Dracunculiasis (Guinea Worm Disease) : Eradication Without A Drug or A Vaccine
Dracunculiasis (Guinea Worm Disease) : Eradication Without A Drug or A Vaccine
org
Review 
Cite this article: Biswas G, Sankara DP, Agua-Agum J, Maiga A. 2013 Dracunculiasis (guinea worm disease): 
eradication without a drug or a vaccine. Phil Trans R Soc B 368: 20120146. 
http://dx.doi.org/10.1098/rstb.2012.0146 
One contribution of 15 to a Theme Issue ‘Towards the endgame and beyond: complexities and challenges for the 
elimination of infectious diseases’. 
Subject Areas: health and disease and epidemiology 
Keywords: dracunculiasis, guinea worm, eradication, water supply 
Author for correspondence: Gautam Biswas e-mail: biswasg@who.int 
on February 25, 2018 http://rstb.royalsocietypublishing.org/ Downloaded from 
1. Introduction 
Dracunculiasis,  commonly  known  as  guinea  worm  disease,  is  caused  by  a  60–100cm  long  nematode  worm,  Dracunculus 
medinensis.  The  disease has been known to humankind since antiquity. The ‘fiery serpents’ of the Israelites were possibly guinea 
worms.  The  first known mention of the disease was in the Turin Papyrus in the fifteenth century BC by the Egyptians; it has been 
since  described  by  ancient  Greek,  Roman,  Arab,  Persian  and  Indian  physicians  [1].  Guinea  worm  disease  derived  its  common 
name  from  its  prevalence  on  the  Gulf  of Guinea [2]. It is known to cause temporary incapacitation and some- times is associated 
with  permanent  disability  [3,4],  resulting  in  loss  of  income  and  reduced  school  attendance  among  the  already-deprived 
communities  and  households  associated  with  the  disease. The Dogon people of Mali refer to dracunculiasis as ‘the disease of the 
empty  granary’  [3].  Significant  progress  has  been  made  in  reducing  the  incidence  of  the  disease  by more than 99 per cent. This 
paper reviews the progress made during the eradication campaign, the lessons learnt and the remaining challenges. 
2. Biology of the parasite Dracunculiasis is transmitted exclusively to humans via drinking water contami- nated with infected 
copepod Cyclops, the intermediate host of D. medinensis. Following ingestion, the Cyclops die and release D. medinensis larvae, 
which pene- trate the host stomach and intestinal wall, and enter the abdominal cavity and retroperitoneal space. The larvae 
develop and mature into adults; after copu- lation, the male worms die and females grow to a length of 60–100 cm and 
© 2013 The Author(s) Published by the Royal Society. All rights reserved. 
 
migrate  in  the  subcutaneous  tissues  towards  the  surface  of  the  skin.  About  10–14  months  after  infection,  the  female  worm 
induces  a  painful  blister  on  the  skin,  mostly  from  the  lower  limbs;  the  blister  ruptures,  and  larvae  are  released  on  contact  with 
water  by  the  adult  female  worm  as  it  emerges.  The  larvae  are  ingested  by  a  Cyclop  and  after  two  moults  (in about two weeks) 
develop  into  infective  larvae.  Drinking  unfiltered  water  from stagnant water sources containing the infected Cyclops perpetuates 
the  transmission  cycle  [5].  Although  no  vac-  cine  is  available  for  prevention  or  medicine  for  mass  treatment  [5–8],  the 
transmission  cycle  can  be  broken  at  different  points  by  avoiding  contaminated  sources  of  drinking  water, filtering unsafe water 
with  cloth  and  fine-mesh  strainers  before  consum-  ing,  drinking  water  from  improved  sources  and  controlling  the  vectors  of 
transmission (figure 1). 
3. Decision to eradicate 
The  adoption  in  1986  of  resolution  WHA39.21  acknowledged  the  special  opportunity  afforded  by  the  International  Drinking 
Water  Supply  and  Sanitation  Decade  (1981–1990)  for  combat-  ing  dracunculiasis.  The  resolution  noted  the  importance  of 
maximizing  the  benefits  to  health  of  an  intersectoral  approach  in the context of primary healthcare; the progress achieved by the 
National  Guinea  Worm  Eradication  Programme  of  India;  and  the  increasing  awareness  and  actions  being  taken  against  the 
disease  in  Africa  and  its  successful  elimination in several countries. Furthermore, the resolution endorsed efforts to eliminate the 
infection  country  by  country  and  to  provide  through  a  combined strategy safe drinking water sources, active surveillance, health 
education,  vector control and per- sonal prophylaxis; it called on all Member States affected by dracunculiasis to establish, within 
the context of primary 
case containment 
2. Cyclops die and release 3. the larvae into stomach. Larvae develop, mature 
surveillance health education 
vector control 
                                                                                                 access to improved water source use of filters 
  Infected man enters water ponds. Larvae are released into the water and reproduce. after 10–14 months, female worms emerge 
1. Individual drinks unfiltered water containing Cyclops with ingested larve 
Figure 1. Guinea worm life cycle and interventions to interrupt transmission [9]. 
2. Cyclops swallow the larvae and undergo two moults to become infective 
5. Individual collects water containing infected Cyclops 
on February 25, 2018 http://rstb.royalsocietypublishing.org/ Downloaded from 
healthcare,  plans  of  action  to  eliminate  dracunculiasis  [10].  The  45th  World  Health  Assembly  in  1991  further  resolved  to 
eradicate dracunculiasis by 1995 [11]. This decision had evolved based on various discussions and several factors. 
(a) The disease burden In 1947, more than 48 million people were estimated to be affected by the disease in Africa, India and the 
Middle East [12]. During the 1970s, the disease was reported to be distrib- uted in the rural areas of India, the Islamic Republic of 
Iran, Pakistan, Saudi Arabia, Yemen, and East and West Africa [13–15]. In 1976, the World Health Organization (WHO) esti- 
mated a prevalence of 10 million dracunculiasis cases globally [15]. By the 1980s, the disease was known to be endemic in 20 
countries in Africa, the Middle East and Asia. 
(b) Emerging opportunities After the successful conclusion of the smallpox eradication campaign in 1979, public-health experts, 
notably at India’s National Institute of Communicable Diseases [16] and the United States Centers for Disease Control and 
Prevention, sought other potential disease candidates for eradication [17]. Dracunculiasis was considered a suitable candidate 
because its geographical distribution is limited to tropical or subtropical areas, transmission is seasonal [13,18], diagnosis is 
unambigu- ous by visual recognition of the emerging worm through a painful blister or ulcer [19], the intermediate host is non- 
airborne and there is no known animal reservoir [6]. Moreover, there is no further multiplication of the parasite in the vector, 
unlike that of malaria. Based on the understanding of its local epidemiology, occurrence of the disease can be forecasted by 
geographical area and time period, permitting advance 
2 
      
   planning for focused and effective implementation of interven- tions for interrupting transmission. Its potential for eradication 
  was asserted in 1993 by the International Task Force for Disease Eradication, which after reviewing 94 infectious diseases con- 
     cluded that dracunculiasis is one of six eradicable diseases [20]. The launch of the International Drinking Water Supply and 
       Sanitation Decade of 1981–1990 encouraged the World Health Assembly to note in resolution WHA34.25 that the decade 
  presented an opportunity to eliminate dracunculiasis as a public-health problem in affected areas, where the preva- lence of the 
                           disease could serve as a uniquely visible and measurable indicator of progress during that period [13]. 
    Following  the  momentum generated by the resolution, the first international meeting (‘Workshop on opportunities for control 
of  Dracunculiasis’)  was  held  in  June  1982  [21,22].  In  1983,  India  officially  launched  its  National  Guinea  Worm  Era-  dication 
Programme  as  a  centrally  sponsored  programme  after  assessing  the  extent  of  the  disease’s  distribution  since  1980  and 
formulating  a  strategy  for  eradication  through  a  National  Task  Force  set  up  in  1980 [23]. In 1984, the United States Centers for 
Disease  Control  and  Prevention  was  designated  as  a  WHO  Collaborating  Centre  for  Research,  Training  and  Control  of 
Dracunculiasis  [24].  Since  then,  it  has  developed  operational  guidelines  in  collaboration  with  The  Carter Center’s Global 2000, 
the  United  Nations  Children’s  Fund  (UNICEF)  and  WHO  and  continues  to  provide  technical  assistance  to  the  programme, 
including laboratory support. 
(c) Cost-benefit Another aspect influencing the decision to eradicate was the important socioeconomic toll of the disease on 
affected com- munities and countries and the cost-benefit of public-health interventions. The cost in lost school attendance and 
revenue from decreased agricultural productivity for individuals and the community can be very high. The economic loss of 
dracunculiasis in India alone was estimated to be 11.7 million man-days annually among 4 per cent of the 12.2 million people 
living in endemic villages [25]. In 1985, researchers noted that dracunculiasis has an impact on school attendance in Benin and 
Nigeria, and on agriculture in Benin and Burkina Faso 
Table 1. World Health Assembly resolutions on dracunculiasis. 
World Health Assembly year main focus 
WHA 34.25 1981 International Drinking Water Supply and Sanitation Decade: dracunculiasis as indicator of 
progress [32] WHA 39.21 1986 endorsed combined strategy: safe water provision, active surveillance, health 
education, community mobilization, 
vector control personal prophylaxis [10] WHA 42.29 1989 declared goal for eliminating dracunculiasis in the 1990s, 
   invited other development agencies, organizations, foundation to support the country and ensured funding [33] 
 WHA 44.5 1991 country by country certification of elimination of dracunculiasis, certification by WHO. National 
                                                 goals to interrupt 
     transmission by 1995 [11] WHA 50.35 1997 political support and availability of resources for completion of 
                                    dracunculiasis and support the work of 
                                  International Commission for the Certification of Dracunculiasis Eradication 
(ICCDE) [34] WHA 57.9 2004 Geneva Declaration for the Eradication of Dracunculiasis by 2009 [35] WHA 64.16 
2011 provision of adequate resources for interrupting transmission and certification of eradication of disease, 
supporting 
surveillance in dracunculiasis-free areas, annual reporting of the progress to WHA [36] 
on February 25, 2018 http://rstb.royalsocietypublishing.org/ Downloaded from 
[26,27].  In  1987,  a  study  in  Nigeria  estimated  an  annual  loss  of  US$  20  million  per  single  crop  (rice,  yam  and  cassava)  from 
farmers incapacitated by the disease for an average dur- ation of five weeks [3,4,28,29]. 
    In  1956,  referring  to  the  eradication  of  yaws  in  Haiti,  it  was  concluded  that  interventions  for  disease  eradication  pro- 
grammes  should  be  considered  as  a  capital  investment  rather  than  as  a  recurrent  expense  once  the  disease  is  eradicated  [30]. 
Using  a  project  horizon  of  1987–1998,  the  World  Bank  estimated  an economic rate of return under conservative assumptions of 
29 per cent [31]. 
(d) Support for eradication Since the inception of the global eradication campaign, there has been continuous support from 
countries and commu- nities affected by the disease as well as partners in the public and private sectors. 
     The  World  Health  Assembly  has adopted a total of seven res- olutions on dracunculiasis eradication (table 1), compared with 
27  resolutions  on  smallpox  eradication  and  four  resolutions  on  eradication  of  poliomyelitis.  Similar  resolve  was  echoed  at  the 
regional  level  of  WHO  during  the  first African regional confer- ence on dracunculiasis eradication held in Niamey, Niger in July 
1986, shortly after WHA39.21 was adopted. 
    These  regional  conferences  brought  together  ministries  of  health  and  partners  and  were  sometimes  attended  by  current  or 
former  Heads  of  State  to  advocate  dracunculiasis  eradica-  tion.  Following  the  adoption  in  1988  of  resolution  RC38/R13  by the 
African  Regional  Committee  [37],  Cameroon,  Ghana  and  Nigeria  took  action  to  eradicate  dracunculiasis  with  national  case 
searches  conducted  during  1988–1989;  most  countries  carried  out  national  case  searches  between  1990  and 1992 and scaled up 
interventions  from  1991  to  1993.  A  total  of  eight  African  regional  conferences  on  dracunculia-  sis  have  been  held;  the  last 
conference took place in Abuja, Nigeria, in April 2008. 
    In  1986,  The  Carter  Center  began  its  involvement  in  dracun-  culiasis  eradication  [3]  and  has  played  a  crucial  role  in  the 
global campaign since then, tirelessly advocating, fund-raising and assisting endemic countries to interrupt transmission. 
3 
 
4. The eradication strategy 
Evidence  from  various  studies  on  the  natural  history  of  the  dis- ease, proven interventions and experiences in countries [22] and 
lessons  learnt  from  the  successful  smallpox  eradication  programme  and  the  not  so  successful  malaria  eradication  pro-  gramme 
have  shaped  the  dracunculiasis  eradication  strategy  [6,38–40].  The  eradication  strategy,  based on the following interventions (i) 
surveillance  (including  case  management and containment); (ii) provision of safe drinking-water sources; (iii) vector control; (iv) 
health  education  (personal  prophy-  laxis);  and  (v)  certification  of  eradication,  was  endorsed  by  the  World  Health  Assembly 
[10,11]. 
(a) Surveillance Surveillance is a key element of disease control programmes, but it is the most crucial element in the final stage 
of the dracunculiasis eradication programme. The objective of sur- veillance and reporting is to promptly detect all cases until the 
last case of the disease is contained and the absence of transmission is confirmed. Endemic countries pass through three different 
stages: endemic; pre-certification; and post- certification. After interrupting transmission of the disease, the country enters a 
pre-certification stage of at least 3 years. During this stage, a country must show evidence of sustained absence of transmission 
through nationwide surveillance in order to be eligible for certification as dracunculiasis-free. Once WHO has certified a country 
free of dracunculiasis transmission, it enters the post-certification surveillance stage, which is continued until eradication of 
dracunculiasis is declared globally. 
     Where the disease occurred in the remotest and difficult to access areas of endemic countries, with limited access to pri- mary 
healthcare  services,  surveillance  involved  the  community  in  detecting,  containing  and  reporting  dracunculiasis  cases  [41,42]. 
Active  house-to-house  case  searches  were  carried  out:  communities  were  shown  a  guinea  worm  photo  identifica-  tion  card  to 
assess  whether  anyone  had  seen  a  person  with  an  emerging  worm,  as  was  carried  out in the smallpox eradica- tion campaign of 
the  1970s  [43,44].  However,  because community-based surveillance (CBS) relied on a supportive infrastructure of supervisors to 
train,  monitor  and  collect  monthly  reports  from  health  workers,  implementation  was  restricted  to  known  endemic  and  at-risk 
villages  until  zero  cases  had  been  reported  for 3 years or transmission was no longer a risk. Dracunculiasis was reported through 
the  national  health  information  systems  of  affected  countries  [26,45,46].  Today, a case of dracunculiasis is immediately notified 
for  prompt  investigation  and  containment,  and  cases  are  repor-  ted  monthly  to  the  national  level  even if zero cases are detected 
[47]. 
    With  the  decline  in  the  number  of  cases  and  to  increase the sensitivity of surveillance, eradication programmes announced a 
reward  for  notifying  cases  that  are  subsequently  confirmed  as  dracunculiasis.  A  similar  strategy  was  used  during  the  smallpox 
eradication  campaign  [48].  The  International  Com-  mission  for the Certification of Dracunculiasis Eradication also recommends 
that  national  dracunculiasis  eradication  pro-  grammes  announce a suitable reward for individuals reporting cases and for patients 
[49]. The amount of the reward in ende- mic countries and countries in the pre-certification stage ranges from US$ 40 to US$ 160 
[47]. 
on February 25, 2018 http://rstb.royalsocietypublishing.org/ Downloaded from 
(b) Case management and containment Every case that is detected should be treated to prevent further transmission. The 
tried-and-tested treatment is to roll the worm gradually from the body using a stick or a match [6]. In some parts of Ghana and 
India, guinea worms were extracted surgically [50,51] with varying results. The Indian Guinea Worm Disease Eradication 
Programme expressed concerns about this practice and its clinical seque- lae and recommended against surgical extraction [52]. 
The practice was withdrawn from the Ghana Guinea Worm Era- dication Programme in 2000. In the absence of any effective 
drug to kill the parasite, development of drug resistance is not a concern for the programme. 
     A  dracunculiasis  case  is  reported  to  be  contained  if  all  of the following criteria are met: the case is detected before or within 
24 h of the worm’s emergence; the patient did not contaminate any water source after the worm’s emergence; the patient received 
proper  care  by  cleaning  and  bandaging  the wound until all the worms are fully expelled; the patient received health education on 
not  entering  any  water  source;  and  a  supervisor  verified  the  case  as  dracunculiasis  within  7  days  [53].  Case-containment 
strategies have been implemented in all endemic countries since 1995 [54]. 
    To  further  ensure  proper  case  containment,  especially  when  numbers  of  cases  are  reduced  and  localized,  national 
programmes  have  established  case-containment  centres  in  existing  health  facilities  or  temporary  camps  where  patients  are 
admitted  and  treated;  health  education  is  provided until the worm has been completely expelled, and any contact of patients with 
unsafe drinking water sources is prevented. 
(c) Access to improved drinking water The link between the prevalence of dracunculiasis and the lack of access to improved 
drinking-water sources is well recognized [55–57]. Communities identified by the Guinea Worm Eradication Programme as 
endemic for dracunculiasis are prioritized for access to improved water supplies. Methods to improve drinking-water supplies for 
affected communities include: protecting hand-dug wells and sinking deep-bore wells, improving existing surface drinking-water 
sources by constructing barriers to prevent humans from entering the water; and filtering surface water through sand filters 
[56,58]. Ministries of water and sanitation with the support of UNICEF and other partners such as Japan International 
Cooperation Agency (JICA) played a key role. Access to improved drinking-water supplies in affected communities provides a 
sustainable solution for eradica- tion. However, insufficient resources, difficulties in sinking deep-bore wells resulting from 
complex hydrogeological structures [59], and unsuitable water quality in certain areas [60] led to the goal of providing universal 
access to improved drinking water in all villages (including dracunculiasis-endemic communities) not met by the end of the 
International Safe Drinking Water and Sanitation Decade. Dracunculiasis eradication programmes have contin- ued leveraging 
access for improved water sources [61] in remote communities. 
(d) Vector control Vector control consists of killing the Cyclops (intermediate host) by applying a chemical called temephos. 
When applied 
4 
 
to  unsafe  drinking-water  sources  at  monthly  intervals  during  the  transmission  season,  temephos  is  effective  in  killing  the 
Cyclops,  thus  reducing  the  likelihood  of  individuals  contracting  the  infection  [62,63].  The  challenges  of  treating  ponds  with 
temephos  include  calculating  the  appropriate  quantity  for  application,  the  intensity  of  labour  [6]  and  the  difficulty  in  reaching 
remote  areas.  In  addition,  there  may  be  difficulties  in identifying which surface water sources are potentially con- taminated and 
which  need  to  be  treated.  Without  a  complete  census  of  potentially  unsafe  drinking-water  sources  in  use  by  communities, 
contaminated water sources continue to be used and transmission is perpetuated. 
   To  supplement  vector  control  by  treatment  of  water sources with temephos, the adult Cyclops measuring about 1 mm can be 
removed simply by filtering drinking water through an ordinary nylon cloth or steel mesh. 
(e) Health education The objective of health education is to ensure that greater numbers of individuals and communities adopt 
behavioural practices aimed at preventing and interrupting transmission. Practices include voluntary reporting of dracunculiasis 
cases and knowledge of the reward scheme, prevention of patients from entering drinking-water bodies, regular use of drinking 
water from improved water sources and, in the absence of such sources, filtering water before drinking. The required know-how 
is transferred by health staff and volunteers using simple and professionally crafted messages [6] to individuals and communities. 
     Although  filtration  appears  to  be  easy  and  effective,  chal-  lenges  remain  in  individual  and  household  compliance  with 
straining  all  unsafe  drinking  water  before  consumption  and,  more  importantly,  in  the  agricultural  fields  or  when travel- ling. In 
many  endemic  communities,  challenges  have  been  overcome  by  sustained  behavioural  change  communication  supported  by 
community  empowerment  and  mobilization  campaigns.  To  address  particular  issues,  such  as  filtering  unsafe water for nomadic 
communities  and cattle herders, innovative methods include designing portable water filters (‘pipe filters’) for use in the field and 
funnel filters for filtering water through plastic containers (used to carry water to and from the field). 
    Advocacy  and  information,  education  and  communi-  cation  materials  have  been  prepared  and  disseminated  through poster, 
radio  and  television  broadcasts,  town  criers  and  markets.  In  resource-poor  situations,  face-to-face  com-  munication  (social 
mobilization  and  house-to-house  visits)  appeared  to  have  been  the  most  significant  strategy  for  disse-  minating  messages  [64]. 
Behavioural  changes  have  to  be  brought  about  in  the  community  to  achieve  the  required  impact,  which  remains  a  challenge. 
Ownership by all com- munities and commitment to the programme have made a remarkable difference. 
   A  series  of  films  for  advocacy  and  creating  community  awareness  were  produced,  ‘Avicenna’s  Thread  Dracunculo-  sis’  in 
1977,  ‘Guinea  worm:  the  Fiery  Serpent’,  ‘The  Waters  of  Ayole’  in  1988,  ‘Dracunculiasis:  A  Forgotten  Disease  of  Forgotten 
People’  in 1991, ‘Yoro-Empty Granary’ in 1995, ‘The Final Sprint’ in 2005, ‘Foul Water Fiery Serpent’ in 2010 and ‘Heightened 
Surveillance’ in 2012 [58,65–73]. 
    All national programmes implement a combination of all the above-listed interventions to interrupt transmission. 
on February 25, 2018 http://rstb.royalsocietypublishing.org/ Downloaded from 
Surveillance  remains  the  crucial  overarching  intervention  to  detect  each  worm  emergence  at  the  earliest  to effectively con- tain 
any  subsequent  transmission.  Programmes  have  given  varying  emphasis  within  this  overall  mix  of  interventions  depending  on 
local  conditions.  For  example,  the  Indian  Guinea Worm Eradication Programme considered the vector control as a cost-effective 
strategy  and  emphasized  identification  of  all  potential  unsafe  drinking  water  sources  and  their  aggressive  treatment  with 
temephos  monthly  [23].  However,  in  areas  and countries where application of teme- phos in the very large surface water sources 
was  difficult,  alternative approaches were adopted such as preventing entry of humans into the water, providing the surface water 
after  pumping  through  sand  filters  and  making it potable. Countries in Africa such as South Sudan and Ghana accorded a greater 
emphasis in the provision of filters and health education to prevent transmission. 
    Based  on  experience  in  Ghana,  Nigeria  and  Pakistan,  the  recommended  strategies  were  summarized  and  the  following 
operational  phases  were  described:  (i)  the  first  phase  consist-  ing  of establishment of the national programme office, conducting 
baseline  surveys  and  preparing  a  national  plan;  (ii)  the  second  phase  including  the  interventions  to  interrupt  transmission  by 
implementing  training,  village-based  surveil-  lance,  health  education,  filter  distribution, providing safe drinking water suppliers, 
vector control and monitoring; and (iii) the last phase involving case containment followed by a post-eradication phase [74]. 
(f) Certification of eradication The need for certification of attainment is inherent in the goal of an eradication programme. WHO 
established the Inter- national Commission for the Certification of Dracunculiasis Eradication (ICCDE) in 1995 [33] as requested 
by resolution WHA44.5 [10]. The Commission is made up of 12 inde- pendent public-health experts, and recommends to the 
Director-General of WHO the certification of countries as free of dracunculiasis transmission. At its first meeting in 1996, the 
ICCDE finalized the criteria against which dis- ease-endemic and non-endemic countries are assessed for certification [49]. All 
countries have to be certified, irrespec- tive of their endemicity status. The ICCDE categorized countries into groups: endemic, in 
pre-certification and those with more than 3 years without cases. Once trans- mission is interrupted, the ICCDE recommends a 
minimum 3-year pre-certification stage, during which a country must show evidence of absence of transmission to be eligible for 
certification. The process for certification is based on the epi- demiological group of the country and is based on a thorough 
review of the declaration, and a report submitted by the country followed by field evaluation carried out by an independent 
International Certification Team. 
8. Conclusion 
With  a  total  of  542  cases  reported  in  2012,  and  the  disease  limited  to  foci  in  South  Sudan,  Chad,  Mali  and  Ethiopia,  the 
eradication  of  dracunculiasis  is  imminent.  Challenges  remain but can be overcome with an undiluted resolve from the concerned 
govern-  ments,  partners  and health workers. There is no scope for complacency. The threat to this achievement is limited to inac- 
cessibility  of  endemic  areas  owing  to  insecurity  and  conflicts.  The  dracunculiasis  eradication  programme  will  leave a legacy of 
public-health  goods  in  terms  of  access  to  improved  drink-  ing-water  sources,  improved  surveillance  and  reduced  school 
absenteeism  or  loss  of  income owing to incapacitation from the disease. Once eradicated, dracunculiasis will be the first parasitic 
disease  of  humans  to  have  been wiped off the planet, and the first eradication campaign to have been conducted and successfully 
concluded without a vaccine or curative medicine. 
We  thank  Drs Lorenzo Savioli and Dirk Engels for their guidance and encouragement in preparing this manuscript and Ms Karen 
Ciceri  for  editing  the  text.  Thanks  are  also  due  to all the health officials and vol- unteers in the field fighting against the disease, 
interaction  with  whom  over  a period of time has resulted in much of the material for this paper. The authors are staff members of 
the  World  Health  Organization.  The  authors  alone  are  responsible  for  the  views  expressed  in  this  publication  and  they  do  not 
necessarily  represent  the  decisions,  policy  or  views of the World Health Organization. The boundaries and names shown and the 
designations  used  on  this  map  do  not  imply  the  expression  of  any  opinion  whatsoever  on  the  part  of  the  World  Health 
Organization  concerning  the  legal  status  of  any  country, territory, city or area or of its authorities, or concerning the delimitation 
of  its  frontiers  or  bound-  aries.  Dotted  and  dashed  lines  on maps represent approximate border lines for which there may not yet 
be full agreement. 
11 
 
References 
1. Groove D. 1900 A history of human helminthology. 
     Wallingford, Oxfordshire, UK: CAB International. 2. Palmer P, Reeder M. 2001 The imaging of tropical diseases. See 
      http://tmcr.usuhs.mil/tmcr/chapter27/ intro.htm (accessed 27 September 2012) 3. World Health Organization. 1988 
                                                        Dracunculiasis: 
global surveillance summary 1987. Wkly Epidemiol. Rec. 49, 375–378. 4. Hopkins DR, Ruiz-Tiben E, Ruebush TK, Diallo N, 
Agle A, Withers CJ. 2000 Dracunculiasis eradication: delayed, not denied. Am. J. Trop. Med. Hyg. 62, 163–168. 5. Muller R. 
1985 Life cycle of Dracunculus medinensis. 
In Workshop on opportunities for control of dracunculiasis: contributed papers, Washington, DC, June 16–19 1982, pp. 13–18. 
Washington, DC: National Academy Press. 6. Cairncross S, Muller R, Zagaria N. 2002 
             Dracunculiasis (guinea worm disease) and the eradication initiative. Clin. Microbiol. Rev. 15, 223–246. 
                (doi:10.1128/CMR.15.2.223-246.2002) 7. Issaka-Tinogah A, Magnussen P, Bloch P, Yakubu A. 
 1994 Lack of effect of ivermectin on prepatent guinea-worm: a single-blind, placebo-controlled trial. Trans. R. Soc. Trop. Med. 
           88, 346–348. (doi:10.1016/0035-9203(94)90111-2) 8. Greenaway C. 2004 Dracunculiasis (guinea worm 
                      disease). Can. Med. Assoc. 170, 4. 9. World Health Organization. 2000 Guinea worm 
disease, tutor’s guide, for the training of village volunteers in southern Sudan. Geneva, Switzerland: World Health Organization. 
10. World Health Assembly. 1986 Elimination of 
dracunculiasis. In Thirty-ninth World Health Assembly. Geneva, Switzerland: World Health Assembly. 11. World Health 
Assembly. 1991 Eradication of 
 dracunculiasis. In Forty-fourth World Health Assembly. Geneva, Switzerland: World Health Assembly. 12. Stoll N. 1947 This 
                                                wormy world. J. Parasitol. 33, 
    1–18. 13. Belcher D. 1985 Opportunities for control of 
dracunculiasis: transmission and epidemiology. In Workshop on opportunities for control of dracunculiasis: contributed papers, 
Washington, DC, June 16–19 1982, pp. 1–7. Washington, DC: National Academy Press. 14. Ministry of Health and Medical 
Education, Islamic 
Republic of Iran. 1996 Eradication of dracunculiasis in Islamic Republic of Iran. Country Report. Directorate General of Disease 
Prevention and Surveillance, Ministry of Health and Medical Education. Report no.: CTD/96.13. 15. World Health Organization. 
1982 Dracunculiasis 
    surveillance. Wkly Epidemiol. Rec. 57, 65–72. 16. Sharma M. 1980 Lessons learnt from the intensified campaign against 
     smallpox in India and their possible applicability to other health programmes, with particular reference to eradication of 
                                            dracunculiasis. J. Commun. Dis. 12, 69–64. 
on February 25, 2018 http://rstb.royalsocietypublishing.org/ Downloaded from 
17. Hopkins D, Foege W. 1981 Guinea worm disease. 
    Science 212, 495–495. 18. Cook G, Zumla A. 2009 Manson’s tropical diseases (eds G Cook, A Zumla), 22nd edn. 
Philadelphia, PA, USA: Elsevier. 19. Muller R. 1979 Guinea worm disease: epidemiology, 
control, and treatment. Bull. World Health Organ. 57, 689. 20. Centers for Disease Control and Prevention. 1993 
Recommendations of the international task force for disease eradication. Morb. Mortal. Wkly Rep. 42, RR-16. 21. World Health 
Organization. 1983 Dracunculiasis 
             surveillance. Wkly Epidemiol. Rec. 58, 21–23. 22. Board on Science and Technology for International 
Development, National Research Council, USA; World Health Organization. 1985 Workshop on opportunities for control of 
dracunculiasis. In Workshop on opportunities for control of dracunculiasis, Washington, DC, June 16–19 1982. Washington DC: 
National Academy Press. 23. National Institute of Communicable Diseases, 
Ministry of Health and Family Welfare, Government of India. 2000 Guineaworm disease in India: end of the scourge in India 
(eds D Bora, RC Sharma, KK DattaSP Agarwal). Delhi, India: Government of India, National Institute of Communicable 
Disease. 24. World Health Organization. 1991 Global surveillance summary 1990. Wkly Epidemiol. Rec. 66, 225–230. 25. Rao 
CK. 1985 Epidemiology of dracunculiasis in India. In Workshop on opportunities for control of dracunculiasis, contributed 
papers, Washington, DC, June 16–19 1982, pp. 25–31. Washington, DC: National Academy Press. 26. World Health 
Organization. 1987 Dracunculiasis, 
global surveillance summary 1986. Wkly Epidemiol. Rec. 62, 337–339. 27. World Health Organization. 1986 Global surveillance 
    summary 1985. Wkly Epidemiol. Rec. 61, 29–32. 28. World Health Organization. 1990 Dracunculiasis: 
global surveillance summary, 1989. Wkly Epidemiol. Rec. 65, 229–236. 29. Rooy CD. 1987 Guinea worm control as a major 
contributor to self-sufficiency in rice production in Nigeria. Lagos, Nigeria: UNICEF, Water, Environment and Sanitation 
Section. 30. Samame GE. 1956 Treponematosis eradication, with special reference to yaws eradication in Haiti. Bull. World 
Health Organ. 15, 897–910. 31. Kim A, Tandon A, Ruiz-Tiben E. 1997 Cost-benefit 
analysis of the global dracunculiasis eradication campaign (GDEC). World Bank. 32. World Health Assembly. 1981 International 
drinking water supply and sanitation decade. In Thirty-Fourth World Health Assembly, pp. 1–3. Geneva, Switzerland: World 
Health Assembly. 33. World Health Assembly. 1989 Elimination of 
dracunculiasis. In Forty-second World Health Assembly, pp. 1–2. Geneva, Switzerland: World Health Assembly. 
34. World Health Assembly. 1997 Eradication of 
dracunculiasis. In Fiftieth World Health Assembly. Geneva, Switzerland: World Health Assembly. 35. World Health Assembly. 
2004 Eradication of dracunculiasis. In Fifty-seventh World Health Assembly. Geneva, Switzerland: World Health Organization. 
36. World Health Assembly. 2011 Eradication of 
  dracunculiasis. In Sixty-fourth World Health Assembly. Geneva, Switzerland: World Health Organization. 37. World Health 
                                               Organization. 2003 Eradication of 
Dracunculiasis in the WHO African Region. In 53rd session, Regional Committee for Africa, pp. 1–25. Johannesburg: South 
Africa. 38. Centers for Disease Control and Prevention. 1999 
Global disease elimination and eradication as public health strategies. Morb. Mortal. Wkly Rep. 16–22, 46–48. 39. Centers for 
Disease Control. 2011 Grand rounds: the 
 opportunity for and challenges to malaria eradication. Morb. Mortal. Wkly Rep. 60, 476–480. 40. Richards FO, Ruiz-Tiben E, 
                                                       Hopkins DR. 2011 
Dracunculiasis eradication and the legacy of the smallpox campaign: what’s new and innovative? What’s old and principled? 
Vaccine 29, D86–D90. (doi:10.1016/j.vaccine.2011.07.115) 41. Muller R. 2005 Guinea worm disease: the final 
chapter? Trends Parasitol. 21, 521–524. (doi:10. 1016/j.pt.2005.08.024) 42. Rwakimari JB, Hopkins DR, Ruiz-Tiben E. 
2006 Uganda’s successful guinea worm eradication program. Am. J. Trop. Med. Hyg. 75, 3–8. 43. Aylward B, Hennessy K, 
Zagaria N, Olivé JM, Cochi S. 2000 When is a disease eradicable? 100 years of lesson learned. Am. J. Public Health 90, 
1515–1520. (doi:10.2105/AJPH.90.10.1515) 44. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. 
   1988 Smallpox and its eradication. Geneva, Switzerland: World Health Organization. 45. World Health Organization. 1989 
                                                       Dracunculiasis. 
                    Wkly Epidemiol. Rec. 64, 207–210. 46. World Health Organization. 1991 Dracuculiasis 
    Cameroon. Wkly Epidemiol. Rec. 66, 101–104. 47. World Health Organization. 2012 Dracunculiasis eradication-global 
surveillance summary, 2011. Wkly Epidemiol. Rec. 87, 177–188. 48. World Health Organization. 1987 Principles and lessons 
from the smallpox eradication programme. Bull. World Health Organ. 65, 535–544. 49. World Health Organization. 1996 
Criteria for the certification of dracunculiasis eradication. Geneva, Switzerland: World Health Organization. 50. Rhode J, Sharma 
B, Patton H, Deegan C, Sherry J. 1993 Surgical extraction of guinea worm disability reduction and contribution to disease 
control. Am. J. Trop. Med. Hyg. 48, 71–76. 51. Ghana Health Service. 2005 Communicable diseases analysis book: a module of 
the technical guidelines 
12 
 
for integrated disease surveillance and response in Ghana Accra. Ghana Health Service. 52. National Institute of Communicable 
Diseases. 1995 Guinea worm eradication programme in India : XVII Task Force Meeting, 24th and 25th January 1995, Delhi, 
report and recommendations. Delhi: National Institute of Communicable Diseases. 53. World Health Organization. 2003 
Dracunculiasis 
eradication: case definition, surveillance and performance indicators. Wkly Epidemiol. Rec. 78, 321–328. 54. World Health 
Organization. 1996 Dracunculiasis 
progress towards global eradication. Wkly Epidemiol. Rec. 71, 9–16. 55. World Health Organization. 1989 Dracunculiasis: 
Ghana. Wkly Epidemiol. Rec. 64, 16–19. 56. Brieger W, Otusanya S, Adeniyi D, Tijani J, Banjoko 
M. 1997 Eradicating guinea worm without wells: unrealized hopes of the water decade. Health Policy Plan. 12, 354–362. 
(doi:10.1093/heapol/12.4.354) 57. Henderson PL, Fontaine R, Kyeyune G. 1988 Guinea worm disease in Northern Uganda: a 
major public health problem controllable through an effective water programme. Int. J. Epidemiol. 17, 434–440. 
(doi:10.1093/ije/17.2.434) 58. World Health Organization. 1989 Dracunculiasis: global surveillance summary 1988. Wkly 
Epidemiol. Rec. 64, 297–300. 59. British Geological Survey. 2000 Groundwater quality: 
Ghana. See www.bgs.ac.uk/downloads/start. cfm?id1⁄41281 (accessed 24 May 2013). 60. Cobbina S, Anyidoho L, Nyame F, 
Hodgson IOA. 2010 Water quality status of dugouts from five districts in Northern Ghana: implications for sustainable water 
resources management in a water stressed tropical savannah environment. Environ. Monit. Assess. 167, 405–416. 
(doi:10.1007/s10661- 009-1059-6) 61. WHO/UNICEF Joint Monitoring Programme (JMP) for 
Water Supply and Sanitation. 2006 Meeting the MDG drinking water and sanitation target: the urban and rural challenge of the 
decade, pp. 1–41. Geneva, Switzerland: WHO Press. 62. Lyons G. 1973 The control of guinea-worm with 
abate: a trial in a village of north-west Ghana. Bull. WHO 49, 215–216. 63. Chippaux J, Laniyan I, Akogbeto M. 1991 
Evaluation de l’efficacité du Témephos dans la lutte contre la dracunculose. Ann. Soc. Belg. Med. Trop. 71, 279–285. 64. Tayeh 
A, Cairncross S, Maude GH. 1996 The impact 
of health education to promote cloth filters on dracunculiasis prevalence in the northern region, Ghana. Soc. Sci. Med. 43, 
1205–1211. (doi:10. 1016/0277-9536(95)00383-5) 
on February 25, 2018 http://rstb.royalsocietypublishing.org/ Downloaded from 
65. Hoffman D. 1991 Dracunculiasis a forgotten disease 
of forgotten people. Video: VHS. Geneva, Switzerland: World Health Organization. 66. World Health Organization. 1995 Yoro, 
the empty granary. Video: VHS. Geneva, Switzerland: World Health Organization. 67. US National Library of Medicine. 2012 
See http:// 
 www.nlm.nih.gov/hmd/collections/films/ tropicalguide/guide.html (accessed December 2012). 68. World Health Organization. 
                                                   2005 The final sprint. 
DVD. Geneva, Switzerland: World Health Organization. 69. World Health Organization. 2010 Dracunculiasis, 
          heightened surveillance: the key to success. DVD. Geneva, Switzerland: World Health Organization. 70. World Health 
                                                                                          Organization. 2012 Dracunculiasis, 
heightened surveillance: the key to success (updated version). DVD. Geneva, Switzerland: World Health Organization. 71. 
Gentilini M, Raffier G, Lenoble R, Danis M, directors. 1977. Avicennas’s thread: dracunculosis. France: J.P.R. Production. 72. 
Nichols S, director. 1998 The water of Ayole. USA: 
    Sandra Nichols Production. 73. Strieker G, director. 2010 Foul watery serpent. DVD. 
    USA: Cielo Productions. 74. Hopkins D, Ruiz-Tiben E. 1991 Strategies for 
dracunculiasis eradication. Bull. World Health Organ. 69, 533–540. 75. Watts S. 1987 Dracunculiasis in Africa in 1986: 
 its geographic extent, incidence, and at-risk population. Am. J. Trop. Med. Hyg. 37, 119–125. 76. World Health Organization. 
       1996 Global surveillance summary, 1995. Wkly Epidemiol. Rec. 71, 141–147. 77. World Health Organization. 1992 
                                                           Dracunculiasis 
global surveillance summary, 1991. Wkly Epidemiol. Rec. 67, 121–128. 78. World Health Organization. 1993 Dracunculiasis: 
global surveillance summary, 1992. Wkly Epidemiol. Rec. 68, 125–130. 79. World Health Organization. 1990 Dracunculiasis: 
global surveillance summary, 1989. Wkly Epidemiol. Rec. 65, 229–233. 80. World Health Organization. Online Atlas. See http:// 
apps.who.int/dracunculiasis/dradata/ (accessed 7 March 2013). 81. World Health Organization. 2007 Dracunculiasis 
eradication: global surveillance summary 2006. Wkly Epidemiol. Rec. 82, 133–140. 82. World Health Organization. 2013 
Monthly report on dracunculiasis cases, January–December 2012. Wkly Epidemiol. Rec. 88, 99. 83. Visser BJ. 2012 
Dracunculiasis eradication: finishing the job before surprises arise. Asian Pacific J. Trop. 
Med. 5, 505–510. (doi:10.1016/S1995-7645(12) 60088-1) 84. Tayeh A, Cairncross S. 2007 Dracunculiasis 
              eradication by 2009: will endemic countries meet the target? Trop. Med. Int. Health 12, 1403–1408. 
                (doi:10.1111/j.1365-3156.2007.01947.x) 85. Black M. 1998 United Nations. See http://www.un. 
org/esa/sustdev/sdissues/water/ InternationalWaterDecade1981–1990_review.pdf (accessed 3 December 2012). 86. World Health 
Organization. 2013 Sustaining the 
drive to overcome the global impact of neglected tropical diseases. Geneva, Switzerland: World Health Organization. 87. 
AylwardBR.2006Eradicatingpolio:today’schallenges 
and tomorrow’s legacy. Ann. Trop. Med. Parasitol. 401–413. (doi:10.1179/136485906X97354) 88. Al-Awadi AR, Karam MV, 
Molineux DH, Breman JG. 2007 The other ‘neglected’ eradication programme: achieving the final mile for Guinea worm disease 
   eradication? Trans. R. Soc. Trop. Med. Hyg. 101, 741–742. (doi:10.1016/j.trstmh.2007.04.002) 89. Molyneux DH. 2004 
                                                 ‘Neglected’ diseases but 
unrecognised successes: challenges and opportunities for infectious disease control. Lancet 364, 380–383. 
(doi:10.1016/S0140-6736(04)16728-7) 90. Barry M. 2006 Slaying the little dragons: lessons from the dracunculiasis eradication 
program. Am. J. Trop. Med. Hyg. 75, 1–2. 91. World Health Organization. 2003 Assessment of the community-based 
surveillance system in Ghana and its role in dracunculiasis eradication. Wkly Epidemiol. Rec. 78, 321. 92. Kyei-Faried S, 
Appiah-Denkyira E, Brenya D, 
Akuamoa-Boateng A, Visser L. 2006 The role of community-based surveillance in health outcomes measurement. Ghana Med. J. 
                             40, 26–30. 93. Centers for Disease Control and Prevention. 2011 
Renewed transmission of dracunculiasis: Chad, 2010. Morb. Mort. Wkly Rep. 60, 744–748. 94. Eberhard M, Ruiz-Tiben E, 
Korkor A, Roy S, Downs P. 2010 Emergence of onchocerca volvulus from skin mimicking Dracunculiasis medinensis. Am. J. 
Trop. Med. Hyg. 53, 1348–1351. (doi:10.4269/ajtmh. 2010.10-0475) 95. Eberhard M, Melemoko G, Zee A, Weisskopf M, 
Ruiz-Tiben E. 2001 Misidentification of Onchocerca volvulus as guinea worm. Ann. Trop. Med. Parasitol. 95, 821–826. 
(doi:10.1080/ 00034980120103397) 96. Mahler H. 1988 Present status of WHO’s initiative, ‘health for all by the year 2000’. 
Annu. Rev. Public Health 9, 71–97. (doi:10.1146/annurev.pu.09. 050188.000443) 
13