Energy and Buildings: Ilhan Ceylan, Engin Gedik, Okan Erkaymaz, Ali Etem Gürel
Energy and Buildings: Ilhan Ceylan, Engin Gedik, Okan Erkaymaz, Ali Etem Gürel
a r t i c l e i n f o a b s t r a c t
Article history: Artificial neural network (ANN) is a useful tool that using estimates behavior of the most of engineering
Received 2 May 2014 applications. In the present study, ANN model has been used to estimate the temperature, efficiency and
Received in revised form 31 July 2014 power of the Photovoltaic module according to outlet air temperature and solar radiation. An experi-
Accepted 3 August 2014
mental system consisted photovoltaic module, heating and cooling sub systems, proportional integral
Available online 12 August 2014
derivative (PID) control unit was designed and built. Tests were realized at the outdoors for the constant
ambient air temperatures of photovoltaic module. To preserve ambient air temperature at the deter-
Keywords:
mined constant values as 10, 20, 30 and 40 ◦ C, cooling and heating subsystems which connected PID
Solar energy
Photovoltaic
control unit were used in the test apparatus. Ambient air temperature, solar radiation, back surface of
Artificial neural network the photovoltaic module temperature was measured in the experiments. Obtained data were used to
estimate the photovoltaic module temperature, efficiency and power with using ANN approach for all 7
region of the Turkey. The study dealing with this paper not only will beneficial for the limited region but
also in all region of Turkey which will be thought established of photovoltaic panels by the manufacturer,
researchers and etc.
© 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.enbuild.2014.08.003
0378-7788/© 2014 Elsevier B.V. All rights reserved.
İ. Ceylan et al. / Energy and Buildings 84 (2014) 258–267 259
neural network (ANN) is a tool which is widely using to estimate to estimate, under real conditions, efficiency and the maximum
the efficiency and maximum power of PV systems [15,16]. Almaktar power of commercially available a multi crystalline silicon (mc-Si)
et al. [17] presented an ANN based approach for predicting photo- photovoltaic module by using the outside temperature and solar
voltaic module temperature using meteorological variables. Ravaee radiation. For this purpose an experimental setup was designed
et al. [18] presented a new application of ANN for modeling a Photo- and built. Tests were made outdoors and measured ambient air
voltaic Thermal collector (PV/T). Ambient temperature of collector, temperature, solar radiation and back surface of module temper-
cell and fluid temperature at duct inlet, fluid velocity in duct, solar ature data were used the training of ANN, estimate the efficiency
intensity and time were used in the input layer while the thermal and the module temperature of PV for the all 7 region of Turkey.
efficiency and electrical efficiency are outputs. Vasarevicius et al.
[19] presented analysis of IncCondMPPT algorithm and comparison 2. Methodology
of operation with and without ANN. Bahgat et al. [20] presented a
development and implementation of a PC-based maximum power “Turkey has a technical power generating capacity of 4–5 MW
point tracker (MPPT) for PV system using neural networks. Had- from PV applications. Currently, the most PV applications in Turkey
jab et al. [21] presented the results of the characterization and are used for stand-alone power systems. Depending on the devel-
modeling of the electrical current-voltage and power-voltage of opments about the price and efficiency of PV appliances, the Turkish
the photovoltaic panel BP 3160 W, using a new approach based PV market is expected to rapidly expand given the fact that there
on artificial intelligence. Reddy et al. [22] presented an application are more than 34,000 small residential areas including resort areas
of a neural network for the identification of the optimal operating along the coast lines in Turkey where solar-powered electricity
point of PV module maximum power tracking control. Kulaksız and would be more economical than grid supply [28]”. For this reason
Akkaya [23] used a genetic algorithm for improve the maximum the details given in this work will be able to much beneficial for the
power point tracking efficiency of a PV system with introduction PV market due to it composed all region of Turkey which has great
motor drive by optimizing the input dataset for an ANN model of solar energy potential.
PV modules. Karatepe et al. [24] presented a neural network based An experimental system was established as can be shown in
approach for improving the accuracy of the electrical equivalent Fig. 1. The PV module was to position indoor environment with
circuit of a photovoltaic module. Tajuddin et al. [25] presented a glass material of the test apparatus. Indoor environment temper-
maximum power point tracking (MPPT) technique for photovoltaic ature of the PV module was tried to fix as the values of 10, 20,
(PV) system using a modified differential evolution (DE) algorithm. 30 and 40 ◦ C. To obtain constant temperature values in the indoor
The standard DE is modified to deal with dynamic objective func- environment both heating and cooling systems were used. While
tion problem to suit with the nonlinear time-varying MPPT nature. electrical heater was using to increase the temperature, cooling
Mellit et al. [26] described a methodology to estimate the profile system based on basic vapor compression refrigeration cycle was
of the produced power of a 50 W p Si-polycrystalline photovoltaic used to decrease the temperature in the indoor environment. It
module. For this purpose, two ANNs have been developed for use has been possible to hold desired constant temperatures with
in cloudy and sunny days, respectively. In our previous work [27] using PID control equipment. Solar radiation intensity incoming
we have investigate the PV module efficiency experimentally and on the PV module numbered as 12 in Fig. 1 was measured with
we used the ANN module to estimate the module temperature for solar meter. Indoor environment temperature numbered as 13 was
the Aegean region of Turkey and the extended version of the study adjusted at desired temperature values with using number 2 and
is presented here which aimed to propose a model based on ANNs cooling equipment numbered as 4-5-6-7-8-9 in this figure. When
260 İ. Ceylan et al. / Energy and Buildings 84 (2014) 258–267
Table 1
Monthly average daily solar radiation values of the regions of Turkey (W/m2 ).
Jan. Feb. March April May June July August Sep. Oct. Nov. Dec.
Antalya 428.28 421.31 603.59 659.83 655.67 600 561.65 543.84 526.53 511.72 420.43 421.98
Burdur 451.48 439.86 608.88 675.03 659.73 601.75 568.78 541.33 523.52 515.44 431.82 439.72
Isparta 456.62 470.7 615.84 679.54 668.79 611.71 580.34 545.37 528 521.62 435.66 455.7
Mersin 422.85 438.74 580.95 625.3 631.79 613.6 581.66 551.22 502.99 485.46 401.63 411.64
Adana 423.98 428.32 591.1 635.2 624.49 591.67 548.85 526.74 482.76 485.86 397.61 429.93
Hatay 390.96 389.07 559.27 588.16 582.6 595.15 579.43 555.87 484.69 461.83 368.92 358.72
Osmaniye 428.88 415.19 605.03 628.97 611.39 585.6 543.68 525.47 478.82 488.43 395.27 426.89
K.maraş 472.68 471.66 630.86 648.41 657.26 592.69 560.89 524.93 499.51 500.66 431.65 468.91
East Anatolia region of Turkey
Erzincan 477.21 523.71 642.28 707.28 738.12 655 623.24 581.62 543.86 532.21 452.23 474
Elazığ 443.09 480.54 643.66 677.25 674.12 597.38 562.86 528.68 513.18 522.41 449.22 480.34
Tunceli 452.74 507.01 648 704.26 707.78 626.84 584.43 552.49 532.14 528.47 459.02 478
Bingöl 448.53 529.41 671.1 714.48 708.15 623.07 590.79 552.9 531.45 532.75 462.17 478.26
Erzurum 400 484.08 589.34 667.63 696.86 628.8 579.61 547.93 514.12 485.58 400.44 398.79
Muş 494.54 543.75 721.22 706.21 702.08 630.66 598.07 557.62 531.25 535.56 453.81 478.39
Bitlis 540.46 572.03 735.61 722.3 696.87 600 618.04 565.91 525.99 540.82 447.01 481.89
Kars 413.61 628.69 568.91 693.18 786.08 658.24 630.33 562.74 593.86 526.32 406.64 386.63
Ağrı 424.39 493.55 616 667.98 704.85 625.69 599.82 554.22 535.45 502.8 396.68 383.84
Ardahan 386.67 677.49 567.39 682.54 867.98 728.31 751.41 642.06 643.93 538.98 388.89 359.65
Van 362.43 443.75 560.22 603.53 655.79 605.19 614.59 551.5 509.21 475.82 375 350.91
Iğdır 270.41 326.97 430.6 506.22 563.02 529.98 517.08 494.42 464.39 405.76 291.54 238.86
Hakkâri 296.24 342.72 473.09 505.53 574.71 538.95 533.7 503.8 484.11 414.27 312.67 278.82
Malatya 444.44 475.47 628.22 652.67 675.88 598.42 564.1 525.35 511.04 512.36 442.97 478.02
Southeast Anatolia region of Turkey
Gaziantep 439.13 430.8 605.57 622.22 618.33 582.97 558.77 534.78 496.51 483.33 401.34 410.96
Kilis 442.55 430.74 602.94 614.53 600.98 588.85 567.8 542.36 502.55 470.74 390.88 395.2
Adıyaman 432.72 457.19 617.21 633.66 642.27 578.95 590.22 518.23 497.54 502.65 431.65 448.88
Şanlıurfa 414.53 441.28 591.04 624.08 620.48 558 529.79 509.43 496.54 491.57 412.27 409.09
Diyarbakır 453.08 505.11 608.77 657.42 684.51 621.94 571.43 450.72 532.28 503.09 416.49 438.81
Mardin 439.08 462.38 603.86 643.04 622.38 545.53 515.58 492.1 500.5 500.66 413.8 406.32
Batman 459.18 490.04 655.84 663.61 640.58 578.5 547.56 521.16 499.5 517.05 427 451.53
Şırnak 451.39 476.45 622.56 672.8 637.28 559.41 541.87 508.14 515.15 506.78 416.38 402.22
Siirt 492.19 508 677.15 691.06 650.41 588.54 569.61 535.68 507.51 527.12 428.57 445.27
Central Anatolia region of Turkey
Eskişehir 538.7 491.56 855.83 781.55 686.79 627.95 586.98 562.38 527.68 520 418.6 436.2
Konya 472.55 464.61 614.83 647.57 665.96 601.06 568.92 532.57 522.98 507.48 426.76 450.38
Ankara 453.08 505.11 608.77 657.42 686.07 621.94 571.43 546.41 532.28 503.09 416.49 438.81
Çankırı 433.6 560 572.11 644.07 719.47 630.3 585.98 549.06 551.64 494.21 407.16 423.68
Aksaray 462.29 459.26 607.35 631.12 664.53 591.84 557.76 520.38 512.74 497.28 420.18 458.44
Kırıkkale 443.27 476.95 566.21 627 687.07 611.43 559.53 535.28 529.41 496.19 409.66 444.11
Kırşehir 448.36 459.45 588.5 625.65 675.17 600.19 547.31 524.66 519.31 491.4 410.26 450.14
Yozgat 463.16 474.61 622.95 657.06 698.39 606.6 561.79 527.47 523.08 484.67 406.81 465.46
Niğde 460.32 483.58 627.6 650.95 669.82 600.53 569.08 523.77 506.96 494.09 423 464.1
Nevşehir 459.46 466.16 626.75 647.06 676.86 591.76 556.85 517.42 511.36 489.68 414.95 470.59
Kayseri 473.04 487.76 643.64 664.03 687.3 600.71 570.24 521.36 511.18 489.85 423 487.32
Karaman 484.3 459.83 613.44 633.89 655.49 606.43 574.87 536.18 516.32 368.08 423.53 443.15
Sivas 476.06 511.95 651.08 686.11 720.5 630.48 596.93 551.17 528.71 500 422.53 484.85
Black sea region of Turkey
Bolu 472.56 594.1 678.23 698.31 714.8 638.23 596.74 560.75 547.24 512.11 415.49 419.87
Düzce 435.33 541.18 636.54 689.17 691.84 617.92 568.27 546.02 527.64 510.71 414.39 404.61
Zonguldak 431.19 505.88 601.49 643.5 688.89 600.2 547.69 531.15 519.13 500 402.98 390.88
Karabük 436.95 536.36 603.2 651.85 726.47 622.31 573.72 545.27 547.19 505.36 409.52 410.6
Bartın 413.9 504.65 606.8 632.13 714.47 593.56 540.31 521.13 527.49 500.92 389.71 402.03
Kastamonu 427.73 542.79 614.78 654.13 737.91 622.2 573.17 541.03 555.41 594.62 392.02 400
Çorum 441.67 532.36 596.28 649.5 708.08 626.64 578.8 541.34 538.46 489.5 398.25 429.91
Sinop 410.4 513.57 606.34 638.97 723.08 636.65 589.29 561.16 545.57 487.41 377.31 383.18
Samsun 416.67 505.67 628.63 667.18 707.07 654.65 616.6 587.51 542.71 493 388.89 394.41
Amasya 420.17 539.78 629.56 678.79 708.33 640.92 598.62 558.76 540.07 486.09 394.68 426.33
Tokat 452.78 540.25 645.45 687.03 714.63 641.68 612.65 564.86 533.33 666.67 402.6 443.75
Ordu 447.67 547.72 708.59 717.95 727.87 675.5 678.25 630.23 554.4 510.34 405.53 424.44
Giresun 474.16 572.38 687.38 711.89 743.78 700 705.75 650 565.11 527.49 416.48 442.62
Gümüşhane 526.49 606.52 669.67 724.03 763.77 705.95 705.38 645.16 570.05 539.5 433.41 464.88
Trabzon 451.1 552.45 700.82 748.38 764.4 738.92 772.15 725.72 585.46 464.58 411.9 418.06
Bayburt 475.92 626.35 669.63 738.09 767.64 701.7 700.74 643.33 577.06 548.92 441.7 440.63
Rize 396.45 560.57 656.43 726.56 791.16 758.24 801.29 741.38 616.13 573.56 414.87 403.97
Artvin 409.74 598.06 604.32 701.97 827.24 762.96 816.99 731.67 653.06 574.35 414.52 382.17
Marmara region of Turkey
Çanakkale 358.67 396.36 546.18 575.29 605.87 535.47 498.73 497.73 471.11 433.19 363.08 334.2
Balıkesir 397.53 425.74 597.97 654.27 631.64 572.34 525.35 519.25 500 486.98 411.51 381.87
Edirne 366.41 419.96 535.35 553.97 588.05 538.32 491.9 500.47 465.09 452.74 350.88 350.15
Tekirdağ 406.5 451.61 581.23 614.32 619.89 532.56 486.58 492.15 497.6 498.23 407.23 383.39
Kırklareli 391.3 436.15 583.79 588.87 630.46 513.51 464.8 473.73 500 505.64 381.52 407.67
İstanbul 578.03 580.13 789.47 770.8 731.71 646.05 607.88 598.62 650.06 716.47 615.58 608.1
Bursa 415.09 505.54 608.16 666.67 648.31 613.25 553.8 544.09 514.72 518.84 420.69 388.23
262 İ. Ceylan et al. / Energy and Buildings 84 (2014) 258–267
Table 1 (Continued)
Jan. Feb. March April May June July August Sep. Oct. Nov. Dec.
Yalova 428.13 524.71 598.89 649.12 641.23 607.43 543.92 543.59 515.34 524.41 419.75 401.32
Kocaeli 431.61 544.36 615.38 668.7 653.04 610.83 555.56 545.36 520.1 522.22 425.32 395.42
Bilecik 489.43 532.58 731.66 743.22 667.43 632.86 581.11 560 522.41 518.77 416.67 404.83
Sakarya 443.75 541.37 654.69 696.68 672.23 618.31 564.25 551.25 523.1 517.18 417.28 398.06
Aegean region of Turkey
İzmir 372.43 368.6 544.54 621.42 607.98 546.68 513.93 501.74 478.8 465.18 396.4 379.39
Denizli 411.88 426.09 599.12 665.82 645.23 592.43 559.59 536.19 512.85 510.2 426.02 423.17
Manisa 386.96 403.66 573.82 650.92 625.92 568.9 534.41 517.18 500 485.23 408.05 398.48
Kütahya 477.09 493.72 681.81 741.35 682.38 629.74 592.39 566.9 526.97 523.96 429.47 430.2
Aydın 385.66 384.62 572.86 640.3 617.83 560.65 525.23 517.03 493.4 491.53 413.19 402.25
Uşak 397.83 452.16 608.36 680.48 654.42 607.57 580.56 546.47 514.93 506.49 426.07 414.57
Muğla 411.31 390.32 595.51 660.15 627.65 580.56 543.7 534.92 509.07 504.46 425.96 402.57
Afyon 473.15 477.76 709.22 723.4 669.9 619.05 591.55 553.59 523.96 517.59 427.73 443.85
Fig. 4. Calculated PV module electrical efficiency and power values (a) for Mediterranean region (b) for East Anatolia region (c) for Southeast Anatolia region (d) for Central
Anatolia region (e) for Black sea Region (f) for Marmara region.
Power obtained any PV module cannot be an indicator for the that can be produced. Sunshine hours term of the region does not
energy that will be obtained without unknown sunshine hours of exist in the equations given as 1–5. In addition that this variable
the region which is planning to build of PV. For this reason sun- was not included while Fig. 4 creating. The map given in Fig. 5
shine hours of the region is an important criteria for the energy has been created whit multiplying of the calculated PV module
Table 2
Monthly average outside air temperature of the regions of Turkey (◦ C).
Jan. Feb. March April May June July August Sep. Oct. Nov. Dec.
Antalya 9.8 10.3 12.7 16.1 20.5 25.4 28.4 28.2 24.7 20 14.9 11.4
Burdur 2.6 3.6 7 11.5 16.5 21.2 24.7 24.4 19.9 14.3 8.6 4.3
Isparta 1.9 2.8 6.1 10.7 15.6 20.2 23.6 23.2 18.6 13 7.4 3.5
Mersin 10.2 10.9 13.7 17.5 21.4 25.2 27.9 28.3 25.2 21.2 15.7 11.7
Adana 9.6 10.5 13.5 17.5 21.8 25.7 28.1 28.5 26 21.5 15.5 11.1
Hatay 8.2 9.8 13.2 17.2 21.2 24.8 27.2 27.7 25.6 20.8 14.1 9.6
Osmaniye 8.4 9.6 12.5 16.8 21 25.2 27.9 28.4 25.3 20.5 13.7 9.6
K.Maraş 4.8 6.3 10.5 15.3 20.3 25.1 28.3 28.4 25.1 19 11.7 6.7
East Anatolia region of Turkey
Erzincan −2.9 −1.2 4.4 10.7 15.6 20 24 23.7 18.9 12.1 5.2 0.1
Elazığ −0.8 0.5 5.8 11.9 17.2 22.9 27.3 26.8 21.6 14.6 7.1 1.9
Tunceli −2 −0.4 5.6 11.9 17.1 22.7 27.3 26.9 21.6 14.7 6.9 1
Bingöl −2.5 −1.5 3.8 10.6 16.3 22.1 26.7 26.4 21.1 14 6.6 0.5
Erzurum −9.4 −8.1 −2.3 5.4 10.6 14.9 19.3 19.3 14.5 8 0.6 −6
Muş −7.4 −6 0.7 9 14.9 20.3 25.3 25.2 20.1 12.6 4.5 −2.8
Bitlis −2.9 −2.1 1.7 7.6 13.2 18.5 22.8 22.3 17.6 11.3 4.7 −0.8
Kars −10.4 −8 −2.4 5.3 10.2 13.9 17.5 17.6 13.4 7.3 0.3 −6.5
Ağrı −10.8 −9.4 −3.1 6.1 12 16.6 21.2 21.2 16.2 9.2 1.4 −6.4
Ardahan −11.4 −10.1 −3.6 4.4 9.4 12.9 16.3 16.2 12.2 6.6 −0.1 −7.7
Van −3.5 −2.9 1.5 7.7 13.1 18.2 22.3 21.9 17.2 10.7 4.3 −0.7
Iğdır −3.3 −0.5 6.4 13.1 17.7 22.1 25.8 25.1 19.9 12.7 5.7 −0.1
Hakkâri −4.7 −3.4 1.9 8 14.2 20.3 25 24.7 20.1 13 5.1 −1.5
Malatya 0.1 1.5 6.9 13 18.1 23.3 27.4 26.9 22.3 15.4 7.7 2.4
Southeast Anatolia region of Turkey
Gaziantep 3 4.2 8.2 13.2 18.6 24.1 27.8 27.4 22.8 16.2 9.4 4.9
Kilis 5.6 6.9 10.5 15.3 20.6 25.3 28.1 27.9 24.8 19.5 12.5 7.4
Adıyaman 4.5 5.7 9.9 15 20.6 26.8 31 30.5 25.7 18.9 11.6 6.5
Şanlıurfa 5.6 6.9 10.9 16.1 22.2 28.2 31.9 31.2 26.8 20.2 12.7 7.5
Diyarbakır 1.8 3.5 8.5 13.8 19.3 26.3 31.2 30.3 24.8 17.2 9.2 4
Mardin 3 4 8 13.4 19.6 25.6 29.9 29.5 25.1 18.3 10.7 5.3
Batman 2.7 4.9 9.6 14.7 19.8 26.6 31.1 30.1 24.8 17.7 9.9 4.6
Şırnak 1.8 2.9 6.7 11.6 17.1 23 27.4 27.7 23.1 16.4 8.8 3.7
Siirt 2.7 4.2 8.5 13.7 19.4 26 30.5 29.9 25 18 10.3 4.9
Central Anatolia region of Turkey
Eskişehir −0.1 1.3 5.1 10.2 15.1 19.1 21.7 21.4 17.2 12 6.2 2.1
Konya −0.2 1.2 5.7 11 15.7 20.2 23.6 23 18.6 12.5 6.1 1.8
Ankara 0.3 1.8 6.1 11.3 16.1 20.2 23.5 23.3 18.7 13.1 7.1 2.7
Çankırı −0.6 0.9 5.6 11 15.7 19.8 23 22.4 17.6 11.9 5.6 1.6
Aksaray 0.4 1.8 6.4 11.5 16.1 20.3 23.7 23 18.5 12.9 6.9 2.5
Kırıkkale 0.4 2.1 6.8 12.2 16.9 21.2 24.6 24.1 19.5 13.6 6.9 2.5
Kırşehir −0.2 1.1 5.4 10.6 15.3 19.6 23.1 22.8 18.2 12.4 6.2 2
Yozgat −1.9 −1 2.9 8.3 13 16.8 19.7 19.6 15.5 10.3 4.6 0.5
Niğde −0.4 0.8 5.2 10.5 15.1 19.3 22.6 22.2 17.7 12.1 6.1 1.8
Nevşehir −0.4 0.6 4.7 9.9 14.5 18.5 21.7 21.3 17 11.8 6.2 1.9
Kayseri −1.8 0 0.5 10.6 15 19.1 22.6 22 17.1 11.6 5 0.5
Karaman 0.4 1.6 6 11.3 16.1 24 23.5 22.9 18.5 12.8 6.7 2.6
Sivas −3.3 −2.1 3 9.1 13.6 17.2 20.2 20.1 16.2 10.9 4.6 −0.4
Black sea region of Turkey
Bolu 0.7 2 5 9.8 14 17.4 19.9 19.7 16.1 11.8 6.9 3.1
Düzce 3.7 5.1 7.7 12.3 16.6 20.5 22.6 22.3 18.6 14.3 9.5 5.9
Zonguldak 6 6 7.5 11.4 15.5 19.7 21.9 21.8 18.6 15.2 11.7 8.4
Karabük 2.9 4.5 7.9 12.7 17.3 20.9 23.9 23.5 19.5 14.3 8.2 4.5
Bartın 4.1 4.6 7 11.2 15.6 19.8 22.1 21.6 17.7 13.7 9.1 6
Kastamonu −1 0.6 4.4 9.5 14 17.5 20.3 19.8 15.6 10.6 5 1
Çorum −0.4 0.9 5.1 10.5 14.8 18.5 21.1 21 17 11.8 5.9 1.9
Sinop 6.9 6.5 7.5 10.7 14.9 19.8 22.7 23 19.9 16.2 12.4 9.3
Samsun 7 6.9 8 11.3 15.6 20.3 23.3 23.4 20 16.1 12.4 9.3
Amasya 2.6 4.4 8.3 13.5 17.8 21.6 24.1 23.9 20 14.6 8.6 4.7
Tokat 1.7 3.3 7.4 12.5 16.4 19.8 22.3 22.3 18.7 13.7 7.9 3.9
Ordu 6.7 6.6 7.9 11.4 15.6 20.3 22.9 23.1 19.8 15.9 11.8 8.8
Giresun 7.2 7.1 8.1 11.4 15.5 20.1 22.8 23 20 16.3 12.5 9.6
Gümüşhane −1.8 −0.7 3.6 9.4 13.7 17.2 20.2 20.1 16.6 11.4 5 0.5
Trabzon 7.4 7.3 8.5 11.8 15.9 20.4 23.2 23.3 20.3 16.5 12.7 9.6
Bayburt −6.5 −5.3 0 7 11.7 15.4 19 18.8 14.7 9.2 2.6 −3.2
Rize 6.5 6.4 7.9 11.6 16 20.3 22.8 23 19.9 16 11.7 8.5
Artvin 2.6 3.7 6.9 11.8 15.7 18.6 20.6 20.7 17.9 14 8.9 4.4
Marmara region of Turkey
Çanakkale 6.2 6.5 8.3 12.5 17.5 22.4 25 24.8 20.8 16 11.9 8.4
Balıkesir 4.7 5.7 8.3 13.1 17.8 22.6 24.8 24.5 20.6 15.8 10.4 6.7
Edirne 2.6 4.3 7.7 12.9 18.1 22.4 24.7 24.2 19.8 14.2 9.1 4.5
Tekirdağ 4.8 5.1 7.3 11.9 16.8 21.4 23.8 23.6 19.9 15.4 11 7.2
Kırklareli 2.8 3.9 6.8 12 17.2 21.6 23.9 23.2 19.2 13.9 8.9 5
İstanbul 6.5 6.5 8.3 12.7 17.5 22.1 24.4 24.2 20.9 16.4 12.2 8.7
Bursa 5.2 6.1 8.4 12.8 17.6 22.2 24.5 24.1 20.1 15.3 10.6 7.4
264 İ. Ceylan et al. / Energy and Buildings 84 (2014) 258–267
Table 2 (Continued)
Jan. Feb. March April May June July August Sep. Oct. Nov. Dec.
Yalova 6.4 6.7 8.2 12.3 16.9 21.4 23.6 23.5 20 15.8 11.7 8.7
Kocaeli 6.1 6.6 8.5 13 17.5 21.8 23.7 23.6 20.3 16 11.8 8.4
Bilecik 2.4 3.5 6.6 11.5 16.1 19.9 22.1 21.9 18.3 13.9 8.9 4.7
Sakarya 5.9 6.4 8.4 12.8 17.2 21.4 23.3 23 19.5 15.5 11.4 8.2
Aegean region of Turkey
İzmir 8.8 9.4 11.7 15.9 20.9 25.7 28 27.6 23.6 18.9 14.1 10.6
Denizli 5.8 6.9 10 14.6 19.7 24.7 27.4 26.9 22.4 16.8 11.4 7.6
Manisa 6.7 7.9 10.7 15.2 20.5 25.5 28.1 27.7 23.4 18 12.2 8.5
Kütahya 0.4 1.7 5.2 10 14.6 18.4 20.9 20.6 16.6 11.8 6.7 2.6
Aydın 8.1 9.2 11.8 15.8 20.9 25.9 28.4 27.4 23.3 18.4 13.3 9.6
Uşak 2.3 3 6.3 10.8 15.8 20.3 23.6 23.4 19 13.4 8 4.2
Muğla 5.5 6 8.6 12.5 17.6 22.9 26.3 26 21.7 16 10.5 7
Afyon 0.2 1.5 5.4 10.3 15 19.1 22.3 22 17.8 12.3 6.8 2.5
Table 3
Estimated back side temperature of the photovoltaic module (◦ C).
Jan. Feb. March April May June July August Sep. Oct. Nov. Dec.
Antalya 22.6 22.9 24.9 29.6 37.9 46.4 46.8 46.3 44.6 33.7 24.8 23.4
Burdur 13.8 15.7 21.8 28.3 29.9 39.5 45.9 44.9 33.7 24.6 21.7 16.8
Isparta 12.4 13.9 21.9 28.4 29.6 36.4 44.8 43.5 30.2 23.6 20.7 15.3
Mersin 22.8 23.1 24.7 30.0 40.3 46.1 47.0 46.5 43.8 36.6 25.0 23.6
Adana 22.5 23.0 24.9 30.3 41.4 46.6 46.5 45.6 43.0 37.5 24.9 23.3
Hatay 21.7 22.7 23.9 28.5 39.3 46.1 47.0 46.7 43.0 34.6 24.3 22.5
Osmaniye 21.6 22.5 24.8 29.2 39.0 46.4 46.3 45.6 42.6 34.5 24.3 22.5
K.Maraş 17.0 18.8 25.1 28.6 37.3 46.3 46.8 45.5 43.6 30.6 23.5 19.3
East Anatolia region of Turkey
Erzincan 3.8 8.2 23.8 29.9 31.4 36.4 45.0 44.9 31.2 22.8 17.9 8.8
Elazığ 6.9 9.6 24.3 28.5 31.0 43.8 46.8 45.6 38.7 24.8 20.2 12.2
Tunceli 4.7 8.6 24.6 29.9 31.7 43.3 47.0 46.5 39.47 24.9 19.8 10.5
Bingöl 3.9 8.2 27.0 30.3 31.1 42.1 46.9 46.4 37.8 24.3 19.4 9.6
Erzurum 1.1 0.6 13.1 26.6 29.3 27.5 33.0 32.4 24.7 20.2 9.9 0.9
Muş 1.1 4.3 33.0 29.8 30.4 37.0 46.4 46.0 34.5 23.2 16.9 4.0
Bitlis 7.3 11.3 34.6 31.1 29.8 31.3 43.5 42.1 28.2 22.2 17.3 7.2
Kars 1.0 8.6 10.6 29.2 33.3 28.3 30.1 28.7 24.9 19.0 9.3 0.9
Ağrı 0.7 0.4 15.3 26.7 29.9 28.8 39.5 38.8 26.4 20.9 11.6 0.9
Ardahan 1.9 10.2 9.0 28.2 36.5 30.9 31.7 29.0 26.7 18.4 8.3 1.2
Van 2.6 3.3 14.2 21.8 27.8 30.7 42.6 40.8 27.3 22.5 16.9 6.7
Iğdır 1.7 6.5 19.8 23.7 28.9 40.7 44.8 43.3 32.0 24.0 17.3 4.8
Hakkâri 1.1 2.6 12.2 19.8 25.0 35.4 45.1 43.5 33.2 24.1 16.9 3.8
Malatya 8.8 11.5 23.3 27.6 32.3 44.4 46.8 45.4 40.5 25.5 20.9 13.1
Southeast Anatolia region of Turkey
Gaziantep 14.6 16.8 22.3 26.1 31.9 45.4 46.8 45.9 40.9 26.0 22.5 18.0
Kilis 18.6 20.3 23.4 27.2 37.6 46.4 46.9 46.3 43.5 31.1 23.9 21.0
Adıyaman 17.2 18.5 23.9 27.7 38.1 46.9 46.1 45.3 43.7 30.4 23.5 19.6
Şanlıurfa 19.0 20.1 23.1 28.2 42.3 46.7 45.9 45.1 43.9 33.7 24.0 21.0
Diyarbakır 12.2 14.7 22.6 28.2 34.9 46.1 46.3 42.2 44.9 27.3 22.3 16.4
Mardin 14.6 16.0 22.0 27.3 34.7 45.9 45.1 43.9 43.6 29.0 23.1 18.6
Batman 13.8 16.8 26.5 28.9 35.6 46.9 46.2 45.4 43.4 28.2 22.6 17.1
Şırnak 12.2 14.0 22.7 28.2 29.8 43.5 46.2 44.6 42.2 26.4 22.0 16.1
Siirt 13.5 15.7 27.7 29.7 34.6 46.7 46.5 45.9 43.9 28.9 22.9 17.6
Central Anatolia region of Turkey
Eskişehir 10.7 11.1 40.7 33.1 30.0 33.4 40.9 39.6 27.6 22.8 19.7 13.0
Konya 8.2 10.9 21.6 26.4 29.5 36.3 44.6 42.7 30.1 23.3 19.5 12.2
Ankara 9.1 12.1 21.3 27.2 30.5 36.6 44.5 43.7 30.5 23.8 20.6 14.1
Çankırı 7.4 13.5 18.6 26.2 31.1 35.4 43.9 42.0 28.5 23.0 19.0 12.0
Aksaray 9.3 12.1 21.4 25.6 29.8 36.5 44.6 42.2 29.7 23.7 20.4 13.5
Kırıkkale 9.4 12.6 19.2 25.8 31.1 39.6 45.6 44.4 32.6 24.1 20.5 13.7
Kırşehir 8.1 10.7 19.4 24.8 29.7 34.3 43.4 42.0 29.2 23.4 19.7 12.6
Yozgat 5.0 6.7 21.2 26.1 29.8 28.4 33.9 32.9 25.6 22.1 17.6 9.5
Niğde 7.7 10.2 22.5 26.5 29.4 33.4 42.9 40.7 28.1 23.2 19.5 12.1
Nevşehir 7.7 9.7 22.3 26.0 29.4 31.1 40.4 38.0 27.1 23.0 23.1 12.2
Kayseri 5.3 8.7 22.9 27.4 30.0 32.8 42.9 40.1 27.2 22.9 18.1 9.6
Karaman 9.4 11.7 21.6 25.7 29.4 45.3 44.6 42.6 29.7 23.9 20.2 13.9
Sivas 3.3 6.3 24.6 28.5 30.7 29.7 36.2 35.0 26.3 22.3 17.5 8.0
Black sea region of Turkey
Bolu 9.9 17.6 27.7 29.3 30.6 30.2 35.2 33.9 26.4 22.8 20.4 15.0
Düzce 15.9 17.0 24.3 29.3 31.0 37.5 42.2 41.7 30.2 24.6 22.5 19.4
Zonguldak 19.3 17.8 21.6 26.4 30.2 34.6 40.7 39.9 30.0 25.3 23.6 21.8
Karabük 14.5 16.3 21.9 27.4 32.1 38.8 45.1 43.9 33.0 24.6 21.6 17.4
Bartın 16.8 16.2 21.7 25.6 31.0 34.8 41.0 39.0 28.4 24.2 22.3 19.5
Kastamonu 6.6 11.9 21.0 26.3 31.2 29.9 36.1 33.8 25.9 23.1 18.1 10.7
İ. Ceylan et al. / Energy and Buildings 84 (2014) 258–267 265
Table 3 (Continued)
Jan. Feb. March April May June July August Sep. Oct. Nov. Dec.
Çorum 7.75 11.7 19.8 26.4 30.6 31.9 38.9 37.8 27.4 23.0 19.4 12.6
Sinop 20.5 18.3 21.9 25.8 31.0 35.5 43.3 43.5 34.2 26.0 23.8 22.4
Samsun 20.5 18.8 23.8 27.8 30.8 37.3 44.3 44.6 34.5 26.0 23.8 22.4
Amasya 14.0 16.3 24.0 29.1 32.4 40.9 45.4 44.8 34.4 24.8 22.0 17.6
Tokat 12.0 15.1 24.9 29.2 31.3 35.6 42.6 42.1 30.5 28.6 21.4 16.1
Ordu 19.8 18.5 30.0 30.5 31.2 37.5 42.8 43.9 34.1 25.9 23.6 22.0
Giresun 19.7 19.7 28.5 30.2 31.4 37.0 42.1 43.5 35.0 26.4 23.9 22.3
Gümüşhane 7.6 17.0 26.8 30.8 31.7 31.8 37.26 36.6 27.3 22.3 18.0 9.5
Trabzon 20.4 19.2 29.4 31.6 31.6 37.4 40.9 42.0 36.3 26.1 24.0 22.5
Bayburt 1.0 12.9 26.2 32.4 32.2 30.6 34.4 33.0 25.5 20.7 13.9 2.9
Rize 20.1 18.7 26.0 30.8 31.4 36.9 40.2 41.4 35.5 26.6 23.6 21.9
Artvin 14.1 19.1 21.4 29.8 31.0 33.4 36.5 38.2 31.4 24.8 22.1 17.1
Marmara region of Turkey
Çanakkale 19.4 20.1 19.9 23.7 29.4 41.6 43.5 43.3 34.9 25.4 23.6 21.4
Balıkesir 17.7 19.0 21.8 27.7 30.7 42.9 44.6 44.1 35.2 25.7 23.0 20.2
Edirne 13.6 17.1 19.3 23.6 30.1 41.7 42.9 43.0 31.7 24.6 22.1 16.8
Tekirdağ 17.9 17.8 20.3 24.9 28.9 38.8 41.9 41.9 33.0 25.42 23.3 20.8
Kırklareli 14.4 16.2 20.1 23.8 29.7 38.8 41.1 40.6 31.0 24.3 22.1 18.2
İstanbul 19.5 19.7 34.6 32.0 32.3 42.0 45.6 45.5 39.0 31.4 25.1 22.7
Bursa 18.4 17.9 22.5 28.3 30.8 42.3 45.4 44.7 32.5 25.4 23.1 21.0
Yalova 19.8 18.4 21.8 27.1 29.7 40.2 44.0 43.9 33.8 25.9 23.6 22.0
Kocaeli 19.4 18.5 23.1 28.4 30.8 41.3 44.5 44.1 34.9 26.17 23.6 21.8
Bilecik 13.0 15.1 32.1 31.5 29.9 35.8 41.9 41.0 29.4 24.3 22.1 17.7
Sakarya 19.0 18.2 26.0 29.7 31.0 40.3 44.1 43.3 32.5 25.6 23.4 21.7
Aegean region of Turkey
İzmir 22 22.4 22.6 28 38.7 46 45 44.3 41.4 29.5 24.4 23.1
Denizli 19.2 20.3 22.9 28.9 35.4 46 46.8 45.9 40.8 26.8 23.4 21
Manisa 20.3 21.4 22.3 28.6 37.6 46.4 45.9 45.1 42 28.2 23.8 21.9
Kütahya 9.4 11.8 28 31.6 29.6 31.8 38.5 37 26.8 22.6 20.1 14
Aydın 21.6 22.3 23.1 28.6 38.8 46.4 45.5 45.1 41.6 29 24.2 22.6
Uşak 13.4 14.5 21.4 28.4 29.2 36.7 44.8 43.8 30.9 23.9 21.3 16.9
Muğla 18.8 19.5 21.9 27.8 30.2 43.7 46.1 45.6 38.9 26 23 20.6
Afyon 9 11.5 30.7 30.7 29.3 33.2 42.5 41.1 28.5 23.1 20.2 13.7
Table 4
Monthly average daily hours of bright sunshine for the regions of Turkey (h).
Jan. Feb. March April May June July August Sep. Oct. Nov. Dec.
Antalya 4.95 6.1 7.24 8.29 9.7 11.55 11.84 11.29 9.8 7.68 5.97 4.55
Burdur 4.74 5.82 6.98 7.97 9.61 11.4 11.85 11.25 9.78 7.45 5.72 4.23
Isparta 4.38 5.46 6.82 7.77 9.42 11.1 11.7 11.13 9.64 7.17 5.44 3.95
Mersin 4.99 6.04 7.35 8.38 9.94 11.18 11.45 11.03 10.02 7.91 6.15 4.64
Adana 4.67 5.65 6.97 7.84 9.72 11.29 11.77 11.22 10.15 7.78 5.86 4.21
Hatay 5.09 6.22 7.17 8.28 10.23 11.14 10.89 10.47 9.8 7.86 6.37 4.99
Osmaniye 4.57 5.66 6.76 7.87 9.83 11.39 11.79 11.19 10.15 7.78 5.92 4.24
K.Maraş 4.21 5.47 6.61 7.85 9.57 11.49 12.07 11.43 10.13 7.55 5.56 3.86
East Anatolia region of Turkey
Erzincan 3.73 4.85 6.15 7.14 8.63 10.29 10.67 10.23 9.12 6.52 4.71 3.27
Elazığ 4.13 5.14 6.37 7.56 9.39 11.45 12.01 11.33 9.86 7.14 5.12 3.56
Tunceli 4.02 4.99 6.25 7.27 9 10.88 11.43 10.86 9.49 6.85 4.88 3.41
Bingöl 4.08 4.93 6.02 7.18 9.08 11.01 11.51 10.87 9.54 6.87 4.89 3.45
Erzurum 3.85 4.71 5.82 6.95 8.28 9.86 10.3 9.91 8.5 6.24 4.57 3.31
Muş 3.66 4.8 5.56 7.25 9.13 10.83 11.42 10.76 9.6 6.89 4.98 3.47
Bitlis 3.46 4.72 5.56 7.13 9.27 10.95 11.31 10.62 9.81 6.86 5.19 3.59
Kars 3.82 4.74 6.24 7.04 7.9 9.89 10.55 10.36 8.15 6.46 4.82 3.44
Ağrı 4.1 5.43 6.25 7.62 9.08 10.82 11.32 10.79 9.45 7.14 5.42 3.96
Ardahan 3.75 4.31 6.01 6.93 7.12 8.76 8.85 8.94 7.33 5.9 4.68 3.42
Van 5.27 6.4 7.39 8.5 10.11 11.55 11.65 10.97 10.31 7.65 6.16 4.93
Iğdır 5.88 7.34 8.43 9.64 10.87 12.34 12.59 11.65 10.25 8.33 6.86 5.61
Hakkari 6.65 8.17 8.92 9.95 11.31 12.71 12.61 11.85 10.7 8.69 7.42 6.42
Malatya 4.23 5.3 6.59 7.86 9.41 11.43 12.09 11.44 9.96 7.28 5.26 3.64
Southeast Anatolia region of Turkey
Gaziantep 4.6 5.78 6.82 8.1 9.93 11.63 11.74 11.07 10.03 7.8 5.98 4.38
Kilis 4.7 5.92 6.8 8.12 10.15 11.48 11.43 10.86 9.81 7.86 6.14 4.58
Adıyaman 4.51 5.49 6.74 8.08 9.7 11.78 12.25 11.52 10.17 7.56 5.56 4.01
Şanlıurfa 4.68 5.62 6.92 8.14 9.96 12.24 12.42 11.66 10.11 7.71 5.87 4.4
Diyarbakır 3.73 4.89 6.16 7.21 8.76 10.21 11.06 10.45 8.83 6.48 4.73 3.36
Mardin 4.36 5.45 6.74 7.9 10.01 12.52 12.84 12.03 10.07 7.59 5.83 4.43
Batman 3.92 5.02 6.16 7.64 9.71 11.72 12.09 11.34 10.05 7.33 5.48 3.92
Şırnak 4.32 5.52 6.65 7.61 9.87 12.12 12.42 11.67 9.9 7.38 5.86 4.5
Siirt 3.84 5 6.04 7.38 9.64 11.52 11.78 11.07 9.99 7.19 5.53 4.02
266 İ. Ceylan et al. / Energy and Buildings 84 (2014) 258–267
Table 4 (Continued)
Jan. Feb. March April May June July August Sep. Oct. Nov. Dec.
power values and sunshine hours illustrated in Fig. 4 and Table 4, outside air temperature. The most efficiency cities are shown as
respectively. bold in Fig. 4 also produced energy.
Estimated module temperature with ANN depending on solar Outside air temperature and solar radiation were taken con-
radiation and outlet air temperature has shown in Table 1. Gener- sidered for the predicting PV module temperature by using ANN
ating power and efficiency of panel calculated from Eqs. (2.1)–(2.5) also outside air relative humidity and air velocity are neglected.
has shown in Fig. 4. As the solar radiation increased, the efficiency of Air velocity is very important factor for the cooling PV module.
PV module decreased but generated power of PV module increased PV module will be affected as positive from the outside air veloc-
with the increasing of solar radiation. This situation can be seen ity in terms of this study. Although this study has been made for
in Fig. 4. Solar radiation can be high in low outside air tempera- Turkey, it will be pioneering work as a reference for the other
ture or solar radiation can be low in high outside air temperature countries.
especially in winter season. So outside air temperature the most Calculated average daily power of PV module was shown in Fig. 5
important factor for panel temperature also generated power of PV created by using Flash color coding program. Outside air temper-
module. Although solar radiation increasing, the generated power ature, back surface temperature of PV module, solar radiation and
of PV module cannot be increased depending upon outside air tem- the sunshine hour’s values are the variables which were used to cre-
perature and panel temperature. The most appropriate situation for ating Fig. 5. The power which will be produced from the PV panels
high generated power is maximum solar radiation and the lowest was calculated depend on the PV module temperature computed
İ. Ceylan et al. / Energy and Buildings 84 (2014) 258–267 267
via ANN. Obtained data was multiplied with sunshine hour’s and [5] R. Eke, H. Demircan, Performance analysis of a multi crystalline Si photovoltaic
the map was created. module under Mugla climatic conditions in Turkey, Energy Conversion and
Management 65 (2013) 580–586.
It can be said that from the map the metropolitan city Istan- [6] B.J. Huang, Y.C. Huang, G.Y. Chen, P.C. Hsu, K. Li, Improving solar PV system
bul placed at Marmara Region of Turkey has high power values as efficiency using one-axis 3-position sun tracking, Energy Procedia 33 (2013)
the average energy is 475–500 W h/m2 -day. Power that can be pro- 280–287.
[7] S.Y. Wu, Q.L. Zhang, L. Xiao, F.H. Guo, A heat pipe photovoltaic/thermal (PV/T)
duced from the PV modules was found higher of the cities which hybrid system and its performance evaluation, Energy and Buildings 43 (2011)
solar radiation and sunshine hours high than others according to 3558–3567.
Fig. 5. This can be seen from the figure colored as red and orange. [8] H. Bahaidarah, A. Subhan, P. Gandhidasan, S. Rehman, Performance evaluation
of a PV (photovoltaic) module by back surface water cooling for hot climatic
Likewise, the power that can be produced from the PV modules
conditions, Energy 59 (2013) 445–453.
was found lower which cities has lower solar radiation and sun- [9] C.D. Corbin, Z.J. Zhai, Experimental and numerical investigation on thermal and
shine hours and they showed as green in the map. According to the electrical performance of a building integrated photovoltaic–thermal collector
system, Energy and Buildings 42 (2010) 76–82.
map 450–500 W h/m2 -day power can be produced from the impor-
[10] M.C.A. Garcia, J.L. Balenzategui, Estimation of photovoltaic module yearly
tant part of Turkey in Fig. 5 and also these parts are shown in red temperature and performance based on nominal operation cell temperature
and orange. calculations, Renewable Energy 29 (2004) 1997–2010.
[11] A.L. Hanlin, J.S. Stein, Improvement and validation of a transient model to pre-
dict photovoltaic module temperature, in: SAND2012-4307, Sandia National
4. Conclusion Laboratories, New Mexico, USA, 2012.
[12] Z. Ye, A. Nobre, T. Reindl, J. Luther, C. Reise, On PV module temperatures in
Experimental and ANN approach of a PV system is stud- tropical regions, Solar Energy 88 (2013) 80–87.
[13] İ. Ceylan, A.E. Gürel, H. Demircan, B. Aksu, Cooling of a photovoltaic module
ied regarding its temperature, efficiency and power. The system with temperature controlled solar collector, Energy and Buildings 42 (2014)
is tested under the climatic conditions of Karabük, Turkey and 96–101.
obtained data used for the all regions of the Turkey. Based on the [14] F. Almonacid, C. Rus, L. Hontoria, M. Fuentes, G. Nofuentes, Characterization of
Si-crystalline PV modules by artificial neural networks, Renewable Energy 34
results obtained, the following conclusions are drawn:The outside (2009) 941–949.
air temperature is very important factor in term of photovoltaic [15] M.S. Ashhab, Optimization and modeling of a photovoltaic solar integrated
module temperature. As can be seen in Table 1, Outside air tem- system by neural networks, Energy Conversion and Management 49 (2008)
3349–3355.
perature can be compared with estimated module temperature. [16] S.K.H. Chow, E.W.M. Lee, D.H.W. Li, Short-term prediction of photovoltaic
For this study, the external air velocity and relative humidity values energy generation by intelligent approach, Energy and Buildings 55 (2012)
were neglected. Also research can be improved by adding of these 660–667.
[17] M. Almaktar, H.A. Rahman, M.Y. Hassan, I. Saeh, Artificial neural network-based
two values.As the solar radiation increased, photovoltaic module
photovoltaic module temperature estimation for tropical climate of Malaysia
electrical efficiency decreased according to Fig. 4. But power of Pho- and its impact on photovoltaic system energy yield, Progress in Photovoltaics:
tovoltaic module increased as the solar radiation.Istanbul is the Research and Applications (2013), http://dx.doi.org/10.1002/pip.2424/.
[18] H. Ravaee, S. Farahat, F. Sarhaddi, Artificial neural network based model of pho-
largest city in Turkey and is also high solar radiation values for
tovoltaic thermal (PV/T) collector, The Journal of Mathematics and Computer
investments that can be made to this city are very important.The Science 4 (2012) 411–417.
map created as a result of this study will be an important source to [19] D. Vasarevicius, R. Martavicius, M. Pikutis, Application of artificial neural
the investors and individual users for the estimate power that can networks for maximum power point tracking of photovoltaic panels, Elektron-
ika ir Elektrotechnika 18 (2012) 65–68.
be produced from the PV panels.Similar maps can be created for [20] A.B.G. Bahgat, N.H. Helwa, G.E. Ahmad, E.T. El Shenawy, Maximum power point
the other countries and for the various types of PV modules using tracking controller for PV systems using neural networks, Renewable Energy
the method dealing with in this study. 30 (2005) 1257–1268.
[21] M. Hadjab, S. Berrah, H. Abid, Neural network for modeling solar panel, Inter-
national Journal of Energy 1 (2012) 9–16.
Acknowledgement [22] J.N. Reddy, B.M. Manjunatha, M. Matam, Improving of photovoltaic system
with neural network based MPPTc to DC shunt motor, International Journal
of Modern Engineering Research 3 (2013) 2901–2907.
The authors would like to thank the Karabük University Sci- [23] A.A. Kulaksız, R. Akkaya, Training data optimization for ANNs using genetic
entific Research Projects Unit, Karabük/TURKEY for providing the algorithms to enhance MPPT efficiency of a stand-alone PV system, Turk-
financial supports for this study under the KBÜ-BAP-13/2-YL-037 ish Journal of Electrical Engineering & Computer Sciences 20 (2012)
241–254.
project. [24] E. Karatepe, M. Boztepe, M. Çolak, Neural network based solar cell model,
Energy Conversion and Management 47 (2006) 1159–1178.
References [25] M.F.N. Tajuddin, S.M. Ayob, Z. Salam, M.S. Saad, Evolutionary based maximum
power point tracking technique using differential evolution algorithm, Energy
[1] F. Almonacid, C. Rus, P.J. Perez, L. Hontoria, Estimation of the energy of a PV gen- and Buildings 67 (2013) 245–252.
erator using artificial neural network, Renewable Energy 34 (2009) 2743–2750. [26] A. Mellit, S. Sağlam, S.A. Kalogirou, Artificial neural network-based model for
[2] F. Dinçer, Overview of the photovoltaic technology status and perspective in estimating the produced power of a photovoltaic module, Renewable Energy
Turkey, Renewable and Sustainable Energy Reviews 15 (2011) 3768–3779. 60 (2013) 71–78.
[3] G.B. Weiss, C. Wray, W. Delp, P. Ly, H. Akbari, R. Levinson, Electricity production [27] İ. Ceylan, O. Erkaymaz, E. Gedik, A.E. Gürel, The prediction of photovoltaic
and cooling energy savings from installation of a building-integrated photo- module temperature with artificial neural networks, Case Studies in Thermal
voltaic roof on an office building, Energy and Buildings 56 (2013) 210–220. Engineering 3 (2014) 11–20.
[4] A. Mellit, S. Saglam, S.A. Kalogirou, Artificial neural network-based model for [28] N. Caglayan, C. Ertekin, F. Evrendilek, Spatial viability analysis of grid-connected
estimating the produced power of a photovoltaic module, Renewable Energy photovoltaic power systems for Turkey, Electrical Power and Energy Systems
60 (2013) 71–78. 56 (2014) 270–278.