High School Trigonometry Quiz
High School Trigonometry Quiz
" ShortQuiz9 X a - QI -
J
C
~------===============================================,--------
i Secure I https://blended.amauonline.com/mod/quiz/attempt.php?attempt=19211842 0.*@1 0
• How to Virtual Unary Pml Sludenl Concern MARK !VAN NAROO ■
Oa shbo1ml SHS-GR11-15 PREC-111 Week 11 Key Concepb of Circular Functions Trigonomelrit Iden lilies, ln ve~e Tri9onome tric: Functions and Pol ar Coordinate System - Part 001 ShortOuiZ9
QUIZ NAVIGATION C-Jul>Ol\ 1 Determine two coterminal angles (one positive and one negative) for each angle Give your answer in degrees using the foDovting forma t ex. 34. -25
Finish attempt
Timelefl0:15:48
L
Answe r : 405, -315
Determine !he quadrant in which each angle kes The answer should be in the folowing formal ex_ Quadrant I
:.:~
M1rtedout,;,I
a.1 30 "
--
,00 Answer: OuadrantH
"Flag
C:lub0n 3 Determine the quadrant in winch each angle &es The answer should be m the folowmg format ex. Quadrant I
::.:::., d-336'
Determine th e quadrnnl m which each ;mgle ~es The answer should be in the fol owi n9 formal ell'.. Ouadr;,nt I
c. -132 " 50
Answer: Ouadrantm
a.a..oon5 Determine the qu;,dr;,111 m which e;,ch ;,119le Ues The ;,nswershould be in the fol owmg format ell'.. Qu;,dr;,nt I
b.2ss·
"""'
M ......
~ruc! Olll of
Answer: OuadrantlV
"'
I'"'•
.,H_
Findlhe;,n9leinro1di<1ns
Answe r : 5
..-
~
Cl<titxx1 7
,. Findlhe ;,n11le inro1di;,ns.
G
~ ruc!Olll of
"'
.,H _
f' Flag
Answer: 1
-
o..= 8 Determ111e two coterminal angles (one p ositive ;>ind one negative) for each an11 le Give your answer 10 degrees usIn11 the fo~owin11 format: ell'._34, -25
Nol~
M~ outof
, oo
I'"'•
"'"-
Answer. 324, -396
Finishaltempl
■■
•• CJ . . r:::11~1
11=i1 L:M~ ll-?•1 ...
,
1
• ?;i ·•)>
1~32PM
1012012011
WEEK 12
Dn hc-oard • SHS -O'l:11 -1S PRE C-111 Wee~ 12: Key Coi,cepu ofC>!'Cular FwnellOl"<S Tngooorrun;; k!ennt'.Ei, lnvem1 Tng<l<"olN!toc: F1.rt'II01'5 ai,dPola r Coordlf\ate System - FanOJ2 S~onC.i.: 10
=:va,.. ate fd panibll!) the soc tngonomelllC t.mc':Klns or tte 1nl ~umber If not possiba, answer w,:11 ·undemed
'= .:;
d c~(-i) = -1
., 5C:C(-i)" i,nd,...-..,.,;
I •ln(-1f) = ·,2,2
2 ro{-Zf) = 212
l ~(-If) = 1
ai:~sr;!::in 4 se th-= value of:he trigonometric fu:11:tion to evaluat': tte dic3'ted fu ctions.
C.:,.mi;l: t~
sin t = H3
,.., ,: rkt CC.OJIC'
•OJ
i. c.sc(-t,
V R.:J:
Answer: -3
Answer: Qua<lrant U
WEEK 13
Dashboard SHS-GR11 -1S PREC-111
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome iric Identities; Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Learning Activity 11
Select one:
a.. Period: n, Amplitude: 3
Select one:
a.. Period: 4n, Amplitude: 5/2
b.
A= -4
d= 4
Dashboard SHS-GR11 -1S PREC-11 1
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome iric Identities; Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Short Quiz 11
Flag question
y= -2 sin x
Select one:
a. Period: 3n, Amplitude: 1/2
b. Period. 1,.Amplitude: 1/ 4
,c. Period: n/.5, .Amplitude: 3
d. Period: 2n, Amplitude: 3
Dashboard SHS-GR11 -1S PREC-111
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome iric Identities; Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Short Quiz 11
y- 2
= -cos-.
2 3
Select one:
a.. Period: 2n, AmpUtude: 3
b. Period: n/5, Amplitude: 3
c. Period: 3~ Amplitude: 1/2
a.
.A= 2
d= 1
Dashboard SHS-GR11 -1S PREC-111
Week 13: ~ey Concepts of Circular Functions,
Tri,gonome 1ric Identities, Inverse Trigonometric Functions
and Polar Coordinate System. - Part 003
Short Quiz 11
Select one::
a. P.eriod: 1, Am:plitude:. 1/ 4
WEEK 14
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
l 1 1
' .-
12 ,,-
2 J•-0.
Select one:
n
a. sn -- -
2(n --)
. n
b. Sn= - -
(n-1)
, n
c. Sn= - -
2(11 )
n
d. Sn = - -
n+l
Dashboard SHS-GR11-1 S PREC-111
Week 14: Long Test Long Quiz 2
Select one·
a. 243a5 - 1·620a4b + 4320a3b2 -
5760a2b8 + 3840ab4 - 1024b5
Question 14
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
Select one·
a.
b.
d.
Dashboard SHS-GR11-1 S PREC-111
Week 14: Long Test Long Quiz 2
Complete
Mark 2. 00 out of 2. 00
Select one:
a. a 4 + 12a3 + 16a2 + 64a + 12
b. a4 + 4a3 + 36a2 ·+ 144a + 2·16
c. a4 + 24a 3 + 216a 2 + 864a + 1296
d. a4 + 24a3 + 36a2 + 212a + 1290
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
Select one:
·· · ) 17'n; !___
a.. (. u , 6 , 6
b· . .. · 7rc 2 trr
tl ,- - -
6 I 6
. . 17 7,
,c. u ,- - -
6 ' 6
.•..) -
,·d. . u. .15ir 7
,-
6, ,6
Ques· ion 8
Dashboard SHS-GR11-1 S PREC-111
Week 14: Long Test Long Quiz 2
Mark 3.00 out of 3.00
Fl ag ,question
Answer:
3 meters
Question 10
Gompte e
Question 10
Complete
Mark 1.00 out of 1.00
Flag question
- :- n21
Answer·
91
Question 11
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
Flag question
Answer:
15,5 04
Ques:ion ·7
Gomp:lete
Mark 2.00 out of 2.00
Flag question
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
Answer.
56
Question 5
Complete
D
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
Question 3
Complete
Mark 1:.00 out O'f 1.00
Answer·
979
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
G0ll1pi1ete
Flag question
Answer:
4 ,950
Ques:jon 12
Gompilete
Mark 2.00 out of 2.00
Flag question
Dashboard SHS-GR11-1 S PREC-111
Week 14: Long Test Long Quiz 2
Select one:
a..
1
.rs
b.
1 lOy Sy3 , yl 1,o y
-I -X + yS
xS x• 2X X
.., fJ-
u. = -2 1t
Select one:
. ") 2 57r
. 23:n
b. 1( ,U - - -
,2 ' 12
. 36 - 23 -
,c · ll -- - - -
' 2 2
Dashboard SHS-GR11 -1S PREC-111
Week 14: Long Test Long Quiz 2
\. IOOloJ
Question 1.
Complete
Mark 2.00 out of 2.00
Answer~
47.12 inches
WEEK 15
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Trigonometric dentities, Inverse Trigonometric Functions
and Polar Coordinate System - Part 005
Short Quiz 13
cos (u + v)
Answer.
1·6/65
WEEK 16
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Trigonometric !Identities, Inverse Trigonometric Functions
Polar Coordinate System - Part 005
Learn 'ng Activity 13
a ..,CO' (n_;_ n)
-
.3 .
Select one:
l
a.
b.
C.
4G ,111ll 10:22 AM ~ O' 4G1 40% •I ■I
tan (u-v)
Answer.
-(44/117)
Fini~h rPvi,P w
Dashboard SHS-GR11-1S PREC-111
Week 16: Key Concepts of Circular Functions,
Tri,g onometric Identities; Inverse Trigonometric Functions
and Polar Coordinate Syst em - Part 005
Short Quiz 13
sec (v- u)
Answer:
65/56
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Tri,g onometric !Identities; Inverse Trigonometric Functions
and Polar Coordinate Syst em - Part 005
Short Quiz 13
Select one:
a. sin 105° =
b. sin 105° =
c. sin 1:05° =
d. sin l05° =
i 1 lended.amauonline.co!m /r II]
Question 1
Complete
0
Answer: tan 239
Question 2
4G ,11lll 10:22 AM ~ • 4G1 40% •I ■I
Flag question
Select one:
a. l
b.. .
e.
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Tri,g onometric Identities, Inverse Trigonometric Functions
and Polar Coordinate System - Part 005
Short Quiz 13
tan (u + v)
Answer.
-(63/16)
Dashboard SHS-GR11-1S PREC-111
Week 16: Key Concepts of Circular Functions,
Tri,g onometric Identities, Inverse Trigonometric Functions
and Polar Coordinate Syst em - Part 005
Short Quiz 13
Select one:
a. tan 285° =·
b. tan 285° =
d. tan 285° =
Dashboard SHS-GR11 -1S PREC-111
Week 16: Key Concepts of Circular Functions,
Trigonometric !Identities, Inverse Trigonometric Functions
Polar Coordinate System - Part 005
Learn 'ng Activity 13
comp1,ete
Mark 1.00 out of 1.00
sec (u + v)
Answer.
5/3
Dashboard SHS-GR11-1 S PREC-111
Week 17: Key Concepts of Cfrcular Functions. Trigonometric Identities. Inverse Trigonometric
Functions, and Pola r Coord inate System• Part 006
Learning Activ ity 14
Quesfion 3 So!ve each equation for exact solutions over the interval [O.
complete 2n].
Mark 1.00 oot of
1.00 2sinx + 3 = 4
Y Fla,;i
quesllon Select one:
a• { -ll -57-}
,6 ; ,6
b. (!!:}
2
c. £3", Tit}
4 4
d. (i, 53,r}
Quest1on 4 Solve each equation for exact solutions over the interval [O,
Complete 2n).
Mane 1.00 oot of
U)O sinx + 2 =3
'f' Flag
queslion Select one:
a, { -31!' . -7rr}
. 4 ' 4
Finish review
u -
□
WEEK 17 <l O
Dashboard SHS-GR11-1 S PREC-111
\ilfoek 17: Key Concepts of Circular Functions, Trigonometric Identities, Inverse Trig onometric
:Functions., a 11d Pola r Coord inate System • Part 006
Learning Activ ity 14
Q1:1estTon 1' So ve each equation for exact solutions over the i11t1:.rval [O,
Compr@ie 2n].
Marl<: 2.00 oo of
2.00
2 sec x + 1 = sec x + 3
V Fla,;i
question Select one:
a. (!:.J
2
b. (!E, 5" }
3 3
1f Sn
c. [:;' 6}
d. {sn:, 111}
4 4
Question 2 So ve each equatron for exact solutions over the interval [O,
Comprete 2nl
Malik 1.00 out of
1.00 2cotx + 1 = - 1
l" Flag
question Select one:
c. (i's;}
d. {3 rr -, 11}
4 ' 4
Question 3 So ve each equatton for exact soluitjons over the interval [O,
Comprere 2R].
Mai 1.00 out of
1 ,00 Zsinx + 3 =4
Q1:1estTon 5 Solve the equation forexac solutions over the i!"lterval (0,
Compr.ete 2n].
Mark 1.00 out of
1.00 cot3x = {3
'f' Flag
que-s1ion Select one:
Que~ton 7 Give all exact solutions over the interval ;t0°, 360'11.
Comptete
Mark 1.00 out of
4 cos 28 =8 sin fJ cos fJ
1.00
Select one:
"f'Flag
question a.
30° + 360° n, 90° + 360° n, 1500 + 360° n, 210° + 360° n, :
where n fs any integer.
b.
0° + 360° 11, 60° + 360° n, 180° + 360°, 300° + 360° n, whi
c.
11.8° ... 360iJ n, 78.2° + 360° n, 191.8° + 360° n, 258.2° + ~
d.
22.5° + 360° n, 112.5°' + 360° n, 202 .5° +360° n, 292.5° +
Qu~~tlon 8 Solve the equation for -exact solutrons over1he interval fO,
Comprete 21t}.
Ma~ 0.00 011 of
1.00 sin 3x =0
'V Flag
question Select one:
Questlon '9 Give all exact solutions over1he interval ro0, 3600].
COmJ)let~
Question 10 Give all exact solutions over the interval ro0• 3600].
Co111Pl~e
Mer 0.00 ol!I of
2 - sin 2 0 = 4 sin 2 0
1.00
Sel,ect one:
'f FJa9
question a.
o0 + 360° n; 60° + 360° n, 180° + 360°, 300° + 360° n; whe
b.
11.8° -t 360° n, 78.2° 4 360° n; 191.8° + 360° n, 258.2° + 3 1
c.
30° + 360° n, 90° + 360° n, 150° + 360° n, 210° + 360° n, 2
where n is any integer.
d.
22.5° + 360° n, 112.5° + 3-60° n,. 202.5° +360° n, 292.5° + 3
Finish review
Finish ireview
WEEK 18
j i rc ShortQmz15 X f (2)ANSW£R S x --- ~ I
Dashboard SHS.GR11-1S PREC -111 Week 18: Key Concepts ofCircu!ar Fune lions, Trigonometric Identities, Inverse Trigonometric Functions, and Polar Coordinate Sy stem Part 007 ShortOUIZ 15
b.
(o~) (o-~)
. 6 '
'
' 6
'
(./2,8.64),(- ./2, - 0.78).
• d.
I
'
(2 ✓2. 1owH-2 ✓2.1.8s)
.
Dashboard
How to
SHS-GR11-1S
Virtual Library
PREC-111
Post Student Concern
Week 18_ Key Concepts of Circular Functions, Trigonometric Identities, Inverse Trigonometric Functions, and Polar Coordinate system Part 007 ShortOuiz 15
·-
JOHN CARLOS MONSERATE ~ •
Oues110n 8 Plot the point giVen in polar coordinates and find two additional polar representations of the point, using -2n c: e < 2n
Complete
(2"2,4.71)
M~r1< 1 OOovtof
,oo
Select one
l'Fla9
question
b.
I
.. ~( ShortQui.,15 X f (2)ANSW£R S x -- ~
Dashboard SHS.GR11-1S PREC -111 Week 18: Key Concepts of Circular Functions, Trigonometric Identities, Inverse Trigonometric Functions. and Polar Coordinate System Part 007 ShortOUIZ 15
Find a polar equation of the conic with 1ts focus at the pole
Complete
Conic: Ellipse. Vertex or vertices: (2. 0), ( 10, TT)
Mar1< 1 00outof
"'
'f'Flag
Select one
,0
que,tion • a. r - - -
J+2cos9
d. r--'-
1-sinB
e . T-' 2+s~nfJ
I
Quesb00 8 Plot the point gr.en in polar coordin ates and find two additional polar represen tations of the point using -2TT < 8 < 2TT
"°"""'"
Mar1< 1 00outof
(2'2,4.71)
Select one
'f'Flag
~ue•tion
~i (-•-~)
( 4' 3 . ' 3
Dashboard
C i Secure
How to
I https. l blendedamauonhnecom
SHS-GR11-1S
Virtual Library
PREC-111
mod/qu1z/reviewphp?attempt=:c l8440012
Week 18. Key Concepts of Circular Functions, Trigonometric Identities, Inverse Tngonomellic Functions, and Polar coordinate s ystem Part 007
-
JOHN CARLOS MONSERATE , ~ '
Short Quiz 15
* !
auestKln 6 Find a polar equation of the conic with its focus at the pole
Complete
Conie• ParaOOla, Vertex or vertices (5, TT)
Mar1< 1 00001of
, oo
Select one:
l'Flag
questiorl a. r -3+2cosli
-"-
b. T = 1-s~nli
c. r = - ' -
1+2cosli
d r= - ' -
. 2+slnfJ
,0
• e . T-' 1-cos8
'
I
t. r= 1-cos-8
Quesoon 7 Find a polar equation of the conic with its focus at the pole.
Complete
Conic : Ellipse, Vertex or vertices (2, 0), (10, TT)
Mal1< 1.00 outof
, oo
Select one
'f'Flag
,0
question
• a. T = 3+2cos9
b r= - '-
. 1+2cos8
c. r= t-~s9
d. r = - ' -
1-sm8
e. T = 2+s~n9
t.r=-"-
.. ~( ShortQui.,15 X f (2)ANSW£R S x -- ~
Dashboard SHS.GR11-1S PREC -111 Week 18: Key Concepts of Circular Fune lions. Trigonometric Identities, Inverse Trigonometric Functions, and Polar Coordinate System Part 007 ShortOUIZ 15
auestion 5 Find a polar equation of the conic with its focus at the pole
Complete
Conk: Hyperbola Eccentrieity: e"' 2, Directrix- x"' 1
Ma~ 1 D00<11ol
, oo
l"Flag
question
Select one
,1 _ r
.
= l+2cos8
b. r= - ' -
1-si nB
c. r = - ' -
t-cos 8
I
~. r =-"-
1-cose
tr=-'-
. 1+2 cos 8
Ounc.on 6 Find a polar equat10n of the conic with its focus at the pole
Complete
Come: Parabola, Vertex or vertices (5, rr)
M1~ 1 D0outof
, oo
Select one:
l"Flag
question
a. r = l+21:os 8
b. r = l-s~n8
c. r = - ' -
1+2cos 6
e. r = t - ~:se
t.r=-'-
w ~( ShortQui.,15 X f (2)A N SWfR S x ---~ I
Dashboard
C i Secure
How to
I https. l blendedamauonhnecom
SHS-GR11-1S
Virtual Library
PREC-111
mod/qu1z/reviewphp?attempt=:c l8440012
Week 18. Key Concepts of Circu!ar Functions, Trigonometric Identities, Inverse Tngonometrie Functions, and Polar coordinate s ystem Part 007
-
JOHN CARLOS MONSERATE , ~ '
Short Quiz 15
* !
Ouesc.on 4 Find a polar equat10n of the conic with its focus at the pole
Complete
Come: Parabola, Eccentricity: e"' 1 Directrix: x"' -1
Ma~ 1 000<11of
, oo
Select one
"'"'
question a. r=-'°-
t-cos8
b. r = - ' - ' -
H2cos 8
,
c. r
f. T
.
= 1+2cos8
r= - ' -
r=-'-
=
2+sln8
1-cos e
l-;n8
I
Ouesoon 5 Find a polar equat10n or the conic with 1ts focus at the pole
Complete
Conk Hyperbola Eccentr1eIty e: 2, Directnx: x: 1
Select one·
l"Flag
qoen10n 3. r=-"-
. l +2cos8
b. r = - ' -
1-si nB
c. 7 = 1-c~s8
d. r '
= 2+sln8
.. ~( ShortQui.,15 X f (2)ANSW£R S x -- ~
Dashboard SHS.GR11 -1S PREC -111 Week 18: Key Concepts of Circular Functions, Trigonometric Identities, Inverse Trigonometric Functions. and Polar Coordinate System Part 007 ShortOUIZ 15
I
quutlon a..X 2 +4y-4" 0
b. 4x 2 - sy 2 -3sy- 36" o
b. 4x 2 - sy2-3sy-36"' o
• c. X2 +4y-4"' 0
d. x2+y2-xm ,,,o
e.y =4
Ouesoon 4 Find a polar equation of the conic with 1ts focus at the pole
Complete
Conic: Parabola, Eccen!Jicity: e"' 1, Directrtx:: x"' .1
Mar1<100outof
, oo
Select one
l'FlaO
question a. r : - " -
1-cos8
·-
----
How to Virtual Library Post Student concern JOHN CARLOS MONSERATE , ~ '
.
Dashboard SHS-GR11-1S PREC-111 Week 18. Key Concepts ofCircu!ar Functions, Trigonometric Identities, Inverse Tngonomellic Functions, and Polar coordinate system Part 007 Short Quiz 15
FiniSh review Ouesoon 1 PIOt the point given in polar coordinates and find two additional polar representations of the point, using -2TT < e < 2TT
eoo,,,...
(4, - i)
Mart 1 000\llof
1
(,¥),(-,.-¥)
b.
Select one:
a. r ~ i+z:o,s
b. '-0-
r= -J-+Jco.sS
t
c.r • - -.-
1+.in ,
d. r;_t_O_
t- cos8
e . r • -1-
1- coss
2
f. r • - -. -
1- 11nfJ
Select ooe:
•. r 2 a 16secBcscBM32cK28
b. r a 2acos8
c. r =a
2
d. r • ---- --
Jcos f-·sin 6
4
e. r - - - or - - •-
1- ros I ucos 9
Select ooe
a. X' • v' • 16
b. X2 ♦ y1 + 2y■O
c• ..f!.x +y=O
d. X2 ty' - 4y •0
Select 008
a. r • -1-
J. ♦ tln f
b. r•--'0-
J•lcotl
2
c. r • - - -
1+zcos1
2
d. r • --
1- 11"'
e. r• -1-
1- c0t:I
f. r = ---1L.
I-COIi
Solve each equation lor exact solutions over the inleMI [o". 360°1
(cot8 - "3)(2 si118 + "3) = 0
Select ooe.
a. {90°, 21 o0, 330"}
b. {300. 210•, 2400, 300o}
c. {15°, 130°, 430"}
d. {0°, 45°, 22s0}
e. {30°, 200°, 310"}
Solve each equation for exact solutions over the intervaJ (00, 360°].
(tan 9 - l)(cos9 - 1) = 0
Select one:
a. {30°, 210•, 240°, 30o'}
b. 1so•, 210°, 330•>
c. {o', 45°, 225°}
d . {30°, 200°, 310°)
e. 11s•, 130•, 430°}
Solve lhe equahon for exact scM,ons over lhe interval (0 2TT)
tan 4x • 0
Select one
0
• • 3• 11 s.. 3,r 711}
•. { • 4 ' 2 ' 4 ' ' 4 ' 2' 4
r - 2 sin 36
Selecl one
a. (x2 + y2)' • 6x2y -'tof'
b. X2 + 4y- 4 • 0
c.y=4
d. X2 •r -•"' = 0
e. 4x2 - 5,r - 36y - 36 = o
Select one:
a.
•
( ./i.M4), (- ./i. - 0,78)
'
b.
..
(2./i. 10.9!1~(-2./i.7.85)
Answer: e l ipse
:select c,ne:
a. (x2 • y2 )2 = 6x2y - 2y'
b. X2 + 4y - 4 = 0
c. p4
d . 4X2 -5y 2 - 36y - .l6 = 0
e. x2 + y2 -x2i-s = o
Solve lhe equabon lot exact solutions o,,,, lhe interval {O 2rr].
cos2r =_.!.2
~ed ooe.
./2 cos 2x = -1
Setect one:
Find the exact value of lhe cosine of the angle by using a sum Of difference formula
195' = 225' - 30'
Select one
cot 3x = ,/3
Selecl one:
sin 6 - s in 26 =0
Select one:
•· o• + 360° n, 60° + 360° n, 180° + 360°, 300° + 360° n, where n Is any Integer.
b. 22.5° + 360° n, 11 2.5° + 360" n, 202.5° +360° n, 292.5° + 360" n, where n is any integer.
c. 30° + 360° n, 90° + 360° n, 150° + 360° n, 210° + 360° n, 270° + 360° n, 330° + 360° n,
where n is any integer.
d. 11.8° + 360° n, 78.2° + 360° n, 191.8° + 360° n, 258.2° + 360" n, where n Is any integer.
Select one:
a. 10.S0 + 3603 n, 2&9.S0 + 360' n, where n is ;any integer
b. 45' + 360° n. 90° + 360° n. 22s• + 360° n. 210• + 360' n. where n isanv Integer.
c. o0 +- 350• n, 30° + 360c n, 1so0 + 360° n, 1ao• + 360° n, where n 1s any lnteser.
d. 00° + 3G0° n, 300° -t 3G0~ n , where n i.si)ny integer.
•. 30° + 360" n. 90° + 360° n, 150° - 360' n, 210• • 360' n, 270° • 360' n, 330° • 360' n,
where n is any integer.
b. o0 -1- 360c n, 6<:f> + 360° n, 18~ + 360°, 300° -1- 360° n, where n l!i onv Jn.tcger.
c. 11.s• + 360° n, 78.2' + 360' n. 191.8° + 360" n, 258.2° + 360° n, where n ls any Integer.
a. zz.s• - 360' n, 112.5° + 360° n, 202.5' +360' n, 292.5° + 360° n, where n Is any integer.
Determine all solutions of each equation in radians (for x) or degrees (for 8) to the nearest tenth as appropriate.
3sin 2 x - s inx-l =0
~eel one:
a ••9 + 2nn, 2.:3 + 2nTT= 3.6 + 2nn, 5.8 + 2nn, where n is any integer
c. !!: + 2nn, !!!: + 2mr, ~ + 2nn, !!!: + 2mr where n is any integer
3 l 3 3
d. 1 + n , 2.3 + 2nn, 3.3 . 2nn, 5.8 + 2nrr= where n is any in1eger
2v'3sin2x = ,/J
Select one:
r 2 =cos B
Select one:
a. X2 + 4y - 4 = 0
b. (x2 • y2 )' = 6x2y-2y'
c. y = 4
d. 4x2 - 5y2 - 36y - 36 = 0
e. X2 + y2 - x21-s = o
Select one:
a. r= 2acos 8
b. r - -2
lcosi- s:in9
c. r =a
d. r 2 = 16sec 8 csc 8 =32csc2 8
4
e. r = -1- cos9
- or - -ltcos9
•-
Find the exact value of the trigonometric function given that sin 1l = i, and cos v = - ! . 180th are in Quadrant IL) Note that answers in fractions must be ente·ed like so: 415. 1,'2,
13 S
3/4. -{5110)
sin (u+v)
Answer: -{63/65)
-2 -9
r =1uln
Select one:
a. (x2 • y')' = 6x'y - 1y'
b. 4x2 - 5y2 - 36y - 36 = 0
c. X2 + 4y - 4 = 0
d. X2 + y2 - x2" = O
e. y=4
1/lhite the expression as the sine, cosine. or tangent of an angle.
u n2x+ tan .:r
1-tan2x t anx
Answer: tan 3x
Find the e>:act value of the cosine oflhe ang.e by using a sum or difference forn1ula
195' = 225' . 30'
Select one
c. cos195°= - ✓2(✓3 + 1)
4
Firn.J d µ l ld l t::\1Ud iu11 u f Ult: 1.,'\llli(.; wilh ii:::; ru,i,;u:::; a l U1t: !Joi'=,
Select ore:
1
ca. r • - -
H•in,
,.
b , r = l♦2<o.s8
d . r:. - 1-0 -
t - t0f8
2
e. r~ i+2<o•8
2
f. r • - -. -
1 - 11118
Sclcc: ooc:
a, 70.S' + 3603 n. 289.S0 + 360a n, where n is ~n·, inteeer
h o0 + 360c n, 30n+ 360' r,, :tSOO + 36<>° n, 180°+ 360° n 1 where ri iso,ny lnttger.
11 1
c, 60 -t 35d' 11, 300' + 360 n, where n is any integer.
a. 45' t 360° n, 90° + 360° n, 225° t 360° n, 270' t 360° n, where n is any Integer.
=ind the exa:t v aJoe ~ the l ¥19e,t oi the anfle bf using ;i ~um or dfference fomiola.
Sdt,1,;l 011e.
Select one:
4
a. r = -1- cosS
- or - - •-
1+oos9
b. r =a
2
c. r ; - --- - -
3co1 B•sinB
d. r 2 = l6sec 8 csc 8 = 32csc2 8
e. r = 2acos 8
Find the exact value of the trigonometric functionQiven tt at sin u = -fs and cos v o -i.(Both u andv are in Quadranl Ill.) f\ote that answers in fractions rrust be entered like so:
415, 1/2, 314. -(S/10)
t,;~ (u ... v)
Answer: 315
Sol,e each eqJation for exact solutions over the interval (00, 360°].
2 sin0 -1 = c sc O
Select one:
Q , {o', •s<, 225°}
b. {30°, 210•, 240°, 300")
c. {30°, 200•, 310°)
d. 1so•, 210°, 330•1
e. 11s•, 1io•, 430°)
Select one
c. (a)
I - JI - I
(b)--2-
2
d, 'ta) h ./6 lb)
I+ h
4 2
5elcd ooe:
a. o0 • 360° n, 60>• 360• n, 180° • 36cf, 300° + 360° n, whe re n is any Integer.
b. 30° • 360° n, 90° + 360° n. 150° • 360° n, 210° • 360° n, 270° • 360° n, 330° + 360° n,
where n i s any integer .
c. 22.5° + 360' n, 11 2.5° + 36o" n, 202.5° +360° n, 292.5°+ 350" n, where n is any integer.
d. 11.8° • 36d' n, 78.2° • 360° n, 191.8' • 360' n, 2ss.2° • 360" n, where n Is any Integer.
Convert the recianguJar equation to polar form. Assume a > 0.
x2 + y2 -2ax= O
Select one:
a. r= 2acos 8
b. r~- ---1- -
J cos 9 - ,:in 9
c. r =a
d. r 2 == l6sec 8 csc 8 == 32csc2 8
4
e. r = -1- cos8
- or - - •-
1+00s9
)etE-rmine a l solutio,-s ol e ach e:iuafon in radians (for x ) or degrees (for 8) to the nea·est tent , as appropriate.
4cos 7 x-1 == 0
5elect ooe:
Select c,ne:
a. R=4
b. R=3sec8
c. R=4csc 8
d. R=6
r=-- •-
2- h"!n t
Select ooe:
a. X' + -'y-4= 0
b. Xl + y2 -.c213 = 0
c. (x2 + .,2,2 = 6>.2v - 2v3
d. 4lc2 -5y2 -36\,-36 =O
e . y - ,t
Select one:
a. r ~ -l
lco.19- sin9
4
b. r = -1- cos8
- or - - •-
1+00s9
c.
d. r 2 == 16 sec8 csc 8 == 32 csc2 8
e. r == 2acos l/
Find a polar equation of the conic with its focus at the pole.
Conic: Parabola, Vertex or vertices: (1, -nJ2)
Select one:
a. r:. _,_o_
1- cosS
b.
l
c. r • - -. -
2+•1n ,
2
d. r • - -. -
1-11n 9
10
e. r ~ - - -
J ♦ 2c.oa8
1
f. r • - -
1- cosl
, __,_
Convef1 the polar equation to rectangular form
1tlln 61
Select one:
a. x2 • 4y - • • o
b. 4x2 -5y2-36y-36 =O
c. y =4
d. X2 •r - x"'• O
e. (x2 • r'i' = 6x2 y - 2-y'
4cos29 = 8sln9cos9
Select one
•· 11.s• + 360° n, 78.2' + 360' n, 191.8° + 360" n, 258.2° + 360° n, where n Is any Integer.
b. o• + 360° n, 60° + 360° n, 180" + 360", 300° + 360° n, where n Is any l nteaer.
c. 30° + 360° n. 90° + 360° n. 150° + 360" n, 210° + 360° n. 270' + 360° n. 330° + 360° n.•
where n is any inteaer.
d. 22.s• + 360" n. 112.s• + 360° n, 202.s• +360° n. 292.5° + 360° n. where n Is any Integer.
Solve each equation for exact sohsfions over the interval (00, 360'1
(tan9 -1)(cos9 -1) = 0
Select one
a. (90°, 21 00, 330°)
b. {30". 2100, 240', 300'}
c. (15", 130°, 430°)
d. (30", 2000, 310'}
•. {o", 45", 225°)
Solve each equation for exact solutions over the interva1 (00, 360°].
~nlVP. thi=- P.rp .:itinn for P.·<.:ici J=:nl1rtinn.c:: OJP.r thP. infP.v;li (0 "1']
cos2x = !'.2'.?:
Seleci ore:
b. {'"
2' 6' 6
7., 11..-}
d.
..
Solve the equation for exact solutiollS JVer the i"lfervzl {C. 2rr].
cos 2.x=-!.2
Find• polar equa!lcn of the conoc ••th Its rocus at the pole
Coroc Ellipse \leftex0< vertices (2 0), (10. n)
Select one·
l
a. r •~
c. r•-•-
l - ainl
d. r = -•O_
1- totl
1
e. r • 1+2c:osl
-- -
1
f. r • - -
2+.,nl
Convert the polar equation to rectangular form.
r =4
Select one:
a. X2+y1 - 4ysQ
b. xi+v1+ 2y;0
c. .J3x +y=O
d. X' •y'• 16
sin 8 - sin 28 =0
Select one:
a. 22.s• + 360° n, 11 2.s• + 3600 n, 202.5° +360° n, 292.5° + 3600 n, where n is any integer.
b. 30° + 360° n, 90° + 360° n, 150° + 360° n, 210° + 360° n, 270° + 360° n, 330° + 360° n,
where n is any integer.
c. o• + 360' n, 60° + 360° n, 1800 + 360°, 300° + 360° n, where n Is any Integer.
d. 11.s • + 350° n, 78.2° + 360° n, 191.8° + 360° n, 258.2° + 360° n, where n Is any Integer.
Cetermine all solutions of e ach equati on in radians (for x1or degrees (for 8) tc the nearest tenth as appropriate.
2 cos 1 x+cosx = 1
Select one:
a. !
3
+ 2mr, !!!l + 2nn, ~
3
+ 2mr, !!!
3
+ 2nn where n is any inte9er
b. i + 2mr, ,r + 2nrr, ~ + 2n,r, where n is any lnte9er
c. 1 + TTi 2.3 + 2mr1 3.3 . 2nn1 5.8 + 2nn, wfl.ere n s any integer
r = 4cscfl
Select one.
a.X2 +'4y-4=0
b. 4x1 -5y'-36y-36=0
c. (x2 + y2)' = 6x2y - 2'f'
d. y =4
e. X2+y2 - x213 =0
Determine all solutions of each equation in radians (for x) or degrees {for 5) to the nearest lenth as appropnate.
4 cos 2 x - l =O
Seled one
a. 1 + n 1 2.3 + 2nn, 3.3. 2nn. 5.8 + 2nn, where n 1s any integer
b ..9 + 2nn1 2.3 + 2nn, 3.6 + 2nn, 5.8 + 2nn1 where n is any integer
Select one:
1
a. r • - -
2+.in ,
1
b. r= - •-
1-cotB
c. r ~
1
1+2 :0,8
d. r = 1+2:0•8
2
e. r• - -
1- ain8
1
f. r • - -
1- cosl
Select one
a. r 2 ; 16sec9csc8; 32csc28
b. r - Cl
c. r • 2acos9
2
d. r = - ---- -
3C'DJl• t1t1I
e. r ; - •- or - -t +cosl
•-
1- cosB
2
Identify the conic of r• - -
z .. cc,s •
Answer: Ellipse
Answer: tan 3x
r 1 =cosB
Select one:
a.y•4
b. 4x2 -5y'-36y-36 = 0
c. x 2 • 4y- 4 = o
d.X1+y2 - x213 •0
e . (x2 • y')' = 6x2y - 2y'
Find the exact value of the cosine of the angle by using a sum or difference formula.
195' = 225' . 30'
Select one:
SOMO the equation for exact sokmns over the inte,val (0 2nj
cot 3x • ,/'j
Seledooe:
e. { 0 - -
,, Ztr
-
4,r 511}
• 3 ' 3 ' "· ·' ' 3
sin 28 = 2 cos 2 9
Select one:
a. 60° + 360" n, 300° + 360° n, where n is any integer.
b. o• + 360° n, 30° + 360' n, lSo" + 360" n, 180° + 360° n, where n Is any Integer.
c. 70.5° + 360° n, 289.5° + 360° n, where n is any integer
d. 45° + 360° n, 90° + 360° n, 225° + 360" n, 270° + 360° n, where n is any integer.
Select one:
a. R=4
b. H = :Ssectl
c. R=4csc 8
d. A = 6
a..--. 4 Findthetengtllofthearcoo a Clfdeof•adiusl'llercefAe<lb'facentralangle8
Radius3meters Central Angle 1 radian
Delefl'nine two cote11TW1al angles (one posrwe and one negative) for each angle
1.9• ~
s./e d -
a. (i)!f".- T
--
(J.a . 4b'f'
7
== p [0] ■ 61 ~· ..2 w ') CJ ... • i"~ ? A Q (J ), GJ I~~~ 1~1~ ;0~ 7 ~
• Dolphy and babalu "AR X If Faccbook X re Second Quarter Exam X
* :
~ C i Secure
H!Mlo
I https l; blendedamauonhnecom 1mod/qutz/rev1ewphp?attemptc:c)1685963&showa11-0
\/1ruallb.rt Poslstudenl:O:n:ern CYRB.JWANPfU W
.. a_
a. r "" JCN;:11111,
b. r • 2a cos 8
1
_;,.,or-
d. r- a
1+ ¼-¼•-!.•ii• ·"
~ seledone
.. '
d. "•
(
..,
l )"(Jt ♦ I)
~ ..
Dashboard SHS-GRll-1S PREC-111 'Neel: 20 Second Quarter Exam Second Ouarler Exam
a,
....
d.
Answer: !i6
Choose an expresSIOO for lhe appareril nth lemi of lhe :sequence Asstane that n begals with 1
1 l 4 S i
t· i ·i·7·9· ...
,. r-v Select one
C 1)111tl)
b . ._
,.." '
( I)'" '
d. -., It!
I
e. ~ ,r
Nextl)a9" ►
QUIZ NAVIGATION ~ 11 Solve eadl equation for exact solutions over Ille irller.al [Cl°. 3601
~~~---~~~
~~;~;~~
~, .. --
(tiln8- l )(cos8-1) • 0
a.{JOll,20(/J,310°}
b.{l<f, 21o",24(111,JOO°}
c.{o",4s11, 22!i°)
;;;;;; ~, ..
I:! . ,(k + 1)1 (k - 3)
'"""'~
Answer: 30
2sln8- t • cscB
I I I I.(~
* :
~ C i Secure
HcMlo
I https '1 blended amauonhne com 1mod/qutz/rev1ew php?attemptc:c)1685963&p.igec:c 1
\/1ruallb.rt Poslstudenl:Concem CYRB.Jl.UANPIU W
.. a_
--
2sin8 - t = csc8
a . {Jdl, 21o0,24QO, ~
b.{go0, 21oO, JJOO}
c.{30°,20()0, J1o0}
d.{<fl,45°, 22st')
e. {1fi11, 1:io<', 4JOO}
Delefrnirle two cotermnal angles (one posrtNe and one negative) for each angle
-- a. (ii)~-~
Answer: 15504
Dashboard SHS-GRll-1S PREC-111 'Neel: 20 Second Quarter Exam Second Ouarler Exam
Choose an expressioo for the app.arenl nth term dlhe sequence Assume that n begins with 1
-J J -• 5 -6
_,oo ....a1
•m
--
]•4·5·6·7•"""
a. •. ( •r·•
b. "• ~
d. ._ I•!
.. (
..,
l)"(it ♦ I)
ldenllfylheconic of r • _.:,.,
2
Answer: el1pse
~n.,
- serectone
a. S,,• (ot: 1)
b. S.,• Z(1t,.· l)
* :
~ C i Secure
HcMlo
I https '1 blended amauonhne com 1mod/qutz/rev1ew php?attemptc:c)1685963&p.igec:c 1
\/1ruallb.rt Poslstudenl:Concem CYRB.Jl.UANPIU W
.. a_
c . S,, a (ft•I )
◄ Previous~ NexlP-19' ►
CopJ<ig!,IAMA~Online~20l11
~ 21
Second Ouarler Exam
QUIZ NAVIGATK>N Find aformuta for lhe sum oflle fintl= oflhe $eQUel'ICC
1 S 9 . 13
..
__;;;;; -
CYREL JUUAN PILI
~, s.i.a-
a. S,• n(l n • l)
b. S. • (ln• 1)
~~~~;~~
c. S,,•(2n + l )
d. S. • n(ln + 1)
~ ~iH; '-'-'-'-
1;;;;~; ~ 22
;;;;;~
Fnllhewm
r:.,11;.1.,
Show al quesbom on one paoe
Fn shrewM
~, .. Ans'M':I'": 9J5
Answer: 30
Central/vqe lsdl
* :
~ C i Secure
HcMlo
I https '1 blended amauonhne com 1mod/qutz/rev1ew php?attemptc:c)1685963&p.igec:c2
\/1ruallb.rt Poslstudenl:Concem CYRB.Jl.UANPIU W
.. a_
Find the exaict vaiue of the mgonometri: l\.lncliongiven llatsm and cos v• -i. {Both u and v are in Quadrant Ill ) Note ltlatanswers III fractions rrustbeentered lke so· 4/S 112
314 ,(5110)
cos(u•v)
Find the exact v-..e of the tangent of !tie angle 't1f uwig a sum or difference fomua
--
- 165°
. . ... ,.16'r •
b.1'n(-1661'•-4(✓J + 1)
,.un(-16'r •
4 (.r, ,)
4(, _J,)
I
d.tan(-166)0 • 2 ./3
Plot the point 9IVefl in poiar coor<inate~ and find two ilddibonal polar represeotafioos of lie poinl using -21'1 < e < 2rr
(0, - ~ )
Dashboard SHS-GRll-1S PREC-111 'Neel: 20 Second Quarter Exam Second Ouarler Exam
,_;,.,or -
b. r = Jao,o ;~a nf
c. r - Zacas l
d. ,.2 • 16 sec i utlil • ]2UCZ8
Determine al soluboos °' each equatiol 111 r~ns (for x} or degees (for 8} lo the nearest tenltl as appropnate
--
2cos:l x+cosx=l
a .1 • Tl, 2.3 • 2nTI, 3.3 - 2nlT, 5.8• 2nTI, where n is any integer
I
d.
s.!ed=
a.2x'-12x'- 96x2 + 232x +207
b. 211• . 24x3 + 113x2 • 246x + '107
* :
~ C i Secure
HcMlo
I https '1 blended am auonhne com 1mod/qutz/rev1ew php?a ttemptc:c)1685963&p.igec:c3
\/1ruallb.rt Poslstudenl:Concem
..
CYRB.Jl.UANPIU W
a_
Ql.z: NAVIGAOON Expand lhe bloomal by USlf'l9 Pascal's Tnangle to oetemline lhe coeffiaeflts
(2t- sl'
CYREL JUUANP1U
F--
s.!ed=
St.ow al qoesooos on ooe page a. 243a5 + 162'0INI. 4320a3bl - !760a2b3 + 3840ab' -1024b5
b. 24~ • 1620a"t> • 432037b3 - S760ab' • 3840ab' • 102'">5
c. 20a5 - 1620a2b1 • 4320rb1 • 5760a2b 3 • 3840ab3 • 1024b5
d. 243a5 - 1620a"b + 43'10a3trl - i760a2lY + 3840ab' - 1024b5
~ ,, SOive the equation for exact solul!Oll$ ever lhe 111tewal (0 2ft]
·~
w.n.11X1....iar
2,/JsinZx •
s.!ed=
./3
a. {
tr 5tt lltt 17•}
frii·J2•1l
Dashboard SHS-GRl l -1S PREC-111 'Neel: 20 Second Quarter Exam Second Ouarler Exam
~ 34 Choose .tn expression for the apparem nth lfflll of the sequence AsSta'Tle that n begins with 1
·~
w.n.100....iar 1 + f. 1 +i,1 +;.1 +~.1 +¼,...
.. I l )"f11tl)
.. ,
I
d. a, ( · I)"• I
,. '
Choose.tnexpression for theapparefllnthtermofthesequence ASSl.methat nt)eon$wilh 1
C0nvefllhepolarequabonlorecbr91t1r form.
s- ~
* :
~ C i Secure
HcMlo
I https '1 b lended am auonhn e com 1mod/qutz/rev1ew php?a ttemptc:c)1685963&p.igec:c3
\/1ruallb.rt Poslstudenl:Concem CYRB.Jl.UANPIU W
.. a_
,-~
,__
a. X1 •f • 2y • O
b. X'+y1 • 16
c• ./lx+y • O
d . X1 t f - 4y•0
,.,,.._
I
a. 32x5 + 1ox'y + 40x~1 + 80x1'r + ~ + 16y5
b. ~ + 10x-v + 40xY + 80x1'r +,4Qxyl + 16Y5
c. ~ • 1ox4-y • 40xY • sox'-1 • soxv' • l2r
d. 2Jt5+ 20x'y+BOry! +80xf°r• 40xy'+32y5
~ ,. Oelefmine al soMloos of eac:tl equallol 1n raOlains (for x) or degrees (for 6) lo the nearesl lefllfl as appropnate
4 cos 2 :r - 1 • O
,.,,.._
a..9 + 2nn, 2.3 + 2nn, 3.6 • inn, 5.8 + 2nn, wtlefe n is any integer
D e ~ .JI sdutions of eadl equaboi 111 radian$ (for x) or de!,ees (for 6) lo the ne.Yesl lenlh as appropriate
--
4 cos 2 x
b.
- 1• O
a . .9 + 2nn , 2.3 + 2nn, 3.6 + 2nn, 5.8 + 2nn, whefe n is any integer
o-- 39 Use the Blnomal Theorem to expand .n:I sin-., the expfflSSIOfl
--
(><' •,'f
UselheBn:lrnalTheoremtoe,rp,and.n:l~lheexpfe,.sion
--
(2x+ •f f
a .8x3+8x1y+4,cy2+2y
b. 8x3 + 12x2y + 6,cf + y3
c. 4x3+6xl y + 8,cf + y3
d.4x3 +6,cf +nx2y +y3
QUIZ NAVIGATION
CYRELJUUAN PIU
~~~-.l~~~
-.
- •1
..,
Coovef1 Ile polar equabon lo recta~ar form.
r • 4csc:8
Sood-
a . X2 +4y - 4 • 0
;;;;;;; d.y z 4
e . X2 • f - x213 • 0
i;;;;;;
;;;;;~;
;;;;;; ◄ Previous page
CopJ<ig!,IAMA~Online~20l11
o.-- 1 'Mile the first live terms of lhe sequence Assume ttial n begins wrth 1
A,,=n(n - l )(n-2)
' 24
o.-- 2 findlhesum.
1::. 110
Show all quesbons on one page
Fnshreview Answer: 40
Answer: 4950
Username:18003541800 Pass:e5ce12