Using the product rule we have
" #
i dfˆ d d
[p̂, fˆ] = + fˆ − fˆ
~ dx dx dx
(6)
dfˆ
[p̂, fˆ] = −i~ .
dx
For the other commutator we may evaluate the x̂ operator in momentum space to give
[x̂, ĝ] = x̂ĝ − ĝx̂
i d i d
= ĝ − ĝ
~ dp ~ dp
(7)
i dĝ d d
= + ĝ −
~ dp dp dp
dg
[x̂, ĝ] = −i~ .
dp
4: Prove the following relation:
1 1
eL̂ âe−L̂ = â + [L̂, â] + [L̂, [L̂, â]] + [L̂, [L̂, [L̂, â]]] + ... (8)
2! 3!
h i h i
Define f (β) ≡ exp β L̂ â exp −β L̂ . Then
df
= L̂eβ L̂ âe−β L̂ − eβ L̂ âL̂e−β L̂ = [L̂, âeβ L̂ ]e−β L̂
dβ
d2 f
= L̂2 eβ L̂ âe−β L̂ − L̂eβ L̂ âL̂e−β L̂ − L̂eβ L̂ âL̂e−β L̂ + eβ L̂ âL̂2 e−β L̂ = [L̂, [L̂, â]]e−β L̂
dβ 2
d3 f
= L̂3 eβ L̂ âe−β L̂ − L̂2 eβ L̂ âL̂e−β L̂ − 2L̂2 eβ L̂ âL̂e−β L̂ + 2L̂eβ L̂ âL̂2 e−β L̂ + L̂eβ L̂ âL̂2 e−β L̂ − eβ L̂ âL̂3 e−β L̂
dβ 3
= [L̂, [L̂, [L̂, â]]]e−β L̂ .
(9)
Taylor expansion of our function is
∞
X f (k) (0) 1 00 1
f (β) = β k = f (0) + f 0 (0)β + f (0)β 2 + f (3) (0)β 3 + ... (10)
k! 2! 3!
k=0
If we set β = 1, we have
1 00 1
eL̂ âe−L̂ = f (0) + f 0 (0) + f (0) + f (3) (0) + ...
2! 3! (11)
1 1
eL̂ âe−L̂ = â + [L̂, â] + [L̂, [L̂, â]] + [L̂, [L̂, [L̂, â]]] + ...
2! 3!
which was our target.
5: Show that if [Â, B̂] = K where K ∈ C and if λ ∈ C,
1
eλ(Â+B̂ ) = eλ eλB̂ e− 2 λ
2K
. (12)
Let f be the right hand side. Taking the derivative of the right hand side with respect to λ we get
df 1 2 1 2 1 2
= Âeλ eλB̂ e− 2 λ K + eλ B̂eλB̂ e− 2 λ K − λKeλ eλB̂ e− 2 λ K
dλ n o 1 2
= Âeλ eλB̂ + eλ B̂eλB̂ − λKeλ eλB̂ e− 2 λ K (13)
n o 1 2
= Âeλ eλB̂ + eλ [B − λK] eλB̂ e− 2 λ K
We may use the result of last problem to state
e−λ B̂eλ ' B̂ − λ[Â, B̂] = B̂ − λK. (14)
Then
df n o 1 2
= Âeλ eλB̂ + eλ e−λ B̂eλ eλB̂ e− 2 λ K
dλ (15)
df n o
= Â + B̂ f.
dλ
The solution to this differential equation is an exponential with the factor (Â + B̂) as the argument:
f = eλ(Â+B̂ ) . (16)
Hence, the statement is true.
6: Let Â, B̂, and Ĉ be linear operators. Express the commutator of the product of ÂB̂ with Ĉ in terms of
the commutators [Â, Ĉ] and [B̂, Ĉ].
The commutator of ÂB̂ with Ĉ is
[ÂB̂, Ĉ] = ÂB̂ Ĉ − Ĉ ÂB̂. (17)
The suggested commutators are
[Â, Ĉ] = ÂĈ − Ĉ Â
(18)
[B̂, Ĉ] = B̂ Ĉ − Ĉ B̂.
If we multiply the first on the right by B̂ and the second one on the left by  then add, we have
[Â, Ĉ]B̂ + Â[B̂, Ĉ] = ÂĈ B̂ − Ĉ ÂB̂ + ÂB̂ Ĉ − ÂĈ B̂
[Â, Ĉ]B̂ + Â[B̂, Ĉ] = ÂB̂ Ĉ − Ĉ ÂB̂ (19)
[Â, Ĉ]B̂ + Â[B̂, Ĉ] = [ÂB̂, Ĉ].