2-
2
d, 'ta) h ./6 lb)
I+ h
4 2

Give all exact solltions O\'er the irterval (06, 36~°').

4 cos 29 = 8 sln9 cos9

5elcd ooe:
a. o0 • 360° n, 60>• 360• n, 180° • 36cf, 300° + 360° n, whe re n is any Integer.

b. 30° • 360° n, 90° + 360° n. 150° • 360° n, 210° • 360° n, 270° • 360° n, 330° + 360° n,
where n i s any integer .

c. 22.5° + 360' n, 11 2.5° + 36o" n, 202.5° +360° n, 292.5°+ 350" n, where n is any integer.
d. 11.8° • 36d' n, 78.2° • 360° n, 191.8' • 360' n, 2ss.2° • 360" n, where n Is any Integer.
Convert the recianguJar equation to polar form. Assume a > 0.
x2 + y2 -2ax= O

Select one:
a. r= 2acos 8
b. r~- ---1- -
J cos 9 - ,:in 9

c. r =a
d. r 2 == l6sec 8 csc 8 == 32csc2 8
4
e. r = -1- cos8
- or - - •-
1+00s9

)etE-rmine a l solutio,-s ol e ach e:iuafon in radians (for x ) or degrees (for 8) to the nea·est tent , as appropriate.

4cos 7 x-1 == 0

5elect ooe:

•· f + 2111r, 11 + z n.,, ¥+ 2111r, where n ts a11y I nteg er


*
b. i + 2111r. 7+ 2111r. 7+ 21ur. + 2mr where n is a ny i n t eger
c ..!, + inn, l .J + lnTT= u; + inrr, t,,H +lnr, wneren 1s an'j integer

d. ; + 2rur, 7+ n,!!f + 2nn,~ + 2-n n where n is any integ er


c.1 • '"= 2.3 , 2nw, 3 .3 · 2nrr, S.8 • 2n1t, where n is any intcgcf'

Convert the recianguJar equation to polar form• .Ossume a > 0.


y=4

Select c,ne:
a. R=4
b. R=3sec8
c. R=4csc 8
d. R=6

Corwert the polar equation to rectangLlar f'orm.

r=-- •-
2- h"!n t

Select ooe:
a. X' + -'y-4= 0
b. Xl + y2 -.c213 = 0
c. (x2 + .,2,2 = 6>.2v - 2v3
d. 4lc2 -5y2 -36\,-36 =O
e . y - ,t

Convert the recianguJar equation to polar form. Assume a > 0.


xy = 16

Select one:
a. r ~ -l
lco.19- sin9
4
b. r = -1- cos8
- or - - •-
1+00s9
c.
d. r 2 == 16 sec8 csc 8 == 32 csc2 8
e. r == 2acos l/
Find a polar equation of the conic with its focus at the pole.
Conic: Parabola, Vertex or vertices: (1, -nJ2)

Select one:
a. r:. _,_o_
1- cosS
b.
l
c. r • - -. -
2+•1n ,
2
d. r • - -. -
1-11n 9

10
e. r ~ - - -
J ♦ 2c.oa8

1
f. r • - -
1- cosl

, __,_
Convef1 the polar equation to rectangular form

1tlln 61

Select one:
a. x2 • 4y - • • o
b. 4x2 -5y2-36y-36 =O

c. y =4
d. X2 •r - x"'• O
e. (x2 • r'i' = 6x2 y - 2-y'

Conver1 the colar eciuaton to reclanaular fcrm.


T = 2sln38
St:lt:(.;l om::.
~. y = 4
b . x2 + y 2- xm =0
c. 4x2 - 5y2 - 36y - 36 = 0
d. X2 + 4'/ -4= O

e. I•' + y')2 = 6x2y - 2y'

Gove all exact solutions over the interval [0° 36o']

4cos29 = 8sln9cos9
Select one

•· 11.s• + 360° n, 78.2' + 360' n, 191.8° + 360" n, 258.2° + 360° n, where n Is any Integer.
b. o• + 360° n, 60° + 360° n, 180" + 360", 300° + 360° n, where n Is any l nteaer.
c. 30° + 360° n. 90° + 360° n. 150° + 360" n, 210° + 360° n. 270' + 360° n. 330° + 360° n.•
where n is any inteaer.
d. 22.s• + 360" n. 112.s• + 360° n, 202.s• +360° n. 292.5° + 360° n. where n Is any Integer.

Solve each equation for exact sohsfions over the interval (00, 360'1
(tan9 -1)(cos9 -1) = 0

Select one
a. (90°, 21 00, 330°)
b. {30". 2100, 240', 300'}
c. (15", 130°, 430°)
d. (30", 2000, 310'}
•. {o", 45", 225°)
Solve each equation for exact solutions over the interva1 (00, 360°].

( cot 8 - ./3)(2 sin 8 + ./3) =0


Select one:
a. {90°, 210°, 330°)
b . {0°, 45°, 225°)
c. {15°, 130°, 430°)
d. {30°, 200°, 3 10°)
e. {Jo•, 210°, 240•, Joo"J

~nlVP. thi=- P.rp .:itinn for P.·<.:ici J=:nl1rtinn.c:: OJP.r thP. infP.v;li (0 "1']

cos2x = !'.2'.?:

Seleci ore:

b. {'"
2' 6' 6
7., 11..-}

d.
..
Solve the equation for exact solutiollS JVer the i"lfervzl {C. 2rr].

cos 2.x=-!.2

•.{"! ~ 13,r 2311'}


12' 12' 12 ' 12

o .,, 11 3,, s,,. 3,, 1.,,.}


c. { • 4 ·?· ◄· 11·7·2·7

Find• polar equa!lcn of the conoc ••th Its rocus at the pole
Coroc Ellipse \leftex0< vertices (2 0), (10. n)

Select one·
l
a. r •~

c. r•-•-
l - ainl

d. r = -•O_
1- totl
1
e. r • 1+2c:osl
-- -
1
f. r • - -
2+.,nl
Convert the polar equation to rectangular form.
r =4

Select one:
a. X2+y1 - 4ysQ

b. xi+v1+ 2y;0

c. .J3x +y=O
d. X' •y'• 16

Give all exact solu1ons over the interval (0°, 360°).

sin 8 - sin 28 =0

Select one:
a. 22.s• + 360° n, 11 2.s• + 3600 n, 202.5° +360° n, 292.5° + 3600 n, where n is any integer.
b. 30° + 360° n, 90° + 360° n, 150° + 360° n, 210° + 360° n, 270° + 360° n, 330° + 360° n,
where n is any integer.

c. o• + 360' n, 60° + 360° n, 1800 + 360°, 300° + 360° n, where n Is any Integer.
d. 11.s • + 350° n, 78.2° + 360° n, 191.8° + 360° n, 258.2° + 360° n, where n Is any Integer.

Cetermine all solutions of e ach equati on in radians (for x1or degrees (for 8) tc the nearest tenth as appropriate.

2 cos 1 x+cosx = 1

Select one:
a. !
3
+ 2mr, !!!l + 2nn, ~
3
+ 2mr, !!!
3
+ 2nn where n is any inte9er
b. i + 2mr, ,r + 2nrr, ~ + 2n,r, where n is any lnte9er
c. 1 + TTi 2.3 + 2mr1 3.3 . 2nn1 5.8 + 2nn, wfl.ere n s any integer

d. i+ 2n1r,7+ n.~ + 2nn,7 +2nn wh.ere n.is any integer

Convert the polar equation to rectangular fonn.

r = 4cscfl
Select one.
a.X2 +'4y-4=0

b. 4x1 -5y'-36y-36=0
c. (x2 + y2)' = 6x2y - 2'f'
d. y =4
e. X2+y2 - x213 =0

Determine all solutions of each equation in radians (for x) or degrees {for 5) to the nearest lenth as appropnate.

4 cos 2 x - l =O
Seled one
a. 1 + n 1 2.3 + 2nn, 3.3. 2nn. 5.8 + 2nn, where n 1s any integer

b ..9 + 2nn1 2.3 + 2nn, 3.6 + 2nn, 5.8 + 2nn1 where n is any integer

c. ; + 2n,r, ~ + 2n,r, ~ + 2n11)f + 2n,r where n is any inteoer


d. i + 2n,r,,r + 2nrr, ~ + 2nrr, where n Is any Integer
e. i + 2mr, ~ + n/f + 2nn. ~ + 2n,r where n is any inteoer
Find a polar equation of the conic with its focus at the pole.
Conic: Parabola, Vertex or vertices: (5, rr)

Select one:
1
a. r • - -
2+.in ,
1
b. r= - •-
1-cotB

c. r ~
1
1+2 :0,8

d. r = 1+2:0•8
2
e. r• - -
1- ain8
1
f. r • - -
1- cosl

Convert the rectanguJar equation to polar form As.smie a> 0.


x' +y-.2ax•0

Select one
a. r 2 ; 16sec9csc8; 32csc28
b. r - Cl

c. r • 2acos9
2
d. r = - ---- -
3C'DJl• t1t1I

e. r ; - •- or - -t +cosl
•-
1- cosB

2
Identify the conic of r• - -
z .. cc,s •

Answer: Ellipse

Vt\ite the expression as l'le sine, cosine or tangent of an angle


UJl1l' t taAX
1-u.a.2xta.11x

Answer: tan 3x

Convert tie Polar equat,on to rectangular form

r 1 =cosB

Select one:
a.y•4
b. 4x2 -5y'-36y-36 = 0

c. x 2 • 4y- 4 = o
d.X1+y2 - x213 •0
e . (x2 • y')' = 6x2y - 2y'
Find the exact value of the cosine of the angle by using a sum or difference formula.
195' = 225' . 30'

Select one:

a.cos195°= ✓2( 1 _ JJ)


4

b. cos 195' = - ..!;c ./3 - 1)


c. cos 195°= J2(J3 + 1)
4

d. cos 195° =- ✓2( ✓J + 1)


4

SOMO the equation for exact sokmns over the inte,val (0 2nj

cot 3x • ,/'j

Seledooe:

e. { 0 - -
,, Ztr
-
4,r 511}
• 3 ' 3 ' "· ·' ' 3

Give all exact solutions over the interval (0°, 360°'].

sin 28 = 2 cos 2 9
Select one:
a. 60° + 360" n, 300° + 360° n, where n is any integer.
b. o• + 360° n, 30° + 360' n, lSo" + 360" n, 180° + 360° n, where n Is any Integer.
c. 70.5° + 360° n, 289.5° + 360° n, where n is any integer

d. 45° + 360° n, 90° + 360° n, 225° + 360" n, 270° + 360° n, where n is any integer.

Coroer1 the 1eciangular equaton t,, poar form. O.ssume a> 0.


y:4

Select one:
a. R=4
b. H = :Ssectl
c. R=4csc 8
d. A = 6
a..--. 4 Findthetengtllofthearcoo a Clfdeof•adiusl'llercefAe<lb'facentralangle8
Radius3meters Central Angle 1 radian

Delefl'nine two cote11TW1al angles (one posrwe and one negative) for each angle

1.9• ~

s./e d -

a. (i)!f".- T

Use the Bn;imal Theorem to expand m ~ the e.>llfCSSIOrl

--
(J.a . 4b'f'

a . 215a5 .1s20a"b + 2320a3b1 + E760aztJi. 3840ab' - 5344b5


b. 115a5 + 1620a"b . 4320a3b1 .576Qa2b3 + 3840ab' - 1024b5
c. 2~5 - 1620a"b + 4320a3b1. 5760rtr + 3840ab' . 1024bs
d. 24381 + 1620a'b • 4320a3b1 • Ui40a2tr + 3230ab' . 1024bs

7
== p [0] ■ 61 ~· ..2 w ') CJ ... • i"~ ? A Q (J ), GJ I~~~ 1~1~ ;0~ 7 ~
• Dolphy and babalu "AR X If Faccbook X re Second Quarter Exam X

* :
~ C i Secure

H!Mlo
I https l; blendedamauonhnecom 1mod/qutz/rev1ewphp?attemptc:c)1685963&showa11-0
\/1ruallb.rt Poslstudenl:O:n:ern CYRB.JWANPfU W
.. a_

a..-- 7 Comerl lhe redar191A• equation to pobr form. Assume a > 0


Jx . y• 2 • 0

a. r "" JCN;:11111,
b. r • 2a cos 8

1
_;,.,or-
d. r- a

o.--. 8 Chooseane:,iprC$$100 for the<1pparentnthlcrmofthe~ Assumetllaln~with 1

1+ ¼-¼•-!.•ii• ·"
~ seledone

.. '

d. "•
(
..,
l )"(Jt ♦ I)

a.-- 9 Calcl.laie the blrlomal coefk:lenl

~ ..
Dashboard SHS-GRll-1S PREC-111 'Neel: 20 Second Quarter Exam Second Ouarler Exam

a,

....
d.

o.-9 Cakuate lhebmomalcoefflcient

Answer: !i6

Choose an expresSIOO for lhe appareril nth lemi of lhe :sequence Asstane that n begals with 1
1 l 4 S i
t· i ·i·7·9· ...
,. r-v Select one
C 1)111tl)

b . ._
,.." '
( I)'" '

d. -., It!
I
e. ~ ,r

Nextl)a9" ►

~ - ..u • • " - ' - - ~ " ' - " ' - - C ~ ~ - • •

== j) [0] • m ~· ..2 w ') CJ ... • ~ ? A Q ~)• GJ I~~~


7
1~1~ ;0~7 ~
"'""""' SHS-GR11-1S PREC-111 'Neel: 20 Second Quarter Exam Second Ouarler Exam

QUIZ NAVIGATION ~ 11 Solve eadl equation for exact solutions over Ille irller.al [Cl°. 3601

CYREL JIJUAN PIU

~~~---~~~
~~;~;~~
~, .. --
(tiln8- l )(cos8-1) • 0

a.{JOll,20(/J,310°}
b.{l<f, 21o",24(111,JOO°}
c.{o",4s11, 22!i°)

;~;~;;; d.{9(JI>, 21o0, Jlll°}


e. {1S4,130°,-430°}
i ;~;; ;;
;;;;;~; ~ ,, Faldlhesum.

;;;;;; ~, ..
I:! . ,(k + 1)1 (k - 3)

Show al qoesboos on ooe page Answer: 88

'"""'~

Answer: 30

o.-- 14 Solve each equ.tllon faexad:solubonsover lhe 111terval [o0. 360°!

2sln8- t • cscB

I I I I.(~

== j) [0] ■ m , ._• ..2 w ') CJ ... • ~ ? A 'Q ~)• GJ I~~~ l ~l~S;Q~ 7 ~


• Dolphy and babalu •AR1 X If Facebook X re Second Quarter Exam X

* :
~ C i Secure

HcMlo
I https '1 blended amauonhne com 1mod/qutz/rev1ew php?attemptc:c)1685963&p.igec:c 1
\/1ruallb.rt Poslstudenl:Concem CYRB.Jl.UANPIU W
.. a_

Sol\'eeactiequatiooforexactsolulionsoverlheil11er.al [OO. 3601

--
2sin8 - t = csc8

a . {Jdl, 21o0,24QO, ~
b.{go0, 21oO, JJOO}
c.{30°,20()0, J1o0}
d.{<fl,45°, 22st')
e. {1fi11, 1:io<', 4JOO}

Delefrnirle two cotermnal angles (one posrtNe and one negative) for each angle

-- a. (ii)~-~

Calwai.e lhe bmomal coellaent

Answer: 15504
Dashboard SHS-GRll-1S PREC-111 'Neel: 20 Second Quarter Exam Second Ouarler Exam

Choose an expressioo for the app.arenl nth term dlhe sequence Assume that n begins with 1
-J J -• 5 -6
_,oo ....a1
•m

--
]•4·5·6·7•"""

a. •. ( •r·•
b. "• ~

d. ._ I•!
.. (
..,
l)"(it ♦ I)

ldenllfylheconic of r • _.:,.,
2

Answer: el1pse

Find a fomiola for Ile sum oflle fifstnlefms oflhe sequence

~n.,
- serectone

a. S,,• (ot: 1)

b. S.,• Z(1t,.· l)

== j) [0] ■ m , ._• ..2 w ') CJ ... • ~ ? A 'Q ~)• GJ I~~~ 1~1~S;0~7 ~


• Dolphy and babalu "AR1 X If Faccbook X re Second Quarter Exam X

* :
~ C i Secure

HcMlo
I https '1 blended amauonhne com 1mod/qutz/rev1ew php?attemptc:c)1685963&p.igec:c 1
\/1ruallb.rt Poslstudenl:Concem CYRB.Jl.UANPIU W
.. a_

Find a formula for Ile sum oflle kstntem"JS dlhe sequence

c . S,, a (ft•I )

'Nrile lhe expreMionaslle sine.cosinoe ortafl9Ml d anaogle


Slll3COS 1.2 - cos3 sin 12
_,oo ....a1
..
-
'oo Answer SIil 1.8
~,

◄ Previous~ NexlP-19' ►

CopJ<ig!,IAMA~Online~20l11

== )) [0 ] ■ m , ._• ..2 w ') CJ ... • ~ ? A 'Q ~ JI GJ I~~~ 1~:;0~7 ~


~~~-- -
"'""""' SHS-GR11-1S PREC-111 'Neel: 20 Second Quarter Exam

~ 21
Second Ouarler Exam

QUIZ NAVIGATK>N Find aformuta for lhe sum oflle fintl= oflhe $eQUel'ICC
1 S 9 . 13

..
__;;;;; -
CYREL JUUAN PILI
~, s.i.a-
a. S,• n(l n • l)

b. S. • (ln• 1)

~~~~;~~
c. S,,•(2n + l )

d. S. • n(ln + 1)
~ ~iH; '-'-'-'-
1;;;;~; ~ 22
;;;;;~
Fnllhewm

r:.,11;.1.,
Show al quesbom on one paoe
Fn shrewM
~, .. Ans'M':I'": 9J5

Answer: 30

Findlhelenqtl'l d lhearcon a ardeof ·adius 1 1 1 ~ t,,- acentral angle e

Central/vqe lsdl

== j) [0] ■ m , ._• ..2 w ') CJ ... • ~ ? A'Q ~)• GJ I~~~ 1~i'40;Q~7 ~


• Dolphy and babalu •AR1 X If Faccbook X re Second Quarter Exam X

* :
~ C i Secure

HcMlo
I https '1 blended amauonhne com 1mod/qutz/rev1ew php?attemptc:c)1685963&p.igec:c2
\/1ruallb.rt Poslstudenl:Concem CYRB.Jl.UANPIU W
.. a_

Find the exaict vaiue of the mgonometri: l\.lncliongiven llatsm and cos v• -i. {Both u and v are in Quadrant Ill ) Note ltlatanswers III fractions rrustbeentered lke so· 4/S 112

314 ,(5110)

cos(u•v)

Find the exact v-..e of the tangent of !tie angle 't1f uwig a sum or difference fomua

--
- 165°

. . ... ,.16'r •

b.1'n(-1661'•-4(✓J + 1)

,.un(-16'r •
4 (.r, ,)

4(, _J,)
I
d.tan(-166)0 • 2 ./3

Plot the point 9IVefl in poiar coor<inate~ and find two ilddibonal polar represeotafioos of lie poinl using -21'1 < e < 2rr

(0, - ~ )
Dashboard SHS-GRll-1S PREC-111 'Neel: 20 Second Quarter Exam Second Ouarler Exam

Convert lhe red~ar eq.iaboo to polar form Assume a > 0


x2 + f - 2ax • 0

,_;,.,or -
b. r = Jao,o ;~a nf
c. r - Zacas l
d. ,.2 • 16 sec i utlil • ]2UCZ8

Determine al soluboos °' each equatiol 111 r~ns (for x} or degees (for 8} lo the nearest tenltl as appropnate

--
2cos:l x+cosx=l

a .1 • Tl, 2.3 • 2nTI, 3.3 - 2nlT, 5.8• 2nTI, where n is any integer

b. i + 2n'lf.7 + If,~ + 2u,7 + 2nrt where nisa.ny integer


c ••9 + 2nlT, 2.3 + 2nlT, 3.6 + 2nlT, 5.8 + 2nTI, whef'e n is any intege,r

i + 2n'lf,~ + 2nlf,~+ ZM,~ + Znlf whn-t n ts a.nyinUgtr

I
d.

e. i + 2n'lf,1C + 2nlf,~ + 2n11, whert n ts any tnttgtr


Use lhe Btnomal Theorem lo expand m ~ lhe expre$$!0n
2(x-3f +S{x- 3'f

s.!ed=
a.2x'-12x'- 96x2 + 232x +207
b. 211• . 24x3 + 113x2 • 246x + '107

== j) [0] ■ m , .,_• ..2 w ') CJ ... • ~ ? A'Q ~)• GJ I~~~ 1~i'40;Q~7 ~


• Dolphy and babalu •AR1 X If Faccbook X re Second Quarter Exam X

* :
~ C i Secure

HcMlo
I https '1 blended am auonhne com 1mod/qutz/rev1ew php?a ttemptc:c)1685963&p.igec:c3

\/1ruallb.rt Poslstudenl:Concem
..
CYRB.Jl.UANPIU W
a_

Ql.z: NAVIGAOON Expand lhe bloomal by USlf'l9 Pascal's Tnangle to oetemline lhe coeffiaeflts

(2t- sl'
CYREL JUUANP1U

-- a .32t'-sor'.. +80t312.40t213+ 10t1•-•5


b. 32t5 - 80t41 + .wt3st + 8()t21 3 + 20ts• . 1S

c.32t' - 20n+40t3s 2 -'40t2s 3 + 10t1' -15


d. 16t'+40t'1+80t3s 2 . 8()t2s 3+Hlt1' - •s

~ ,, Use lhe Btnomal Theorem lo expand m ~ the expre$$!0n


(3a - 4o'f

F--
s.!ed=
St.ow al qoesooos on ooe page a. 243a5 + 162'0INI. 4320a3bl - !760a2b3 + 3840ab' -1024b5
b. 24~ • 1620a"t> • 432037b3 - S760ab' • 3840ab' • 102'">5
c. 20a5 - 1620a2b1 • 4320rb1 • 5760a2b 3 • 3840ab3 • 1024b5
d. 243a5 - 1620a"b + 43'10a3trl - i760a2lY + 3840ab' - 1024b5

~ ,, SOive the equation for exact solul!Oll$ ever lhe 111tewal (0 2ft]

·~
w.n.11X1....iar
2,/JsinZx •

s.!ed=
./3

a. {
tr 5tt lltt 17•}
frii·J2•1l
Dashboard SHS-GRl l -1S PREC-111 'Neel: 20 Second Quarter Exam Second Ouarler Exam
~ 34 Choose .tn expression for the apparem nth lfflll of the sequence AsSta'Tle that n begins with 1

·~
w.n.100....iar 1 + f. 1 +i,1 +;.1 +~.1 +¼,...

.. I l )"f11tl)

.. ,

I
d. a, ( · I)"• I

,. '
Choose.tnexpression for theapparefllnthtermofthesequence ASSl.methat nt)eon$wilh 1

1,-1, 1,-1,1, ....

C0nvefllhepolarequabonlorecbr91t1r form.

s- ~

== j) [0] ■ m , ._• ..2 w ') CJ ... • ~ ? A 'Q ~)• GJ I~~~


23
1~14 ;0~7 ~
• Dolphy and babalu •AR1 X If Faccbook X re Second Quarter Exam X

* :
~ C i Secure

HcMlo
I https '1 b lended am auonhn e com 1mod/qutz/rev1ew php?a ttemptc:c)1685963&p.igec:c3
\/1ruallb.rt Poslstudenl:Concem CYRB.Jl.UANPIU W
.. a_

C0nvefllhepolarequ abonlo rectangu1.tr form.

,-~
,__
a. X1 •f • 2y • O
b. X'+y1 • 16

c• ./lx+y • O
d . X1 t f - 4y•0

Expand the bloomal by using Pasca's Triangle to oetemine the coefficients


~ ->tf

,.,,.._

I
a. 32x5 + 1ox'y + 40x~1 + 80x1'r + ~ + 16y5
b. ~ + 10x-v + 40xY + 80x1'r +,4Qxyl + 16Y5
c. ~ • 1ox4-y • 40xY • sox'-1 • soxv' • l2r
d. 2Jt5+ 20x'y+BOry! +80xf°r• 40xy'+32y5

~ ,. Oelefmine al soMloos of eac:tl equallol 1n raOlains (for x) or degrees (for 6) lo the nearesl lefllfl as appropnate

4 cos 2 :r - 1 • O

,.,,.._
a..9 + 2nn, 2.3 + 2nn, 3.6 • inn, 5.8 + 2nn, wtlefe n is any integer

b. i + 2n'lf,¥ + 2nn:.~ + ZM.~ + 2nll' w ht>rt n ts lln.y inttgt>r


c. i+ 2M,¥ + 11',!f- + 2m, ~ + 2rurwhfft n is any inttgff
Dashboard SHS-GRll-1S PREC-111
_,.
'Neel: 20 Second Quarter Exam Second Ouarler Exam

D e ~ .JI sdutions of eadl equaboi 111 radian$ (for x) or de!,ees (for 6) lo the ne.Yesl lenlh as appropriate

--
4 cos 2 x

b.
- 1• O

a . .9 + 2nn , 2.3 + 2nn, 3.6 + 2nn, 5.8 + 2nn, whefe n is any integer

i + 2rur. ~ + 2""•~ + ZM.~ + Z"" whtrt n ts a."y integ t r


c. i+ 2M,~ + lf,7 + 2nz.~ + Znx w htrt n is a..ny integtr
d. i + 2nll', 1l + 2mJ, ~ + 2nll', wit.er, n Is any ln.tlglT
c.1 + 11, 2.3 + 2nn, 3.3 - 2nn, 5.8 + 2nn , where n is any integer

o-- 39 Use the Blnomal Theorem to expand .n:I sin-., the expfflSSIOfl

--
(><' •,'f

a . -,.' +6H+ 41"y'+ 4x2),C + y'


b.3x1 + 2x'yZ + 9x'y'+ 4xly4 + 2/
c.r + 4H+sM+4x2v' + v'
d.x'+6,:Y + 4,:¥ +6xly'+ y'

UselheBn:lrnalTheoremtoe,rp,and.n:l~lheexpfe,.sion

--
(2x+ •f f

a .8x3+8x1y+4,cy2+2y
b. 8x3 + 12x2y + 6,cf + y3
c. 4x3+6xl y + 8,cf + y3
d.4x3 +6,cf +nx2y +y3

== j) [0] ■ m , ._• ..2 w ') CJ ... • ~ ? A 'Q ~)• GJ I~~~


23
1~14 ;0~7 ~
• Dolphy and babalu •AR1 X If Faccbook X re Second Quarter Exam X

~ C i Secure I https '1 blended amauonhne com 1mod/qutz/rev1ew php?attemptc:c)1685963&p.igec:c4# a_ * :


Howto v.tualLibr..y PoslstudcnlConccm CYRELJUUANP1U W
,.

QUIZ NAVIGATION

CYRELJUUAN PIU

~~~-.l~~~
-.
- •1
..,
Coovef1 Ile polar equabon lo recta~ar form.
r • 4csc:8

Sood-
a . X2 +4y - 4 • 0

~~;;;;~ b.jx1+,/'f • 6x2y - 2'y


c. 4x2 - Sf - 36y - 36 • 0

;;;;;;; d.y z 4

e . X2 • f - x213 • 0

i;;;;;;
;;;;;~;
;;;;;; ◄ Previous page

Show al QUeSboos on one page


Fn,hre-,;ew

CopJ<ig!,IAMA~Online~20l11

== )) [0 ] ■ m , ._• ..2 w ') CJ ... • ~ ? A 'Q ~ JI GJ I~~~


2
1~ :/;0~7 ~
• Dolphy and babalu "A RI )( lf Facebook. )( "< Second Quartef" Exam )(

C i Secure I https r1 blended.amauonline.com lmod/quiz/review.php?attempt=21685963&showall=D


\llrtuallibray Poststudenlconcem CYRELJUUANPIU w•

Startedon friday, 3Novernber2017, 1015AM


QUIZ NAVIGATION
Statef"nshed
C~letedon friday, 3November2017, 1249PM
CYREL JULIAN PILI Timetaken 2hotn34mins
Grade 46.00 out of 50 00 (92%)

o.-- 1 'Mile the first live terms of lhe sequence Assume ttial n begins wrth 1
A,,=n(n - l )(n-2)

' 24

o.-- 2 findlhesum.

1::. 110
Show all quesbons on one page
Fnshreview Answer: 40

o.-- 3 Calc!Aale lhe binomial coefficient


(100118)

Answer: 4950

findthe leoglhoflhearconacifdeof radiusi"ltercepledbyacenlralangle0

Username:18003541800 Pass:e5ce12

You might also like