0% found this document useful (0 votes)
61 views89 pages

CH 16-Quadripolos

The document provides solutions to example problems involving two-port network analysis. It calculates current and voltage values for various two-port networks given their y-parameters. It also calculates characteristic impedances and impedance parameters for two-port networks composed of series and parallel resistances. The solutions demonstrate applying the definitions of y-parameters, characteristic impedance, and impedance parameters to analyze basic two-port networks.

Uploaded by

Laura Magalhaes
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
61 views89 pages

CH 16-Quadripolos

The document provides solutions to example problems involving two-port network analysis. It calculates current and voltage values for various two-port networks given their y-parameters. It also calculates characteristic impedances and impedance parameters for two-port networks composed of series and parallel resistances. The solutions demonstrate applying the definitions of y-parameters, characteristic impedance, and impedance parameters to analyze basic two-port networks.

Uploaded by

Laura Magalhaes
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 89

<

2
|
-
Irwin, Basic Engineering Circuit Analysis, 9/E 1

SOLUTION:

The correct answer is a.

I1  2 A , I 2  0
I 1  y11V1  y12V2
I 2  y 21V1  y 22V2
1 1
V1  V2  2
14 21
1 1
 V1  V2  0
21 7
21V1  14V2  588
 V1  3V2  0
V1  36V
V2  12V

Chapter 16: Two-Port Networks Problem 16.FE-1


Irwin, Basic Engineering Circuit Analysis, 9/E 1

SOLUTION:

The correct answer is b.

I 1  y11V1  y12V2
I 2  y 21V1  y 22V2
y11V1  y12V2  0

y12
V1   V2
y11
 y 
I 2  y 21   12 V2   y 22V2
 y11 

 y y 
I 2  V2  21 12  y 22 
 y11 

V2 y11
Z TH  
I 2  y 21 y12  y11 y 22
1
Z TH  14  9
  1   1   1  1 
       
 21  21   14  7 

Chapter 16: Two-Port Networks Problem 16.FE-2


Irwin, Basic Engineering Circuit Analysis, 9/E 1

SOLUTION:

The correct answer is d.

3
V1
I 3
y11  1  56  S
V1 V2  0
V1 56
2
0 V1
V V 14   2 V
I2  2  1
4 4 56
2
 V1
I2 2 1
y 21   56   S   S
V1 V2  0
V1 56 28
16
16 8  
3
16
16 4
V  3 V2   V2  V2
16 28 7
4
3
4
0  V2
V1  V 7 1
I1     V2
16 16 28
1
 V2
I1 1
y12   28   S
V1 V 0 V2 28
1

Chapter 16: Two-Port Networks Problem 16.FE-3


2 Irwin, Basic Engineering Circuit Analysis, 9/E

4
V2  V2
V V 7 3
I2  2   V2
4 4 28
3
V2
I 3
y 22  2  28  S
V2 V2 28

Problem 16.FE-3 Chapter 16: Two-Port Networks


Irwin, Basic Engineering Circuit Analysis, 9/E 1

SOLUTION:

The correct answer is c.

The 3 and 9 are in series.

9(12) 36
z11   
9  12 7
12 4
I ( I1 )  I1
12  9 7
 4  12
V2  3I  3 I 1   I 1
7  7
12
I1
V 12
z 21  2  7  
I1 I 0 I1 7
2

3 3 1
I (I 2 )  I2  I2
3  18 21 7
 1  12
V1  12 I  12 I 2   I 2
7  7
12
I2
V1 12
z12   7  
I 2 I 0 I2 7
1

3(18) 18
z 22   
3  18 7

Chapter 16: Two-Port Networks Problem 16.FE-4


Irwin, Basic Engineering Circuit Analysis, 9/E 1

SOLUTION:

The correct answer is a.

h11  2 4   8 
28

3
4
I2   I 1 
42
2
I 2   I1
3
2
 I1
I 3 2
h21  2 
I1 V2  0
I1 3
V2 V
I2   2
24 6

V2
I 1
h22  2  6  S
V2 I1  0
V2 6

V  2
V1  4 I 2  4 2   V2
 6  3
2
V2
V1 2
h12   3 
V2 I 0 V2 3
1

Chapter 16: Two-Port Networks Problem 16.FE-5

You might also like