Radians Mixed Exercise: OM OCD C M DOM O
Radians Mixed Exercise: OM OCD C M DOM O
1 2
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 1
3 c 4.65 ⩽ r < 4.75, 5.25 ⩽ p < 5.35
Least possible value for area of sector
1
= × 5.25 × 4.65 = 12.207 cm 2 (3 d.p.)
2
(Note: Least possible value is 12.20625,
so 12.207 should be given, not 12.206)
a Using l = rθ :
6.4
6.4 = 5θ ⇒ θ = = 1.28 rad
5
1 2
b Using area of sector = rθ:
2
1
R1 = × 52 × 1.28 = 16
2
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 2
6 7
a Area of shape X
= area of rectangle + area of semicircle a Area of segment R1
1 = area of sector OPQ
= (2d 2 + πd 2 ) cm 2
2 − area of triangle OPQ
1 1
1 ⇒ A1 = × 62 × θ − × 62 × sin θ
Area of=
shape Y = (2d ) 2 θ 2d 2θ cm 2 2 2
2 ⇒ A1 = 18(θ − sin θ )
d Difference
3π
= 18 + − (3π + 12)
2
3π
= 6−
2
= 1.287...cm
= 12.9 mm (3 s.f.)
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 3
8 9
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 4
10 11
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 5
12 c
Divide by 6:
π
2θ + 2 sin θ − 1 =
3
π
b When θ = , a O1A = O2A = 12, as they are radii of their
6
π 1 respective circles.
2θ + 2 sin θ − 1 = + 2 × − 1 O1O2 = 12, as O2 is on the circumference
3 2
of C1 and hence is a radius (and vice
π versa).
=
3 Therefore AO1O2 is equilateral.
π
So ∠AO1O2 =
3
2π
and ∠AO1 B = 2 × ∠AO1O2 =
3
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 6
13 b Consider arc AO2 B of circle C1. b
Using arc length = rθ : θ2
2 1 − 1 − − 1
2(1 − cos θ ) − 1 2
arc length AO2 B =12 ×
2π
= 8π cm ≈
3 tan θ − 1 θ −1
Perimeter of R θ2
2× −1
= arc length AO2 B + arc length AO1 B = 2
θ −1
= 2 × 8π= 16π cm
θ −1
2
=
c Consider the segment AO2 B in circle C1. θ −1
Area of segment AO2 B (θ − 1)(θ + 1)
=
θ −1
area of sector O1 AB − area of O1 AB
= θ +1
1 2π 1 2π
= × 122 × − × 122 × sin
2 3 2 3
2
= 88.442...cm (2θ ) 2
7 + 2 1 −
Area of region R 7 + 2 cos 2θ 2
16 a ≈
= area of segment AO2 B tan 2θ + 3 2θ + 3
+ area of segment AO1 B
4θ 2
7 + 2 1 −
= 2
= 2 × 88.442...
2θ + 3
= 177 cm 2 (3 s.f.) 9 − 4θ 2
=
2θ + 3
14 a The student has used an angle measured in (3 + 2θ )(3 − 2θ )
degrees – it needs to be measured in =
radians to use that formula. 2θ + 3
= 3 − 2θ
50
b 50
= ° × π rad b 3
180
1 2 1 5
r θ = × 32 × π
2 2 18 17 a When θ is small:
5 = LHS 32 cos 5θ + 203 tan10θ
= π cm 2
4
(5θ ) 2
≈ 32 1 − + 203(10θ )
2
θ2
1 − −1 = 32 − 16(25θ 2 ) + 2010θ
cos θ − 1 2
15 a ≈
θ tan 2θ θ × 2θ
θ2 So 32 − 400θ 2 − 2030θ =
182
−
= 2 400θ 2 + 2030θ + 150 =
0
2θ 2 40θ 2 + 203θ + 15 =
0
−θ 2
=
4θ 2 b 40θ 2 + 203θ + 15 = 0
1 (40θ − 3)(θ − 5) =0
= −
4 3
θ= ,5
40
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 7
17 c θ = 5 is not a valid solution, as 5 is not 20 a
‘small’. 403 is ‘small’, so this solution is
valid.
18 cos 4 θ − sin 4 θ
= (cos 2 θ − sin 2 θ )(cos 2 θ + sin 2 θ )
= cos 2 θ − sin 2 θ
1 − sin 2 θ − sin 2 θ
=
= 1 − 2 sin 2 θ
≈ 1 − 2θ 2 b The curves intersect twice in the given
range, so the equation has two solutions.
19 a 3 sin θ = 2, 0 ⩽ θ ⩽ π
2 c 5 sin x = 3 cos x
sin θ =
3 3
tan x =
θ = 0.730, 2.41 5
x = 0.540, 3.68
b sin θ = −cos θ, −π ⩽ θ ⩽ π
tan θ = −1 π
21 a 4 sin θ − cos − θ=
4 sin θ − sin θ
π 3π 2
θ= − ,
4 4 = 3sin θ
1 π
c tan θ + =2, 0 ⩽ θ ⩽ 2π b 4 sin θ − cos − θ = 1, 0 ⩽ θ ⩽ 2π
tan θ 2
tan 2 θ + 1 =2 tan θ 3sin θ = 1
tan 2 θ − 2 tan θ + 1 =0 1
sin θ =
(tan θ − 1) 2 =0 3
θ = 0.340, 2.80
tan θ = 1
π 5π sin 2 x + 0.5 3π
θ= , 22 = 2, 0 < x <
4 4 1 − sin 2 x 2
sin 2 x + 0.5 =2 − 2 sin 2 x
d 2 sin 2 θ − sin θ − 1 =sin 2 θ , −π ⩽ θ ⩽ π
3sin 2 x = 1.5
sin 2 θ − sin θ − 1 =0
sin 2 x = 0.5
1± 5 Let X = 2 x
sin θ =
2
sin=X 0.5, 0 < X < 3π
sin θ = 1.618 (no solutions)
π 5π 13π 17 π
or sin θ = − 0.618 X = , , ,
6 6 6 6
⇒θ = −0.666, − 2.48
π 5π 13π 17 π
x= , , ,
12 12 12 12
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 8
23 a Cosine can be negative, so do not reject 26 a 4 sin 2 x + 9 cos x − 6 =0
1 4(1 − cos 2 x) + 9 cos x − 6 =0
−
2
4 − 4 cos 2 x + 9 cos x − 6 =0
b Rearranged incorrectly, so incorrectly 4 cos 2 x − 9 cos x + 2 =0
square rooted.
b 4 cos 2 x − 9 cos x + 2 =0, 0 ⩽ θ ⩽ 4π
c 2
2 cos x = 1 (4 cos x − 1)(cos x − 2) =0
1
cos 2 x = cos x = 2 (no solution)
2
or cos x= 0.25 ⇒ x= 1.3, 5.0, 7.6,11.2
1
cos x = ±
2
27 a tan 2 x = 5 sin 2 x
3π π π 3π sin 2 x
x=− ,− , , = 5 sin 2 x
4 4 4 4 cos 2 x
sin 2 x = 5 sin 2 x cos 2 x
24 a Not all solutions have been calculated.
There will be four solutions in the given (1 − 5 cos 2 x) sin 2 x = 0
interval.
b sin 2 x(1 − 5 cos 2 x) =0, 0 ⩽ x ⩽ π
b 2 tan 2x = 5, 0 ⩽ x ⩽ 2π Let X = 2 x
Let X = 2 x sin X (1 − 5 cos X ) = 0, 0 ⩽ X ⩽ 2π
2 tan X = 5, 0 ⩽ X ⩽ 4π sin X = 0 ⇒ X = 0, π, 2π
tan X = 2.5
or cos X = 0.2 ⇒ X = 1.37, 4.91
X = 1.19, 4.33, 7.47,10.6
π
x = 0.595, 2.17, 3.74, 5.31 = x 0, 0.7, , 2.5, π
2
25 a 5 sin x= 1 + cos 2 x 28 a
2
5 sin x =+
1 2(1 − sin x)
2 sin 2 x + 5 sin x − 3 =0
b 2 sin2 x + 5 sin x − 3 = 0, 0 ⩽ x ⩽ 2π
(2 sin x − 1)(sin x + 3) =0
3 π 4π
π 5π b 0, , , 0 , , 0
sin x = 0.5 ⇒ x = , 2 3 3
6 6
or sin x = −3 (no solution)
π
c cos x + = 0.65, 0 ⩽ x ⩽ 2π
6
π
Let X= x +
6
π 13π
cos X = 0.65, ⩽x⩽
6 6
X = 0.863, 5.42
x = 0.34, 4.90
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 9
π θ 37 − 2 cos 2θ
c sin 4=
29 sin 3 x + = 0.45, 0 ≤ x ≤ π When is small:
3
π π 10π LHS ≈ 4θ
Let X = 3 x + , ≤ X ≤
3 3 3 (2θ ) 2
and RHS ≈ 37 − 2 1 −
sin X = 0.45 2
X = 2.67, 6.75,8.96 so 4θ = 37 − 2 + 4θ 2
x = 0.54,1.90 or 2.64 ( 2 d.p.) 4θ 2 − 4θ + 35 =
0
b 2 − 4ac < 0
Challenge So there are no solutions.
2
θ= is ‘small’, so this value is valid.
9
θ = −3 is not‘small’, so this value is not
valid. ‘Small’ in this context is ‘close to 0’.
b 2 tan θ + 3 =5 cos 4θ
When θ is small:
(4θ ) 2
LHS ≈ 2θ + 3 and RHS ≈ 5 1 −
2
so 2θ + 3 = 5 − 40θ 2
40θ 2 + 2θ − 2 =0
20θ 2 + θ − 1 = 0
(4θ + 1)(5θ − 1) =0
− 1 ,θ =
θ= 1
4 5
© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 10