0% found this document useful (0 votes)
59 views10 pages

Radians Mixed Exercise: OM OCD C M DOM O

Uploaded by

lawrence
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
59 views10 pages

Radians Mixed Exercise: OM OCD C M DOM O

Uploaded by

lawrence
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

Radians Mixed exercise

1 2

a Using Pythagoras’ theorem to find OM :


OM 2 = 17 2 − 152 = 64 ⇒ OM =
8 cm
1
Area of OCD = × CD × OM
2
a In the right-angled triangle ABC : 1
= × 30 × 8 = 120 cm 2
BA 5 1 2
cos ∠BAC = = =
AC 10 2
b Area of shaded region R
π
so ∠BAC = = area of semicircle CDA1
3
− area of segment CDA2
b Area of triangle ABC
1 Area of semicircle CDA1
= × AB × AC × sin ∠BAC
2 1
1 π = × π × 152= 353.429...cm 2
= × 5 × 10 × sin = 21.650...cm 2 2
2 3
Area of segment CDA2
Area of sector DAB
= area of sector OCD
1 π
= × 52 × = 13.089...cm 2 − area of triangle OCD
2 3
1
= × 17 2 × ∠COD − 120
2
Area of shaded region In right-angled triangle COM :
= area of  ABC − area of sector DAB CM 15
sin ∠COM = =
= 21.650... − 13.089... = 8.56 cm 2 (3 s.f.) OC 17
so ∠COM = 1.0808...
hence ∠COD = 2.1616...
So area of segment CDA2
1
= × 17 2 × 2.1616... − 120
2
= 192.362...cm 2
So area of shaded region R
= 353.429... − 192.362...
= 161.07 cm 2 (2 d.p.)

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 1
3 c 4.65 ⩽ r < 4.75, 5.25 ⩽ p < 5.35
Least possible value for area of sector
1
= × 5.25 × 4.65 = 12.207 cm 2 (3 d.p.)
2
(Note: Least possible value is 12.20625,
so 12.207 should be given, not 12.206)

d Maximum possible value of θ


max p 5.35
= = = 1.1505...
min r 4.65
So give 1.150 (3 d.p.)
Minimum possible value of θ
a Reflex angle AOB = (2π − θ ) rad min p 5.25
Area of shaded sector = = = 1.1052...
max r 4.75
1 So give 1.106 (3 d.p.)
= × 6 2 × ( 2π − θ )
2
= (36π − 18θ ) cm 2 5
So 80= 36π − 18θ
⇒ 18θ= 36π − 80
36π − 80
⇒θ
= = 1.839 (3 d.p.)
18

b Length of minor arc AB


= 6θ = 6 × 1.8387... = 11.03 cm (2 d.p.)

a Using l = rθ :
6.4
6.4 = 5θ ⇒ θ = = 1.28 rad
5

1 2
b Using area of sector = rθ:
2
1
R1 = × 52 × 1.28 = 16
2

a Using l = rθ : c R2 area of circle − R1


=
p
p = rθ ⇒ θ = = π × 52 − 16 = 62.5398...
r
R 16 1 1
So 1
= = =
b Area of sector R2 62.5398... 3.908... p
1 1 2 p 1 3.91 (3 s.f.)
⇒ p=
= r 2θ = r × = pr cm 2
2 2 r 2

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 2
6 7

a Area of shape X
= area of rectangle + area of semicircle a Area of segment R1
1 = area of sector OPQ
= (2d 2 + πd 2 ) cm 2
2 − area of triangle OPQ
1 1
1 ⇒ A1 = × 62 × θ − × 62 × sin θ
Area of=
shape Y = (2d ) 2 θ 2d 2θ cm 2 2 2
2 ⇒ A1 = 18(θ − sin θ )

Since X = Y : =b A2 area of circle − A1


1 = π × 62 − 18 (θ − sin θ )
2d 2 + πd 2 = 2d 2θ
2
= 36π − 18 (θ − sin θ )  
Divide by 2d 2 :
π
1+ = θ Since A2 = 3 A1:
4
36π − 18 (θ − sin θ ) = 3 × 18 (θ − sin θ )  
b Perimeter of shape X
 36π − 18 (θ − sin=
θ ) 54 (θ − sin θ ) 
= (d + 2d + d + πd ) cm with d =
3
= (3π + 12) cm 6π 72 (θ − sin θ )         
 3=
π =θ sin θ  
 –
c Perimeter of shape Y π
sin θ= θ −  
= (2d + 2d + 2dθ ) cm 2
π
with d = 3 and θ = 1 +
4
π
=12 + 6 1 + 
 4
3π 
= 18 +  cm
 2 

d Difference
3π 
= 18 +  − (3π + 12)
 2 

= 6−
2
= 1.287...cm
= 12.9 mm (3 s.f.)

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 3
8 9

a Using the cosine rule in  ABC :


b2 + c2 − a 2
cos A =
2bc
1 2 1 2
52 + 92 − 102 a Area of sector
= rθ
= r × 1.5 cm 2
⇒ cos= ∠BAC = 0.06 2 2
2×5×9 3 2
⇒ ∠BAC =1.50408... So r = 15
4
= 1.504 rad (3 d.p.) 60
⇒ r2 = = 20
3
b i Using the sector area formula:
⇒ r= 20 = 4×5 = 4× 5= 2 5
1
area of sector = r 2θ
2 b Arc length
= (1.5) 3 5 cm
AB r=
⇒ area of sector APQ
1 Perimeter of sector
= × 32 × 1.504 = 6.77 cm 2 (3 s.f.)
2 = AO + OB + arc length AB
ii Area of shaded region BPQC = 2 5 +2 5 +3 5
= area of  ABC − area of sector APQ =7 5
1 1 = 15.7 cm (3 s.f.)
= × 5 × 9 × sin1.504 − × 32 × 1.504
2 2
= 15.681... c Area of segment R
2
= 15.7 cm (3 s.f.) = area of sector − area of  AOB
1
= 15 − r 2 sin1.5
iii Perimeter of shaded region BPQC 2
= QC + CB + BP + arc length PQ = 15 − 10 sin1.5
=2 + 10 + 6 + (3 × 1.504) = 5.025 cm 2 (3 d.p.)
= 22.51...
= 22.5 cm (3 s.f.)

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 4
10 11

a Using the right-angled  ADC :


35
sin ∠ACD =
44
35
a Using the right-angled  ABD, with So ∠ACD = sin −1
44
π
∠ABD = : 35
3 and ∠ACB = 2 sin −1
44
π 3
si n = ⇒ ∠ACB = 1.8395...
3 AB
= 1.84 rad (2 d.p.)
3 3
⇒ AB= π
=
sin 3
3 2 b i Length of railway track
2 = length of arc AB

= 2 3 cm
=
3 = 44 × 1.8395...
= 80.9m (3 s.f.)
b Area of badge = area of sector
1 π ii Shortest distance from C to AB is DC.
= × (2 3 ) 2 θ where θ =
2 3 Using Pythagoras’ theorem:
1 π DC
= 2
442 − 352
= × 4× 3×
2 3
2 DC = 442 − 352 = 26.7m (3 s.f.)
= 2π cm

c Perimeter of badge iii Area of region


= AB + AC + arc length BC = area of segment
π = area of sector ABC − area of  ABC
= 2 3 +2 3 +2 3×
3 1 1
= × 442 × 1.8395... − × 70 × DC
π 2 2
= 2 3  2 +  2
 3 = 847m (3 s.f.)
2 3
= (6 + π) cm
3

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 5
12 c

Area of the cross-section


= area of rectangle ABCD
− area of shaded segment
a In right-angled OAX (see diagram): π
Area of rectangle = 4 × 12 × sin
x 6
= sin θ = 24 cm 2
6
⇒x= 6 sin θ Area of shaded segment
So AB x 12 sin θ (AB
= 2= = DC ) = area of sector − area of triangle
1 π 1 π
= × 62 × − × 62 × sin
Perimeter of the cross-section 2 3 2 3
2
= arc length AB + AD + DC + BC = 3.261...cm
= 6 × 2θ + 4 + 12 sin θ + 4 cm So area of cross-section
=(8 + 12θ + 12 sin θ ) cm = 20.7 cm 2 (3 s.f.)

So 2(7 + π) = 8 + 12θ + 12 sin θ 13


⇒ 14 + 2π = 8 + 12θ + 12 sin θ
⇒ 12θ + 12 sin θ − 6 = 2π

Divide by 6:
π
2θ + 2 sin θ − 1 =
3

π
b When θ = , a O1A = O2A = 12, as they are radii of their
6
π  1 respective circles.
2θ + 2 sin θ − 1 = +  2 ×  − 1 O1O2 = 12, as O2 is on the circumference
3  2
of C1 and hence is a radius (and vice
π versa).
=
3 Therefore  AO1O2 is equilateral.
π
So ∠AO1O2 =
3

and ∠AO1 B = 2 × ∠AO1O2 =
3

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 6
13 b Consider arc AO2 B of circle C1. b
Using arc length = rθ :   θ2 
2 1 − 1 −  − 1
2(1 − cos θ ) − 1  2 
arc length AO2 B =12 ×

= 8π cm ≈ 
3 tan θ − 1 θ −1
Perimeter of R θ2
2× −1
= arc length AO2 B + arc length AO1 B = 2
θ −1
= 2 × 8π= 16π cm
θ −1
2
=
c Consider the segment AO2 B in circle C1. θ −1
Area of segment AO2 B (θ − 1)(θ + 1)
=
θ −1
area of sector O1 AB − area of O1 AB
= θ +1
1 2π 1 2π
= × 122 × − × 122 × sin
2 3 2 3
2
= 88.442...cm  (2θ ) 2 
7 + 2 1 − 
Area of region R 7 + 2 cos 2θ  2 
16 a ≈
= area of segment AO2 B tan 2θ + 3 2θ + 3
+ area of segment AO1 B
 4θ 2 
7 + 2 1 − 
=  2 
= 2 × 88.442...
2θ + 3
= 177 cm 2 (3 s.f.) 9 − 4θ 2
=
2θ + 3
14 a The student has used an angle measured in (3 + 2θ )(3 − 2θ )
degrees – it needs to be measured in =
radians to use that formula. 2θ + 3
= 3 − 2θ
50
b 50
= ° × π rad b 3
180
1 2 1 5
r θ = × 32 × π
2 2 18 17 a When θ is small:
5 = LHS 32 cos 5θ + 203 tan10θ
= π cm 2
4
 (5θ ) 2 
≈ 32 1 −  + 203(10θ )
 2 
 θ2 
1 −  −1 = 32 − 16(25θ 2 ) + 2010θ
cos θ − 1  2 
15 a ≈
θ tan 2θ θ × 2θ
θ2 So 32 − 400θ 2 − 2030θ =
182

= 2 400θ 2 + 2030θ + 150 =
0
2θ 2 40θ 2 + 203θ + 15 =
0
−θ 2
=
4θ 2 b 40θ 2 + 203θ + 15 = 0
1 (40θ − 3)(θ − 5) =0
= −
4 3
θ= ,5
40

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 7
17 c θ = 5 is not a valid solution, as 5 is not 20 a
‘small’. 403 is ‘small’, so this solution is
valid.

18 cos 4 θ − sin 4 θ
= (cos 2 θ − sin 2 θ )(cos 2 θ + sin 2 θ )
= cos 2 θ − sin 2 θ
1 − sin 2 θ − sin 2 θ
=
= 1 − 2 sin 2 θ
≈ 1 − 2θ 2 b The curves intersect twice in the given
range, so the equation has two solutions.
19 a 3 sin θ = 2, 0 ⩽ θ ⩽ π
2 c 5 sin x = 3 cos x
sin θ =
3 3
tan x =
θ = 0.730, 2.41 5
x = 0.540, 3.68
b sin θ = −cos θ, −π ⩽ θ ⩽ π
tan θ = −1 π
21 a 4 sin θ − cos  − θ=
 4 sin θ − sin θ

π 3π 2 
θ= − ,
4 4 = 3sin θ

1 π
c tan θ + =2, 0 ⩽ θ ⩽ 2π b 4 sin θ − cos  − θ  = 1, 0 ⩽ θ ⩽ 2π
tan θ 2 
tan 2 θ + 1 =2 tan θ 3sin θ = 1
tan 2 θ − 2 tan θ + 1 =0 1
sin θ =
(tan θ − 1) 2 =0 3
θ = 0.340, 2.80
tan θ = 1
π 5π sin 2 x + 0.5 3π
θ= , 22 = 2, 0 < x <
4 4 1 − sin 2 x 2
sin 2 x + 0.5 =2 − 2 sin 2 x
d 2 sin 2 θ − sin θ − 1 =sin 2 θ , −π ⩽ θ ⩽ π
3sin 2 x = 1.5
sin 2 θ − sin θ − 1 =0
sin 2 x = 0.5
1± 5 Let X = 2 x
sin θ =
2
sin=X 0.5, 0 < X < 3π
sin θ = 1.618 (no solutions)
π 5π 13π 17 π
or sin θ = − 0.618 X = , , ,
6 6 6 6
⇒θ = −0.666, − 2.48
π 5π 13π 17 π
x= , , ,
12 12 12 12

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 8
23 a Cosine can be negative, so do not reject 26 a 4 sin 2 x + 9 cos x − 6 =0
1 4(1 − cos 2 x) + 9 cos x − 6 =0

2
4 − 4 cos 2 x + 9 cos x − 6 =0
b Rearranged incorrectly, so incorrectly 4 cos 2 x − 9 cos x + 2 =0
square rooted.
b 4 cos 2 x − 9 cos x + 2 =0, 0 ⩽ θ ⩽ 4π
c 2
2 cos x = 1 (4 cos x − 1)(cos x − 2) =0
1
cos 2 x = cos x = 2 (no solution)
2
or cos x= 0.25 ⇒ x= 1.3, 5.0, 7.6,11.2
1
cos x = ±
2
27 a tan 2 x = 5 sin 2 x
3π π π 3π sin 2 x
x=− ,− , , = 5 sin 2 x
4 4 4 4 cos 2 x
sin 2 x = 5 sin 2 x cos 2 x
24 a Not all solutions have been calculated.
There will be four solutions in the given (1 − 5 cos 2 x) sin 2 x = 0
interval.
b sin 2 x(1 − 5 cos 2 x) =0, 0 ⩽ x ⩽ π
b 2 tan 2x = 5, 0 ⩽ x ⩽ 2π Let X = 2 x
Let X = 2 x sin X (1 − 5 cos X ) = 0, 0 ⩽ X ⩽ 2π
2 tan X = 5, 0 ⩽ X ⩽ 4π sin X = 0 ⇒ X = 0, π, 2π
tan X = 2.5
or cos X = 0.2 ⇒ X = 1.37, 4.91
X = 1.19, 4.33, 7.47,10.6
π
x = 0.595, 2.17, 3.74, 5.31 = x 0, 0.7, , 2.5, π
2

25 a 5 sin x= 1 + cos 2 x 28 a
2
5 sin x =+
1 2(1 − sin x)
2 sin 2 x + 5 sin x − 3 =0

b 2 sin2 x + 5 sin x − 3 = 0, 0 ⩽ x ⩽ 2π
(2 sin x − 1)(sin x + 3) =0
 3   π   4π 
π 5π b  0,  ,  , 0 ,  , 0
sin x = 0.5 ⇒ x = ,  2  3   3 
6 6
or sin x = −3 (no solution)
π
c cos  x +  = 0.65, 0 ⩽ x ⩽ 2π
 6
π
Let X= x +
6
π 13π
cos X = 0.65, ⩽x⩽
6 6
X = 0.863, 5.42
x = 0.34, 4.90

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 9
 π θ 37 − 2 cos 2θ
c sin 4=
29 sin  3 x + = 0.45, 0 ≤ x ≤ π When is small:
 3
π π 10π LHS ≈ 4θ
Let X = 3 x + , ≤ X ≤
3 3 3  (2θ ) 2 
and RHS ≈ 37 − 2 1 − 
sin X = 0.45  2 
X = 2.67, 6.75,8.96 so 4θ = 37 − 2 + 4θ 2
x = 0.54,1.90 or 2.64 ( 2 d.p.) 4θ 2 − 4θ + 35 =
0
b 2 − 4ac < 0
Challenge So there are no solutions.

a 9 sin θ tan θ + 25 tan θ =


6
When θ is small:
LHS ≈ 9θ 2 + 25θ
so 9θ 2 + 25θ =
6
9θ 2 + 25θ − 6 =0
(9θ − 2)(θ + 3) =0
2
θ = or θ = −3
9

2
θ= is ‘small’, so this value is valid.
9
θ = −3 is not‘small’, so this value is not
valid. ‘Small’ in this context is ‘close to 0’.

b 2 tan θ + 3 =5 cos 4θ
When θ is small:
 (4θ ) 2 
LHS ≈ 2θ + 3 and RHS ≈ 5 1 − 
 2 
so 2θ + 3 = 5 − 40θ 2
40θ 2 + 2θ − 2 =0
20θ 2 + θ − 1 = 0
(4θ + 1)(5θ − 1) =0
− 1 ,θ =
θ= 1
4 5

Both values of θ could be considered


‘small’ in this case so both solutions are
valid.

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 10

You might also like