Rhythm and Beat Perception in Motor Areas of The Brain: Jessica A. Grahn and Matthew Brett
Rhythm and Beat Perception in Motor Areas of The Brain: Jessica A. Grahn and Matthew Brett
of the Brain
Abstract
& When we listen to rhythm, we often move spontaneously         rhythm type, which had integer ratio relationships between its
to the beat. This movement may result from processing of the    intervals and regular perceptual accents. A subsequent func-
beat by motor areas. Previous studies have shown that several   tional magnetic resonance imaging study found that these
motor areas respond when attending to rhythms. Here we          rhythms also elicited higher activity in the basal ganglia and
investigate whether specific motor regions respond to beat in   SMA. This finding was consistent across different levels of
rhythm. We predicted that the basal ganglia and supplementary   musical training, although musicians showed activation in-
motor area (SMA) would respond in the presence of a regular     creases unrelated to rhythm type in the premotor cortex,
beat. To establish what rhythm properties induce a beat, we     cerebellum, and SMAs (pre-SMA and SMA). We conclude that,
asked subjects to reproduce different types of rhythmic         in addition to their role in movement production, the basal
sequences. Improved reproduction was observed for one           ganglia and SMAs may mediate beat perception. &
INTRODUCTION
                                                                of encoding each individual interval length. In non-
In most Western music, people perceive a regular, under-        integer ratio sequences (e.g., 1:2.4:3.6) beats cannot be
lying pulse called the ‘‘beat’’ or ‘‘tactus’’ (Drake, Penel,    used, and thus, sequence reproduction is worse. Sub-
& Bigand, 2000). Perception of the beat often causes            jects may even ‘‘regularize’’ noninteger ratio sequences,
spontaneous synchronized movement, such as toe tap-             reproducing them as integer ratios (Collier & Wright,
ping or head nodding. The presence of a beat also               1995; Essens, 1986).
affects the ability to remember and perform a rhythm.              Others propose that integer ratios are insufficient to
For example, when a rhythm is presented with a beat             induce a beat and that regularly occurring ‘‘perceptual
(the beat occurring as a series of external metronome           accents’’ may also be necessary (Essens & Povel, 1985).
clicks), reproduction accuracy of the rhythm improves           Accents cause a particular note to feel more prominent
(Patel, Iversen, Chen, & Repp, 2005; Essens & Povel,            than surrounding notes, and previous work shows that
1985). The beat is emphasized in musical contexts by            our attention is attracted to accented events (Drake,
nontemporal cues such as pitch, volume, and timbre,             Jones, & Baruch, 2000; Jones & Pfordresher, 1997; Jones
yet even rhythms without these cues can induce listen-          & Boltz, 1989). One common type of accent occurs in
ers to ‘‘feel’’ a beat internally (Brochard, Abecasis,          music, where louder notes are perceived as more prom-
Potter, Ragot, & Drake, 2003). The beat is somehow              inent. However, humans perceive a beat in rhythmic
conveyed solely by the temporal properties of the               patterns even when no volume changes occur. In this
rhythm itself. It is still unclear, however, exactly what       case, any perceptual accents that occur are due to the
temporal properties are critical for beat perception to         temporal pattern. This is the type of accent investigated
spontaneously occur. One property that may be impor-            in the current experiments: the type of accent that arises
tant for beat perception in rhythm is the presence of           solely from the temporal context when all other factors
simple integer ratio relationships between intervals in         (such as pitch or volume) are held constant. For exam-
a sequence (Sakai et al., 1999; Essens, 1986). For exam-        ple, onsets not closely followed by other onsets in time
ple, a sequence containing intervals of 250, 500, and           are perceived as accented (Parncutt, 1994), as is the
1000 msec has a 1:2:4 relationship between its intervals.       final onset of two or three onsets in a row (Povel &
By using a beat that is the length of the smallest interval,    Okkerman, 1981). The latter type of accent is present
the sequence can be encoded in terms of beats, instead          in the Overture to William Tell (da da dum, da da dum,
                                                                da da dum dum dum . . .) on the ‘‘dum’’ of each ‘‘da
                                                                da dum.’’ If perceptual accents occurring at regular
MRC Cognition and Brain Sciences Unit, Cambridge, UK            temporal intervals are necessary to feel the beat, then
D 2007 Massachusetts Institute of Technology                            Journal of Cognitive Neuroscience 19:5, pp. 893–906
sequences with this property should be reproduced             if certain brain areas responded to perception of a beat
more accurately (Essens, 1995).                               (induced by the temporal structure of the rhythms).
   Perceptual accents have not always been considered            Beat perception may require a temporal representa-
in previous research (Sakai et al., 1999). Thus, enhance-     tion or level of processing that is more complex than
ment in integer ratio sequence performance may be due         that required for the more basic timing of individual
to some sequences in that condition that also had             intervals. Given that the basal ganglia and SMA are not
regular perceptual accents. The role of perceptual ac-        only involved in attention to time (Coull et al., 2004),
cents and integer ratios in rhythm reproduction is            but are critical to temporal sequencing (Shima & Tanji,
examined in our first experiment. Subjects listened to        2000; Brotchie, Iansek, & Horne, 1991) and predict-
and then reproduced rhythms that contained either             able, internally generated movements (Cunnington,
integer ratios or noninteger ratios and regular or ir-        Windischberger, Deecke, & Moser, 2002; Freeman, Cody,
regular perceptual accents. A follow-up functional mag-       & Schady, 1993), we hypothesize that they are the most
netic resonance imaging (fMRI) study used the same            likely candidate areas for the detection or generation of
rhythms to investigate neural activity during rhythm          an internal beat.
perception. Perception and production are likely to rely
on similar neural mechanisms, as previous behavioral
work demonstrates comparable difference thresholds            METHODS
between timing during perception and production tasks         Reproduction Experiment
(Ivry & Hazeltine, 1995). This behavioral similarity is
supported by neuroimaging experiments. Timing, dura-          Subjects and Stimuli
tion perception, and rhythm perception and production         Twenty subjects (9 men, 11 women) took part in the
tasks consistently activate the same brain areas, in-         reproduction experiment. Subjects ranged in age from
cluding the premotor and supplementary motor areas            24 to 40 years, with an average age of 30 years. For each
(SMAs), cerebellum, and basal ganglia (Coull, Vidal,          condition, 30 rhythmic sequences were constructed
Nazarian, & Macar, 2004; Lewis, Wing, Pope, Praamstra,        from sets of five, six, or seven intervals. The intervals
& Miall, 2004; Pastor, Day, Macaluso, Friston, &              in the metric rhythms were related by ratios of 1:2:3:4,
Frackowiak, 2004; Dhamala et al., 2003; Ferrandez et al.,     and the intervals in the nonmetric rhythms were related
2003; Nenadic et al., 2003; Ramnani & Passingham, 2001;       by ratios of 1:1.4:3.5:4.5. The metric rhythms were of
Rao, Mayer, & Harrington, 2001; Schubotz & von Cramon,        two types: simple and complex.
2001; Penhune, Zatorre, & Evans, 1998). Damage to these          In the metric simple condition the intervals were
areas also impairs timing abilities (Molinari, Leggio, De     arranged to induce a perceptual accent at the beginning
Martin, Cerasa, & Thaut, 2003; Mangels, Ivry, & Shimizu,      of each group of four units (see Figure 1). Nothing was
1998; Halsband, Ito, Tanji, & Freund, 1993; Artieda,          added to the sequence to produce the perceptual
Pastor, Lacruz, & Obeso, 1992). It is thus reasonably clear   accents: they arise spontaneously from the temporal
that the timing processes that underlie both perception
and production involve these areas.
   However, these brain regions are unlikely to subserve
identical timing functions. It has been suggested that
one distinction between commonly activated neural
structures may be their respective roles in ‘‘automatic’’
timing, defined as ‘‘the continuous measurement of
predictable subsecond intervals defined by movement,’’
and ‘‘cognitively controlled’’ timing, defined as the
‘‘measurement of suprasecond intervals not defined by
movement and occurring as discrete epochs’’ (Lewis &
Miall, 2003). Beat perception has characteristics of both
automatic and cognitively controlled timing, as the
length of the beat humans perceive can span from ap-
proximately 200 to 2000 msec (Parncutt, 1994; Warren,
1993), and the beat may or may not be marked by
movement. Accordingly, a different distinction may be
that certain motor areas are involved in extracting a
regular beat from incoming temporal stimuli. The role         Figure 1. Schematic of sample stimuli. Vertical bars indicate interval
for motor areas in beat processing is supported by            onset; ‘‘>’’ indicates where perceptual accents should be heard
                                                              (Povel & Okkerman, 1981). Perceptual accents can occur on final
findings of a direct link between movement and beat           interval onsets of consecutive runs of two or three short intervals
perception in infants (Phillips-Silver & Trainor, 2005).      and on onsets either preceded or followed by a relatively long period
Thus, the current studies were conducted to determine         of no onsets (such as the first and last onsets of a sequence).
1 = 220–270 msec (in steps of 10 msec), chosen at random for each trial. All other intervals in that sequence are multiplied by length chosen for
the 1 interval.
sound-attenuating ear defenders. Further attenuation of                    presentations of a rhythm, to which they compared a
scanner noise was achieved with insert earplugs rated to                   subsequent third presentation. The third presentation
attenuate by 30 dB (3M 1100 earplugs, 3M United                           could be the same rhythm or a different rhythm. To
Kingdom PLC, Bracknell, UK). When wearing earplugs                         indicate whether the third rhythm was same or different,
and ear defenders, participants reported no difficulty in                  participants pressed one of two buttons with either the
hearing the rhythms or focusing on the task. The discrim-                  right index or middle finger. On 39% of trials the third
ination task used the same sequences as the reproduction                   presentation was different. Each rhythm presentation was
task but required participants to listen to two identical                  separated by 1100 msec. The deviant sequences contained
Figure 3. Behavioral data collected during fMRI experiment. The             R putamen                        5.08    <.001      21          6       6
graph demonstrates the percentage of trials discriminated correctly         L premotor                       5.3     <.001 54              0    51
by musicians (mus) and nonmusicians (non) for each of the rhythm
conditions. There are no significant differences between groups             R premotor                       5.24    <.001      54          0   45
or conditions.
                                                                            R cerebellum                     4.68    <.001      30 66 27
                                                                            L cerebellum                     4.41    <.001 30 66 24
                         0
Musical training: d : F(1,25) = 2.41, p = .13, percent                      R superior temporal gyrus        6.02    <.001      60 33              6
correct: F(1,25) = 1.85, p = .19. Figure 3 shows the                        L superior temporal gyrus        5.8     <.001 57 15                  9
percent correct scores for musicians and nonmusicians
across the different rhythm conditions. Reaction times                      L superior temporal pole         4.68    <.001 57              6       3
were not analyzed because participants were not asked                       R inferior frontal               4.52    <.001      27      30      15
to make a speeded response. Although behavioral per-
                                                                            This table shows the brain region, p and Z values, and stereotaxic
formance was equal across conditions, the data indicate                     coordinates (in millimeters) of peak voxels in MNI space. Thresholded
this is not due to floor or ceiling effects.                                at p < .001, whole-brain corrected (FDR). R = right; L = left; SMA =
                                                                            supplementary motor area.
L inferior frontal gyrus 4.03 .040 51 33 6 R premotor cortex 1.25 (ns) 0.46 (ns)
L superior frontal gyrus 4.01 .040 12 69 18 L premotor cortex 1.49 (ns) 0.58 (ns)
 1. Fiona C. Manning, Jennifer Harris, Michael Schutz. 2017. Temporal prediction abilities are mediated by motor effector and
    rhythmic expertise. Experimental Brain Research 235:3, 861-871. [CrossRef]
 2. Simone Dalla Bella, Charles-Etienne Benoit, Nicolas Farrugia, Peter E. Keller, Hellmuth Obrig, Stefan Mainka, Sonja A. Kotz.
    2017. Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Scientific Reports 7, 42005.
    [CrossRef]
 3. Kouki Edagawa, Masahiro Kawasaki. 2017. Beta phase synchronization in the frontal-temporal-cerebellar network during auditory-
    to-motor rhythm learning. Scientific Reports 7, 42721. [CrossRef]
 4. Molly J. Henry, Björn Herrmann, Jessica A. Grahn. 2017. What can we learn about beat perception by comparing brain signals
    and stimulus envelopes?. PLOS ONE 12:2, e0172454. [CrossRef]
 5. Abbas Babajani-Feremi. 2017. Neural Mechanism Underling Comprehension of Narrative Speech and Its Heritability: Study in
    a Large Population. Brain Topography . [CrossRef]
 6. Anne Keitel, Robin A.A. Ince, Joachim Gross, Christoph Kayser. 2017. Auditory cortical delta-entrainment interacts with
    oscillatory power in multiple fronto-parietal networks. NeuroImage 147, 32-42. [CrossRef]
 7. W. J. Trost, C. Labbé, D. Grandjean. 2017. Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia
    96, 96-110. [CrossRef]
 8. Jessica Slater, Andrea Azem, Trent Nicol, Britta Swedenborg, Nina Kraus. 2017. Variations on the theme of musical expertise:
    cognitive and sensory processing in percussionists, vocalists and non-musicians. European Journal of Neuroscience . [CrossRef]
 9. Adam Tierney, Travis White-Schwoch, Jessica MacLean, Nina Kraus. Individual Differences in Rhythmic Skills: Links with
    Neural Consistency and Linguistic Ability. Journal of Cognitive Neuroscience, ahead of print1-15. [Abstract] [PDF] [PDF Plus]
10. Valentin Bégel, Charles-Etienne Benoit, Angel Correa, Diana Cutanda, Sonja A. Kotz, Simone Dalla Bella. 2017. “Lost in time”
    but still moving to the beat. Neuropsychologia 94, 129-138. [CrossRef]
11. Sarah Knight, Neta Spiro, Ian Cross. 2017. Look, listen and learn: Exploring effects of passive entrainment on social judgements
    of observed others. Psychology of Music 45:1, 99-115. [CrossRef]
12. Layla Gould, Marla J. S. Mickleborough, Chelsea Ekstrand, Eric Lorentz, Ron Borowsky. 2016. Examining the neuroanatomical
    and the behavioural basis of the effect of basic rhythm on reading aloud. Language, Cognition and Neuroscience 1-19. [CrossRef]
13. Jonna K. Vuoskoski, Eric F. Clarke, Tia DeNora. 2016. Music listening evokes implicit affiliation. Psychology of Music
    030573561668028. [CrossRef]
14. Carlotta Lega, Tomaso Vecchi, Egidio D’Angelo, Zaira Cattaneo. 2016. A TMS investigation on the role of the cerebellum in
    pitch and timbre discrimination. Cerebellum & Ataxias 3:1. . [CrossRef]
15. Jan Stupacher, Matthias Witte, Michael J. Hove, Guilherme Wood. 2016. Neural Entrainment in Drum Rhythms with Silent
    Breaks: Evidence from Steady-state Evoked and Event-related Potentials. Journal of Cognitive Neuroscience 28:12, 1865-1877.
    [Abstract] [Full Text] [PDF] [PDF Plus]
16. Robert Harris, Klaus L. Leenders, Bauke M. de Jong. 2016. Speech dysprosody but no music ‘dysprosody’ in Parkinson’s disease.
    Brain and Language 163, 1-9. [CrossRef]
17. Margaret Wilson, Peter F. Cook. 2016. Rhythmic entrainment: Why humans want to, fireflies can’t help it, pet birds try, and sea
    lions have to be bribed. Psychonomic Bulletin & Review 23:6, 1647-1659. [CrossRef]
18. Tosca Lynch. 2016. ARSIS AND THESIS IN ANCIENT RHYTHMICS AND METRICS: A NEW APPROACH. The
    Classical Quarterly 66:02, 491-513. [CrossRef]
19. Alexandre Lehmann, Diana Jimena Arias, Marc Schönwiesner. 2016. Tracing the neural basis of auditory entrainment. Neuroscience
    337, 306-314. [CrossRef]
20. Jessica M. Ross, John R. Iversen, Ramesh Balasubramaniam. 2016. Motor simulation theories of musical beat perception. Neurocase
    22:6, 558-565. [CrossRef]
21. Kelly Jakubowski, Nicolas Farrugia, Lauren Stewart. 2016. Probing imagined tempo for music: Effects of motor engagement and
    musical experience. Psychology of Music 44:6, 1274-1288. [CrossRef]
22. N.P.M. Todd, S. Govender, J.G. Colebatch. 2016. Vestibular-dependent inter-stimulus interval effects on sound evoked potentials
    of central origin. Hearing Research 341, 190-201. [CrossRef]
23. Sanjay G. Manohar, Masud Husain. 2016. Working Memory for Sequences of Temporal Durations Reveals a Volatile Single-
    Item Store. Frontiers in Psychology 7. . [CrossRef]
24. Annett Schirmer, Warren H. Meck, Trevor B. Penney. 2016. The Socio-Temporal Brain: Connecting People in Time. Trends
    in Cognitive Sciences 20:10, 760-772. [CrossRef]
25. Tomohiro Amemiya, Koichi Hirota, Yasushi Ikei. 2016. Tactile Apparent Motion on the Torso Modulates Perceived Forward
    Self-Motion Velocity. IEEE Transactions on Haptics 9:4, 474-482. [CrossRef]
26. Hanna Poikonen, Petri Toiviainen, Mari Tervaniemi. 2016. Early auditory processing in musicians and dancers during a
    contemporary dance piece. Scientific Reports 6, 33056. [CrossRef]
27. Martin Lang, Daniel J. Shaw, Paul Reddish, Sebastian Wallot, Panagiotis Mitkidis, Dimitris Xygalatas. 2016. Lost in the Rhythm:
    Effects of Rhythm on Subsequent Interpersonal Coordination. Cognitive Science 40:7, 1797-1815. [CrossRef]
28. Tal Blecher, Idan Tal, Michal Ben-Shachar. 2016. White matter microstructural properties correlate with sensorimotor
    synchronization abilities. NeuroImage 138, 1-12. [CrossRef]
29. Sascha Frühholz, Wiebke Trost, Sonja A. Kotz. 2016. The sound of emotions—Towards a unifying neural network perspective
    of affective sound processing. Neuroscience & Biobehavioral Reviews 68, 96-110. [CrossRef]
30. Sundeep Teki, Tadeusz W. Kononowicz. 2016. Commentary: Beta-Band Oscillations Represent Auditory Beat and Its Metrical
    Hierarchy in Perception and Imagery. Frontiers in Neuroscience 10. . [CrossRef]
31. Catia M. Sameiro-Barbosa, Eveline Geiser. 2016. Sensory Entrainment Mechanisms in Auditory Perception: Neural
    Synchronization Cortico-Striatal Activation. Frontiers in Neuroscience 10. . [CrossRef]
32. César F. Lima, Saloni Krishnan, Sophie K. Scott. 2016. Roles of Supplementary Motor Areas in Auditory Processing and Auditory
    Imagery. Trends in Neurosciences 39:8, 527-542. [CrossRef]
33. Alessandro Miani. 2016. Sexual arousal and rhythmic synchronization: A possible effect of vasopressin. Medical Hypotheses 93,
    122-125. [CrossRef]
34. Rodrigo Araneda, Laurent Renier, Daniela Ebner-Karestinos, Laurence Dricot, Anne G. De Volder. 2016. Hearing, feeling or
    seeing a beat recruits a supramodal network in the auditory dorsal stream. European Journal of Neuroscience . [CrossRef]
35. Alessandra Campanelli, Lidia Rendace, Francesco Parisi, Fabrizia D'Antonio, Letizia Imbriano, Carlo de Lena, Alessandro
    Trebbastoni. 2016. Musical cognition in Alzheimer's disease: application of the Montreal Battery of Evaluation of Amusia. Annals
    of the New York Academy of Sciences 1375:1, 28-37. [CrossRef]
36. Fiona C. Manning, Michael Schutz. 2016. Trained to keep a beat: movement-related enhancements to timing perception in
    percussionists and non-percussionists. Psychological Research 80:4, 532-542. [CrossRef]
37. Rainer Polak, Justin London, Nori Jacoby. 2016. Both Isochronous and Non-Isochronous Metrical Subdivision Afford Precise
    and Stable Ensemble Entrainment: A Corpus Study of Malian Jembe Drumming. Frontiers in Neuroscience 10. . [CrossRef]
38. Miriam D. Lense, Elisabeth M. Dykens. 2016. Beat Perception and Sociability: Evidence from Williams Syndrome. Frontiers in
    Psychology 7. . [CrossRef]
39. Sundeep Teki, Timothy D. Griffiths. 2016. Brain Bases of Working Memory for Time Intervals in Rhythmic Sequences. Frontiers
    in Neuroscience 10. . [CrossRef]
40. Nicolò Francesco Bernardi. 2016. Musica e movimento: teorie e applicazioni. RICERCHE DI PSICOLOGIA :2, 187-198.
    [CrossRef]
41. J. A. Judge. 2016. Jonathan Berger and Gabe Turow (eds.), Music, science, and the rhythmic brain: cultural and clinical
    implications. Phenomenology and the Cognitive Sciences 15:2, 305-313. [CrossRef]
42. Joyce L. Chen, Shinya Fujii, Gottfried Schlaug. 2016. The use of augmented auditory feedback to improve arm reaching in stroke:
    a case series. Disability and Rehabilitation 38:11, 1115-1124. [CrossRef]
43. Fleur L. Bouwer, Carola M. Werner, Myrthe Knetemann, Henkjan Honing. 2016. Disentangling beat perception from sequential
    learning and examining the influence of attention and musical abilities on ERP responses to rhythm. Neuropsychologia 85, 80-90.
    [CrossRef]
44. Coral Guerrero Arenas, Silvia S. Hidalgo Tobón, Pilar Dies Suarez, Eduardo Barragán Pérez, Eduardo Castro Sierra, Julio García,
    Benito de Celis Alonso. 2016. Strategies for tonal and atonal musical interpretation in blind and normally sighted children: an
    fMRI study. Brain and Behavior 6:4. . [CrossRef]
45. W. Tecumseh Fitch. 2016. Dance, Music, Meter and Groove: A Forgotten Partnership. Frontiers in Human Neuroscience 10. .
    [CrossRef]
46. Falisha J. Karpati, Chiara Giacosa, Nicholas E. V. Foster, Virginia B. Penhune, Krista L. Hyde. 2016. Sensorimotor integration is
    enhanced in dancers and musicians. Experimental Brain Research 234:3, 893-903. [CrossRef]
47. Amrita Biswas, Shantala Hegde, Ketan Jhunjhunwala, Pramod Kumar Pal. 2016. Two sides of the same coin: Impairment in
    perception of temporal components of rhythm and cognitive functions in Parkinson’s disease. Basal Ganglia 6:1, 63-70. [CrossRef]
48. Adam Tierney, Nina Kraus. 2016. Getting back on the beat: links between auditory-motor integration and precise auditory
    processing at fast time scales. European Journal of Neuroscience 43:6, 782-791. [CrossRef]
49. Douglas R Matthews, Valerie A Ubbes, Valeria J Freysinger. 2016. A qualitative investigation of early childhood teachers’
    experiences of rhythm as pedagogy. Journal of Early Childhood Research 14:1, 3-17. [CrossRef]
50. Brian Mathias, Pascale Lidji, Henkjan Honing, Caroline Palmer, Isabelle Peretz. 2016. Electrical Brain Responses to Beat
    Irregularities in Two Cases of Beat Deafness. Frontiers in Neuroscience 10. . [CrossRef]
51. Daniel J. Cameron, Kristen A. Pickett, Gammon M. Earhart, Jessica A. Grahn. 2016. The Effect of Dopaminergic Medication
    on Beat-Based Auditory Timing in Parkinson’s Disease. Frontiers in Neurology 7. . [CrossRef]
52. Yi-Huang Su, Elvira Salazar-López. 2016. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm
    Perception. Neural Plasticity 2016, 1-17. [CrossRef]
53. G.R. Müller-Putz, A. Schwarz, J. Pereira, P. OfnerFrom classic motor imagery to complex movement intention decoding 39-70.
    [CrossRef]
54. Soo-Eun Chang, Ho Ming Chow, Elizabeth A. Wieland, J. Devin McAuley. 2016. Relation between functional connectivity and
    rhythm discrimination in children who do and do not stutter. NeuroImage: Clinical 12, 442-450. [CrossRef]
55. Boris Kotchoubey, Yuri G. Pavlov, Boris Kleber. 2015. Music in Research and Rehabilitation of Disorders of Consciousness:
    Psychological and Neurophysiological Foundations. Frontiers in Psychology 6. . [CrossRef]
56. Kelly Jakubowski, Nicolas Farrugia, Andrea R. Halpern, Sathish K. Sankarpandi, Lauren Stewart. 2015. The speed of our
    mental soundtracks: Tracking the tempo of involuntary musical imagery in everyday life. Memory & Cognition 43:8, 1229-1242.
    [CrossRef]
57. Jessica A. Bernard, Zachary B. Millman, Vijay A. Mittal. 2015. Beat and metaphoric gestures are differentially associated with
    regional cerebellar and cortical volumes. Human Brain Mapping 36:10, 4016-4030. [CrossRef]
58. Andrea Ravignani. 2015. Evolving perceptual biases for antisynchrony: a form of temporal coordination beyond synchrony.
    Frontiers in Neuroscience 9. . [CrossRef]
59. Iballa Burunat, Elvira Brattico, Tuomas Puoliväli, Tapani Ristaniemi, Mikko Sams, Petri Toiviainen. 2015. Action in Perception:
    Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening. PLOS ONE 10:9, e0138238. [CrossRef]
60. Adam Tierney, Nina Kraus. 2015. Evidence for Multiple Rhythmic Skills. PLOS ONE 10:9, e0136645. [CrossRef]
61. Michael P. Olshansky, Rachel J. Bar, Mary Fogarty, Joseph F.X. DeSouza. 2015. Supplementary motor area and primary auditory
    cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music. Neurocase 21:5, 607-617.
    [CrossRef]
62. Luc H. Arnal, Keith B. Doelling, David Poeppel. 2015. Delta–Beta Coupled Oscillations Underlie Temporal Prediction Accuracy.
    Cerebral Cortex 25:9, 3077-3085. [CrossRef]
63. Alfredo Raglio. 2015. Music Therapy Interventions in Parkinson’s Disease: The State-of-the-Art. Frontiers in Neurology 6. .
    [CrossRef]
64. Neil P. M. Todd, Christopher S. Lee. 2015. The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis
    and future perspectives. Frontiers in Human Neuroscience 9. . [CrossRef]
65. Neil P. M. Todd, Christopher S. Lee. 2015. Source analysis of electrophysiological correlates of beat induction as sensory-guided
    action. Frontiers in Psychology 6. . [CrossRef]
66. Brian Mathias, Caroline Palmer, Fabien Perrin, Barbara Tillmann. 2015. Sensorimotor Learning Enhances Expectations During
    Auditory Perception. Cerebral Cortex 25:8, 2238-2254. [CrossRef]
67. Thomas E Cope, David M Baguley, Timothy D Griffiths. 2015. The functional anatomy of central auditory processing. Practical
    Neurology 15:4, 302-308. [CrossRef]
68. Martina A. Hurschler, Franziskus Liem, Mathias Oechslin, Philipp Stämpfli, Martin Meyer. 2015. fMRI reveals lateralized pattern
    of brain activity modulated by the metrics of stimuli during auditory rhyme processing. Brain and Language 147, 41-50. [CrossRef]
69. Fleur L. Bouwer, Henkjan Honing. 2015. Temporal attending and prediction influence the perception of metrical rhythm:
    evidence from reaction times and ERPs. Frontiers in Psychology 6. . [CrossRef]
70. Sonja A. Kotz, Maren Schmidt-Kassow. 2015. Basal ganglia contribution to rule expectancy and temporal predictability in speech.
    Cortex 68, 48-60. [CrossRef]
71. Jee-Weon Cha. 2015. The Takadimi system reconsidered: Its psychological foundations and some proposals for improvement.
    Psychology of Music 43:4, 563-577. [CrossRef]
72. Naho Konoike, Yuka Kotozaki, Hyeonjeong Jeong, Atsuko Miyazaki, Kohei Sakaki, Takamitsu Shinada, Motoaki Sugiura, Ryuta
    Kawashima, Katsuki Nakamura. 2015. Temporal and Motor Representation of Rhythm in Fronto-Parietal Cortical Areas: An
    fMRI Study. PLOS ONE 10:6, e0130120. [CrossRef]
73. Gujing Li, Hui He, Mengting Huang, Xingxing Zhang, Jing Lu, Yongxiu Lai, Cheng Luo, Dezhong Yao. 2015. Identifying
    enhanced cortico-basal ganglia loops associated with prolonged dance training. Scientific Reports 5, 10271. [CrossRef]
74. Blake E. Butler, Laurel J. Trainor. 2015. The Musician Redefined: A Behavioral Assessment of Rhythm Perception in Professional
    Club DJs. Timing & Time Perception 3:1-2, 116-132. [CrossRef]
75. Elizabeth A. Wieland, J. Devin McAuley, Laura C. Dilley, Soo-Eun Chang. 2015. Evidence for a rhythm perception deficit in
    children who stutter. Brain and Language 144, 26-34. [CrossRef]
76. Chiara Di Nuzzo. 2015. La riabilitazione motoria nel morbo di parkinson: nuovi interventi e prospettive future. RICERCHE DI
    PSICOLOGIA :4, 545-570. [CrossRef]
77. Tae-Ha Yi, Seung-Hwa Jeong, Bon-Cheol Goo. 2015. Study on User-Friendly Rhythm Dance Game Utilizing Beat Element of
    Music. Journal of Korea Game Society 15:2, 43-52. [CrossRef]
78. Anna-Katharina R. Bauer, Gunter Kreutz, Christoph S. Herrmann. 2015. Individual musical tempo preference correlates with
    EEG beta rhythm. Psychophysiology 52:4, 600-604. [CrossRef]
79. Michael J. Hove, Peter E. Keller. 2015. Impaired movement timing in neurological disorders: rehabilitation and treatment
    strategies. Annals of the New York Academy of Sciences 1337:1, 111-117. [CrossRef]
80. Simone Dalla Bella, Charles-Etienne Benoit, Nicolas Farrugia, Michael Schwartze, Sonja A. Kotz. 2015. Effects of musically cued
    gait training in Parkinson's disease: beyond a motor benefit. Annals of the New York Academy of Sciences 1337:1, 77-85. [CrossRef]
81. Mathieu Peckel, Emmanuel Bigand. 2015. How does moving along to music influence its later recognition?. L’Année psychologique
    115:01, 53-76. [CrossRef]
82. S. Nozaradan, Y. Zerouali, I. Peretz, A. Mouraux. 2015. Capturing with EEG the Neural Entrainment and Coupling Underlying
    Sensorimotor Synchronization to the Beat. Cerebral Cortex 25:3, 736-747. [CrossRef]
83. Patrik Vuilleumier, Wiebke Trost. 2015. Music and emotions: from enchantment to entrainment. Annals of the New York Academy
    of Sciences 1337:1, 212-222. [CrossRef]
84. Laurel J. Trainor, Laura Cirelli. 2015. Rhythm and interpersonal synchrony in early social development. Annals of the New York
    Academy of Sciences 1337:1, 45-52. [CrossRef]
85. Rebecca S. Schaefer, Katie Overy. 2015. Motor responses to a steady beat. Annals of the New York Academy of Sciences 1337:1,
    40-44. [CrossRef]
86. Patrick Ofner, Gernot R. Muller-Putz. 2015. Using a Noninvasive Decoding Method to Classify Rhythmic Movement
    Imaginations of the Arm in Two Planes. IEEE Transactions on Biomedical Engineering 62:3, 972-981. [CrossRef]
87. M. Hoeschele, H. Merchant, Y. Kikuchi, Y. Hattori, C. ten Cate. 2015. Searching for the origins of musicality across species.
    Philosophical Transactions of the Royal Society B: Biological Sciences 370:1664, 20140094-20140094. [CrossRef]
88. H. Merchant, J. Grahn, L. Trainor, M. Rohrmeier, W. T. Fitch. 2015. Finding the beat: a neural perspective across humans
    and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences 370:1664, 20140093-20140093.
    [CrossRef]
89. L. J. Trainor. 2015. The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation.
    Philosophical Transactions of the Royal Society B: Biological Sciences 370:1664, 20140089-20140089. [CrossRef]
90. Simone G. Heideman, Erik S. te Woerd, Peter Praamstra. 2015. Rhythmic entrainment of slow brain activity preceding leg
    movements. Clinical Neurophysiology 126:2, 348-355. [CrossRef]
91. Nia Cason, Corine Astésano, Daniele Schön. 2015. Bridging music and speech rhythm: Rhythmic priming and audio–motor
    training affect speech perception. Acta Psychologica 155, 43-50. [CrossRef]
92. Nora K. Schaal, Michael J. Banissy, Kathrin Lange. 2015. The Rhythm Span Task: Comparing Memory Capacity for Musical
    Rhythms in Musicians and Non-Musicians. Journal of New Music Research 44:1, 3-10. [CrossRef]
93. T.E. Cope, W. Sedley, T.D. GriffithsDisorders of Audition 1095-1112. [CrossRef]
94. A. Gulberti, C.K.E. Moll, W. Hamel, C. Buhmann, J.A. Koeppen, K. Boelmans, S. Zittel, C. Gerloff, M. Westphal, T.R.
    Schneider, A.K. Engel. 2015. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and
    influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus. NeuroImage: Clinical 9, 436-449. [CrossRef]
 95. J.T. CoullA Frontostriatal Circuit for Timing the Duration of Events 565-570. [CrossRef]
 96. Rachel M. Brown, Robert J. Zatorre, Virginia B. PenhuneExpert music performance: cognitive, neural, and developmental bases
     57-86. [CrossRef]
 97. E. Meaux, P. VuilleumierEmotion Perception and Elicitation 79-90. [CrossRef]
 98. Petr JanataNeural basis of music perception 187-205. [CrossRef]
 99. Nina Kraus, Jessica SlaterMusic and language 207-222. [CrossRef]
100. Camilla N. Clark, Hannah L. Golden, Jason D. WarrenAcquired amusia 607-631. [CrossRef]
101. J.T. CoullDirecting Attention in Time as a Function of Temporal Expectation 687-693. [CrossRef]
102. Orion P. Keifer, David A. Gutman, Erin E. Hecht, Shella D. Keilholz, Kerry J. Ressler. 2015. A comparative analysis of mouse
     and human medial geniculate nucleus connectivity: A DTI and anterograde tracing study. NeuroImage 105, 53-66. [CrossRef]
103. Daniel J. Cameron, Jessica A. Grahn. 2014. Enhanced timing abilities in percussionists generalize to rhythms without a musical
     beat. Frontiers in Human Neuroscience 8. . [CrossRef]
104. Joel Krueger. 2014. Varieties of extended emotions. Phenomenology and the Cognitive Sciences 13:4, 533-555. [CrossRef]
105. Wiebke Trost, Sascha Frühholz, Daniele Schön, Carolina Labbé, Swann Pichon, Didier Grandjean, Patrik Vuilleumier. 2014.
     Getting the beat: Entrainment of brain activity by musical rhythm and pleasantness. NeuroImage 103, 55-64. [CrossRef]
106. David J. Wright, Jacqueline Williams, Paul S. Holmes. 2014. Combined action observation and imagery facilitates corticospinal
     excitability. Frontiers in Human Neuroscience 8. . [CrossRef]
107. Sundeep Teki, Timothy D. Griffiths. 2014. Working memory for time intervals in auditory rhythmic sequences. Frontiers in
     Psychology 5. . [CrossRef]
108. Takako Fujioka, Brian C. Fidali, Bernhard Ross. 2014. Neural correlates of intentional switching from ternary to binary meter
     in a musical hemiola pattern. Frontiers in Psychology 5. . [CrossRef]
109. S. Nozaradan. 2014. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging.
     Philosophical Transactions of the Royal Society B: Biological Sciences 369:1658, 20130393-20130393. [CrossRef]
110. L. K. Cirelli, S. J. Wan, L. J. Trainor. 2014. Fourteen-month-old infants use interpersonal synchrony as a cue to direct helpfulness.
     Philosophical Transactions of the Royal Society B: Biological Sciences 369:1658, 20130400-20130400. [CrossRef]
111. R. S. Schaefer. 2014. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms. Philosophical
     Transactions of the Royal Society B: Biological Sciences 369:1658, 20130402-20130402. [CrossRef]
112. Birgitta Burger, Marc R. Thompson, Geoff Luck, Suvi H. Saarikallio, Petri Toiviainen. 2014. Hunting for the beat in the body:
     on period and phase locking in music-induced movement. Frontiers in Human Neuroscience 8. . [CrossRef]
113. Germán Mendoza, Hugo Merchant. 2014. Motor system evolution and the emergence of high cognitive functions. Progress in
     Neurobiology 122, 73-93. [CrossRef]
114. Fabia Franco, Joel S. Swaine, Shweta Israni, Katarzyna A. Zaborowska, Fatmata Kaloko, Indu Kesavarajan, Joseph A. Majek. 2014.
     Affect-matching music improves cognitive performance in adults and young children for both positive and negative emotions.
     Psychology of Music 42:6, 869-887. [CrossRef]
115. Li-Ann Leow, Taylor Parrott, Jessica A. Grahn. 2014. Individual Differences in Beat Perception Affect Gait Responses to Low-
     and High-Groove Music. Frontiers in Human Neuroscience 8. . [CrossRef]
116. Shinya Fujii, Catherine Y. Wan. 2014. The Role of Rhythm in Speech and Language Rehabilitation: The SEP Hypothesis.
     Frontiers in Human Neuroscience 8. . [CrossRef]
117. Peter Vuust, Maria A. G. Witek. 2014. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and
     meter perception in music. Frontiers in Psychology 5. . [CrossRef]
118. Yi-Huang Su. 2014. Visual enhancement of auditory beat perception across auditory interference levels. Brain and Cognition 90,
     19-31. [CrossRef]
119. Elodie Lerens, Rodrigo Araneda, Laurent Renier, Anne G De Volder. 2014. Improved Beat Asynchrony Detection in Early Blind
     Individuals. Perception 43:10, 1083-1096. [CrossRef]
120. Léa A. S. Chauvigné, Kevin M. Gitau, Steven Brown. 2014. The neural basis of audiomotor entrainment: an ALE meta-
     analysis. Frontiers in Human Neuroscience 8. . [CrossRef]
121. Rebecca S. Schaefer, Alexa M. Morcom, Neil Roberts, Katie Overy. 2014. Moving to Music: Effects of Heard and Imagined
     Musical Cues on Movement-Related Brain Activity. Frontiers in Human Neuroscience 8. . [CrossRef]
122. Mathieu Peckel, Thierry Pozzo, Emmanuel Bigand. 2014. The impact of the perception of rhythmic music on self-paced
     oscillatory movements. Frontiers in Psychology 5. . [CrossRef]
123. Rachel L. Wright, Mark T. Elliott. 2014. Stepping to phase-perturbed metronome cues: multisensory advantage in movement
     synchrony but not correction. Frontiers in Human Neuroscience 8. . [CrossRef]
124. Joëlle Provasi, Valérie Doyère, Pierre S. Zélanti, Virginie Kieffer, Hervé Perdry, Nicole El Massioui, Bruce L. Brown, Georges
     Dellatolas, Jacques Grill, Sylvie Droit-Volet. 2014. Disrupted sensorimotor synchronization, but intact rhythm discrimination, in
     children treated for a cerebellar medulloblastoma. Research in Developmental Disabilities 35:9, 2053-2068. [CrossRef]
125. Yi-Huang Su. 2014. Audiovisual beat induction in complex auditory rhythms: Point-light figure movement as an effective visual
     beat. Acta Psychologica 151, 40-50. [CrossRef]
126. Daniel T. Bishop, Michael J. Wright, Costas I. Karageorghis. 2014. Tempo and intensity of pre-task music modulate neural
     activity during reactive task performance. Psychology of Music 42:5, 714-727. [CrossRef]
127. A. Danielsen, M.K. Otnæss, J. Jensen, S.C.R. Williams, B.C. Østberg. 2014. Investigating repetition and change in musical
     rhythm by functional MRI. Neuroscience 275, 469-476. [CrossRef]
128. Jessica Marie Ross, Ramesh Balasubramaniam. 2014. Physical and neural entrainment to rhythm: human sensorimotor
     coordination across tasks and effector systems. Frontiers in Human Neuroscience 8. . [CrossRef]
129. Laura K. Cirelli, Dan Bosnyak, Fiona C. Manning, Christina Spinelli, Céline Marie, Takako Fujioka, Ayda Ghahremani, Laurel
     J. Trainor. 2014. Beat-induced fluctuations in auditory cortical beta-band activity: using EEG to measure age-related changes.
     Frontiers in Psychology 5. . [CrossRef]
130. Sabine C. Koch. 2014. Rhythm is it: effects of dynamic body feedback on affect and attitudes. Frontiers in Psychology 5. . [CrossRef]
131. Yuka Okumura, Yoshitaka Asano, Shunsuke Takenaka, Seisuke Fukuyama, Shingo Yonezawa, Yukinori Kasuya, Jun Shinoda.
     2014. Brain activation by music in patients in a vegetative or minimally conscious state following diffuse brain injury. Brain Injury
     28:7, 944-950. [CrossRef]
132. M. T. Elliott, A. M. Wing, A. E. Welchman. 2014. Moving in time: Bayesian causal inference explains movement coordination
     to auditory beats. Proceedings of the Royal Society B: Biological Sciences 281:1786, 20140751-20140751. [CrossRef]
133. Aniruddh D. Patel, John R. Iversen. 2014. The evolutionary neuroscience of musical beat perception: the Action Simulation for
     Auditory Prediction (ASAP) hypothesis. Frontiers in Systems Neuroscience 8. . [CrossRef]
134. W. Tecumseh Fitch, Mauricio D. Martins. 2014. Hierarchical processing in music, language, and action: Lashley revisited. Annals
     of the New York Academy of Sciences 1316:1, 87-104. [CrossRef]
135. Thomas E. Cope, Manon Grube, Arnab Mandal, Freya E. Cooper, Una Brechany, David J. Burn, Timothy D. Griffiths. 2014.
     Subthalamic deep brain stimulation in Parkinson׳s disease has no significant effect on perceptual timing in the hundreds of
     milliseconds range. Neuropsychologia 57, 29-37. [CrossRef]
136. Miriam Heisterueber, Elise Klein, Klaus Willmes, Stefan Heim, Frank Domahs. 2014. Processing word prosody—behavioral and
     neuroimaging evidence for heterogeneous performance in a language with variable stress. Frontiers in Psychology 5. . [CrossRef]
137. Maria A. G. Witek, Eric F. Clarke, Mikkel Wallentin, Morten L. Kringelbach, Peter Vuust. 2014. Syncopation, Body-Movement
     and Pleasure in Groove Music. PLoS ONE 9:4, e94446. [CrossRef]
138. Robert Harris, Bauke M. de Jong. 2014. Cerebral Activations Related to Audition-Driven Performance Imagery in Professional
     Musicians. PLoS ONE 9:4, e93681. [CrossRef]
139. F. Giovannelli, I. Innocenti, S. Rossi, A. Borgheresi, A. Ragazzoni, G. Zaccara, M. P. Viggiano, M. Cincotta. 2014. Role of the
     Dorsal Premotor Cortex in Rhythmic Auditory-Motor Entrainment: A Perturbational Approach by rTMS. Cerebral Cortex 24:4,
     1009-1016. [CrossRef]
140. Deirdre Bolger, Jennifer T. Coull, Daniele Schön. 2014. Metrical Rhythm Implicitly Orients Attention in Time as Indexed by
     Improved Target Detection and Left Inferior Parietal Activation. Journal of Cognitive Neuroscience 26:3, 593-605. [Abstract] [Full
     Text] [PDF] [PDF Plus]
141. M. Hars, F. R. Herrmann, G. Gold, R. Rizzoli, A. Trombetti. 2014. Effect of music-based multitask training on cognition and
     mood in older adults. Age and Ageing 43:2, 196-200. [CrossRef]
142. Gabriella Musacchia, Edward W. Large, Charles E. Schroeder. 2014. Thalamocortical mechanisms for integrating musical tone
     and rhythm. Hearing Research 308, 50-59. [CrossRef]
143. Ellen Binder, Klara Hagelweide, Ling E. Wang, Katja Kornysheva, Christian Grefkes, Gereon R. Fink, Ricarda I. Schubotz. 2014.
     Sensory-guided motor tasks benefit from mental training based on serial prediction. Neuropsychologia 54, 18-27. [CrossRef]
144. Keren-Happuch E, Shen-Hsing Annabel Chen, Moon-Ho Ringo Ho, John E. Desmond. 2014. A meta-analysis of cerebellar
     contributions to higher cognition from PET and fMRI studies. Human Brain Mapping 35:2, 593-615. [CrossRef]
145. Caren E. Hession, Brian Eastwood, David Watterson, Christine M. Lehane, Nigel Oxley, Barbara A. Murphy. 2014. Therapeutic
     Horse Riding Improves Cognition, Mood Arousal, and Ambulation in Children with Dyspraxia. The Journal of Alternative and
     Complementary Medicine 20:1, 19-23. [CrossRef]
146. Thomas E. Cope, Manon Grube, Baldev Singh, David J. Burn, Timothy D. Griffiths. 2014. The basal ganglia in perceptual
     timing: Timing performance in Multiple System Atrophy and Huntington's disease. Neuropsychologia 52, 73-81. [CrossRef]
147. Matz Larsson. 2014. Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities. Animal
     Cognition 17:1, 1-14. [CrossRef]
148. Fiona Manning, Michael Schutz. 2013. “Moving to the beat” improves timing perception. Psychonomic Bulletin & Review 20:6,
     1133-1139. [CrossRef]
149. Cristina Nombela, Laura E. Hughes, Adrian M. Owen, Jessica A. Grahn. 2013. Into the groove: Can rhythm influence Parkinson's
     disease?. Neuroscience & Biobehavioral Reviews 37:10, 2564-2570. [CrossRef]
150. Nathaniel S. Miller, Youngbin Kwak, Nicolaas I. Bohnen, Martijn L.T.M. Müller, Praveen Dayalu, Rachael D. Seidler. 2013. The
     pattern of striatal dopaminergic denervation explains sensorimotor synchronization accuracy in Parkinson's disease. Behavioural
     Brain Research 257, 100-110. [CrossRef]
151. Maren Schmidt-Kassow, Linda V. Heinemann, Cornelius Abel, Jochen Kaiser. 2013. Auditory–motor synchronization facilitates
     attention allocation. NeuroImage 82, 101-106. [CrossRef]
152. Tze-Hsuan Wang, Yi-Chun Peng, Yu-Ling Chen, Tung-Wu Lu, Hua-Fang Liao, Pei-Fang Tang, Jeng-Yi Shieh. 2013. A Home-
     Based Program Using Patterned Sensory Enhancement Improves Resistance Exercise Effects for Children With Cerebral Palsy.
     Neurorehabilitation and Neural Repair 27:8, 684-694. [CrossRef]
153. Jessica Phillips-Silver, Petri Toiviainen, Nathalie Gosselin, Isabelle Peretz. 2013. Amusic does not mean unmusical: Beat perception
     and synchronization ability despite pitch deafness. Cognitive Neuropsychology 30:5, 311-331. [CrossRef]
154. Jan Stupacher, Michael J. Hove, Giacomo Novembre, Simone Schütz-Bosbach, Peter E. Keller. 2013. Musical groove modulates
     motor cortex excitability: A TMS investigation. Brain and Cognition 82:2, 127-136. [CrossRef]
155. B. Gebel, Ch. Braun, E. Kaza, E. Altenmüller, M. Lotze. 2013. Instrument specific brain activation in sensorimotor and auditory
     representation in musicians. NeuroImage 74, 37-44. [CrossRef]
156. Mona Park, Kristina Hennig-Fast, Yan Bao, Petra Carl, Ernst Pöppel, Lorenz Welker, Maximilian Reiser, Thomas Meindl,
     Evgeny Gutyrchik. 2013. Personality traits modulate neural responses to emotions expressed in music. Brain Research 1523, 68-76.
     [CrossRef]
157. Bruno H. Repp, Yi-Huang Su. 2013. Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin
     & Review 20:3, 403-452. [CrossRef]
158. J. L. Marchant, J. Driver. 2013. Visual and Audiovisual Effects of Isochronous Timing on Visual Perception and Brain Activity.
     Cerebral Cortex 23:6, 1290-1298. [CrossRef]
159. Rebecca S. Schaefer, Katie Overy, Peter Nelson. 2013. Affect and non-uniform characteristics of predictive processing in musical
     behaviour. Behavioral and Brain Sciences 36:03, 226-227. [CrossRef]
160. Kathrin Rothermich, Sonja A. Kotz. 2013. Predictions in speech comprehension: fMRI evidence on the meter–semantic interface.
     NeuroImage 70, 89-100. [CrossRef]
161. Benjamin A. Motz, Molly A. Erickson, William P. Hetrick. 2013. To the beat of your own drum: Cortical regularization of non-
     integer ratio rhythms toward metrical patterns. Brain and Cognition 81:3, 329-336. [CrossRef]
162. Edith Van Dyck, Dirk Moelants, Michiel Demey, Alexander Deweppe, Pieter Coussement, Marc Leman. 2013. The Impact of
     the Bass Drum on Human Dance Movement. Music Perception: An Interdisciplinary Journal 30:4, 349-359. [CrossRef]
163. J. A. Grahn, J. B. Rowe. 2013. Finding and Feeling the Musical Beat: Striatal Dissociations between Detection and Prediction
     of Regularity. Cerebral Cortex 23:4, 913-921. [CrossRef]
164. Shu-Jen Kung, Joyce L. Chen, Robert J. Zatorre, Virginia B. Penhune. 2013. Interacting Cortical and Basal Ganglia Networks
     Underlying Finding and Tapping to the Musical Beat. Journal of Cognitive Neuroscience 25:3, 401-420. [Abstract] [Full Text]
     [PDF] [PDF Plus]
165. Rachel M. Brown, Joyce L. Chen, Avrum Hollinger, Virginia B. Penhune, Caroline Palmer, Robert J. Zatorre. 2013. Repetition
     Suppression in Auditory–Motor Regions to Pitch and Temporal Structure in Music. Journal of Cognitive Neuroscience 25:2,
     313-328. [Abstract] [Full Text] [PDF] [PDF Plus]
166. Henkjan HoningStructure and Interpretation of Rhythm in Music 369-404. [CrossRef]
167. Clara E. James, Christoph M. Michel, Juliane Britz, Patrik Vuilleumier, Claude-Alain Hauert. 2012. Rhythm evokes action: Early
     processing of metric deviances in expressive music by experts and laymen revealed by ERP source imaging. Human Brain Mapping
     33:12, 2751-2767. [CrossRef]
168. W. Trost, T. Ethofer, M. Zentner, P. Vuilleumier. 2012. Mapping Aesthetic Musical Emotions in the Brain. Cerebral Cortex
     22:12, 2769-2783. [CrossRef]
169. Annerose Engel, Marc Bangert, David Horbank, Brenda S. Hijmans, Katharina Wilkens, Peter E. Keller, Christian Keysers.
     2012. Learning piano melodies in visuo-motor or audio-motor training conditions and the neural correlates of their cross-modal
     transfer. NeuroImage 63:2, 966-978. [CrossRef]
170. Jessica A. Grahn. 2012. Neural Mechanisms of Rhythm Perception: Current Findings and Future Perspectives. Topics in Cognitive
     Science 4:4, 585-606. [CrossRef]
171. Marcus Pearce, Martin Rohrmeier. 2012. Music Cognition and the Cognitive Sciences. Topics in Cognitive Science 4:4, 468-484.
     [CrossRef]
172. Naho Konoike, Yuka Kotozaki, Shigehiro Miyachi, Carlos Makoto Miyauchi, Yukihito Yomogida, Yoritaka Akimoto, Koji Kuraoka,
     Motoaki Sugiura, Ryuta Kawashima, Katsuki Nakamura. 2012. Rhythm information represented in the fronto-parieto-cerebellar
     motor system. NeuroImage 63:1, 328-338. [CrossRef]
173. Shalini Narayana, Angela R. Laird, Nitin Tandon, Crystal Franklin, Jack L. Lancaster, Peter T. Fox. 2012. Electrophysiological
     and functional connectivity of the human supplementary motor area. NeuroImage 62:1, 250-265. [CrossRef]
174. Jessica A. Grahn. 2012. See what I hear? Beat perception in auditory and visual rhythms. Experimental Brain Research 220:1,
     51-61. [CrossRef]
175. Yi-Huang Su, Ernst Pöppel. 2012. Body movement enhances the extraction of temporal structures in auditory sequences.
     Psychological Research 76:3, 373-382. [CrossRef]
176. Jennifer L. Marchant, Christian C. Ruff, Jon Driver. 2012. Audiovisual synchrony enhances BOLD responses in a brain network
     including multisensory STS while also enhancing target-detection performance for both modalities. Human Brain Mapping 33:5,
     1212-1224. [CrossRef]
177. Thomas E. Cope, Manon Grube, Timothy D. Griffiths. 2012. Temporal predictions based on a gradual change in tempo. The
     Journal of the Acoustical Society of America 131:5, 4013-4022. [CrossRef]
178. Katie Overy. 2012. Making music in a group: synchronization and shared experience. Annals of the New York Academy of Sciences
     1252:1, 65-68. [CrossRef]
179. J. Devin McAuley, Molly J. Henry, Jean Tkach. 2012. Tempo mediates the involvement of motor areas in beat perception. Annals
     of the New York Academy of Sciences 1252:1, 77-84. [CrossRef]
180. Teppo Särkämö, David Soto. 2012. Music listening after stroke: beneficial effects and potential neural mechanisms. Annals of the
     New York Academy of Sciences 1252:1, 266-281. [CrossRef]
181. Takako Fujioka, Jon Erik Ween, Shahab Jamali, Donald T. Stuss, Bernhard Ross. 2012. Changes in neuromagnetic beta-band
     oscillation after music-supported stroke rehabilitation. Annals of the New York Academy of Sciences 1252:1, 294-304. [CrossRef]
182. E. Altenmüller, S.M. Demorest, T. Fujioka, A.R. Halpern, E.E. Hannon, P. Loui, M. Majno, M.S. Oechslin, N. Osborne, K.
     Overy, C. Palmer, I. Peretz, P.Q. Pfordresher, T. Särkämö, C.Y. Wan, R.J. Zatorre. 2012. Introduction to The Neurosciences and
     Music IV: Learning and Memory. Annals of the New York Academy of Sciences 1252:1, 1-16. [CrossRef]
183. Henkjan Honing. 2012. Without it no music: beat induction as a fundamental musical trait. Annals of the New York Academy of
     Sciences 1252:1, 85-91. [CrossRef]
184. Michael Schwartze, Kathrin Rothermich, Sonja A. Kotz. 2012. Functional dissociation of pre-SMA and SMA-proper in temporal
     processing. NeuroImage 60:1, 290-298. [CrossRef]
185. A. Caria, P. Venuti, S. de Falco. 2011. Functional and Dysfunctional Brain Circuits Underlying Emotional Processing of Music in
     Autism Spectrum Disorders. Cerebral Cortex 21:12, 2838-2849. [CrossRef]
186. Izumi Jomori, Jun-ichi Uemura, Yoshiro Nakagawa, Minoru Hoshiyama. 2011. Event-related potential study of frontal activity
     during imagination of rhythm. Journal of Clinical Neuroscience 18:12, 1687-1689. [CrossRef]
187. Yi-Huang Su, Donatas Jonikaitis. 2011. Hearing the speed: visual motion biases the perception of auditory tempo. Experimental
     Brain Research 214:3, 357-371. [CrossRef]
188. R. A. Horváth, A. Schwarcz, M. Aradi, T. Auer, N. Fehér, N. Kovács, T. Tényi, C. Szalay, G. Perlaki, G. Orsi, S. Komoly, T.
     Dóczi, F. G. Woermann, Cs. Gyimesi, J. Janszky. 2011. Lateralisation of non-metric rhythm. Laterality: Asymmetries of Body,
     Brain and Cognition 16:5, 620-635. [CrossRef]
189. Trenton A. Jerde, Stephanie K. Childs, Sarah T. Handy, Jennifer C. Nagode, José V. Pardo. 2011. Dissociable systems of working
     memory for rhythm and melody. NeuroImage 57:4, 1572-1579. [CrossRef]
190. D. A. Abrams, A. Bhatara, S. Ryali, E. Balaban, D. J. Levitin, V. Menon. 2011. Decoding Temporal Structure in Music and Speech
     Relies on Shared Brain Resources but Elicits Different Fine-Scale Spatial Patterns. Cerebral Cortex 21:7, 1507-1518. [CrossRef]
191. Lucy M. McGarry, Frank A. Russo. 2011. Mirroring in Dance/Movement Therapy: Potential mechanisms behind empathy
     enhancement. The Arts in Psychotherapy 38:3, 178-184. [CrossRef]
192. Claudia Lappe, Laurel J. Trainor, Sibylle C. Herholz, Christo Pantev. 2011. Cortical Plasticity Induced by Short-Term Multimodal
     Musical Rhythm Training. PLoS ONE 6:6, e21493. [CrossRef]
193. Kohei Matsumura, Tomoyuki Yamamoto, Tsutomu Fujinami. 2011. The role of body movement in learning to play the shaker
     to a samba rhythm: An exploratory study. Research Studies in Music Education 33:1, 31-45. [CrossRef]
194. Peter Vuust, Mikkel Wallentin, Kim Mouridsen, Leif Østergaard, Andreas Roepstorff. 2011. Tapping polyrhythms in music
     activates language areas. Neuroscience Letters 494:3, 211-216. [CrossRef]
195. Jessica Phillips-Silver, Petri Toiviainen, Nathalie Gosselin, Olivier Piché, Sylvie Nozaradan, Caroline Palmer, Isabelle Peretz. 2011.
     Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia 49:5, 961-969. [CrossRef]
196. Shu-Jen Kung, Ovid J. L. Tzeng, Daisy L. Hung, Denise H. Wu. 2011. Dynamic allocation of attention to metrical and grouping
     accents in rhythmic sequences. Experimental Brain Research 210:2, 269-282. [CrossRef]
197. Jessica A. Grahn, Molly J. Henry, J. Devin McAuley. 2011. FMRI investigation of cross-modal interactions in beat perception:
     Audition primes vision, but not vice versa. NeuroImage 54:2, 1231-1243. [CrossRef]
198. Jennifer T Coull, Ruey-Kuang Cheng, Warren H Meck. 2011. Neuroanatomical and Neurochemical Substrates of Timing.
     Neuropsychopharmacology 36:1, 3-25. [CrossRef]
199. Heather Chapin, Kelly Jantzen, J. A. Scott Kelso, Fred Steinberg, Edward Large. 2010. Dynamic Emotional and Neural Responses
     to Music Depend on Performance Expression and Listener Experience. PLoS ONE 5:12, e13812. [CrossRef]
200. Robert J. Ellis, Mari Riess Jones. 2010. Rhythmic context modulates foreperiod effects. Attention, Perception, & Psychophysics
     72:8, 2274-2288. [CrossRef]
201. MARJO RINNE, MATTI PASANEN, SEPPO MIILUNPALO, ESKO MÄLKIÄ. 2010. Is Generic Physical Activity or Specific
     Exercise Associated with Motor Abilities?. Medicine & Science in Sports & Exercise 42:9, 1760-1768. [CrossRef]
202. M. Grube, F. E. Cooper, P. F. Chinnery, T. D. Griffiths. 2010. Dissociation of duration-based and beat-based auditory timing in
     cerebellar degeneration. Proceedings of the National Academy of Sciences 107:25, 11597-11601. [CrossRef]
203. P. Kosillo, A. T. Smith. 2010. The role of the human anterior insular cortex in time processing. Brain Structure and Function
     214:5-6, 623-628. [CrossRef]
204. Yu Aramaki, Rieko Osu, Norihiro Sadato. 2010. Resource-demanding versus cost-effective bimanual interaction in the brain.
     Experimental Brain Research 203:2, 407-418. [CrossRef]
205. S. Hadjidimitriou, A. Zacharakis, P. Doulgeris, K. Panoulas, L. Hadjileontiadis, S. Panas. 2010. Sensorimotor cortical response
     during motion reflecting audiovisual stimulation: evidence from fractal EEG analysis. Medical & Biological Engineering &
     Computing 48:6, 561-572. [CrossRef]
206. Gregory S. Berns, C. Monica Capra, Sara Moore, Charles Noussair. 2010. Neural mechanisms of the influence of popularity on
     adolescent ratings of music. NeuroImage 49:3, 2687-2696. [CrossRef]
207. Gerard B. Remijn, Haruyuki Kojima. 2010. Active versus passive listening to auditory streaming stimuli: a near-infrared
     spectroscopy study. Journal of Biomedical Optics 15:3, 037006. [CrossRef]
208. Jessica A. Grahn, J. Devin McAuley. 2009. Neural bases of individual differences in beat perception. NeuroImage 47:4, 1894-1903.
     [CrossRef]
209. Sonja A. Kotz, Michael Schwartze, Maren Schmidt-Kassow. 2009. Non-motor basal ganglia functions: A review and proposal for
     a model of sensory predictability in auditory language perception. Cortex 45:8, 982-990. [CrossRef]
210. Jessica A. Grahn. 2009. The Role of the Basal Ganglia in Beat Perception. Annals of the New York Academy of Sciences 1169:1,
     35-45. [CrossRef]
211. Joyce L. Chen, Virginia B. Penhune, Robert J. Zatorre. 2009. The Role of Auditory and Premotor Cortex in Sensorimotor
     Transformations. Annals of the New York Academy of Sciences 1169:1, 15-34. [CrossRef]
212. Edward W. Large, Joel S. Snyder. 2009. Pulse and Meter as Neural Resonance. Annals of the New York Academy of Sciences 1169:1,
     46-57. [CrossRef]
213. Aniruddh D. Patel, John R. Iversen, Micah R. Bregman, Irena Schulz. 2009. Studying Synchronization to a Musical Beat in
     Nonhuman Animals. Annals of the New York Academy of Sciences 1169:1, 459-469. [CrossRef]
214. John R. Iversen, Bruno H. Repp, Aniruddh D. Patel. 2009. Top-Down Control of Rhythm Perception Modulates Early Auditory
     Responses. Annals of the New York Academy of Sciences 1169:1, 58-73. [CrossRef]
215. Jessica A. Grahn. 2009. Neuroscientific Investigations of Musical Rhythm: Recent Advances and Future Challenges. Contemporary
     Music Review 28:3, 251-277. [CrossRef]
216. Jessica Phillips-Silver. 2009. On the Meaning of Movement in Music, Development and the Brain. Contemporary Music Review
     28:3, 293-314. [CrossRef]
217. Aniruddh D. Patel, John R. Iversen, Micah R. Bregman, Irena Schulz. 2009. Experimental Evidence for Synchronization to a
     Musical Beat in a Nonhuman Animal. Current Biology 19:10, 827-830. [CrossRef]
218. Adena Schachner, Timothy F. Brady, Irene M. Pepperberg, Marc D. Hauser. 2009. Spontaneous Motor Entrainment to Music
     in Multiple Vocal Mimicking Species. Current Biology 19:10, 831-836. [CrossRef]
219. Daniel J. Levitin, Anna K. Tirovolas. 2009. Current Advances in the Cognitive Neuroscience of Music. Annals of the New York
     Academy of Sciences 1156:1, 211-231. [CrossRef]
220. A. N. Vardy, A. Daffertshofer, P. J. Beek. 2009. Tapping with intentional drift. Experimental Brain Research 192:4, 615-625.
     [CrossRef]
221. Katja Kornysheva, D.Yves von Cramon, Thomas Jacobsen, Ricarda I. Schubotz. 2009. Tuning-in to the beat: Aesthetic
     appreciation of musical rhythms correlates with a premotor activity boost. Human Brain Mapping NA-NA. [CrossRef]
222. Jessica A. Grahn, Matthew Brett. 2009. Impairment of beat-based rhythm discrimination in Parkinson's disease. Cortex 45:1,
     54-61. [CrossRef]
223. Manon Grube, Timothy D. Griffiths. 2009. Metricality-enhanced temporal encoding and the subjective perception of rhythmic
     sequences. Cortex 45:1, 72-79. [CrossRef]
224. Kathleen H. Corriveau, Usha Goswami. 2009. Rhythmic motor entrainment in children with speech and language impairments:
     Tapping to the beat. Cortex 45:1, 119-130. [CrossRef]
225. Jennifer T. Coull, Bruno Nazarian, Franck Vidal. 2008. Timing, Storage, and Comparison of Stimulus Duration Engage Discrete
     Anatomical Components of a Perceptual Timing Network. Journal of Cognitive Neuroscience 20:12, 2185-2197. [Abstract] [PDF]
     [PDF Plus]
226. J. L. Chen, V. B. Penhune, R. J. Zatorre. 2008. Listening to Musical Rhythms Recruits Motor Regions of the Brain. Cerebral
     Cortex 18:12, 2844-2854. [CrossRef]
227. Patricia V. Agostino, Guy Peryer, Warren H. Meck. 2008. How music fills our emotions and helps us keep time. Behavioral and
     Brain Sciences 31:05. . [CrossRef]
228. Renaud Brochard, Pascale Touzalin, Olivier Després, André Dufour. 2008. Evidence of beat perception via purely tactile
     stimulation. Brain Research 1223, 59-64. [CrossRef]
229. Peter E. Keller, Bruno H. Repp. 2008. Multilevel coordination stability: Integrated goal representations in simultaneous intra-
     personal and inter-agent coordination. Acta Psychologica 128:2, 378-386. [CrossRef]
230. JT Coull, AC Nobre. 2008. Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology
     18:2, 137-144. [CrossRef]
231. Warren H Meck, Trevor B Penney, Viviane Pouthas. 2008. Cortico-striatal representation of time in animals and humans. Current
     Opinion in Neurobiology 18:2, 145-152. [CrossRef]
232. Eveline Geiser, Tino Zaehle, Lutz Jancke, Martin Meyer. 2008. The Neural Correlate of Speech Rhythm as Evidenced by Metrical
     Speech Processing. Journal of Cognitive Neuroscience 20:3, 541-552. [Abstract] [PDF] [PDF Plus]
233. Joyce L. Chen, Virginia B. Penhune, Robert J. Zatorre. 2008. Moving on Time: Brain Network for Auditory-Motor
     Synchronization is Modulated by Rhythm Complexity and Musical Training. Journal of Cognitive Neuroscience 20:2, 226-239.
     [Abstract] [PDF] [PDF Plus]
234. Peter Schwenkreis, Susan El Tom, Patrick Ragert, Burkhard Pleger, Martin Tegenthoff, Hubert R. Dinse. 2007. Assessment
     of sensorimotor cortical representation asymmetries and motor skills in violin players. European Journal of Neuroscience 26:11,
     3291-3302. [CrossRef]
235. Robert J. Zatorre, Joyce L. Chen, Virginia B. Penhune. 2007. When the brain plays music: auditory–motor interactions in music
     perception and production. Nature Reviews Neuroscience 8:7, 547-558. [CrossRef]