0% found this document useful (0 votes)
479 views14 pages

Oxford Core 2 2018 Solution

Uploaded by

Ngai Ivan CHAN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
479 views14 pages

Oxford Core 2 2018 Solution

Uploaded by

Ngai Ivan CHAN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

OXFORD UNIVERSITY PRESS

MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

Compulsory Part Paper 2


Question No. Key Question No. Key
1. A 31. A
2. B 32. C
3. A 33. A
4. C 34. D
5. D 35. B

6. C 36. A
7. C 37. D
8. A 38. A
9. D 39. D
10. C 40. B

11. A 41. B
12. B 42. C
13. B 43. D
14. C 44. B
15. A 45. D

16. B
17. B
18. C
19. A
20. C

21. B
22. D
23. C
24. C
25. D

26. B
27. D
28. A
29. B
30. D

© Oxford University Press 2018 P.1


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

Solutions to Paper 2
1. A 6. C
m2 – 4m + 12n – 9n2 A. y-intercept = 25
= m2 – 9n2 – 4m + 12n ∴ A is not true.
= (m + 3n)(m  3n)  4(m  3n) B. Substitute x = 3 and y = 22 into
= (m  3n)(m + 3n  4) y = 25 + 4x  x2.
R.H.S. = 25 + 4(3)  (3)2
2. B =4
 1   1   L.H.S.
85 n  3  3n  1  = (23 )5 n  3  5 3n  1 
 32   (2 )  ∴ The graph does not pass through the
 1  point (3 , 22).
= 215 n  9  15 n  5  ∴ B is not true.
2 
=2 15n + 9  (15n + 5) C.  = 42  4(1)(25)
= 24 = 116
= 16 >0
∴ The graph cuts the x-axis at two
3. A distinct points.
p q ∴ C is true.
=
a  b b 1 D. Coefficient of x2 = 1 < 0
p(b + 1) = q(a  b) ∴ The graph opens downward.
pb + p = qa  qb ∴ D is not true.
pb + qb = qa  p ∴ The answer is C.
b(p + q) = qa  p
qa  p 7. C
b=
pq ∵ f(x) is divisible by x + k.
∴ f(k) = 0
4. C (k)3 + k(k)2  4(k)  8 = 0
4k = 8
5. D k=2
3 2
f(2n – 1) + f(1) ∴ f(x) = x + 2x  4x  8
= 5(2n – 1)2 – 4(2n – 1) + 1 + 5(1)2 – 4(1) + 1 Remainder when f(x) is divided by x  1
= 5(4n2  4n + 1)  4(2n – 1) + 3 = f(1)
= 20n2  20n + 5  8n + 4 + 3 = (1)3 + 2(1)2  4(1)  8
= 20n2  28n + 12 = 9

© Oxford University Press 2018 P.2


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

8. A 11. A
x  10 x2 kx 2
Solving 3x  2 > : Since z  , we have z = , where k  0.
2 y y
6x  4 > x + 10
k[ x(1  10%)]2
7x > 14 New value of z =
y (1  20%)
x < 2 ........................ (1)
k (0.81x 2 )
Solving 9  2x > 1: =
1.2 y
2x > 8
0.675kx 2
x < 4 ........................ (2) =
y
∵ x must satisfy (1) or (2).
∴ The solution is x < 2. Percentage change in z
0.675kx 2 kx 2

9. D y y
= 2
 100%
Interest rate per quarter kx
6% y
=
4 kx 2
(0.675  1)
= 1.5% =
y
 100%
Total number of quarters in 4 years kx 2
=44 y
= 16 = 0.325  100%
Interest = 32.5%
 16
 ∴ z is decreased by 32.5%.
 1.5 
= $ 30 0001    30 000
  100  
12. B
= $8 070, cor. to the nearest dollar
Let T(n) be the number of dots in the nth
pattern.
10. C
T(1) = 2
Let x cm2 be the area of the farm on the map.
2
T(2) = T(1) + 4 = 2 + 4 = 6
x cm 2  1  T(3) = T(2) + 4 = 6 + 4 = 10
2
= 
50 000 m  25 000  T(4) = T(3) + 4 = 10 + 4 = 14
2
x cm 2  1  T(5) = T(4) + 4 = 14 + 4 = 18
2
= 
50 000  100  100 cm  25 000  T(6) = T(5) + 4 = 18 + 4 = 22
x = 50 000  100  100  T(7) = T(6) + 4 = 22 + 4 = 26
2
 1  T(8) = T(7) + 4 = 26 + 4 = 30
 
 25 000  ∴ The number of dots in the 8th pattern is
= 0.8 30.
= 8  101
∴ The required area is 8  101 cm2.

© Oxford University Press 2018 P.3


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

13. B 14. C
Maximum absolute error 18 cm
1
=  1 cm
2 15 cm d cm
= 0.5 cm
Lower limit of the length of BC
27 cm
= (12  0.5) cm
Let d cm be the height of the trapezium.
= 11.5 cm
d2 + (27  18)2 = 152
Lower limit of the length of CD
= (6  0.5) cm d = 152  9 2
= 5.5 cm = 12
(18  27)  12
Upper limit of the length of AF 30  30  30   h = 21 600
2
= (4 + 0.5) cm
27 000  270h = 21 600
= 4.5 cm
270h = 5 400
Upper limit of the length of EF
h = 20
= (3 + 0.5) cm
= 3.5 cm
15. A
Actual area of the hexagon
5
 1  FC = BC
> 11.5  5.5   4.5  3.5  cm2 1 5
 2  5
= 55.375 cm 2 =  24 cm
1 5
Upper limit of the length of BC = 20 cm
= (12 + 0.5) cm OC = AB = 32 cm
= 12.5 cm A B
Upper limit of the length of CD
= (6 + 0.5) cm E
F
= 6.5 cm
Lower limit of the length of AF
= (4  0.5) cm
= 3.5 cm O C G D
Lower limit of the length of EF Let G be a point on CD such that EG  CD.
= (3  0.5) cm Join OB and EG.
= 2.5 cm In △OBC,
Actual area of the hexagon OB = OC 2  BC 2
 1 
< 12.5  6.5   3.5  2.5  cm2 = 322  242 cm
 2 
2
= 40 cm
= 76.875 cm
OE = OB = 40 cm
∴ The range of values of x is
EG = FC = 20 cm
55.375 < x < 76.875.
In △OEG,
EG
sin EOG =
OE
20
=
40
EOG = 30
© Oxford University Press 2018 P.4
OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

The required area Alternative method:


30 A B
= (40)2  cm2
360
= 419 cm2, cor. to the nearest cm2

16. B F
∵ AB : DC = 4 : 5
4 D
∴ AB = DC E C
5
Join CF.
∵ DE : EC = 3 : 2
∵ AB : DC = 4 : 5
3 3
∴ DE = DC = DC 4
3 2 5 ∴ AB = DC
5
4
AB
DC
4 ∵ DE : EC = 3 : 2
∴ = 5 = 3 3
DE 3 3 ∴ DE = DC = DC
DC
5 3 2 5
∵ △ABF ~ △EDF (AAA) 4
DC
AB 4
AF AB 4 ∴ = 5 =
∴ = = DE 3 3
EF ED 3 DC
5
Area of  AFD AF
= ∵ △ABF ~ △EDF (AAA)
Area of  DFE EF
AF BF AB 4
108 cm 2 4 ∴ = = =
= EF DF ED 3
Area of DFE 3 Area of  AFD AF
=
Area of △DFE = 81 cm2 Area of  DFE EF
3 108 cm 2 4
∵ DE = DC =
5 Area of DFE 3
DE 3
∴ = Area of △DFE = 81 cm2
DC 5
Area of  ADE Area of  DFE DE
=
DE =
Area of  BDC DC Area of CFE EC

( 108  81) cm 2 3 81 cm 2 3
= =
Area of BDC 5 Area of CFE 2
Area of △BDC = 315 cm2 Area of △CFE = 54 cm2
∴ Area of BCEF Area of FBC BF
=
Area of DFC DF
= area of △BDC  area of △DFE
Area of  FBC 4
= (315  81) cm2 2
=
(81  54) cm 3
= 234 cm2
Area of △FBC = 180 cm2
∴ Area of BCEF
= area of △CFE + area of △FBC
= (54 + 180) cm2
= 234 cm2

© Oxford University Press 2018 P.5


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

17. B 20. C
∵ AE = DE ACD = 
∴ DAE = ADE In △ACD,
In △ADE, CD
cos  =
DAE + ADE = 90 AC
2ADE = 90 x
AC =
ADE = 45 cos 
CAB = 
CBD = ADE = 45
ABC + ADC = 180
ABE + CBD + BCD = 180
ABC + 90 = 180
36 + 45 + BCD = 180
ABC = 90
BCD = 99
In △ABC,
BC
18. C sin  =
AC
∵ △ABC is an equilateral triangle.
BC = AC sin 
∴ AB = BC = CA and
x sin 
ABE = BCD = BAD = 60. =
cos 
In △ABD and △CAE,
AB = CA
21. B
AD = CE
∵ BC is the diameter of the semi-circle.
BAD = ACE
∴ BDC = 90
∴ △ABD  △CAE (SAS)
In △BCD,
∴ ABD = CAE = 10
BCD + BDC + CBD = 180
In △ABD,
54 + 90 + CBD = 180
BDC = ABD + BAD
CBD = 36
= 10 + 60
Let DFO = x.
= 70 In △BFO,
BOF + CBD = DFO
19. A
BOF + 36 = x
BC = AD = 12 cm
BOF = x  36
In △ADE and △ABC,
∵ AE = EO
DAE = BAC
∴ DAB = BOF = x  36
ADE = ADC 1 1
= ABC ADB = BOF = (x  36)
2 2
AED = 180  DAE  ADE In △ABD,
= 180  BAC  ABC DAB + ADB = CBD
= ACB 1
x  36 + (x  36) = 36
∴ △ADE ~ △ABC (AAA) 2
AD DE 3
∴ = (x  36) = 36
AB BC 2
12 cm DE x  36 = 24
=
18 cm 12 cm x = 60
12  12 ∴ DFO = 60
DE = cm
18
= 8 cm

© Oxford University Press 2018 P.6


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

22. D 24. C
I. Let x be each exterior angle of the I. L1: 5x + py = q
polygon. py = 5x + q
Then each interior angle of the polygon is 5 q
y=  x+
2x. p p
x + 2x = 180 L2: rx + 2y = s
3x = 180 2y = rx + s
x = 60 r s
y=  x+
∴ Each exterior angle of the polygon is 2 2
60. From the figure,
∴ I is true. slope of L1 > 0
II. Number of sides of the polygon 5
 >0
360 p
=
60 p<0
=6 Slope of L2 < slope of L1
∴ The polygon is a regular hexagon. r 5
 <
∴ The number of folds of rotational 2 p
symmetry of the polygon is 6. r 5
>
∴ II is true. 2 p
III. Sum of the interior angles of the polygon pr < 10
= (6  2)  180 (or 2  60  6) ∴ I is true.
= 720 II. Substitute y = 0 into 5x + py = q.
∴ III is true. 5x + p(0) = q
∴ I, II and III are true. q
x=
5
23. C q
∴ x-intercept of L1 =
Let O be the pole. 5
Substitute y = 0 into rx + 2y = s.
In △OPQ,
rx + 2(0) = s
OP2 + OQ2 = 92 + 122 = 225
s
PQ2 = 152 = 225 x=
r
∴ POQ = 90
s
∴  = 100  90 or 100 + 90 ∴ x-intercept of L2 =
r
= 10 or 190 From the figure,
slope of L2 > 0
r
 >0
2
r<0
x-intercept of L2 > x-intercept of L1
s q
>
r 5
5s < qr
∴ II is not true.

© Oxford University Press 2018 P.7


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

III. From the figure, 27. D


y-intercept of L1 < 1 I. 3x2 + 3y2 – 24x + 18y + 26 = 0
q 26
< 1 x2 + y2  8x + 6y + =0
p 3
q > p Coordinates of the centre
p+q>0  8 6
=  , 
∴ III is true.  2 2
∴ Only I and III are true. = (4 , 3)
∴ I is true.
25. D II. Radius
Substitute x = 0 and y = 8 into hx + ky + 24 = 0. 26
= 42  (3) 2 
h(0) + k(8) + 24 = 0 3
8k = 24 49
=
k=3 3
∵ L1  L2 Area of the circle
2
∴ Slope of L1  slope of L2 = 1  49 
=  
h  3   3 
   = 1  
k  4 49 π
h 3 =
  = 1 3
3 4 > 16
h=4 ∴ II is true.
Substitute y = 0 and h = 4 into III. Distance between the origin and the centre
3x  4y  15h = 0.
= (4  0) 2  ( 3  0) 2
3x  4(0)  15(4) = 0
=5
3x = 60
x = 20 49
>
∴ The x -intercept of L2 is 20. 3
∴ The origin lies outside the circle.
∴ III is true.
26. B ∴ I, II and III are true.
Let (x , y) be the coordinates of P.
∵ PA = 9
28. A
∴ [ x  (4)]2  ( y  2) 2 = 9 The required probability
(x + 4)2 + (y  2)2 = 81 15  5
=
x2 + 8x + 16 + y2  4y + 4 = 81 8  10  12  15  5
2
x2 + y2 + 8x  4y  61 = 0 =
5
∴ The equation of the locus of P is
x2 + y2 + 8x  4y  61 = 0.

© Oxford University Press 2018 P.8


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

29. B 31. A
abc 20B00CE0000016
=9
3 = 2  1611 + 11  169 + 12  166 + 14  165
a + b + c = 27 = 512  169 + 11  169 + 192  165 + 14  165
∵ a, b and c are positive numbers. = 523  169 + 206  165
∴ a, b and c are less than 27.
For the nine numbers 6, 27, 28, 29, 31, 32, a, b 32. C
and c, when they are arranged in ascending I. ∵ a>b>0
order, the 5th number is 27. ∴ ak > bk
∴ h = 27 ∴ I must be true.
6  27  28  29  31  32  a  b  c II. Since k > 1, log k > 0.
k=
9 When a > b > 1,
6  27  28  29  31  32  27 log a > log b > 0
=
9 1 1
<
= 20 log a log b
log k log k
<
30. D log a log b
(20  x)  (20  x) loga k < logb k
Q1 = = 20 + x
2 When a > 1 and 0 < b < 1,
33  (30  y ) 63  y
Q3 = = log a > log b
2 2
1 1
∵ Inter-quartile range > 14 > (∵ log a > 0 and log b < 0.)
log a log b
63  y
∴  (20 + x) > 14 log k log k
2 >
log a log b
63 + y  40  2x > 28
y  2x > 5 loga k > logb k
∵ x and y are non-negative integers. ∴ II may not be true.
∴ When y = 6, x = 0. III. ∵ a > b > 0
When y = 7, x = 0. a
∴ >1
When y = 8, x = 0 or 1. b
∵ k>1
When y = 9, x = 0 or 1.
a
∴ 0  x  1 and 6  y  9. log
a b >0
∴ I is not true and II is true. ∴ logk =
b log k
The range of the distribution is the greatest
∴ III must be true.
when x = 0 and y = 9.
∴ Only I and III must be true.
∴ Range
 (40 + 9)  (10 + 0)
= 39
∴ III is true.
∴ Only II and III are true.

© Oxford University Press 2018 P.9


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

33. A 35. B
log8 y  1 0 1 The shaded region in the figure represents the
=
log8 x  (1) 2  (1) solutions of the given system of inequalities.
log8 y  1  1 y
=
log8 x  1 3
3 log8 y  3 =  log8 x  1 A B
y=8
3 log8 y =  log8 x + 2
log8 y3 = log8 x1 + log8 82 x  3y = 4
log8 y3 = log8 64x1 D C
∴ y3 = 64x1
1 x
 O
y = 4x 3
2x + y = 20
x=2
∴ k=4
The coordinates of A are (2 , 8).
Alternative method:
Substitute y = 8 into 2x + y = 20.
y = kxa
2x + 8 = 20
log8 y = log8 (kxa)
2x = 12
log8 y = log8 k + log8 xa
x=6
log8 y = log8 k + a log8 x ............. (1)
∴ The coordinates of B are (6 , 8).
Substitute log8 x = 2 and log8 y = 0 into (1).
2 x  y  20 ................ (1)
0 = log8 k + 2a ............................. (2) 
Substitute log8 x = 1 and log8 y = 1 into (1).  x  3 y  4 ................ (2)
(1)  (2)  2: 7y = 28
1 = log8 k  a ............................... (3)
y=4
(3)  2 + (2): 2 = 3 log8 k
2 Substitute y = 4 into (2).
log8 k = x  3(4) = 4
3
2 x=8
k = 83 ∴ The coordinates of C are (8 , 4).
=4 Substitute x = 2 into x  3y = 4.
2  3y = 4
34. D
3y = 6
ki10  2ki11  4ki12 k (1)  2k (i )  4k (1) y=2
=
1 i 1 i ∴ The coordinates of D are (2 , 2).
3k  2ki 1  i
=  At A(2 , 8), 3y  7x + 1 = 3(8)  7(2) + 1 = 11.
1 i 1 i
At B(6 , 8), 3y  7x + 1 = 3(8)  7(6) + 1 = 17.
3k  2ki  3ki  2ki 2
= At C(8 , 4), 3y  7x + 1 = 3(4)  7(8) + 1 = 43.
12  i 2
3k  5ki  2k (1) At D(2 , 2), 3y  7x + 1 = 3(2)  7(2) + 1 = 7.
= ∴ The least value of 3y  7x + 1 is 43.
1  ( 1)
k 5k
=  i
2 2
5k
∴ Imaginary part = 
2

© Oxford University Press 2018 P.10


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

36. A 37. D
I. For n  2, The graph of y = f(x) is reflected in the x-axis
an = 3n2 + 8n  [3(n  1)2 + 8(n  1)] to become the graph of y = f(x). The
= 3n2 + 8n  (3n2  6n + 3 + 8n  8) y-intercept of the graph of y = f(x) is 6. The
= 6n + 5 y-intercept of the graph of y = g(x) is 2. The
Let ak = 95. graph of y = g(x) can be obtained by translating
6k + 5 = 95 the graph of y = f(x) downward by
6k = 90 4 (= 6  2) units.
k = 15 ∴ g(x) = f(x)  4
∵ k is a positive integer.
∴ 95 is a term of the sequence. 38. A
∴ I is true. In △ABC, by the sine formula,
II. a1 = 3(1)2 + 8(1) a b
=
= 11 sin A sin B
= 6(1) + 5 a sin B
b=
∴ For all positive integers n, sin A
5a
an = 6n + 5. =
4
For n  2,
a c
an  an  1 = 6n + 5  [6(n  1) + 5] =
sin A sin C
= 6n + 5  6n + 1 a sin C
c=
=6 sin A
∴ The sequence is an arithmetic 6a
=
sequence. 4
∴ II is true. 3a
=
III. a1, a3, a5, …, a2n  1, … form an arithmetic 2
sequence with first term 11 and common By the cosine formula,
difference 12. b2  c2  a 2
cos A =
Note that 2 019 = 2(1 010)  1. 2bc
2 2
i.e. a2 019 is the 1 010th term of the  5a   3a  2
    a
4 2
sequence a1, a3, a5, …. =    
∴ a1 + a3 + a5 + … + a2 019   3a 
5 a
2  
1 010  4  2 
= [2(11)  (1 010  1)(12)] 45 2
2 a
= 6 125 650 = 16
15 2
= 6.125 65  106 a
4
> 7  105
3
∴ III is not true. =
4
∴ Only I and II are true.

© Oxford University Press 2018 P.11


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

39. D

 
BCD : DE = BAD : DAE
E M H 45 72
∴ =
6 DAE
3 72
F G =
2 DAE

14 cm ∵
 
DAE = 48
ABCD : BCD = AED : BAD
3  4  5 AED
∴ =
D C 45 72
4 AED
6 cm =
3 72
A 8 cm B AED = 96
Join FM. In △ADE,
The required angle is AMF. ADE + AED + DAE = 180
EF = BC = 6 cm ADE + 96 + 48 = 180
1 1 ADE = 36
EM = AB =  8 cm = 4 cm
2 2 TAE = ADE
In △FEM, = 36
FM2 = EF2 + EM2
FM = EF 2  EM 2 41. B
= 2 2
6  4 cm y
= 52 cm
AF B(0 , 40)
tan AMF =
FM
14
=
52 E
AMF = 63, cor. to the nearest degree F
∴ The required angle is 63. x
O D A(30 , 0)
40. B Suppose OA, AB and OB touch the inscribed
D circle of △OAB at D, E and F respectively.
Let r be the radius of the circle.
Note that OD = OF = r and the coordinates of
C P are (r , r).
In △OAB,
E
AB2 = OA2 + OB2
AB = OA2  OB 2
B = 302  40 2
T = 50
A
Join AD.
BCD + BAD = 180
108 + BAD = 180
BAD = 72

© Oxford University Press 2018 P.12


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

AD = OA  OD = 30  r 43. D
AE = AD = 30  r The multiples of 4 between 1 and 52 inclusive
BF = OB  OF = 40  r are 4, 8, 12, …, 52. There are 13 such
BE = BF = 40  r numbers.
AE + BE = AB The multiples of 13 between 1 and 52 inclusive
30  r + 40  r = 50 are 13, 26, 39, 52. There are 4 such numbers.
2r = 20 The number that is a multiple of both 4 and 13
r = 10 between 1 and 52 inclusive is 52. There is
∴ Coordinates of P = (10 , 10) 1 such number.
Substitute x = 10 and y = 10 into x + y  30 = 0. P(a multiple of 4 or a multiple of 13)
L.H.S. = 10 + 10  30 = P(a multiple of 4) + P(a multiple of 13) –
= 10 P(a multiple of both 4 and 13)
 R.H.S. 13 4 1
=  
∴ P does not lie on x + y  30 = 0. 52 52 52
Substitute x = 10 and y = 10 into 3x  y  20 = 0. 4
=
L.H.S. = 3(10)  10  20 13
The required probability
=0
= P(Daisy gets a multiple of 4 in the 1st draw) +
= R.H.S.
P(both Daisy and Elaine get neither a multiple of 4
∴ P lies on 3x  y  20 = 0.
nor a multiple of 13 in their 1st draw) 
Substitute x = 10 and y = 10 into 4x  y  40 = 0.
P(Daisy gets a multiple of 4 in the 2nd draw) +
L.H.S. = 4(10)  10  40
P(both Daisy and Elaine get neither a multiple of 4
= 10
nor a multiple of 13 in their first 2 draws) 
 R.H.S.
P(Daisy gets a multiple of 4 in the 3rd draw) + …
∴ P does not lie on 4x  y  40 = 0.
1  4  4  1 
Substitute x = 10 and y = 10 into 5x + 4y  160 = 0. =  1  1    
4  13  13  4 
L.H.S. = 5(10) + 4(10)  160
 4  4  4  4  1 
= 70 1  1  1  1     
 R.H.S.  13  13  13  13  4 
2 4
∴ P does not lie on 5x + 4y  160 = 0. 1  9  1  9  1
=           
∴ The answer is B. 4  13   4   13   4 
1
42. C = 4
2
9
Number of ways of selecting 2 boys and 3 girls 1  
 13 
= C216  C312
169
Number of ways of selecting 1 boy and 4 girls =
352
= C116  C 412
Number of ways of selecting 5 girls
= C512
∴ The required number of teams
= C 216  C312 + C116  C 412 + C512
= 35 112

© Oxford University Press 2018 P.13


OXFORD UNIVERSITY PRESS
MOCK 18(I) COMPULSORY PART PAPER 2 SOLUTION

44. B
Let x and  be the mean and the standard
deviation of the scores of the test respectively.
54  x
= 1.5

54  x = 1.5 .............................. (1)
65  x
= 1.25

65  x = 1.25 .............................. (2)
(2)  (1): 11 = 2.75
=4
∴ The standard deviation of the scores of the
test is 4.

45. D
Let d be the common difference of the
sequence, where d  0.
2x3 = 2(x1 + 2d)
2x6 = 2(x4 + 2d)
2x9 = 2(x7 + 2d)
∴ 2d is added to each of the three numbers
x1, x4 and x7, and each resulting number is
then multiplied by 2 to obtain 2x3, 2x6 and
2x9.
∴ v2 = 22  v1
v1 1
=
v2 4

© Oxford University Press 2018 P.14

You might also like