0% found this document useful (0 votes)
82 views8 pages

Steve Integration Qs

Uploaded by

Reacher Elliot
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
82 views8 pages

Steve Integration Qs

Uploaded by

Reacher Elliot
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

REVISION EXERCISE 4 - INTEGRATION

BASIC
Find 𝑑𝑥
1
𝑥 6𝑥 10

2 Find 1
𝑑𝑥
𝑥 2𝑥 2

3 Let 𝐼 ln 𝑡 𝑑𝑡 for 𝑛 1, 2, 3, . . .

i Show that 𝐼 𝑒 𝑛𝐼 for 𝑛 1, 2, 3, . . .

ii Hence, or otherwise, find the exact value 𝐼 .

4 Find 𝑥 tan 𝑥 𝑑𝑥

5 Find
sin 𝑥 cos cos 𝑥 𝑑𝑥

6 Which of the following is an expression for 1 ?


𝑑𝑥
7 6𝑥 𝑥
A 𝑥 3 B 𝑥 3 C 𝑥 3 D 𝑥 3
sin 𝑐 sin 𝑐 sin 𝑐 sin 𝑐
2 2 4 4

7 Using the substitution 𝑢 𝑒 1 or otherwise, evaluate 𝑒


𝑑𝑥
1 𝑒

8 Find 1
𝑑𝑥
𝑥 ln 𝑥
9 What is the value of cos 𝑥 ?
𝑑𝑥
1 𝑥
A B C D
4 4 8 8
10 Evaluate
sec 𝑥 tan 𝑥 𝑑𝑥

11 If 𝑛 is a non-negative integer, then for what values of 𝑛 is ?


𝑥 𝑑𝑥 1 𝑥 𝑑𝑥
A no solution B non zero 𝑛, only C 𝑛 even, only D all values of 𝑛

12 𝑑𝑥
𝑥 1 𝑥 2

13 Evaluate 𝑥𝑒 𝑑𝑥

i Find real numbers 𝑎, 𝑏 and 𝑐 such that 10 𝑎 𝑏𝑥 𝑐


14
𝑥 1 𝑥 4 𝑥 1 𝑥 4
10
ii Hence find 𝑑𝑥
𝑥 1 𝑥 4

1000 Extension 2 Revision Questions © Steve Howard 77 Howard and Howard Education
𝑡 1
15 Find 𝑑𝑡
𝑡
𝑑𝑥
16 Find
6 𝑥 𝑥

17 Find 𝑥 log 3𝑥 𝑑𝑥

cos 𝜃
18 Find 𝑑𝜃
sin 𝜃
𝑑𝑥
19 Find
2 4𝑥 2𝑥

20 The value of 5 sin 𝑥 cos 𝑥 𝑑𝑥 is:

A0 B2 C 2 D 20

21 Find 𝑥 cos 𝑥 𝑑𝑥

𝑥 1
22 Find 𝑑𝑥
𝑥 2
𝑥
23 Which of the following is an expression for 𝑑𝑥
16 𝑥
1 1
A 2 16 𝑥 𝑐 B 16 𝑥 𝑐 C 16 𝑥 𝑐 D 16 𝑥 𝑐
2 2
𝑥 𝑑𝑥
24 Using 𝑡 tan , evaluate
2 1 sin 𝑥
𝑒 𝑑𝑥
25 Use the substitution 𝑢 𝑒 , or otherwise, find
1 𝑒
4𝑥 2𝑥 1
26 Find 𝑑𝑥
2𝑥 1
𝑑𝑥
27 Find
3 4𝑥 4𝑥

28 Evaluate cos 𝑥 sin 𝑥 𝑑𝑥

29 Evaluate tan 𝑥 𝑑𝑥

𝑑𝑥
30 Find
𝑥 6𝑥 13
1 𝑎 𝑏
31 i Find the real numbers 𝑎 and 𝑏 such that
𝑥 2𝑥 1 𝑥 2𝑥 1
𝑑𝑥
ii Hence evaluate
𝑥 2𝑥 1

32 Which of the following is an expression for 𝑥𝑒 𝑑𝑥 ?

1 1 1 1
A 𝑥𝑒 𝑒 𝑐 B 𝑥𝑒 𝑒 𝑐 C 2𝑥𝑒 2𝑒 𝑐 D 2𝑥𝑒 4𝑒 𝑐
2 4 2 2
1000 Extension 2 Revision Questions © Steve Howard 78 Howard and Howard Education
33 Evaluate cos 𝜃 sin 𝜃 𝑑𝜃

𝑥
34 Use the substitution 𝑢 1 𝑥 to evaluate 𝑑𝑥
1 𝑥

35 Find 𝑥 𝑥 𝑥 𝑥 𝑑𝑥

36 Evaluate 3 𝑑𝑥

MEDIUM
𝑑𝜃
37 Evaluate using the substitution 𝑡 tan 𝜃.
9 8 cos 𝜃

38 Which expression is equal to 3 𝑥 ln 𝑥 𝑑𝑥


2 2
A 2𝑥 𝑥 ln 𝑥 𝑐 B 2𝑥 𝑥 ln 𝑥 𝑐
3 3
1 3 1 3
C ln 𝑥 1 𝑐 D ln 𝑥 1 𝑐
𝑥 2 𝑥 2

Find 𝑒
39 𝑑𝑥
𝑒 1
8 2𝑥 𝑎 𝑏𝑥 𝑐
40 i Find real numbers 𝑎, 𝑏 and 𝑐 such that
1 𝑥 4 𝑥 1 𝑥 4 𝑥

8 2𝑥
ii Hence evaluate in simplest form 𝑑𝑥
1 𝑥 4 𝑥
𝑥 1
41 The algebraic fraction , where ℎ is a non-zero real number can be written in
5 𝑥 ℎ
partial fraction form, where 𝐴 and 𝐵 are real numbers, as
𝐴 𝐵 𝐴 𝐵 𝐴 𝐵 𝐴 𝐵
A B C D
𝑥 ℎ 𝑥 ℎ 5𝑥 ℎ 𝑥 ℎ 𝑥 ℎ 𝑥 ℎ 5 𝑥 ℎ 𝑥 ℎ
1
42 The value of 𝑑𝑥 is
1 𝑒
1
A B 1 C ln 1 𝑒 D 2 ln 1 𝑒
2

Find 1 𝑥
43 𝑑𝑥
1 𝑥

44 Consider the integral 𝐼 𝑥 1 𝑥 𝑑𝑥 , 𝑛 0, 1, 2, 3, . . .

2𝑛
i Show that 𝐼 𝐼 , 𝑛 1, 2, 3
2𝑛 3

ii Hence evaluate 𝐼 𝑥 1 𝑥 𝑑𝑥

45 The value of 𝑥 1 𝑑𝑥 is

A 1 B1 C2 D3

1000 Extension 2 Revision Questions © Steve Howard 79 Howard and Howard Education
16 𝑎𝑥 𝑏 𝑐
46 i Find 𝑎, 𝑏 and 𝑐 such that
𝑥 4 2 𝑥 𝑥 4 2 𝑥

16
ii Find 𝑑𝑥
𝑥 4 2 𝑥

47 Evaluate sin 𝑥 𝑑𝑥 .

𝑥
48 Evaluate 𝑑𝑥
𝑥 1 2𝑥 1

49 Evaluate 𝑥 sec 𝑥 𝑑𝑥
1 1 7
A ln 2 B ln 2 C 2 ln 2 D
4 2 4 2 4 3

50 Find tan 2𝑥 tan 2𝑥 𝑑𝑥


1 1
A tan 2𝑥 sec 2𝑥 𝑐 B tan 2𝑥 𝑐
4 2
1 1
C tan 2𝑥 𝑐 D tan 2𝑥 𝑐
4 2
3𝑥 𝑥 𝑎 2𝑥 𝑏
51 i Find the numbers 𝑎 and 𝑏 such that ≡
𝑥 1 𝑥 1 𝑥 1 𝑥 1

3𝑥 𝑥
ii Find 𝑑𝑥
𝑥 1 𝑥 1
𝜃 1
52 Use the substitution 𝑡 tan to evaluate 𝑑𝜃
2 1 sin 𝜃

Find 5 𝑥
53 𝑑𝑥
5 𝑥
10 𝐴 𝐵𝑥 𝐶
54 i Find the real numbers 𝐴, 𝐵 and 𝐶 such that
3 𝑥 1 𝑥 3 𝑥 1 𝑥

10
ii Hence use the substitution 𝑡 tan 𝜃 to find 𝑑𝜃
3 tan 𝜃
𝑥
55 Consider the integral 𝐼 𝑑𝑥, for 𝑛 0.
1 𝑥
i Show that 𝐼 2 2 2

ii Given that 𝐼 2 2 2𝑛𝐼


𝐼 𝑥 1 𝑥 𝑑𝑥, show that 𝐼
2𝑛 1

iii Hence evaluate 𝐼 in exact form.

𝑑𝑥
56 Evaluate
𝑥 1 𝑥
𝑥
57 Find 𝑑𝑥
1 𝑥

58 Find 𝑒 cos 𝑥 𝑑𝑥

1000 Extension 2 Revision Questions © Steve Howard 80 Howard and Howard Education
59 Consider the following two statements:

𝑑𝑥 𝑑𝑥
𝐈: 𝑛 1
1 𝑥 1 𝑥

𝐈𝐈: sin 𝑥 𝑑𝑥 cos 𝑥 𝑑𝑥

Which of these statements is correct?

A Neither statement B Statement I only


C Statement II only D Both statements

60 Evaluate cos 𝑥 𝑑𝑥

𝑥
61 Consider the integral 𝐼 𝑑𝑥
1 𝑥
4
i Show that 𝐼
3

ii Show that 𝐼 𝐼 𝑥 1 𝑥 𝑑𝑥

2𝑛
iii Use integration by parts on the result of part (ii) to show that 𝐼 𝐼
2𝑛 1
𝑥
62 Use the substitution 𝑡 tan to simplify sec 𝑥 𝑑𝑥
2
A ln 𝑡 1 𝑡 1 𝑐 B ln 1 𝑡
𝑐
1 𝑡
𝑡 1
C ln 1 𝑡 1 𝑡 𝑐 D ln 𝑐
𝑡 1

63 Evaluate 𝑥 tan 𝑥 𝑑𝑥

cos 𝑥
64 Find 𝑑𝑥
𝑥
1 2
A sin 𝑥 𝑐 B 2 sin 𝑥 𝑐 C 𝑐 D 𝑐
sin 𝑥 sin 𝑥
3𝑥 3𝑥 2 𝐴 𝐵 1
65 i Find real numbers 𝐴 and 𝐵 such that:
𝑥 1 𝑥 1 𝑥 1 𝑥 1 𝑥 1
3𝑥 3𝑥 2
ii Hence find 𝑑𝑥
𝑥 1 𝑥 1
1
66 Use the substitution 𝑥 2 cos 𝜃 to evaluate 𝑑𝑥
𝑥 4 𝑥
𝑥 𝑥 1 𝐵 𝐶
67 i Find constants 𝐴, 𝐵 and 𝐶 such that 𝐴
𝑥 1 𝑥 1 𝑥 1

𝑥 𝑥 1
ii Hence find 𝑑𝑥
𝑥 1
3
68 Show, using integration by parts, that 𝑥 sec 𝑥 𝑑𝑥 ln 2
3

1000 Extension 2 Revision Questions © Steve Howard 81 Howard and Howard Education
69 Let 𝐼 𝑥 sin 𝑥 𝑑𝑥 , where 𝑛 0, 1, 2, . . .

i Use integration by parts to show that 𝐼 𝑛 𝑛 1 𝐼 for 𝑛 2, 3, 4, . . .

ii Hence evaluate 𝑥 sin 𝑥 𝑑𝑥

𝑒 𝑒
70 If 𝐼 𝑑𝑥 and 𝐽 𝑑𝑥 , then the exact value of 𝐼 𝐽 is:
𝑒 𝑒 𝑒 𝑒
5 5
A ln B ln 2 C ln 5 D ln
2 4

𝑑𝑥
71 Find
𝑥 1 𝑥 4
𝑛 1
72 i If 𝐼 sin 𝑥 𝑑𝑥 show that 𝐼 𝐼
𝑛

ii Hence evaluate sin 𝑥 𝑑𝑥

73 Find sin 𝑥 𝑑𝑥
1 1
A sin 𝑥 B cos 𝑥 cos 𝑥
4 3
𝑐 𝑐
1 1
C cos 𝑥 cos 𝑥 D cos 𝑥 cos 𝑥 𝑐
3 3
𝑐
2𝑥 𝑥 9 𝐴𝑥 𝐵 𝐶
74 i Find values of 𝐴, 𝐵 and 𝐶 so that
𝑥 4 𝑥 1 𝑥 4 𝑥 1
2𝑥 𝑥 9
ii Hence find 𝑑𝑥 giving your answer in exact form.
𝑥 4 𝑥 1
2 2
75 Show that 𝑥 𝑥 1 𝑑𝑥 𝑥 1 𝑥 1 𝑐
5 3
𝑥
76 Find 𝑑𝑥 using the substitution 𝑥 2 sin 𝜃.
2 𝑥
cos 𝑥 sin 𝑥
77 Which of the following is an expression for 𝑑𝑥 ?
cos 𝑥 sin 𝑥
You are given that 𝑎 𝑏 𝑎 𝑏 𝑎 𝑎𝑏 𝑏 .
1 1 1 1
A 𝑥 cos 2𝑥 𝑐 B 𝑥 cos 2𝑥 𝑐 C 𝑥 sin 2𝑥 𝑐 D 𝑥 sin 2𝑥 𝑐
4 4 2 2
sin 2𝑥 sin 𝑥
78 Find 𝑑𝑥
cos 𝑥

79 Find 𝑒 sin 𝑥 𝑑𝑥 by the method of integration of parts.

sin 2𝑥 sin 6𝑥
80 Prove sin 2𝑥 sin 4𝑥 𝑑𝑥 𝑐
4 12
sin 𝑥 sin 𝑥
4 4 𝑑𝑥
81 Prove ln cos 𝑥 𝑐
cos 𝑥 cos 𝑥 4
4

1000 Extension 2 Revision Questions © Steve Howard 82 Howard and Howard Education
CHALLENGING

82 𝑥
𝑑𝑥
𝑥 5
2
A2 𝑥 5 𝑐 B 𝑥 5 𝑐
3
2
C 𝑥 5 10 𝑥 5 𝑐 D 2 𝑥 10 𝑥 5 𝑐
3 3
𝑑𝑥 𝑥 𝑑𝑥
83 By using the fact that ln 2 , evaluate
1 cos 𝑥 sin 𝑥 1 cos 𝑥 sin 𝑥
𝑑𝑥 1 2 𝑥 4
84 Prove cos 𝑐
𝑥 𝑥 4 16 𝑥 8𝑥

85 Using the substitution 𝑢 𝑥,


𝑥 sin 𝑥 𝑥 sin 𝑥
i Show that 𝑑𝑥 𝑑𝑥
1 cos 𝑥 1 cos 𝑥

𝑥 sin 𝑥
ii Hence deduce that 𝑑𝑥
1 cos 𝑥 4
cos 𝑥
86 The value of 𝑑𝑥 is equal to:
sin 𝑥 cos 𝑥
A 0 B C D
2 4
2
87 i Use the substitution 𝑢 𝑥, to show ln 1 tan 𝑥 𝑑𝑥 ln 𝑑𝑥
1 tan 𝑥

ii Hence find the exact value of ln 1 tan 𝑥 𝑑𝑥

𝑒 𝑒
88 Find 𝑑𝑥
𝑒 𝑒

89 Let 𝐼 sin 𝜃 sec 𝜃 𝑑𝜃 , for 𝑛 1.

1
i Show that 𝐼 𝐼
2 2𝑛 1

1 1
ii Hence, show that 𝐼 ln 3
2 2 2𝑘 1

90 Given that 𝐼 cot 𝑥 𝑑𝑥 , for 𝑛 1, 2, . . .

i Show that 𝐼 ln 2
1
ii Show that 𝐼 𝐼 3 1 , for 𝑛 2, 3, 4, . . .
𝑛 1
iii Find 𝐼

𝜃 𝑑𝜃 1 1
91 Use the substitution 𝑡 tan to show that tan
2 4 sin 𝜃 2 cos 𝜃 6 2 2

1000 Extension 2 Revision Questions © Steve Howard 83 Howard and Howard Education
ln 1 𝑥 1 𝑢
92 Show that 𝑑𝑥 ln 2 , using the substitution 𝑥
1 𝑥 8 1 𝑢
5 5𝑥 1 27
93 i Show that 𝑑𝑥 ln
1 2𝑥 1 𝑥 2 16

cos 2𝑥
ii Hence evaluate 𝑑𝑥 using the substitution 𝑡 tan 𝑥.
1 2 sin 2𝑥 cos 2𝑥

94 i If 𝐼 𝑥 cos 𝑥 𝑑𝑥, show that for 𝑛 1, 𝐼 𝑛 𝑛 1 𝐼


2

ii Hence find the area of the finite region bounded by the curve 𝑦 𝑥 cos 𝑥 and the
𝑥-axis for 0 𝑥
2
𝑑𝑥 1 2𝑛
95 Given 𝐼 for 𝑛 1 show that 𝐼 𝐼
1 𝑥 2 1 2𝑛 2𝑛 1

96 Let 𝐼 𝑥 1 𝑥 𝑑𝑥, for 𝑛 2


2𝑛 4
i Show that 𝐼 𝐼 for 𝑛 5.
2𝑛 5

ii Hence find 𝐼

1 1
97 Given that tan 𝑥 cot 𝑥 then a primitive of is:
sin 𝑥 cos 𝑥 sin 𝑥 cos 𝑥
1
A ln sin 𝑥 B ln sin 𝑥 cos 𝑥 C ln tan 𝑥 D ln cot 𝑥
cos 𝑥

98 i Show that 1 𝑡 𝑡 1 𝑡 1 𝑡

ii 𝐼 1 𝑡 𝑑𝑡 for 𝑛 1, 2, 3, . . .
1 2𝑛
Use integration by parts, and part (i) above to show 𝐼 1 𝑥 𝑥 𝐼
2𝑛 1 2𝑛 1

99 For 𝑛 0, 1, 2, 3, . . ., let 𝐼 1 log 𝑥 𝑑𝑥 and 𝐽 log 𝑥 1 log 𝑥 𝑑𝑥

i Show that 𝐼 1 𝑛𝐼 for 𝑛 1, 2, 3, . . .

ii Show that 𝐽 1 𝑛 2 𝐼 for 𝑛 0, 1, 2, 3, . . .

iii Hence find the value of 𝐽 in simplest exact form.

tan 𝑥
100 Using the recurrence relation 𝑈 tan 𝑥 𝑑𝑥 𝑈, then tan 𝑥 𝑑𝑥 ?
𝑛 1
tan 𝑥 tan 𝑥 tan 𝑥 tan 𝑥
A 𝑥 𝑐 B tan 𝑥 𝑐
4 2 5 3
tan 𝑥 tan 𝑥 tan 𝑥 tan 𝑥 tan 𝑥
C 𝑥 𝑐 D tan 𝑥 𝑥 𝑐
6 4 2 5 3
1000 Extension 2 Revision Questions © Steve Howard 84 Howard and Howard Education

You might also like