FQB60N03L: N-Channel Logic Level PWM Optimized Power MOSFET
FQB60N03L: N-Channel Logic Level PWM Optimized Power MOSFET
October 2002
FQB60N03L
N-Channel Logic Level PWM Optimized Power MOSFET
General Description Features
This device employs a new advanced MOSFET technology • Fast switching
and features low gate charge while maintaining low on-
resistance. • rDS(ON) = 0.010Ω (Typ), VGS = 10V
Optimized for switching applications, this device improves • rDS(ON) = 0.017Ω (Typ), VGS = 5V
the overall efficiency of DC/DC converters and allows
operation to higher switching frequencies. • Qg (Typ) = 13nC, VGS = 5V
DRAIN D
(FLANGE)
GATE G
SOURCE
S
TO-263AB
MOSFET Maximum Ratings TC = 25°C unless otherwise noted
Symbol Parameter Ratings Units
VDSS Drain to Source Voltage 30 V
VGS Gate to Source Voltage ±16 V
Drain Current
Continuous (TC = 25oC, VGS = 10V) 51 A
ID Continuous (TC = 100oC, VGS = 4.5V) 27 A
Continuous (TC = 25oC, VGS = 10V, RθJA = 43oC/W) 7 A
Pulsed Figure 4 A
Power dissipation 62 W
PD
Derate above 25oC 0.5 W/oC
o
TJ, TSTG Operating and Storage Temperature -55 to 150 C
Thermal Characteristics
o
RθJC Thermal Resistance Junction to Case TO-263 2 C/W
o
RθJA Thermal Resistance Junction to Ambient TO-263 62 C/W
RθJA Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area 43 o
C/W
Off Characteristics
BVDSS Drain to Source Breakdown Voltage ID = 250µA, VGS = 0V 30 - - V
VDS = 25V - - 1
IDSS Zero Gate Voltage Drain Current µA
VGS = 0V TC= 150oC - - 250
IGSS Gate to Source Leakage Current VGS = ±16V - - ±100 nA
On Characteristics
VGS(TH) Gate to Source Threshold Voltage V GS = VDS, ID = 250µA 1 - 3 V
ID = 51A, VGS = 10V - 0.010 0.0135
rDS(ON) Drain to Source On Resistance Ω
ID = 27A, VGS = 4.5V - 0.017 0.020
Dynamic Characteristics
CISS Input Capacitance - 1650 - pF
VDS = 15V, VGS = 0V,
COSS Output Capacitance - 800 - pF
f = 1MHz
CRSS Reverse Transfer Capacitance - 200 - pF
Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V 25 52 nC
Qg(5) Total Gate Charge at 5V VGS = 0V to 5V V = 15V - 13 30 nC
DD
Qg(TH) Threshold Gate Charge VGS = 0V to 1V ID = 27A - 1.5 2.3 nC
Qgs Gate to Source Gate Charge Ig = 1.0mA - 4.3 - nC
Qgd Gate to Drain “Miller” Charge - 4.5 - nC
1.2 60
VGS = 10V
POWER DISSIPATION MULTIPLIER
1.0 50
0.6 30 VGS = 5V
0.4 20
0.2 10
0
0
0 25 50 75 100 125 150 25 50 75 100 125 150
TA , AMBIENT TEMPERATURE (oC) TC, CASE TEMPERATURE (oC)
2
DUTY CYCLE - DESCENDING ORDER
1 0.5
0.2
0.1
0.05
THERMAL IMPEDANCE
0.02
ZθJC, NORMALIZED
0.01
PDM
0.1
t1
t2
SINGLE PULSE NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
0.01
10-5 10-4 10-3 10-2 10-1 100 101
t , RECTANGULAR PULSE DURATION (s)
700
TRANSCONDUCTANCE TC = 25oC
MAY LIMIT CURRENT FOR TEMPERATURES
IN THIS REGION ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
IDM , PEAK CURRENT (A)
I = I25 150 - TC
125
VGS = 10V
100
VGS = 5V
40
10-5 10-4 10-3 10-2 10-1 100 101
t, PULSE WIDTH (s)
120 120
PULSE DURATION = 80ms PULSE DURATION = 80µs VGS = 10V
DUTY CYCLE = 0.5% MAX TJ = 25oC DUTY CYCLE = 0.5% MAX
100 VDD = 15V 100
TC = 25 oC VGS = 5V
ID , DRAIN CURRENT (A)
60 60
VGS = 4V
40 40
TJ = 150o C
20 20 VGS = 3V
TJ = -55oC
0 0
1 2 3 4 5 6 0 0.5 1.0 1.5 2.0
VGS , GATE TO SOURCE VOLTAGE (V) VDS , DRAIN TO SOURCE VOLTAGE (V)
30 2.0
PULSE DURATION = 80µs PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
NORMALIZED DRAIN TO SOURCE DUTY CYCLE = 0.5% MAX
25 ID = 51A
ON RESISTANCE
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
1.5
20
ID = 27A
15
1.0
ID = 7A
10
1.2 1.2
VGS = VDS, ID = 250µA ID = 250µA
NORMALIZED DRAIN TO SOURCE
1.0
BREAKDOWN VOLTAGE
THRESHOLD VOLTAGE
NORMALIZED GATE
1.1
0.8
1.0
0.6
0.4 0.9
Figure 9. Normalized Gate Threshold Voltage vs Figure 10. Normalized Drain to Source
Junction Temperature Breakdown Voltage vs Junction Temperature
2000 10
VDD = 15V
4
CRSS = CGD WAVEFORMS IN
DESCENDING ORDER:
2
ID = 51A
VGS = 0V, f = 1MHz ID = 27A
100 0
0.1 1 10 30 0 10 20 30
VDS , DRAIN TO SOURCE VOLTAGE (V) Qg , GATE CHARGE (nC)
Figure 11. Capacitance vs Drain to Source Figure 12. Gate Charge Waveforms for Constant
Voltage Gate Currents
150 200
VGS = 4.5V, VDD = 15V, ID = 12A VGS = 10V, VDD = 15V, ID = 12A
td(OFF)
150
SWITCHING TIME (ns)
SWITCHING TIME (ns)
100
tr td(OFF)
100
tf
50
tf tr
td(ON) 50
td(ON)
0 0
0 10 20 30 40 50 0 10 20 30 40 50
RGS, GATE TO SOURCE RESISTANCE (Ω) RGS, GATE TO SOURCE RESISTANCE (Ω)
Figure 13. Switching Time vs Gate Resistance Figure 14. Switching Time vs Gate Resistance
VDS BVDSS
tP
VDS
L
IAS
VARY tP TO OBTAIN VDD
+
REQUIRED PEAK IAS RG
VDD
VGS -
DUT
tP
0V IAS 0
0.01Ω
tAV
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms
VDS
VDD Qg(TOT)
RL
VDS
VGS = 10V
VGS Qg(5)
+
DUT VGS = 1V
Ig(REF) 0
Qg(TH)
Qgs Qgd
Ig(REF)
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
td(ON) td(OFF)
RL tr tf
VDS
90% 90%
+
VGS
VDD 10% 10%
- 0
DUT 90%
RGS
VGS 50% 50%
PULSE WIDTH
VGS 10%
0
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
RθJA (o C/W)
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
(T –T )
JM A (EQ. 1) 40
P D M = -----------------------------
Z θJ A
19.84
Rθ JA = 26.51 + ------------------------------------- (EQ. 2)
( 0.262 + Area )
CA 12 8 9e-10
CB 15 14 9e-10
CIN 6 8 1.3e-9
LDRAIN
DBODY 7 5 DBODYMOD DPLCAP 5 DRAIN
DBREAK 5 11 DBREAKMOD 2
10
DPLCAP 10 5 DPLCAPMOD RLDRAIN
RSLC1
51 DBREAK
EBREAK 11 7 17 18 31.2 +
RSLC2
EDS 14 8 5 8 1 5
EGS 13 8 6 8 1 ESLC 11
51
-
ESG 6 10 6 8 1 50 +
EVTHRES 6 21 19 8 1 -
RDRAIN 17 DBODY
EVTEMP 20 6 18 22 1 ESG
6 EBREAK 18
8
EVTHRES -
+ 16
IT 8 17 1 + 19 - 21
LGATE MWEAK
EVTEMP 8
LDRAIN 2 5 1e-9 GATE RGATE + 6
18 -
1 22 MMED
LGATE 1 9 6.24e-9 9 20
LSOURCE 3 7 3.15e-9 RLGATE MSTRO
LSOURCE
CIN SOURCE
MMED 16 6 8 8 MMEDMOD 8 7 3
MSTRO 16 6 8 8 MSTROMOD
RSOURCE
MWEAK 16 21 8 8 MWEAKMOD RLSOURCE
S1A S2A
RBREAK 17 18 RBREAKMOD 1 12 RBREAK
13 14 15
RDRAIN 50 16 RDRAINMOD 2.3e-3 17 18
8 13
RGATE 9 20 1.79 RVTEMP
S1B S2B
RLDRAIN 2 5 10
13 CB 19
RLGATE 1 9 62.4 CA
IT
+ + 14 -
RLSOURCE 3 7 31.5
6 5 VBAT
RSLC1 5 51 RSLCMOD 1e-6 EGS EDS
8 8 +
RSLC2 5 50 1e3 - -
RSOURCE 8 7 RSOURCEMOD 6e-3 8
22
RVTHRES 22 8 RVTHRESMOD 1 RVTHRES
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),2.5))}
.MODEL DBODYMOD D (IS = 1.8e-12 RS = 6.4e-3 TRS1 = 2e-5 TRS2 = 1.1e-6 XTI=2 CJO = 7e-10 TT = 6e-9 M = 0.55)
.MODEL DBREAKMOD D (RS = 1.28 TRS1 = 2.48e-3 TRS2 = -2e-5)
.MODEL DPLCAPMOD D (CJO = 3.8e-10 IS = 1e-30 N = 10 M = 0.42)
.MODEL MMEDMOD NMOS (VTO = 1.86 KP = 3 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.79)
.MODEL MSTROMOD NMOS (VTO = 2.43 KP = 50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.6 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 17.9 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 9.8e-4 TC2 = -2.3e-8)
.MODEL RDRAINMOD RES (TC1 = 1.6e-2 TC2 = 1e-5)
.MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-7)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.2e-3 TC2 = -1.03e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.9e-3 TC2 = 5e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.0 VOFF= -2.0)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.0 VOFF= -5.0)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.6 VOFF= 0.2)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.2 VOFF= -0.6)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e-6/180))** 2.5))
}
}
FQB60N03L_Thermal
CTHERM1 th 6 1.0e-3
CTHERM2 6 5 3.5e-3
RTHERM1 CTHERM1
CTHERM3 5 4 4.8e-3
CTHERM4 4 3 5.2e-3
CTHERM5 3 2 8.0e-3
CTHERM6 2 tl 3.7e-2 6
RTHERM1 th 6 8.0e-3
RTHERM2 6 5 6.0e-2
RTHERM3 5 4 1.0e-1 RTHERM2 CTHERM2
RTHERM4 4 3 3.9e-1
RTHERM5 3 2 4.8e-1
RTHERM6 2 tl 5.1e-1
5
rtherm.rtherm1 th 6 = 8.0e-3 3
rtherm.rtherm2 6 5 = 6.0e-2
rtherm.rtherm3 5 4 = 1.0e-1
rtherm.rtherm4 4 3 = 3.9e-1
RTHERM5 CTHERM5
rtherm.rtherm5 3 2 = 4.8e-1
rtherm.rtherm6 2 tl = 5.1e-1
}
2
RTHERM6 CTHERM6
tl CASE
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.
ACEx™ FACT™ ImpliedDisconnect™ PACMAN™ SPM™
ActiveArray™ FACT Quiet Series™ ISOPLANAR™ POP™ Stealth™
Bottomless™ FAST® LittleFET™ Power247™ SuperSOT™-3
CoolFET™ FASTr™ MicroFET™ PowerTrench® SuperSOT™-6
CROSSVOLT™ FRFET™ MicroPak™ QFET™ SuperSOT™-8
DOME™ GlobalOptoisolator™ MICROWIRE™ QS™ SyncFET™
EcoSPARK™ GTO™ MSX™ QT Optoelectronics™ TinyLogic™
E2CMOS™ HiSeC™ MSXPro™ Quiet Series™ TruTranslation™
EnSigna™ I2C™ OCX™ RapidConfigure™ UHC™
Across the board. Around the world.™ OCXPro™ RapidConnect™ UltraFET®
The Power Franchise™ OPTOLOGIC® SILENT SWITCHER® VCX™
Programmable Active Droop™ OPTOPLANAR™ SMART START™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
As used herein:
1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support
which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be
or (b) support or sustain life, or (c) whose failure to perform reasonably expected to cause the failure of the life support
when properly used in accordance with instructions for use device or system, or to affect its safety or effectiveness.
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Rev. I1