Oxford Core 2 2017 Solution
Oxford Core 2 2017 Solution
6. B 36. C
7. A 37. B
8. C 38. C
9. A 39. D
10. C 40. B
11. C 41. D
12. D 42. C
13. C 43. D
14. B 44. A
15. C 45. A
16. A
17. D
18. C
19. D
20. B
21. A
22. B
23. B
24. C
25. B
26. B
27. A
28. B
29. D
30. A
Solutions to Paper 2
1. D 5. B
82n + 222 93n + 333 = (23)2n + 222 (32)3n + 333 32 3 p 12 p
f(3) = =
= 26n + 666 36n + 666 q q
= (2 3)6n + 666 ( 3) 2 ( 3) p 6 p
f(3) = =
= 66n + 666 q q
f(3) f(3) = 3
2. B 12 p 6 p
= 3
4x2 12xy + 9y2 2x + 3y q q
= (2x 3y)2 (2x 3y) 6
= 3
= (2x 3y)(2x 3y 1) q
q = 2
3. D
b 2c 6. B
=5
ac ca Maximum error
b 2c
=5 1
ac ac = 2 cm
2
b 2c
=5 = 1 cm
ac
Least possible length of a side of the square
b 2c = 5a 5c
= (10 1) cm
3c = 5a b
5a b = 9 cm
c= Least possible area of the square
3
= 92 cm2
4. A = 81 cm2
Rewrite the given equation as:
7. A
3 p q 1 2 p
Solving 4x < 6 x:
1 2 p p q 6
3x < 6
5 p q 1 .................................... (1)
i.e. x > 2 ........................... (1)
3 p q 7 .................................. (2) Solving 5(x + 1) > 17 + x:
(1) 3 (2) 5: 8q = 32
5x + 5 > 17 + x
q = 4
4x > 12
Alternative method:
x > 3 ....................... (2)
Rewrite the given equation as:
∵ x must satisfy (1) and (2).
3 p q p q 6 ∴ The solutions are x > 3.
1 2 p p q 6
2 p 2q 6 .............................. (3)
i.e.
3 p q 7 .................................. (4)
(3) 3 (4) 2: 8q = 32
q = 4
8. C 8
2 n 3n
2
mx 4x + m = 3 2m 3n 3
=
2
mx 4x + m 3 = 0 4m n 8
4 n n
∵ The equation has equal roots. 3
∴ (4)2 4m(m 3) = 0 25
n
16 4m2 + 12m = 0 = 3
35
m2 3m 4 = 0 n
3
(m 4)(m + 1) = 0 5
m = 4 or 1 =
7
∴ (2m + 3n) : (4m + n) = 5 : 7
9. A
Let M and C be the marked price and the cost 12. D
respectively. Let T(n) be the number of dots in the nth
Selling price = M(1 20%) = 0.8M pattern.
Selling price = C(1 50%) = 0.5C T(1) = 3
∴ 0.8M = 0.5C T(2) = T(1) + 2(1) = 3 + 2 = 5
M = 0.625C T(3) = T(2) + 2(2) = 5 + 4 = 9
CM T(4) = T(3) + 2(3) = 9 + 6 = 15
r% = 100%
C T(5) = T(4) + 2(4) = 15 + 8 = 23
r C 0.625C
= T(6) = T(5) + 2(5) = 23 + 10 = 33
100 C
T(7) = T(6) + 2(6) = 33 + 12 = 45
r
= 0.375 ∴ The number of dots in the 7th pattern is
100
r = 37.5 45.
10. C 13. C
y = a(x + 2)2 b x2 kx 2
Since w ,w= , where k 0.
= a(x2 + 4x + 4) b y y
= ax2 + 4ax + 4a b kx 2
w=
Coefficient of x2 = a y
∵ The graph opens upward. 2
x 1
∴ a>0 =
w y k
From the figure, 2
x2 2
y-intercept of the graph < 0 = 1
4a b < 0 w y k
b > 4a x4 1
2
= 2
w y k
11. C x4
m:n=8:3 ∴ must be constant.
w2 y
m 8
=
n 3
8
m= n
3
14. B 15. C
In △BCE, Each interior angle of ABCDEFGH
BE2 + CE2 = (52 + 122) cm2 = 169 cm2 (8 2) 180
=
BC2 = 132 cm2 = 169 cm2 8
∵ BE2 + CE2 = BC2 = 135
∴ BEC = 90 In △ABH,
Let AB = x cm. ∵ AB = AH
Area of ABCD = 156 cm2 ∴ ABH = AHB
( AB DC )CE ABH + AHB + BAH = 180
= 156 cm2
2 ABH + ABH + 135 = 180
( x 6)(12) 2ABH = 45
= 156
2 ABH = 22.5
x + 6 = 26 ∵ △CDB △ABH (SAS)
x = 20 ∴ CBD = AHB = ABH = 22.5
A F E 5 cm B CBD + DBH + ABH = ABC
22.5 + DBH + 22.5 = 135
12 cm 13 cm DBH = 90
∵ △ABH △CDB
∴ BH = DB
D 6 cm C ∴ BHD = BDH = p
Construct DF AB. In △BDH,
Then CDFE is a rectangle. BDH + BHD + DBH = 180
DF = CE = 12 cm p + p + 90 = 180
FE = DC = 6 cm 2p = 90
AF = AB BE FE p = 45
= (20 5 6) cm AHB + BHG = AHG
= 9 cm 22.5 + BHG = 135
In △ADF, BHG = 112.5
AD2 = AF2 + DF2 In △BGH,
AD = 9 2 12 2 cm BGH + GBH + BHG = 180
= 15 cm q + r + 112.5 = 180
q + r = 67.5
p + q + r = 45 + 67.5
= 112.5
16. A 18. C
Let r and h be the base radius and the height of AF : FB = 1 : 3
the right circular cone respectively. AF 1
=
Percentage change in the volume FB 3
1 1 FB = 3AF
π[r (1 10%)]2 h(1 15%) πr 2 h
AB : DC = 1 : 2
= 3 3 100%
1 2 AB 1
πr h =
3 DC 2
= (1.028 5 1) 100% AF FB 1
=
= 2.85% DC 2
∴ The volume is increased by 2.85%. AF 3 AF 1
=
DC 2
17. D 4 AF 1
=
∵ QR = UR DC 2
AF 1
∴ UQR = QUR = 30 =
DC 8
∵ PQ // UR
∵ △AEF ~ △CED (AAA)
∴ PQU = QUR = 30 AE AF 1
In △QRS, ∴ = =
CE CD 8
QRS + SQR = PSQ Area of ADE AE
=
QRS + 30 = 80 Area of CED CE
QRS = 50 Area of ADE 1
=
∵ RT is the angle bisector of PRQ. 64 cm 2 8
1 Area of △ADE = 8 cm2
∴ QRT = QRS
2 Area of ABC AB
=
1 Area of ADC DC
= 50
2 Area of ABC 1
=
= 25 (8 64) cm 2 2
In △QRT, Area of △ABC = 36 cm2
PTR = PQU + UQR + QRT Area of ABCD
= 30 + 30 + 25 = area of △CED + area of △ADE +
= 85 area of △ABC
= (64 + 8 + 36) cm2
= 108 cm2
19. D 21. A
I. ∵ BD is an axis of symmetry of ABCD. tan (90 ) cos (360 ) sin (180 )
∴ AB = BC and AD = CD. sin 210 cos120
∵ ABCD is a parallelogram. 1
cos
tan sin
∴ AB = CD and AD = BC. =
sin (180 30) cos (180 60)
i.e. AB = BC = CD = AD
1
∴ I is true. cos
sin
II. From I, ABCD is a rhombus. sin
= cos
∴ AC BD sin 30 cos 60
∴ II is true. cos sin
2
=
III. ∵ ABCD is a rhombus and AC = BD. 1 1
sin
∴ ABCD is a square. 2 2
In △BEM and △CEN, 2 cos 2
= 2 sin
BM = CN sin
ME = NE 2 cos 2 2 sin 2
=
BE = CE sin
∴ △BEM △CEN (SSS) 2(cos sin 2 )
2
=
∴ III is true. sin
∴ I, II and III are true. 2
=
sin
20. B
∵ △APQ ~ △DQC (AAA) 22. B
C
PQ AQ
∴ =
QC DC 103
D
AQ
=
AD
AQ A B
=
AQ DQ Join AD and BD.
2 DQ In △BCD,
=
2 DQ DQ CBD + BDC + BCD = 180
2 DQ CBD + BDC + 103 = 180
=
3DQ CBD + BDC = 77
2
BDC : CBD = BC : CD = 4 : 3
=
3 4
In △CPQ, ∴ BDC = 77
43
PQ = 44
tan PCQ =
QC ADB = 90
2 ABC + ADC = 180
=
3 ABC + ADB + BDC = 180
PCQ = 34, cor. to the nearest degree
ABC + 90 + 44 = 180
ABC = 46
25. B 27. A
Substitute x = 1 and y = –2 into I. 4x2 + 4y2 – 4kx – 4ky + k2 = 0
6x + ky – 16 = 0. k2
x2 + y2 – kx – ky + =0
6(1) + k(–2) – 16 = 0 4
–2k = 10 Coordinates of the centre of C
k = –5 k k
= ,
6 6 6 2 2
Slope of L2 = – =– =
k 5 5 k k
= ,
∵ L1 L2 2 2
1 1 5 ∴ I is not true.
∴ Slope of L1 = = =
slope of L2 6 6 II. Radius of C
5 2 2 2
k k k
The equation of L1 is =
5 2 2 4
y – (–2) = (x – 1) 2
6 k k2 k2
=
6y + 12 = 5x + 5 2 4 4
5 x + 6y + 7 = 0 2
k
=
2
26. B
k
The locus of P is a circle with MN as a =
2
diameter.
Area of C
Coordinates of the centre of the locus of P 2
k
8 4 =
= , 2
2 2
πk 2
= (4 , 2) =
4
The centre of the locus of P is the mid-point of
∴ II is true.
MN.
III. Distance between the origin and the centre
a2
∴ = 2 2 2
2 k k
= 0 0
a + 2 = 4 2 2
a = 6 k
2
= 2
2
2
k
>
2
k
=
2
∴ The origin lies outside C.
∴ III is not true.
∴ Only II is true.
A
B not equal.
C When x = 5,
mode = 5
D
x5 55
E upper quartile = = =5
2 2
( represents the two balls are of the same ∴ The mode and the upper quartile are
colour and represents the two balls are of equal.
different colours) When x 6,
The required probability mode = x
20 xx
= upper quartile = =x
25 2
4 ∴ The mode and the upper quartile are
=
5 equal.
∴ III is not necessarily true.
30. A ∴ Only II must be true.
I. Mean
3 x x 45 31. A
=
5
1
2 x 12 The graph of y = f(x) is reduced to of the
= 2
5
∵ 2x + 12 is an even number and is not original along the x-axis to become the graph
of y = f(2x). The y-intercepts of the graphs of
necessarily divisible by 5.
2 x 12 y = f(x) and y = f(2x) are the same. The
∴ is not necessarily an integer. x-intercepts of the graphs of y = f(2x) and
5
∴ I is not necessarily true. y = g(x) are the same.
II. When 1 x 3, the data are arranged in y-intercept of the graph of y g ( x)
ascending order as follows: y-intercept of the graph of y f (2 x)
x, x, 3, 4, 5 8
=
Median = 3 4
=2
When x = 4, the data are arranged in
The graph of y = f(2x) is enlarged to 2 times
ascending order as follows:
the original along the y-axis to become the
3, 4, x, x, 5
graph of y = g(x).
Median = x = 4
∴ g(x) = 2f(2x)
32. D 35. A
3 2
x log3 y = 2x I. Let a and d be the first term and the
(log3 y)3 log3 y2 = 2 log3 y common difference of the sequence
(log3 y)3 2 log3 y = 2 log3 y respectively.
(log3 y)3 4 log3 y = 0 x200 + 300 = x100
(log3 y)[(log3 y)2 4] = 0 a + (200 1)d + 300 = a + (100 1)d
(log3 y)(log3 y + 2)(log3 y 2) = 0 100d = 300
log3 y = 0 or log3 y = 2 or log3 y = 2 d = 3
y = 1 or y = 32 or y = 32 x18 + x20 = 92
1 a + (18 1)d + a + (20 1)d = 92
y = 1 or y= or y=9
9 2a + 36d = 92
2a + 36(3) = 92
33. C 2a = 200
5 45 + 83 a = 100
= (22 + 1)(22)5 + (23)3 ∴ The first term of the sequence is 100.
= (22 + 1)210 + 29 ∴ I is true.
= 212 + 210 + 29 II. x1 + x2 + x3 + … + x2 018
= 1011000000000 2 2 018
= [2(100) (2 018 1)(3)]
2
34. D = 5 903 659
Note that i2 = 1, i3 = i and i4 = 1. < 5 900 000
For any positive integer n, = 5.9 106
i4n = 1, i4n + 1 = i, i4n + 2 = 1 and i4n + 3 = i. ∴ II is true.
i + 2i2 + 4i3 + 8i4 + 16i5 + … + 65 536i17 III. Let xk be a positive term.
= i + 2i2 + 22i3 + 23i4 + 24i5 + … + 216i17 xk > 0
= i + 2(1) + 22(i) + 23(1) + 24i + 25(1) + 100 + (k 1)(3) > 0
26(i) + 27(1) + 28i + 29(1) + 210(i) + 100 3k + 3 > 0
211(1) + 212i + 213(1) + 214(i) + 215(1) + 3k > 103
216i 103
k< (= 34.33…)
= 2 + 23 25 + 27 29 + 211 213 + 215 + 3
∵ k is an integer.
(1 22 + 24 26 + 28 210 + 212 214 + 216)i
∴ The greatest value of k is 34.
2[1 (2 2 )8 ] 1[1 (2 2 ) 9 ]
= + i ∵ Common difference < 0
1 (2 2 ) 1 (2 2 )
∴ x34 is the smallest positive term of the
= 26 214 + 52 429i
sequence.
∴ III is not true.
∴ Only I and II are true.
36. C 38. C
2
y = 4x + 24x + 36 Let AB = x.
y = 4(x2 + 6x + 9) In △ABE,
y = 4(x + 3)2 ∵ AE = BE
y = 2(x + 3) or y = 2(x + 3) (rejected) ∴ BAE = ABE = 35
y = 2x + 6 BAE + ABE + AEB = 180
∵ The slope and the intercept on the vertical 35 + 35 + AEB = 180
AEB = 110
axis of the graph representing the linear
By the sine formula,
relation between x and y are 2 and 6
AE AB
respectively. =
sin ABE sin AEB
∴ The answer is C. x sin 35
AE =
sin 110
37. B ∵ AD // BC
x y 4 0 .................................... (1) ∴ DAE = AEB = 110
x 3 y 6 0 ................................. (2) In △ADE, by the cosine formula,
(2) (1): 2y 2 = 0 DE2 = AE2 + AD2 – 2 AE AD cos DAE
2y = 2 DE
y=1 2
x sin 35 x sin 35
2
Substitute y = 1 into (1). = x 2 x cos110
sin 110 sin 110
x+14=0
sin 2 35 2 sin 35 cos110
x=3 = x 1
2
sin 110 sin 110
∴ (3 , 1) is the point of intersection of
1.337 946 99x
x + y 4 = 0 and x + 3y 6 = 0.
EC = BC BE
y
x sin 35
=x
x+y4=0 sin 110
sin 35
R = x 1
sin 110
(3 , 1)
x + 3y 6 = 0 In △CDE, by the cosine formula,
x cos CDE
O
CD 2 DE 2 EC 2
∵ mx + y + 1 attains its maximum value at =
2 CD DE
(3 , 1) only. 2
2
2 sin 35
∴ Slope of mx + y + 1 = 0 x (1.337 946 99 x) x1
sin 110
< slope of x + y – 4 = 0
2 x(1.337 946 99 x)
m 1
< sin 35
2
1 1 2
1 (1.337 946 99) 1
m>1 = sin 110
2(1.337 946 99)
CDE = 10, cor. to the nearest degree
42. C 44. A
The required number of ways Note that the lowest score and the lower
= P35 P37 quartile of the distribution are 56 marks and
= 12 600 62 marks respectively.
∴ The scores of Leon and Mary are
43. D 56 marks and 62 marks respectively.
Number of male soldiers Let x marks be the mean of the distribution.
= 18 6 56 x
= 1.5
= 12 8
56 x = 12
The required probability
x = 68
= 1 P(more than 4 female soldiers)
The required standard score
C56 C312 C66 C212 62 x
=1 =
C818 8
7 62 68
=1 =
221 8
214 = 0.75
=
221
Alternative method: 45. A
Number of male soldiers abcd e f
I. m1 =
= 18 6 6
= 12 6m1 = a + b + c + d + e + f
The required probability 7 a 7b 7c 7 d 7e 7 f 7 m1
m2 =
C06 C812 C16 C712 C 26 C612 7
= a + b + c + d + e + f + m1
C36 C512 C46 C 412
= = 6m1 + m1
C818
= 7m1
214
= ∴ I must be true.
221
II. For the group of numbers {a, b, c, d, e, f},
minimum value m1 maximum value.
Range of {a, b, c, d, e, f, m1}
= range of {a, b, c, d, e, f}
= r1
Range of {7a, 7b, 7c, 7d, 7e, 7f, 7m1}
= 7 range of {a, b, c, d, e, f, m1}
∴ r2 = 7r1
∴ II must be true.
(d m1 ) 2 (e m1 ) 2 ( f m1 ) 2 ]
=
7
= 7 6v1
= 42v1
< 49v1
∴ III is not true.
∴ Only I and II must be true.