0% found this document useful (0 votes)
170 views14 pages

Oxford Core 2 2017 Solution

Uploaded by

Ngai Ivan CHAN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
170 views14 pages

Oxford Core 2 2017 Solution

Uploaded by

Ngai Ivan CHAN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

OXFORD UNIVERSITY PRESS

MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

Compulsory Part Paper 2


Question No. Key Question No. Key
1. D 31. A
2. B 32. D
3. D 33. C
4. A 34. D
5. B 35. A

6. B 36. C
7. A 37. B
8. C 38. C
9. A 39. D
10. C 40. B

11. C 41. D
12. D 42. C
13. C 43. D
14. B 44. A
15. C 45. A

16. A
17. D
18. C
19. D
20. B

21. A
22. B
23. B
24. C
25. B

26. B
27. A
28. B
29. D
30. A

© Oxford University Press 2017 P.1


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

Solutions to Paper 2
1. D 5. B
82n + 222  93n + 333 = (23)2n + 222  (32)3n + 333 32  3  p 12  p
f(3) = =
= 26n + 666  36n + 666 q q
= (2  3)6n + 666 ( 3) 2  ( 3)  p 6 p
f(3) = =
= 66n + 666 q q
f(3)  f(3) = 3
2. B 12  p 6 p
 = 3
4x2  12xy + 9y2  2x + 3y q q
= (2x  3y)2  (2x  3y) 6
= 3
= (2x  3y)(2x  3y  1) q
q = 2
3. D
b 2c 6. B
 =5
ac ca Maximum error
b 2c
 =5 1
ac ac =  2 cm
2
b  2c
=5 = 1 cm
ac
Least possible length of a side of the square
b  2c = 5a  5c
= (10  1) cm
3c = 5a  b
5a  b = 9 cm
c= Least possible area of the square
3
= 92 cm2
4. A = 81 cm2
Rewrite the given equation as:
7. A
3 p  q  1  2 p
 Solving 4x < 6  x:
1  2 p  p  q  6
3x < 6
5 p  q  1 .................................... (1)
i.e.  x > 2 ........................... (1)
3 p  q  7 .................................. (2) Solving 5(x + 1) > 17 + x:
(1)  3  (2)  5: 8q = 32
5x + 5 > 17 + x
q = 4
4x > 12
Alternative method:
x > 3 ....................... (2)
Rewrite the given equation as:
∵ x must satisfy (1) and (2).
3 p  q  p  q  6 ∴ The solutions are x > 3.

1  2 p  p  q  6
2 p  2q  6 .............................. (3)
i.e. 
3 p  q  7 .................................. (4)
(3)  3  (4)  2: 8q = 32
q = 4

© Oxford University Press 2017 P.2


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

8. C 8 
2 n   3n
2
mx  4x + m = 3 2m  3n 3
=  
2
mx  4x + m  3 = 0 4m  n 8 
4 n   n
∵ The equation has equal roots. 3 
∴ (4)2  4m(m  3) = 0 25
n
16  4m2 + 12m = 0 = 3
35
m2  3m  4 = 0 n
3
(m  4)(m + 1) = 0 5
m = 4 or 1 =
7
∴ (2m + 3n) : (4m + n) = 5 : 7
9. A
Let M and C be the marked price and the cost 12. D
respectively. Let T(n) be the number of dots in the nth
Selling price = M(1  20%) = 0.8M pattern.
Selling price = C(1  50%) = 0.5C T(1) = 3
∴ 0.8M = 0.5C T(2) = T(1) + 2(1) = 3 + 2 = 5
M = 0.625C T(3) = T(2) + 2(2) = 5 + 4 = 9
CM T(4) = T(3) + 2(3) = 9 + 6 = 15
r% =  100%
C T(5) = T(4) + 2(4) = 15 + 8 = 23
r C  0.625C
= T(6) = T(5) + 2(5) = 23 + 10 = 33
100 C
T(7) = T(6) + 2(6) = 33 + 12 = 45
r
= 0.375 ∴ The number of dots in the 7th pattern is
100
r = 37.5 45.

10. C 13. C
y = a(x + 2)2  b x2 kx 2
Since w  ,w= , where k  0.
= a(x2 + 4x + 4)  b y y
= ax2 + 4ax + 4a  b kx 2
w=
Coefficient of x2 = a y
∵ The graph opens upward. 2
x 1
∴ a>0 =
w y k
From the figure, 2
 x2  2
y-intercept of the graph < 0   =  1 
4a  b < 0 w y  k
 
b > 4a x4 1
2
= 2
w y k
11. C x4
m:n=8:3 ∴ must be constant.
w2 y
m 8
=
n 3
8
m= n
3

© Oxford University Press 2017 P.3


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

14. B 15. C
In △BCE, Each interior angle of ABCDEFGH
BE2 + CE2 = (52 + 122) cm2 = 169 cm2 (8  2)  180
=
BC2 = 132 cm2 = 169 cm2 8
∵ BE2 + CE2 = BC2 = 135
∴ BEC = 90 In △ABH,
Let AB = x cm. ∵ AB = AH
Area of ABCD = 156 cm2 ∴ ABH = AHB
( AB  DC )CE ABH + AHB + BAH = 180
= 156 cm2
2 ABH + ABH + 135 = 180
( x  6)(12) 2ABH = 45
= 156
2 ABH = 22.5
x + 6 = 26 ∵ △CDB  △ABH (SAS)
x = 20 ∴ CBD = AHB = ABH = 22.5
A F E 5 cm B CBD + DBH + ABH = ABC
22.5 + DBH + 22.5 = 135
12 cm 13 cm DBH = 90
∵ △ABH  △CDB
∴ BH = DB
D 6 cm C ∴ BHD = BDH = p
Construct DF  AB. In △BDH,
Then CDFE is a rectangle. BDH + BHD + DBH = 180
DF = CE = 12 cm p + p + 90 = 180
FE = DC = 6 cm 2p = 90
AF = AB  BE  FE p = 45
= (20  5  6) cm AHB + BHG = AHG
= 9 cm 22.5 + BHG = 135
In △ADF, BHG = 112.5
AD2 = AF2 + DF2 In △BGH,
AD = 9 2  12 2 cm BGH + GBH + BHG = 180
= 15 cm q + r + 112.5 = 180
q + r = 67.5
p + q + r = 45 + 67.5
= 112.5

© Oxford University Press 2017 P.4


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

16. A 18. C
Let r and h be the base radius and the height of AF : FB = 1 : 3
the right circular cone respectively. AF 1
=
Percentage change in the volume FB 3
1 1 FB = 3AF
π[r (1  10%)]2 h(1  15%)  πr 2 h
AB : DC = 1 : 2
= 3 3  100%
1 2 AB 1
πr h =
3 DC 2
= (1.028 5  1)  100% AF  FB 1
=
= 2.85% DC 2
∴ The volume is increased by 2.85%. AF  3 AF 1
=
DC 2
17. D 4 AF 1
=
∵ QR = UR DC 2
AF 1
∴ UQR = QUR = 30 =
DC 8
∵ PQ // UR
∵ △AEF ~ △CED (AAA)
∴ PQU = QUR = 30 AE AF 1
In △QRS, ∴ = =
CE CD 8
QRS + SQR = PSQ Area of ADE AE
=
QRS + 30 = 80 Area of CED CE
QRS = 50 Area of ADE 1
=
∵ RT is the angle bisector of PRQ. 64 cm 2 8
1 Area of △ADE = 8 cm2
∴ QRT = QRS
2 Area of ABC AB
=
1 Area of ADC DC
=  50
2 Area of ABC 1
=
= 25 (8  64) cm 2 2
In △QRT, Area of △ABC = 36 cm2
PTR = PQU + UQR + QRT Area of ABCD
= 30 + 30 + 25 = area of △CED + area of △ADE +
= 85 area of △ABC
= (64 + 8 + 36) cm2
= 108 cm2

© Oxford University Press 2017 P.5


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

19. D 21. A
I. ∵ BD is an axis of symmetry of ABCD. tan (90   ) cos (360   ) sin (180   )

∴ AB = BC and AD = CD. sin 210 cos120
∵ ABCD is a parallelogram. 1
  cos
tan  sin 
∴ AB = CD and AD = BC. = 
sin (180  30) cos (180  60)
i.e. AB = BC = CD = AD
1
∴ I is true.   cos
sin 
II. From I, ABCD is a rhombus. sin 
= cos 
∴ AC  BD  sin 30  cos 60
∴ II is true. cos  sin 
2
= 
III. ∵ ABCD is a rhombus and AC = BD. 1 1
sin 
∴ ABCD is a square. 2 2
In △BEM and △CEN, 2 cos 2
=  2 sin 
BM = CN sin 
ME = NE 2 cos 2   2 sin 2 
=
BE = CE sin 
∴ △BEM  △CEN (SSS) 2(cos   sin 2  )
2
=
∴ III is true. sin 
∴ I, II and III are true. 2
=
sin 

20. B
∵ △APQ ~ △DQC (AAA) 22. B
C
PQ AQ
∴ =
QC DC 103
D
AQ
=
AD
AQ A B
=
AQ  DQ Join AD and BD.
2 DQ In △BCD,
=
2 DQ  DQ CBD + BDC + BCD = 180
2 DQ CBD + BDC + 103 = 180
=
3DQ CBD + BDC = 77
2  
BDC : CBD = BC : CD = 4 : 3
=
3 4
In △CPQ, ∴ BDC = 77 
43
PQ = 44
tan PCQ =
QC ADB = 90
2 ABC + ADC = 180
=
3 ABC + ADB + BDC = 180
PCQ = 34, cor. to the nearest degree
ABC + 90 + 44 = 180
ABC = 46

© Oxford University Press 2017 P.6


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

Alternative method: 24. C


C I. L1: y + ax = b
103 y = ax + b
D
L2: y + cx = d
y = cx + d
A B From the figure,
Join AC and BD. slope of L1 < slope of L2 < 0
Let BAC = x. a < c < 0
BAC : CBD = BC : CD
  a>c>0
x 4 ∴ I is true.
= II. Substitute y = 0 into y + cx = d.
CBD 3
3 0 + cx = d
CBD = x
4 x=
d
BDC = BAC = x c
In △BCD, ∴ x-intercept of L2 =
d
BDC + BCD + CBD = 180 c
3 From the figure,
x + 103 + x = 180 x-intercept of L2 < 1
4
7 d
<1
x = 77
4 c
x = 44 d < c (∵ c > 0)
ACB = 90 ∴ II is not true.
In △ACB, III. Substitute x = 1 and y = 0 into y + ax = b.
ACB + BAC + ABC = 180 0 + a(1) = b
90 + 44 + ABC = 180 a=b
ABC = 46 ∵ d<c
∴ d > c
23. B ad>ac
y
b  d > a  c (∵ a = b )
P(x , 1) ∴ III is true.
150 ∴ Only I and III are true.
x
Q O

Refer to the figure.


PQ
tan POQ =
OQ
1
tan (180  150) =
OQ
1
tan 30 =
OQ
1 1
=
3 OQ
OQ = 3
x = OQ =  3

© Oxford University Press 2017 P.7


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

25. B 27. A
Substitute x = 1 and y = –2 into I. 4x2 + 4y2 – 4kx – 4ky + k2 = 0
6x + ky – 16 = 0. k2
x2 + y2 – kx – ky + =0
6(1) + k(–2) – 16 = 0 4
–2k = 10 Coordinates of the centre of C
k = –5  k k 
=  , 
6 6 6  2 2 
Slope of L2 = – =– =
k 5 5 k k
= , 
∵ L1  L2 2 2
1 1 5 ∴ I is not true.
∴ Slope of L1 = = = 
slope of L2 6 6 II. Radius of C
5 2 2 2
k k k
The equation of L1 is = 
    
5 2 2 4
y – (–2) =  (x – 1) 2
6 k k2 k2
=    
6y + 12 = 5x + 5 2 4 4
5 x + 6y + 7 = 0 2
k
=  
2
26. B
k
The locus of P is a circle with MN as a =
2
diameter.
Area of C
Coordinates of the centre of the locus of P 2
k
 8 4 =  
=  ,  2
 2 2
πk 2
= (4 , 2) =
4
The centre of the locus of P is the mid-point of
∴ II is true.
MN.
III. Distance between the origin and the centre
a2
∴ = 2 2 2
2 k  k 
=   0    0
a + 2 = 4 2  2 
a = 6 k
2
= 2 
2
2
k
>  
2
k
=
2
∴ The origin lies outside C.
∴ III is not true.
∴ Only II is true.

© Oxford University Press 2017 P.8


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

28. B When x  5, the data are arranged in


The required expected number of tokens ascending order as follows:
17 8 5 3, 4, 5, x, x
=0 + 60  + 120 
30 30 30 Median = 5
= 36 ∴ The median is not less than 3.
∴ II must be true.
29. D III. When 1  x  4,
Denote the 5 balls as A, B, C, D and E. mode  4
The 1st ball drawn 45
upper quartile = = 4.5
A B C D E 2
∴ The mode and the upper quartile are
The 2nd ball drawn

A     
B      not equal.
C      When x = 5,
     mode = 5
D
x5 55
E      upper quartile = = =5
2 2
( represents the two balls are of the same ∴ The mode and the upper quartile are
colour and  represents the two balls are of equal.
different colours) When x  6,
The required probability mode = x
20 xx
= upper quartile = =x
25 2
4 ∴ The mode and the upper quartile are
=
5 equal.
∴ III is not necessarily true.
30. A ∴ Only II must be true.
I. Mean
3 x  x  45 31. A
=
5
1
2 x  12 The graph of y = f(x) is reduced to of the
= 2
5
∵ 2x + 12 is an even number and is not original along the x-axis to become the graph
of y = f(2x). The y-intercepts of the graphs of
necessarily divisible by 5.
2 x  12 y = f(x) and y = f(2x) are the same. The
∴ is not necessarily an integer. x-intercepts of the graphs of y = f(2x) and
5
∴ I is not necessarily true. y = g(x) are the same.
II. When 1  x  3, the data are arranged in y-intercept of the graph of y  g ( x)
ascending order as follows: y-intercept of the graph of y  f (2 x)
x, x, 3, 4, 5 8
=
Median = 3 4
=2
When x = 4, the data are arranged in
The graph of y = f(2x) is enlarged to 2 times
ascending order as follows:
the original along the y-axis to become the
3, 4, x, x, 5
graph of y = g(x).
Median = x = 4
∴ g(x) = 2f(2x)

© Oxford University Press 2017 P.9


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

32. D 35. A
3 2
x  log3 y = 2x I. Let a and d be the first term and the
(log3 y)3  log3 y2 = 2 log3 y common difference of the sequence
(log3 y)3  2 log3 y = 2 log3 y respectively.
(log3 y)3  4 log3 y = 0 x200 + 300 = x100
(log3 y)[(log3 y)2  4] = 0 a + (200  1)d + 300 = a + (100  1)d
(log3 y)(log3 y + 2)(log3 y  2) = 0 100d = 300
log3 y = 0 or log3 y = 2 or log3 y = 2 d = 3
y = 1 or y = 32 or y = 32 x18 + x20 = 92
1 a + (18  1)d + a + (20  1)d = 92
y = 1 or y= or y=9
9 2a + 36d = 92
2a + 36(3) = 92
33. C 2a = 200
5  45 + 83 a = 100
= (22 + 1)(22)5 + (23)3 ∴ The first term of the sequence is 100.
= (22 + 1)210 + 29 ∴ I is true.
= 212 + 210 + 29 II. x1 + x2 + x3 + … + x2 018
= 1011000000000 2 2 018
= [2(100)  (2 018  1)(3)]
2
34. D = 5 903 659
Note that i2 = 1, i3 = i and i4 = 1. < 5 900 000
For any positive integer n, = 5.9  106
i4n = 1, i4n + 1 = i, i4n + 2 = 1 and i4n + 3 = i. ∴ II is true.
i + 2i2 + 4i3 + 8i4 + 16i5 + … + 65 536i17 III. Let xk be a positive term.
= i + 2i2 + 22i3 + 23i4 + 24i5 + … + 216i17 xk > 0
= i + 2(1) + 22(i) + 23(1) + 24i + 25(1) + 100 + (k  1)(3) > 0
26(i) + 27(1) + 28i + 29(1) + 210(i) + 100  3k + 3 > 0
211(1) + 212i + 213(1) + 214(i) + 215(1) + 3k > 103
216i 103
k< (= 34.33…)
= 2 + 23  25 + 27  29 + 211  213 + 215 + 3
∵ k is an integer.
(1  22 + 24  26 + 28  210 + 212  214 + 216)i
∴ The greatest value of k is 34.
 2[1  (2 2 )8 ] 1[1  (2 2 ) 9 ]
= + i ∵ Common difference < 0
1  (2 2 ) 1  (2 2 )
∴ x34 is the smallest positive term of the
= 26 214 + 52 429i
sequence.
∴ III is not true.
∴ Only I and II are true.

© Oxford University Press 2017 P.10


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

36. C 38. C
2
y = 4x + 24x + 36 Let AB = x.
y = 4(x2 + 6x + 9) In △ABE,
y = 4(x + 3)2 ∵ AE = BE
y = 2(x + 3) or y = 2(x + 3) (rejected) ∴ BAE = ABE = 35
y = 2x + 6 BAE + ABE + AEB = 180
∵ The slope and the intercept on the vertical 35 + 35 + AEB = 180
AEB = 110
axis of the graph representing the linear
By the sine formula,
relation between x and y are 2 and 6
AE AB
respectively. =
sin ABE sin AEB
∴ The answer is C. x sin 35
AE =
sin 110
37. B ∵ AD // BC
 x  y  4  0 .................................... (1) ∴ DAE = AEB = 110

 x  3 y  6  0 ................................. (2) In △ADE, by the cosine formula,
(2)  (1): 2y  2 = 0 DE2 = AE2 + AD2 – 2  AE  AD  cos DAE
2y = 2 DE
y=1 2
 x sin 35   x sin 35 
2
Substitute y = 1 into (1). =    x  2  x cos110
 sin 110   sin 110 
x+14=0
sin 2 35 2 sin 35 cos110
x=3 = x 1
2
sin 110 sin 110
∴ (3 , 1) is the point of intersection of
 1.337 946 99x
x + y  4 = 0 and x + 3y  6 = 0.
EC = BC  BE
y
x sin 35
=x
x+y4=0 sin 110
 sin 35 
R = x 1  
 sin 110 
(3 , 1)
x + 3y  6 = 0 In △CDE, by the cosine formula,
x cos CDE
O
CD 2  DE 2  EC 2
∵ mx + y + 1 attains its maximum value at =
2  CD  DE
(3 , 1) only. 2
2  
2 sin 35 
∴ Slope of mx + y + 1 = 0 x  (1.337 946 99 x)   x1  
  sin 110 
< slope of x + y – 4 = 0 
2 x(1.337 946 99 x)
m 1
 <   sin 35 
2
1 1 2
1  (1.337 946 99)  1  
m>1 =  sin 110 
2(1.337 946 99)
CDE = 10, cor. to the nearest degree

© Oxford University Press 2017 P.11


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

39. D ∵ △OTC ~ △ABC (AAA)


B C TC OC
Q ∴ =
BC AC
A D 8 cm (6  4) cm
=
BC (6  6  4) cm
BC = 12.8 cm
BT = BC  TC
H
R G = (12.8  8) cm
P = 4.8 cm
F E
Let R be the mid-point of FG.
41. D
Join PR and QR.
∵ y-coordinates of A and C are equal.
Then QRP = 90 and QPR is the angle
∴ AC is a horizontal line.
between PQ and the plane EFGH.
AB = (73  1) 2  (98  2) 2 = 120
Let x be the length of each side of the cube.
1 BC = (73  145) 2  (98  2) 2 = 120
Then PR = x and QR = x.
2 ∵ AB = BC and AC is a horizontal line.
In △PQR, ∴ H and Q lie on the vertical line x = 73.
QR Let (73 , s) and (73 , t) be the coordinates of H
tan QPR =
PR and Q respectively.
x
tan  = ∵ AH  BC
1
x ∴ Slope of AH  slope of BC = 1
2
=2 s2 98  2
 = 1
73  1 73  145
s  2 = 54
40. B
s = 56
Let D be the mid-point of BC.
4 cm C Coordinates of D
D
O  73  145 98  2 
8 cm = , 
 2 2 
A
T = (109 , 50)
∵ QD  BC
∴ Slope of QD  slope of BC = 1
B
t  50 98  2
Let O be the centre of the circle and r cm be  = 1
73  109 73  145
the radius of the circle.
t  50 = 27
Join OT.
t = 23
∵ BC is the tangent to the circle at T.
HQ = s – t
∴ OT  BC
= 56 – 23
In △OTC,
= 33
OT2 + TC2 = OC2
r2 + 82 = (r + 4)2
r2 + 64 = r2 + 8r + 16
48 = 8r
r=6
© Oxford University Press 2017 P.12
OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

42. C 44. A
The required number of ways Note that the lowest score and the lower
= P35  P37 quartile of the distribution are 56 marks and
= 12 600 62 marks respectively.
∴ The scores of Leon and Mary are
43. D 56 marks and 62 marks respectively.
Number of male soldiers Let x marks be the mean of the distribution.
= 18  6 56  x
= 1.5
= 12 8
56  x = 12
The required probability
x = 68
= 1  P(more than 4 female soldiers)
The required standard score
C56  C312  C66  C212 62  x
=1 =
C818 8
7 62  68
=1 =
221 8
214 = 0.75
=
221
Alternative method: 45. A
Number of male soldiers abcd e f
I. m1 =
= 18  6 6
= 12 6m1 = a + b + c + d + e + f
The required probability 7 a  7b  7c  7 d  7e  7 f  7 m1
m2 =
C06  C812  C16  C712  C 26  C612  7
= a + b + c + d + e + f + m1
C36  C512  C46  C 412
= = 6m1 + m1
C818
= 7m1
214
= ∴ I must be true.
221
II. For the group of numbers {a, b, c, d, e, f},
minimum value  m1  maximum value.
Range of {a, b, c, d, e, f, m1}
= range of {a, b, c, d, e, f}
= r1
Range of {7a, 7b, 7c, 7d, 7e, 7f, 7m1}
= 7  range of {a, b, c, d, e, f, m1}
∴ r2 = 7r1
∴ II must be true.

© Oxford University Press 2017 P.13


OXFORD UNIVERSITY PRESS
MOCK 17(I) COMPULSORY PART PAPER 2 SOLUTION

III. Suppose a, b, c, d, e and f are 6 different


numbers.
(a  m1 ) 2  (b  m1 ) 2  (c  m1 ) 2 
(d  m1 ) 2  (e  m1 ) 2  ( f  m1 ) 2
v1 =
6
6v1 = (a  m1) + (b  m1)2 + (c  m1)2 +
2

(d  m1)2 + (e  m1)2 + (f  m1)2


( 7 a  m 2 ) 2  ( 7b  m 2 ) 2 
(7c  m2 ) 2  (7 d  m2 ) 2 
( 7 e  m2 ) 2  ( 7 f  m2 ) 2 
(7 m1  m2 ) 2
v2 =
7
(7 a  7 m1 ) 2  (7b  7 m1 ) 2 
(7c  7 m1 ) 2  (7 d  7m1 ) 2 
(7e  7 m1 ) 2  (7 f  7m1 ) 2 
(7 m1  7m1 ) 2
=
7
49[(a  m1 )  (b  m1 ) 2  (c  m1 ) 2 
2

(d  m1 ) 2  (e  m1 ) 2  ( f  m1 ) 2 ]
=
7
= 7  6v1
= 42v1
< 49v1
∴ III is not true.
∴ Only I and II must be true.

© Oxford University Press 2017 P.14

You might also like