2019-3-KED-KTEK-MARKING SCHEME
Question      Marking Scheme Trial Exam 2019 954/3                      Mark
      1a
                                       1351                               B1
                              Mean =        = 56.29= 56.3
                                        24
                                Standard deviation = √ ❑2                 M1
                                                   = 17.475                A1
                                                 52+54
                                    Median =           = 53                B1
                                                   2
      1b
                         40+ 48                  62+ 64
                  Q1 =          = 44    , Q3 =          = 63
                           2                       2                   M1 A1
                                       IQR = 63 – 44 = 19
                    Lower fence = 44-1.5(63 - 44)= 15.5
                  Upper fence= 63 + 1.5 ( 63 - 44) = 91.5
                                              Outlier= 99
                                                               D1 (Quartiles)
                                                               D1 (all correct
                                                                 with outlier)
                                                                          B1
                                                                          B1
                                                                  [ 10 marks]
     2a     P(A∩ B ¿=P ( A ) . P ( B ) , A∧Bareindependent .               B1
                                                  = 0.4 P(B)
                     P(A ∪ B ¿=P ( A ) + P ( B ) −P( A ∩ B)
                               0.88 = 0.4 + P(B) – 0.4 P(B)
                                             0.48 = 0.6 P(B)              M1
                                                  P(B)= 0.8               A1
      2b                          P(A∩ B ¿’ = 1- P(A ∩ B ¿                 B1
                                             = 1- 0.4 P(B)
                                                                           A1
                                             = 1- 0.4 (0.8)
                                                    = 0.68
                                                                    [5 marks]
    3 (a)                                            1     1
                                           P(X ≤ -     )=
                                                     2    16
                                           −1                             M1
                                            2
                                                        1
                                           ∫ ax +b dx= 16
                                           −1
                                                       -6a+8b = 1 ……..(1)
                                                                         71                    M1
                                                                P(X≥ ) =
                                                                        162
                                                            c
                                                                         7
                                                            ∫ ax+ b dx= 16
                                                            1
                                                            2
                                                                                               M1
                                    ac 2          a b     7
                                  (      + bc) – ( + ) =    ……..(2)
                                     2            8 2    16
                                                                c
                                                                                        A1 A1 A1
3(b)                                                    f(x)= ∫ ax +b dx=1
                                                                −1
                                             2
                                           ac         a                                        M1
                                       (      +bc) – ( - b )= 1 ………(3)
                                            2         2
                                                      From (1), (2) and (3)                    A1
                                        1             1
                                     a=           ,b=               c= 1 (prove)           A1 (all
                                        2             2
                                                                                          correct)
                                                                     x
                                                                          1 1          [ 9 marks]
                                           for -1≤ x ≤ 1 , F (x)= ∫        t+ dt
                                                                     −1   2 2
                                                                1 2
                                                            =     ( x +2x+1)
                                                                4
                                            1 2
                       F(x) = {0 , x <−1      ( x +2 x+ 1 ) ,−1 ≤ x ≤1 1, x >1
                                            4
 4a                                                  96% = z= 2.054                    B1 (2.054)
   96% confidence interval for the proportion of pens that fail to write
                                                       immediately =                   B1 (0.12)
                                     24              24                                    M1 ¿)
                                   (     −2.054 √❑ ,     +2.054 √❑ )                  M1(correct
                                     200             200
                                                                                       formulae)
                                                                                             A1
                                                          = (0.0728, 0.167)
                                                                                              M1
 4b                                                                       3                   A1
                                                    Proportion=             = 0.06      [7 marks]
                                                                         50
        Since 0.06 is not lies in the interval, so reject supplier’s claim.
  5                             The 95% confidence interval is given by
                                                                               σ
                                                                ( x ± 1.96
                                                                              √❑             B1 for
                                                                                       z0.025=1.96
                                                                 σ
                                                     x +1.96       ………..(1)
                                                                √❑
                                                                                     B1(either (1)
                                                                 σ                          or (2)
                                                     x −1.96       ………..(2)
                                                                √❑
                                                                                           M1A1
                                                                                   (4 Marks)
                                                   x = 1062.5 , 𝛔= 120
6a                                         Unbiased estimate of mean
                                                                    735.68
                                                             ^μ =                        M1
                                                                      88
                                                                     = 8.36              A1
                                      Unbiased estimate of variance                      M1
                                           88    6636.5    735.68 2
                                  σ^ 2=        [        -(        ) ]                     A1
                                          88−1     88        88
6b
                                                                 = 5.589
                                                                                          B1
                                                                H0 : μ = 8
                                                                H1 : μ ¿ 8
                                           Significance level , α = 0.05                  B1
                                            Critical region, Z0.05= 1.645
                                               Since n=88¿ 30, by CLT
                                                                    5.589
                                                        X N (8,           )
                                                                      88
                                                           Test statistic:
                                                                                         M1
                                                               8.36−8.0
                                                          Z=                              A1
                                                                  √❑
                                                                    = 1.428
                                                Reject H0 if zcalc > 1.645                A1
                           Since z=1.428 < 1.645, do not reject Ho.
     There is not enough evidence at 5% significance level to reject                     A1
       the manager’s claim that each employee in the firm works for              [ 10 Marks]
                                          an average of 8 hours per day
7a                                                             P(T≥ 250 ¿       B1(for ≥ 250)
                                                               =e
                                                                    −21
                                                                    5500
                                                                         ×250             M1
                                                                                          A1
                                                                    =0.385                B1
                                                           1        −21
                                                             = 1- e 5500 t
7b                                                         2
                                                                                         M1
                                                                21     1
                                                                    t=                    A1
                                                               5500    2
                                                    t=181.54 hours
7c                                                                       d                   M1
                                                                f(t) =      ¿]
                                                                         dt
                                                             21 −21 t
                                                        =          5500
                                                            5500 e
                                                                                             A1
                                          −21
                               21 5500 t ,t ≥0
                  f ( t )={        e           0 , otherwise
                              5500
                                                                                         D1( e− x
                                                                                 shaped curve
                                                                                  in first quad)
                                                                                          D1 (all
                                                                                        correct)
                                                                                             B1
                                             ∞                                               M1
                                                             21 −21 t (integration by
                                E(T) = ∫ t ×                       5500
                                                0
                                                            5500 e              parts)
7d
                               −21
                                     t                                                       A1
            21        e 5500 ∞ 5500 −21 t
         =      [ t × −21 - ∫        5500
           5500              0  21 e      [ 1 ] dt                                         M1
                      5500                                                                 A1
                                                                                    [15 marks]
                                                        5500 5500 t ∞
                                           −21                       −21
                                                    t
                          = [−t × e 5500 −                  e      ]
                                                         21         0
                                                                    5500
                                         = [ -0-0] – [-0-                ]
                                                                     21
                                                                     5500
                                                                   =
                                                                      21
8a                                                          Let y = x-200
              ❑                                             ❑
             ∑ (x−200)=41.56 ∑ y=41.56
             ❑               ❑
     ❑                                              ❑
     ∑ (x−200)       2
                         = 107.4673             ∑ y=107.4673
     ❑                                          ❑
                                                        ❑
                                                        ∑ y 41.56                            M1
                         The mean, y =                     =
                                                        ❑
                                                                         40
                                                        ❑                                    A1
                                                                     41.56
                                                x = 200 +
                                                                      40
                                                                                             M1
                                                                = 201.039
                                                                                             A1
                                 The unbiased variance
                                                                                             A1
                                                         (41.56)
8b                                     2    (107.4673−           )        B1( 1.96)
                                     σ^ =
                                       y                   40
                                                                       B1(std error)
                                                       39
                                                                        M1 (correct
                                                          = 1.6484        formulae)
                                                 σ^ 2x =σ^ 2y=1.6484             A1
                                                                                 B1
8c                                95% confidence interval for μ
                                       = ( 201.039± 1.96 √ ❑ )
                                              = (200.64, 201.44)
                                                                                M1
                                                     Ho : μ=200                 A1
                                                     H1 : μ ≠ 200
              95% confidence interval for μ= ( 200.64, 201.44)
                                                                                M1
     Since 200 does not lie inside the 95% confidence interval.                 M1
8d      Hence there is enough evidence to reject Ho at the 5%
                                             significance level.
                                                                                 A1
                                                 2.326 √ ❑ ≤ 0.5
                                                      n≥ 35.673
                                    The least sample size is 36