100% found this document useful (1 vote)
989 views730 pages

The Nature of Cognition

Uploaded by

daniel gatyo
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
989 views730 pages

The Nature of Cognition

Uploaded by

daniel gatyo
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 730

Page 

iii

The Nature of Cognition
Edited by Robert J. Sternberg

A Bradford Book
The MIT Press
Cambridge, Massachusetts
London, England

  
Page iv

© 1999 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information 
storage and retrieval) without permission in writing from the publisher.

This book was set in Sabon by Achorn Graphic Services, Inc. and was printed and bound in the United States of America.

Library of Congress Cataloging­in­Publication Data

The nature of cognition / edited by Robert J. Sternberg. p. cm. 
"A Bradford book." 
Includes bibliographical references and indexes. 
ISBN 0­262­19405­8 (hardcover : alk. paper).—ISBN 0­262­69212­0 
(pbk. : alk. paper) 
1. Cognition. 2. Mental representation. I. Sternberg, Robert J. 
BF311.N37 1998  97­47622  

CIP

  
Page v

CONTENTS

Preface vii
 
I. General Issues in Cognition

1. What Is a Theory of Thought? 3
Earl Hunt

2. A Dialectical Basis for Understanding the Study of Cognition 51
Robert J. Sternberg

3. Rationalism versus Empiricism in Cognition 79
Daniel N. Robinson
 
II. Representation and Process in Cognition

4. Single­Code versus Multiple­Code Theories in Cognition 113
Timothy P. McNamara

5. Domain­Generality versus Domain­Specificity in Cognition 137
Peter A. Frensch and Axel Buchner

6. Conscious versus Unconscious Cognition 173
John F. Kihlstrom

7. Prototype versus Exemplar Models in Cognition 205
Brian H. Ross and Valerie S. Makin
 
III. Methodology in Cognition

8. Computational Modeling of High­Level Cognition versus Hypothesis  245
Testing
Patricia A. Carpenter and Marcel Adam Just

  
Page vi

9. Brain versus Behavioral Studies of Cognition 295
Elizabeth A. Phelps

10. Response Time versus Accuracy in Human Memory 323
Michael Kahana and Geoffrey Loftus

11. Laboratory versus Field Approaches to Cognition 385
Stephen J. Ceci, Tina B. Rosenblum, and Eduardus DeBruyn

12. Basic versus Applied Research 409
Raymond S. Nickerson

 
IV. Kinds of Cognition

13. Inferential versus Ecological Approaches to Perception 447
Dennis R. Proffitt

14. Implicit versus Explicit Learning 475
Arthur S. Reber, Rhianon Allen, and Paul J. Reber

15. Multi­Store versus Dynamic Models of Temporary Storage in Memory 515
Randall W. Engle and Natalie Oransky

16. Rational versus Arational Models of Thought 557
Steven A. Sloman

17. Formal Rules versus Mental Models in Reasoning 587
P. N. Johnson­Laird

18. Cognition versus Metacognition 625
Thomas O. Nelson

 
V. Group and Individual Differences in Cognition

19. Culture­Free versus Culture­Based Measures of Cognition 645
Michael Cole

20. Heredity versus Environment as the Basis of Cognitive Abilities 665
Elena L. Grigorenko

Contributors 697

Author Index 699

Subject Index 715

  
Page vii

PREFACE
The study of cognition has become essential not only for those interested in cognitive science, in general, and cognitive psychology, in particular, but for almost all 
those with an interest in the mind. In psychology, cognition is now recognized to play a central role in social psychology (the study of social cognition), developmental 
psychology (the study of cognitive development), clinical psychology (the study and implementation of cognitive therapy), educational psychology (the study of 
cognition in the classroom), cognitive neuroscience (the study of the cognitive processes related to brain functioning), and practically every other area of psychology as 
well. In philosophy, cognition is realized to be the most central topic that philosophers of mind from Plato to Saul Kripke and Hilary Putnam have pondered. Even 
many economists are now recognizing that they will never really understand consumer behavior until they let go of models of the completely rational "economic man 
and woman" and take into account how people really think. In anthropology, cognitive anthropology has become a major subfield, and in linguistics, more and more 
linguists are recognizing the close interrelation between thought and language.

How does a psychologist, a philosopher, an economist, an anthropologist, a linguist, or anyone else learn about the nature of cognition? If one is a college sophomore, 
one may take an introductory cognition course and use a textbook organized around the standard substantive topics that cognitive scientists or cognitive 
psychologists study (see, e.g., Sternberg, 1996), topics that include areas such as perception, memory, knowledge, representation, problem solving, and the like. The 
presentation is usually

  
Page viii

in terms of major empirical findings and, sometimes, major theories. If one is past the sophomore level, however, this form of presentation can at times be unsatisfying, 
geared as it is to a college student who is just starting to think about the mind as an object of study.

For those past the sophomore year, another approach is perhaps more fruitful—a presentation in terms of conceptual themes. This book takes that approach. The 
Nature of Cognition is the first book, to my knowledge, to introduce cognition at a higher level for those beyond the sophomore year—in terms of the major 
conceptual themes that underlie any serious study of cognition.

Because the focus of the book is on enduring conceptual themes rather than particular hot theories and findings that come and go, the book may have a more lasting 
quality than the typical college textbook.

Many different approaches could be taken to the use of themes as the basis for a book on cognition. The approach I have taken emphasizes Georg Hegel's (1931) 
concept of the dialectic. This idea—that knowledge proceeds from a thesis to an antithesis to a synthesis—is presented in more detail in chapter 1. But the basic idea 
throughout this text is to present the main themes of the study of cognition in terms of the dialectic, presenting opposing viewpoints—theses and antitheses such as 
heredity versus environment—that are then recognized to require a synthetic integration. In this way, readers learn to think about issues in the way scholars of cognition 
have thought about them, rather than in a way that sophomores in college typically think about them.

The book is divided into six parts, each dealing with different aspects of the nature of cognition.

Part I, General Issues in Cognition, contains three chapters dealing with the philosophical and psychological foundations of the study of cognition. In particular, chapter 
1, by Earl Hunt, considers what constitutes a theory of thought. Chapter 2, by Robert J. Sternberg, deals with a dialectical basis for understanding the study of 
cognition and problems in the study of cognition such as the mind­body problem. Chapter 3, by Daniel N. Robinson, deals with rationalism versus empiricism in 
cognition.

Part II, Representation and Process in Cognition, contains four chapters. Chapter 4, by Timothy P. McNamara, addresses single­code versus multiple­code theories 
in cognition. Chapter 5, by Peter A. Frensch and

  
Page ix

Axel Buchner, addresses domain­generality versus domain­specificity in cognition. Chapter 6, by John F. Kihlstrom, explores conscious versus unconscious cognition. 
And chapter 7, by Brian H. Ross and Valerie S. Makin, deals with the issue of prototype versus exemplar models in cognition.

Part III, Methodology in Cognition, contains five chapters that deal with alternative ways of studying cognition. Chapter 8, by Patricia A. Carpenter and Marcel Adam 
Just, addresses computational modeling of high­level cognition versus hypothesis testing. Chapter 9, by Elizabeth A. Phelps, addresses the issue of brain versus 
behavioral studies of cognition. Chapter 10, by Michael Kahana and Geoffrey Loftus, discusses two alternative dependent variables, response time and accuracy, in 
human memory. Chapter 11, by Stephen J. Ceci, Tina B. Rosenblum, and Eduardus DeBruyn, compares laboratory and field approaches to cognition. And chapter 
12, by Raymond S. Nickerson, deals with basic versus applied research.

Part IV explicitly addresses various kinds of cognition. It contains six chapters. Chapter 13, by Dennis R. Proffitt, addresses inferential versus ecological approaches 
to perception. Chapter 14, by Arthur S. Reber, Rhianon Allen, and Paul J. Reber, deals with implicit versus explicit learning. Chapter 15, by Randall W. Engle and 
Natalie Oransky, compares multi­store and dynamic models of temporary storage in memory. Chapter 16, by Steven Sloman, addresses the question of rational 
versus arational models of thought.

Chapter 17, by P. N. Johnson­Laird, discusses formal rules versus mental models in reasoning. Chapter 18, by Thomas O. Nelson, compares cognition with 
metacognition.

Part V deals with group and individual differences in cognition. Chapter 19, by Michael Cole, deals with culture­free versus culture­based measures of cognition. 
Finally, chapter 20, by Elena L. Grigorenko, discusses issues underlying the dialectic of heredity versus environment as bases of cognitive abilities, in general, and 
intellectual abilities, in particular.

I am grateful to Amy Brand at The MIT Press for contracting and helping me develop the book, to all the authors for agreeing to write, and to the U.S. Office of 
Educational Research and Improvement (grant #206R50001) for supporting my own research in cognition.

  
Page x

This book is dedicated to the memory of Amos Tversky, who represents consummately that ideal scholar of cognition whose deep understanding of the issues that 
underlie the field so greatly enriched the field, and all of us in it.

References
Hegel, G. W. F. (1931). The phenomenology of mind (2nd ed., J. B. Baillie, Trans.). London: Allen & Unwin. (Original work published in 1807.)

Sternberg, R. J. (1996). Cognitive psychology. Ft. Worth, TX: Harcourt Brace College Publishers.

  
Page 1

I
GENERAL ISSUES IN COGNITION

  
Page 3

1
What Is a Theory of Thought?
Earl Hunt

Revolutions Old and New

The study of human thought is one of the most active areas of scientific psychology today. Offhand, I know of seven journals with cognition in their titles, and I am 
sure there are more. Most of the articles in these journals are elaborations on ideas introduced in the 1950s, ideas that have been collectively described as the 
''cognitive revolution" in psychology (Baars, 1986). As the twenty­first century is about to begin, many people think we are on the brink of a second cognitive 
revolution, which may be as profound as the first. Why?

There are two types of scientific revolution. New ideas can be developed that cause scientists to reexamine old data in new ways and to do new experiments they 
would not have thought of using older ways of thinking. Alternatively, new technologies may open up new sources of data, making it physically possible for scientists to 
test old theories in new ways. Such developments often lead to a shift in the original theories. New ideas provide incentives for the development of techniques, which, 
when used to uncover new data, lead to new theories. Let us call these types of revolutions idea or data driven. The cognitive revolution that took place in the 1950s 
was clearly idea driven; the new experiments were done because the new ideas suggested them. The revolution that is being talked about today is data driven, based 
on the development of new techniques for the in vivo measurement of brain processes in both humans and other animals. Probably the most dramatic of these 
techniques are the methods of brain­imaging techniques that allow us to take pictures of both structures and metabolic processes in the brain without

  
Page 4

opening the skull (Posner & Raichle, 1994). Other blotechnologies, such as molecular genetic analyses, are also important. The dramatic development in 
biotechnology has opened up a world of data that psychologists simply could not view before.

As we enter this revolution, two questions lie before us. Will the new sources of data require new ideas about cognition, or even psychology in general, or will the new 
data lead to evolutionary rather than revolutionary changes in our present theories? Will the new data sources and techniques sweep away the old, as chemistry swept 
away alchemy, or will two parallel but related fields of scientific inquiry exist, one based on the cognitive neurosciences and one based on the procedures that scientific 
psychology has used since the 1950s? In order to answer these questions we have to get a grasp on what psychological theories can and should be. That is the issue 
addressed in the current chapter.

The Philosophy behind Psychology: Are There Separate Laws for Mind and Body?

Two Theories of Dualism

The philosophical puzzle that has dominated virtually all studies of thought is, What is the relationship between the brain and the mind? The great French philosopher, 
Descartes (1637/1970) believed that brain and mental activity had to be considered separately because although they must interact, he was unable to see how 
(Bechtel, 1988; Dennett, 1992). To see how complex the issues are, let us look at an empirical question in social cognition: the influence of alcohol upon interpersonal 
perception.

In our society alcohol is widely used as a facilitator for social activities connected to sexual behavior. The drug is served at functions ranging from singles bars to 
marriage celebrations. Why? Is heightened sexual awareness an automatic reaction to the drug itself or are there more indirect mechanisms at work? Are we dealing 
with the brain or the mind?

Some of alcohol's effects are indirect. Men who believe that they have drunk alcohol, even though they have not, show increased sexual responsiveness in their social 
behavior and attitudes. 1  This behavior cannot be due to the physiological effects of the drug, because the men did not re­

  
Page 5

ceive it. Furthermore, this could not be a conditioned response, based on previous associations of the smell of alcohol with an unconditioned physiological response to 
the drug, because at the physiological level alcohol consumption decreases both penile and vaginal arousal. It seems that arousal can be dissociated from actual 
consumption but not from the belief in having consumed (George & Norris, 1991). Shakespeare correctly said that alcohol "provokes the desire, but it takes away the 
performance" (MacBeth, act 2, scene 1).

George and Norris's (and Shakespeare's) observation about alcohol's lowering the performance is an assertion about how a pharmacologically defined agent 
influences a physiologically defined state of behavior. The effect of the drug on sensory receptors involved in sex can also be studied by the neurosciences. The remark 
about beliefs is a bit harder to understand. Consider a somewhat more subtle finding: when men see a woman drinking they perceive her as being more sexually 
available than she would be otherwise (George, Gournic, & McAfee, 1988). In order for a man to think this way, a man has to have a concept of a woman's mind. In 
physical terms the man's brain must contain an internal representation of the information in the woman's brain. Whether the man's representation is accurate or not is 
not the 1 issue. 2  The point is that the representation exists. Why does it exist, and what variables cause it to take the particular structure it has?

The example illustrates the mind­body problem, which is probably the most important single issue facing the philosophy of the mind. The example also touches on two 
other major issues. Alcohol produces a certain subjective feeling, a qualia in the philosopher's terms, that may enter into future actions. The nature of a qualia cannot 
be tied directly to a physical state. Why will alcohol cause one man to initiate a tender, romantic interlude whereas another attempts aggressive and even brutal sex? 
How the arousal is translated into behavior depends upon the man's subjective experience of his physical state, strained through a complex of beliefs about the world.

The men's beliefs about women's desires illustrate the next problem in the philosophy of the mind. Our brain, a physical organ, somehow represents things outside of 
itself. In philosophical terms, the brain state has an intention. To what extent should a theory of cognition be

  
Page 6

concerned with intentions? To what extent can a theory of thought be divorced from what we are thinking about?

Opinions differ dramatically on this issue. Simon says, in a discussion arguing for the use of computer programs to construct models of human mental activity, "I have 
discussed the organization of the mind without saying anything about the structure of the brain" (Simon, 1981, p. 97). The argument that Simon gave for doing so was 
that several quite different physical devices might give rise to the same sorts of intellectual accomplishments. Computers have been programmed to do many tasks that 
when performed by humans are considered intellectual accomplishments. Playing chess and solving algebraic problems are good examples. Other intellectual tasks are 
quite complex, language being perhaps the most extreme example. Simon argues that such complex actions can only be accomplished in a few ways and perhaps in 
only one way. Therefore, if we manage to program a computer to play chess (which has been done) or comprehend free­form text (which has yet to be done), we 
may well have discovered how human thought proceeds. Simon argues for a sharp distinction between the brain as a physical system and the programs the brain 
executes, and he urges us to concentrate our attention on the programs.

In opposition, Francis Crick states: "The brain does not make a distinction between hardware and software, as a computer does. Theories [of thought] that have made 
this distinction are unfortunate" (Crick, 1994, p. 179). Crick goes to great length to argue for theories of cognition that are strictly tied to biology, which implicitly 
forces him to argue for the study of simple cognitive acts, such as visual word detection, rather than complex acts, such as paragraph comprehension.

Can these views be reconciled? Descartes's concept of dualism was based on the idea that the mind and body have separate existences and follow different laws. 
Modern philosophers call this attitude substance dualism. Simon specifically disavows substance dualism. He does advocate what I will call pragmatic dualism: the 
belief that although the mind does depend on brain processes, the connections are so convoluted, and we know so little about them, that it makes sense to try to 
develop laws of mental action that are defined independently of the brain.

  
Page 7

Pragmatic dualists argue that scientific psychology can go about its business without having to wait for advances in the neurosciences. Looked at this way, pragmatic 
dualism seems to be a sort of holding strategy, in which we develop a temporary set of laws of mental action in anticipation of later developments that will supersede 
purely psychological theories with theories based on the neurosciences. This state of affairs could arise at different times in different areas of cognition. For instance, 
although Crick's general discussion is of the concept of conscious thought, virtually all the specific studies he cites deal with visual cognition. It might be most profitable 
to deal with vision entirely from the field of neurosciences, while dealing with language comprehension in terms of psychological mechanisms that have no known neural 
basis. More generally, we can approach topics in cognition from the perspective of reduction to the neurosciences, total pragmatic dualism, or some mix of the two 
approaches. What is required is a set of rules to decide when a particular approach is useful and when it is not.

Science Studies Systems

Plato is usually credited with the observation that scientific studies should "carve nature at its joints." More precisely (but less picturesquely), Sperber and Wilson 
(1986) say: "In science a definition is motivated when it groups together propositions which are systematically linked in nature" (p. 173). The word systematically is 
key. In mathematics, and in the sciences, a system is a set of mutually dependent variables that take on different values over time. The state of the system is defined by 
the values of the variables. A closed system is a system in which the state at time t can be predicted perfectly from knowledge of the state at any previous time, t'. A 
scientific law can be thought of as a statement of the rules of transition from one state to another within a closed system. For instance, Newtonian mechanics define a 
system in which the location of objects at the next instant in time is determined by their current location and motion and the forces acting upon them.

A system is open if its next state cannot be predicted perfectly, given knowledge of its current state. The usual interpretation of an open system is that the variables 
being observed are a subset of the variables in some larger, closed system. Because the observer does not know all the

  
Page 8

variables in the larger system, the variables that actually are being recorded may sometimes change in unpredictable ways. 3

In practice, the only completely closed system is the universe itself, which we believe maintains a set relationship between its geometry and the distribution of matter 
and energy in it (Krause, 1995). This system is hardly manageable. However, different bits of the universe are sufficiently separate from each other so that they can be 
regarded as disconnected. Scientists try to study systems that are sufficiently closed to be predictable and sufficiently small to be understandable. To continue the 
physical ex­ample, Newton is (mythically?) supposed to have conceived of the law of gravity when he saw an apple fall. An apple is a relatively massive object, with 
respect to normal wind and air pressure, so when it falls it usually falls directly toward earth. Thus the apple­earth system is a reasonably close approximation of 
abstract Newtonian mechanics. If Newton had drawn his inspiration from watching a leaf fall, his theories might never have been developed. The leaf­earth system is 
much more open than the apple­earth system because air resistance does have a major effect on the leaf's fall. The law of gravity could be uncovered using the leaf­
earth system, but to do so one would have to resort to statistical studies to show how leaves fall on the average, ignoring the effects of unmeasured variables in the 
open system.

Newton's apple may well be mythical, but there are ample, well­documented historical examples of the importance of defining manageable, closed systems. The study 
of astronomy was not possible until the Babylonians realized that the heavens and the clouds should be thought of as separate systems (Boorstin, 1983). What are the 
analogous distinctions that should be made in the study of thinking? This question is central to the pragmatic dualist approach.

Cognitive Psychology as the Study of Information­Processing Systems

An Example

In order to define the systems that influence thought, we need to undertake a closer analysis of what thought is. One model is that thinking is the manipulation of an 
internal representation of real or imagined events that are external to the thinker. Physically, internal representations are

  
Page 9

brain states. Logically, they are symbolic representations of the external world, in the same sense that a map is a symbolic representation of geographic objects and 
relationships. If an internal representation is to be of any use it must be changeable so a thinker can manipulate it to determine "what if." These internal manipulations 
save us from actually poking around in a possibly dangerous world. Finally, there must be a link between thought and action, for if there were no action what would be 
the use of thinking? Suppose a tree could divine the intentions of a lumberjack. What could the tree do about them?

Another model for a theory of thinking comes from the study of brain activity. We can learn a good deal about the elementary processes of perception, memory, and 
imagination that underlie thought by looking at how different brain structures and processes are involved in different types of cognitive acts. For instance, psychologists 
today make a strong distinction between working memory for events that occurred in the past few seconds or minutes and long­term memory for events that occurred 
hours, days, or even years ago. This distinction is based in part on the observation that certain types of brain injuries can affect one of these functions but not the other. 
These two approaches to thought are complementary, but not identical. The nature of the complement is illustrated in the following anecdote.

At the outset of a sabbatical of mine some years ago, a realtor was showing me an apartment for rent. When we entered it, I smelled gas and cautioned the realtor, a 
smoker, not to light a cigarette. In any reasonable sense of the word, I thought. What was the formal relationship between my thinking and the physical actions that 
occurred?

Figure 1.1. depicts what happened. My brain contained an internal representation of the physical state of the room and the habits of my companion. Processes internal 
to the brain constructed a second brain state that depicted a potential explosion. For each brain state there was an interpretation in terms of correspondence between 
properties of the brain state and a property of the external world. Further brain processes operated on the first and second states to produce a third state that initiated 
the external warning to my companion.

In principle, it would also be possible to explain my actions by specifying the physical changes that occurred in my nasal passages, brain, and

  
Page 10

Figure 1.1
Depiction of the mental events and communicative acts that
occurred when I smelled gas in an apartment.

eventually my vocal apparatus. The idea of explaining mental actions by cataloging the accompanying physical events is appealing because it would be a major step 
toward unifying the mental and biological sciences. Nevertheless, relying exclusively on a physical theory of thought has definite drawbacks. The obvious one is 
impracticality. Although there have been major advances in the brain sciences in the last 50 years, we are not even close to being able to explain all the physiological 
events involved in even the slight amount of thinking that I did when I smelled the gas. For example, advances in brain imaging in the early 1990s have been used to 
locate the brain areas that are active when we look at and comprehend a single written word (Posner & Raichle, 1994). Based on this work, it seems reasonable to 
expect that within a few years we will locate those areas of the brain that are involved in normal reading. However, there is little chance that this research will let us 
discriminate be­

  
Page 11

tween brain activities involved in reading Shakespeare and those involved in reading the sports pages.

Suppose we could get a description of the sequence of neural activities involved in a single thought? The brain has approximately 1011 neurons (Thompson, 1995). 
Even if we could track the state of every neuron in the brain we could not understand the resulting record. When we talk about brain activity, we will always have to 
resort to a higher­order language. A good analogy is the way in which computer systems designers understand very large programs, such as operating systems, the 
programs used to supervise air traffic, or those used to monitor money flow between banks. These programs can contain millions of lines of code, executed 
simultaneously on thousands of machines. It would be physically possible to print out and examine the individual instructions, but no human being could comprehend so 
much detail.

In order to avoid being overwhelmed with details, system designers break the programs down into functional modules—subprograms that pass well­defined messages 
back and forth between themselves. Different languages are required to talk about actions within and across modules, because talking about everything in terms of 
elementary machine operations would overwhelm the system engineers. Because a million­line (106) program is orders of magnitude simpler than the brain, it seems 
likely that the same principle will be required in thinking about thought. 4  "What are the systems appropriate for studying cognition?" can be reframed as "What 
different levels of models do we need to formulate a theory of thought?"

An anthropologist interested in human cognition (or perhaps a novelist) might object to my approach thus far. From the viewpoint of understanding how my realtor and 
I functioned as social beings, the talk about brain states is close to irrelevant. To the anthropologist and novelist, the important things to understand are our beliefs and 
knowledge systems: what we know and what we think we know about the way our world works. Therefore, I warned the realtor because I, like most human beings, 
wanted to avoid disasters and because I believed that the joint presence of natural gas and a flame would lead to an explosion. (Note that the example does not 
require that I understood the nature of combustion. All that is asserted is that I believed that the combination of gas and

  
Page 12

match is bad news.) To give a grander­scale example, historians say that in 1938 Neville Chamberlain believed that Hitler would cease his aggressive policies if 
Germany were allowed to occupy Czechoslovakia and that in 1990 Saddam Hussein believed that George Bush was bluffing when Bush demanded that Iraqi forces 
retreat from Kuwait. To understand what happened next, historians, and most of us, appeal to causal laws stated in terms of what the objects of thought are about, not 
how neurons become active.

A theory of thought based on content would be stated as rules, describing the sequences by which thoughts trigger each other, without any commitment to how the 
sequencing occurs. For instance, my actions in the apartment could be explained by the rule

R1 If the state of the gas indicator is "on" and the description of a companion includes the term smoker, then issue a warning.

Rule R1 is not a useful theory of behavior, because it simply restates what happened. A better set of rules, still tied to the content of thought, would be

R2 If the gas indicator is "on," mark that an explosive potential is present.

R3 If an explosive potential is present, set a marker to eliminate fire hazards.

R4 If a smoker is present and fire hazards are to be eliminated, issue a no­smoking warning.

We now have the rudiments of a theory, in the sense that some general principles have been established that can account for behavior in a variety of situations. 
Variants of R2 could be developed that would apply R3 and R4, which actually do the work, to situations involving gunpowder, spilled gasoline, and anything else I 
believed might explode.

This approach to content­based theories can be extended to cover virtually all human behaviors. The key idea, which goes back to Aristotle and Plato, is that humans 
respond to specific situations either by executing a memorized rule for that situation or by classifying the current situation as a member of a class of situations and then 
responding in a way that is appropriate for the class. Therefore, a theory of a person's thought should state what general classes of things that person knows about, 
what

  
Page 13

rules are used to associate instances with classes, and what responses are seen as appropriate when a class member is encountered. In the language of philosophy, 
theories of thought that are thus stated deal directly with the intention of thought, and that is what thinking is about.

Such an approach is pragmatic dualism in its most extreme form. Unfortunately, because scientists are materialists, they place considerable value on the goal of 
reducing psychological theories to biological terms. However, there is no point in trying to connect events in my brain to my knowledge that flames can ignite natural 
gas; one may as well attempt to explain the flight of a baseball in terms of quantum mechanics. Physicists are confident that there is a direct link between quantum 
mechanics and the flight of a baseball, but the link is so long and tortuous that we simply cannot think about it. Newtonian physics provides us with an intermediate 
language that is highly useful in dealing with the movement of physical bodies above the atomic level. Specific motions, like that of the baseball, can be described by 
appeal to general concepts in the Newtonian language. The Newtonian concepts themselves can then be explained in terms of theories of subatomic physics. Consider 
the concept of a solid body. At the subatomic level, there is no such thing because subatomic particles can be located only up to a probability distribution. At the 
Newtonian level, the bat hits the ball or it doesn't, and a theory that says that yes, you can locate an object in space and time, can be used to explain what happens 
next. Cognitive psychologists need the same sort of language to explain specific thoughts in terms of general concepts that, themselves, may be linked to brain 
processes.

A Computational View of Cognition

Following the lead of numerous authors, Pylyshyn (1984, 1989) has referred to content­based and biologically based explanations of human thought as knowledge 
and physical levels of thought. Because knowledge has some additional connotations, I will use the more neutral term representational­level theory. So long as we 
believe in materialism we must assume that an omnipotent, omniscient theorist could derive representational­level theories from physical levels of information. 
However, given our limited ability to observe and comprehend, it appears that the worlds of thoughts and neural events behave as separate systems, with at best

  
Page 14

poorly understood links between them. A great deal of the modern study of cognition depends on the insight that representational­level and neural­level events can be 
linked through the development of intermediate, computational theories of thought. This insight is based upon a rather sophisticated notion both of thinking and 
computation as activities that are carried out by physical symbol systems (Newell, 1980).

To understand Newell's ''physical symbol system" it helps to look at a thinking device whose inner workings can be observed directly, rather than one, like humans, 
whose inner workings are a bit mysterious. Computers are used to calculate the trajectories of objects in flight, varying from space shuttles to artillery rounds. 
Consider an object that has been in free fall toward Earth for t seconds. What is its current height above the Earth? Applying Newton's laws of motion, the 
appropriate equation is

(1) h(t) = h(0) ­ 1/2gt2,

where h(0) is the starting height, h(t) is the height at time t, and g is the gravitational constant. Height, time, gravity, and motion are properties of the world; whereas h, 
t, g, multiplication, and subtraction are terms in the symbolic system that represent properties of the physical system.

Suppose that a computer is used to calculate h(t). A computer is a physical device that manipulates electrical signals standing for the symbols in the equation. A 
machine consisting of an engineer, a pencil, and paper is also a device for manipulating physical objects (marks on paper) that stand for the abstractions in the 
symbolic system. Both are physical symbol systems. The computer and the engineer­paper­pencil devices are general purpose computing systems in the sense that 
they can, in principle, compute any computable function that is defined by a symbol system. (Ignore for the moment the practicality of making some computations.) In 
order to actually compute something, the physical device must be given a set of instructions, stated in terms of actions it can take for manipulating its physical 
manifestation of the symbols in the symbol system. For instance, a possible set of instructions for computing the position of a body in free fall is

Write down the value of h(0).
1.
2. Write down the value of t.

  
Page 15

Multiply the number found in step 2 by itself.
3.
4. Write down the value of the gravitational constant.
5. Multiply the number found in step 3 by the number found in step 4.
6. Divide the number found in step 5 by 2.
7. Subtract the number found in step 6 from the number found in step 1.
8. Mark the number found in step 7 as the answer.

Steps 1 through 8 define a program or algorithm for computing position after free fall. Note that the algorithm is not stated in terms of the physical machine, because 
the physical operations that achieve the primitive functions writing down, multiplying, and subtracting have not been specified. Either a computer or an engineer 
with a pencil and paper could execute steps 1 through 8 because they can do physical operations that correspond to the primitive functions of the algorithm. Therefore, 
there is a correspondence between the two machines at the algorithmic level. Because the algorithm is an accurate representation of the physical events during free fall, 
both machines are models of the physical world and of each other at the representational level. On the other hand, the physical operations of writing down something 
on paper and changing the numbers stored in a computer are quite different, so there is no correspondence between the two machines at the physical level.

Correspondence can exist at the representational level without existing at the algorithmic level. For example, consider an alternative algorithm for free fall

Compute x = ln(t) + ln(t) + ln(g) ­ ln(2).
1'
2' Compute h(t) = h(0) + ex, where e is the Naperian constant.
3' The number computed in step 2 is the answer.

Rules 1 through 8 and rules 1' through 3' will compute exactly the same mathematical function. Suppose that we programmed two physically identical computers, one 
using rules 1 through 8, the other using rules 1' through 3'. By definition these computers could be thought of as models of each other at the physical level. They would 
not be models of each other at the computational level, but they would be identical at the representational level. Neither computer would be a model of the engineer 
and pencil at the physical level. However, the first computer but not the second would be a model of the engineer at the programming level,

  
Page 16

and both computers, with their programs, would be models of the engineer at the representational level.

The cognitive revolution of the 1950s was based on the insight that cognition can be modeled at the computational level without any commitment to modeling at the 
physical level. Returning to my anecdote about the gas leak in the apartment, suppose that someone produced a robot fire marshal, suitably equipped with gas 
detectors and computing circuits. Could this machine be offered as a psychological explanation of my behavior? It depends upon what you mean by an explanation.

A superficial examination of the robot's computing circuit would quickly rule out the robot as an explanation at the physical level. My brain operates on neural circuitry; 
the robot's would operate using electronic technology. The two are vastly different. Determining whether or not we were representational level models of each other 
would be similarly straightforward. Do we issue the same set of warnings over a wide range of situations? The qualifier wide range is important. Recall that I argued 
that I probably operate as a general classifier, telling people not to smoke when "combustibles" are present. Therefore, showing that the robot and I behaved the same 
way in the presence of gas leaks would be necessary but not sufficient evidence of modeling. The robot might be a specialized gas detector. The argument for the 
robot as a model of the mind gets stronger as we investigate more situations; gunpowder storage rooms, gasoline dumps, and hydrogen leaks (where we should both 
fail to issue a warning because humans cannot sense the presence of hydrogen). 5

The crux of the argument is that there are three qualitatively different classes of systems of thought: systems at the physical, computational, and representational level. 
(The reason for saying "classes of system" is that there may be separate systems within a level. For instance, the physical systems for auditory and olfactory perception 
are distinct.) The physical and representational levels can be directly tied to observation; we can see, photograph, feel, or touch their elements. The elements of 
computational level systems cannot be so observed. Computational­level models of thought are inherently functional models, dealing with generalized functions, such as 
short­ and long­term memory, that can only be observed through their manifestations in specific instances. In some sense,

  
Page 17

computational models are models of systems that cognitive psychologists made up. Nevertheless, computational models are quite important.

Sublevels within the Computational System: The Black Box Problem in Engineering Terms

Before arguing for the importance of a computational­level theory, a closer look at computational systems is in order. This examination requires an aside to present 
some results from computer science and the mathematics of computation. I ask the reader to bear with me. The connection to psychology will be made in the following 
section.

Computation depends upon three linked but separate ideas: mathematical function, algorithm, and system architecture. A mathematical function maps from a 
set of input objects, called the domain, to a set of output objects, called the range. For example, the function square root of maps the positive real numbers into the 
positive reals; the function largest integer contained in maps the real numbers into the integers. The idea of a function is applicable outside of conventional 
mathematics. Consider the infinite set S of all strings of English words. Let E be the (infinite) subset of S whose elements are those strings of words that are also 
sentences in English. For example, "Mary likes the salad" and "salad the Mary likes" are both in S, but only the first string is in E. A parser for English f E is a function 
that maps from S into the set {1, 0}. Let s be some string in S. The value of f E(s) is 1 if s is a member of E, and 0 otherwise.

An algorithm for the function f is a computing procedure that calculates f. In general, there will be several algorithms for computing any one function. The earlier 
examples of two ways of calculating free fall illustrate this point.

Because an algorithm is a procedure, the existence of an algorithm implies the existence of a machine that can execute the algorithm. We may think of an algorithm as a 
series of primitive operations that are within the capability of the computing machine. In the trajectory example, the first algorithm (rules 1–8) can only be executed by 
a machine that contains, as primitive operations, the operations of adding, subtracting, multiplying, and dividing, plus the operations of storing a number in a temporary 
memory area. The second algorithm also requires a machine that has addition, subtraction, and temporary storage as primitive

  
Page 18

operations, but multiplication and division have been replaced by the use of logarithms. Therefore the second algorithm requires a machine that either contains a 
logarithm calculator as a primitive device or contains a table of logarithms in a permanent memory, distinct from whatever resources are required to hold temporary 
information relevant to the problem at hand.

The design of the computing machine that executes an algorithm is called its system architecture. This term includes the primitive operations used by the algorithm and 
any necessary communications between them that are dictated by the nature of the machine itself. The system architecture of the machine provides its "programmer," 
which could be a person or evolution (if the machine is the human mind), with tools used to define algorithms. These tools are computational modules to be used by the 
algorithm, but are not part of the algorithm. The designer of an algorithm regards the modules provided by the system architecture as sealed units (conventionally, a 
black box). The designer knows what functions a module computes and the resources required, including time, to do the computations, but does not know what the 
internal operations of the module are. There is an analogy between the system architecture and algorithmic levels of description of a computation and the description of 
a carpenter's workroom and the procedures that the carpenter follows to build a particular piece of furniture.

One of the fundamental results connecting logic to mathematics is the finding that any computable function 6  can be computed by a device containing just two 
computing modules, one of which computes the logical function NOT and the other either the logical function AND or OR. This means that you cannot in general 
discriminate between two system architectures on the basis of the functions that they can compute, providing that both architectures contain these modules and that 
they have some way of storing intermediate results. This problem, called the black box problem, is an important one for psychology. Here is an expanded version.

Suppose that you are presented with two black boxes, one containing a computer with system architecture A and the other a computer with system architecture B. 
You are assured that system architectures A and B are at least complicated enough to meet the minimum conditions for

  
Page 19

modularity just described. How can you devise a test to see which box contains which architecture?

A method that will not work is to present the computers' programmers with a list of functions and see which computer could execute which function, because 
programmers for both systems A and B would be able to write algorithms to compute any computable function. It might be the case that for a particular function the 
programmer for system A would write a simple algorithm, whereas the programmer for system B would write a complicated one. However, you cannot tell the 
difference from outside the box, because all you can see is what goes into the box (the element from the domain of the function) and what comes out (the element from 
the range). What you see is the result of the combination of system architecture and algorithm, so you cannot evaluate either in isolation. For those familiar with 
computers, this statement is an abstract version of the observation that any computer can compute any computable function.

The difference between system architectures is in the efficiency with which the computation can be executed. When a designer (or evolution) sets out to design 
algorithms that are efficient for the particular machine at hand, the algorithm designer needs to know what sort of resources are required by each module. Two are of 
particular importance: time and interference patterns.

Because the elementary computing modules of every machine are physical devices, they will take time to complete whatever function they compute. Two differently 
defined modules may compute exactly the same function, but vary in the time that they take to compute different instances of the required mapping. Take an adding 
module, such as is found in every modern computer. It may be somewhat surprising to those who have not thought about it, but there are several ways to add! In the 
standard "right­to­left" algorithm taught in U.S. schools, addition proceeds from right to left (least to most significant digits) and terminates when there are no carries 
and all nonzero digits have been processed. Thus it takes longer to add 7456 and 9843 than to add 3 and 6. This is called serial addition. In parallel addition, 
addition is carried out in a two­step operation that assumes that all digits are potentially nonzero. First, each pair of digits is added together, and then the carries are

  
Page 20

shifted and added in. Thus, 3 + 6 would be added as 0003 + 0006, and it would take exactly as long to add 3 and 6 as it would take to add 7456 and 9843. An 
outsider performing the black box experiment could not distinguish between system architectures using serial and parallel addition modules by determining what 
numbers the two boxes could add, but could distinguish between the architectures by determining whether or not the time taken to do addition varied with the number 
of digits in the addends.

Using interference patterns to identify system architectures is a bit trickier. The underlying idea is that any computing module will require resources to be effective and 
that its effectiveness will decrease if its resources are reduced. Actual computers again provide an example. The earliest commercial computers had a single arithmetic­
processing unit that did everything, including controlling the printer. Suppose that such a computer was used to balance a company's books and to print a report on the 
status of various branches of the company. Two different algorithms might be used.

Algorithm A

A1 Compute the report for one branch: store the results. Compute the report for the next branch: store the results. Continue until the books have been balanced for 
each branch.

A2 Compute the summary report for the entire company.

A3 Print the report for each branch, and then the summary report.

Algorithm B

B1 Compute the report for each branch. As soon as a branch report has been computed, store the results and print the part of the final report associated with that 
branch.

B2 After calculating all branch reports calculate the summary report.

B3 Print the summary report.

Algorithm A does calculation and printing in series; algorithm B interleaves calculating and printing. An old­fashioned computer, circa 1958, would have taken exactly 
the same amount of time to execute each of the two algorithms because early computers could not compute and print at the same time. Note that this is not because of 
the modules the machines had but because of the way that they were hooked together. In modern computing systems separate computing modules control printing

  
Page 21

and program computations. A computing system with this architecture can benefit from algorithms that interleave computing and printing. Returning to the black box 
experiment, you could discriminate between the old and the new architectures by seeing which black box computers benefited from interleaving. 7

The example just given is of competition for a common process. Interference between operations can also occur because of competition for some sort of power 
resource. Resource competition is difficult to illustrate in modern computers because the modules of these machines generally either operate with sufficient power or 
they do not operate at all. However, resource competition occurs all the time with other machines. For example, why do you get poorer gasoline mileage from your 
automobile if you drive with the air conditioner on? The answer is that the air conditioner draws power from the engine, so the engine must generate more energy to go 
a fixed distance, at a fixed speed, with the air conditioner on than with it off. It would be possible to design an automobile in which the air conditioner had its own 
source of power. The clever driver could discriminate between these two system architectures by experimentation, without ever looking under the hood.

Our main interest here is psychology, so why is this excursion worthwhile? We try to infer both the algorithms and system architecture of the mind by seeing what 
functions people can compute and how efficiently they compute them. This insight was a major part of the cognitive revolution of the 1950s. The next section illustrates 
the point, by using the concepts developed here to isolate and study manageable systems in the brain and mind.

Psycholinguistics as an Illustration of the Need for Different Levels of Psychological Theories

I have argued that cognition has to be studied simultaneously at the neuroscientific, computational, and representational levels. Language has been chosen to illustrate 
the argument because it is a uniquely human bit of cognition and because, by definition, all readers of this article read and so will be familiar with the phenomena to be 
discussed. However, the reader should keep in mind the purpose of the section. I have chosen

  
Page 22

examples to illustrate the importance of different types of theories in psychology. The discussion is certainly not intended to be a comprehensive coverage of 
psycholinguistics.

Neuropsychological Studies of Language

A great deal of what we know about the brain processes that support language comes from neuropsychology, the study of brain­injured individuals. During the 
nineteenth century, case studies reported by the physicians Paul Broca, Carl Wernicke, and others showed a clear association between loss of speech function and 
injuries in the left temporal region of the brain. These observations have been confirmed many times over the years. During the mid twentieth century, Roger Sperry 
and his collaborators carried out a series of studies on split brain patients, persons whose hemispheres have been disconnected during necessary medical procedures. 
8  This work has since been carried on by numerous other investigators. Because the left visual field projects to the right hemisphere, and vice versa, problems can be 
presented to such a patient in just one visual hemifield and thus are processed by one side of the brain or the other. The split brain studies generally confirmed what the 
earlier clinical studies had suggested: language functioning is largely, although not exclusively, located in the left hemisphere (Gazzaniga, 1985).

This is an interesting but fairly gross observation. Even the nineteenth­century physicians drew finer conclusions. They noticed that patients with lesions in the anterior 
part of the left temporal lobe showed severe problems in the production of speech (Broca's aphasia), whereas patients with lesions in the posterior left temporal lobe 
exhibited problems in comprehension but were able to produce fluent, although not always sensible, speech (Wernicke's aphasia). Because the anterior lesions were 
located close to areas known to control motor movements and the posterior lesions were located near areas associated with auditory perception, Wernicke 
interpreted the two types of aphasia as evidence for separate brain systems associated with the production and comprehension of language.

Modern analyses (e.g., Zurif, 1990) come to quite a different conclusion. The modern view is that Broca's aphasia is characterized by loss of

  
Page 23

grammatical function, which then disrupts speech production because the appropriate words are not available for insertion into the output string at the right time. 
(Wernicke's aphasia is less studied, and less well understood, but it is clear that patients with posterior lesions show more sensitivity to grammar than patients with 
anterior lesions.) The modern conclusion is based on two additional sources of evidence. The first is that Broca's aphasics, who are diagnosed by their production 
difficulties, have difficulty comprehending sentences when the interpretation depends upon syntactic analysis. For instance, Broca's aphasics, but not Wernicke's 
aphasics, are unable to determine who did what to whom upon hearing a sentence such as "The girl whom the boy is pushing is tall." On the other hand, Broca's 
aphasics can comprehend "The apple that the boy is eating is red," where semantic analysis permits only one possible interpretation.

The recent experiments on sentence comprehension would certainly be understood by the nineteenth­century physicians, who might have had a fleeting moment of 
regret that they did not think of doing these studies themselves! A second source of evidence for grammatical difficulties that Zurif cites would be more foreign to their 
way of thinking, because it is based on performance on a nonlinguistic task whose interpretation depends upon a theoretical analysis of language itself. To explain it, a 
brief excursion into linguistics is needed.

Modern linguists distinguish between open and closed classes of words. An open class is one that can be added to as the need arises, without making any fundamental 
change in the language itself. For instance, nouns are an open class that we can add to as the need arises. Nineteenth­century English had no word for television. 
Closed class words serve grammatical functions. Examples are the articles and prepositions. Closed class words appear to function as units that are more difficult to 
analyze into components than open class words are. If people without brain injury are asked to cross out target letters in a printed text they are more likely to miss 
letters in closed than in open class words. To illustrate, if t is the target letter you would expect an intact person to be more likely to miss the t in the than the t in toe. 
Wernicke's aphasia patients make similar errors, but Broca's aphasics do not. Zurif (1990, pp. 188–190)

  
Page 24

argues that this discrepancy demonstrates that damage to the anterior left temporal lobe damages a process that involves rapid, automated access to key grammatical 
terms and that this process is part of normal language processing.

Note what has happened here. The early observations and their interpretation depend only upon a sort of folk psychology view of language that distinguishes between 
reception and production. The distinction between understanding based on syntactical and semantic processing, and even more the notion of closed class words as 
being psychologically different from nouns, is based upon a sophisticated view of how language works as a communication system quite apart from the brain processes 
that make it work. In fact, the motivation for doing both the sentence comprehension and the closed class perception studies depended upon the development of a 
computational­level view of what a language is and how one can be analyzed.

Computational Models of Language

Most of today's research on the psychology of language, including but not limited to psycholinguistics, is either directly based on or has been tremendously influenced 
by the ideas of Noam Chomsky, a professor at the Massachusetts Institute of Technology. These ideas, introduced in the late 1950s and early 1960s (Chomsky, 
1957, 1963), constituted one of the cornerstones of the cognitive revolution in the behavioral sciences.

Prior to Chomsky's work most studies of psycholinguistics were based on a more or less intuitive view of language, as the set of utterances spoken by people in a 
particular linguistic community; e.g., the set of all sentences that speakers of modern English (or Spanish or Urdu) speak. Chomsky proposed a new definition that 
shifted emphasis from a naturalistic study of the words and sentences that do appear in a language to the rules that define what words and sentences might appear. He 
defined a language as a set of surface terms, called the lexicon, that might appear in a sentence, and a set of rules, that define how words must be arranged to form a 
proper sentence.

Consider the trivial ''language" L1, consisting of the following sentences:

  
Page 25

(2) L1 = {"Lions attack elephants," "Elephants attack lions", "Lions scare elephants," "Elephants scare lions''}.

The sentences in this language can be generated by the following set of rewriting rules. First, define the set of nonterminal symbols,

(3) V = {S, N, V, NP, VP}

and the set T of terminal symbols,

(4) T = {elephants, lions, attack, scare}.

The terminal symbols, loosely the words in the lexicon, are the terms that appear in utterances. These are the hooks that tie the language to external, nonlinguistic 
reality. A lion, as a concept, is not a linguistic term. The nonterminal symbols are grammatical categories, here a sentence, noun phrase, verb phrase, noun, and verb. 
The special term, S ("sentence"), called the head symbol, refers to the set of all possible utterances in the language. Jointly, the symbols are called the lexicon of a 
language.

The lexicon is augmented by a finite set of rules, called the grammar of a language. A grammar for L1 is

(5) S   NP VP

NP   N

VP   V NP

N   {elephants, lions}

V   {attack, scare},

where the arrow means, "May be rewritten as," and the notation x   {a, b,... } indicates that the symbol on the left hand side of the arrow may be rewritten as any 
member of the set of symbols on the right. A string of terminal symbols is said to be a well­formed expression in L1 if the string can be generated by successively 
applying the rewriting rules of R1, starting at S and continuing until the target string is generated. The sentences in (2) can be generated using the categories of (3) and 
rules of (5). So can sentences of the form "Elephants attack elephants," where the first and second occurrences of an N term are identical.

To generalize the example, according to Chomsky's definition a language is defined by lexicon consisting of a finite set of terminal and

  
Page 26

nonterminal symbols, one of which must be the head symbol, S, and a finite set of rewriting rules. On the surface, a language may appear to be the set of sentences it 
contains, but the real definition is in the grammar and the lexicon, i.e., in the syntactic part of the language.

One of the reasons that Chomsky argued for the primacy of syntax is that the grammar of a language is finite, and hence knowable, whereas the set of sentences in a 
language is infinite, and hence not knowable. For instance, English (and all other natural languages) permit embedded sentences, as in "The rat the cat scared ate the 
cheese." This lets us say, "The rat the cat the dog chased scared ate the cheese" and ad infinitum. Whether or not we would actually say or comprehend such a 
sentence is not a linguistic issue, although it is an interesting psychological one. The linguistic point is that native speakers regularly and easily distinguish grammatical 
and ungrammatical sentences, even though they have never heard them.

To back up a little, the example illustrates an algorithm for generating and analyzing sentences. The argument is that native speakers of a natural language incorporate in 
their minds rules analogous to, but much more complicated than, the rules in the example. The basic point, though, is simple. There is a strong distinction between 
syntactic rules, which determine the structure of an utterance, and semantic rules, which connect the terms in the utterances to the world outside the language. Given 
this analysis, the distinction between open and closed word classes begins to make more sense. Open word classes contain semantic references to the external world. 
A functional language has to allow for open references in order to deal with new things. On the other hand, the set of words used solely to mark linguistic structures 
must be closed because adding a new function word would require a change in the grammatical rules of the language. Such changes do occur, and languages do 
change their function words, but this is a much slower process than the change in topics indicated by changes in nonfunction words. Natural language can be modified 
to talk about new things, without having to modify the structure of the language itself.

In the computational terms we used earlier, Chomsky and most modern linguists argue that the human mind, as a computing device, contains separate modules for 
carrying out syntactic and semantic analyses. This

  
Page 27

computational assumption makes the agrammatical speech of Broca's aphasia more sensible. Evidently, injury to the posterior temporal lobe can damage the 
syntactical analysis module. The same distinction has also motivated a much more recent, but clearly related finding. Electroencephalography (EEG) is a technique for 
recording the electrical activity in the brain using electrodes placed on the scalp. EEG analyses have shown that the brain produces one type of electrical pattern 
(Event­Related Potential, ERP) when a person hears a semantically anomalous sentence, such as "The senator lectured the pudding" and another type of ERP signal 
when the listener hears a syntactically anomalous sentence, such as "The senator lectured the boringly" (Osterhout & Holcomb, 1992). A computational­level theory of 
language was required in order to make sense of known neuroscience data (the pattern of deficit in Broca's aphasia) and to motivate further neuroscientific studies of 
language, such as the EEG research.

Language users do not just judge whether a string of words is well formed; they actually (although usually not consciously) determine interword relations. How else 
would we be able to distinguish between "John loves Mary" and "Mary loves John"? At least at present, there is little chance that we could study how this is done at 
the level of brain processes. However, these sorts of questions can be examined at the computational level. An example is uncovering the strategies that are used to 
parse and comprehend sentences.

Consider a person reading the sentence

(6) Sally found out the answer to the difficult physics problem was in the book.

The initial part of this sentence, "Sally found out the answer to the difficult physics problem," is itself a well­formed sentence with Sally as the subject, found out as the 
verb, and answer as the object. In the full sentence the embedded sentence, the "answer to the difficult physics problem was in the book," replaces "answer to the 
difficult physics problem" in the object position. How do readers or listeners distinguish between these options?

Garrett (1990) describes three possibilities. One is that the comprehender waits until the sentence is completed and then conducts a full

  
Page 28

analysis of his or her memory of what was said. This method is economical in information­processing terms but has the disadvantage of imposing a burden on short­
term memory. A second possibility is that the most likely syntactical structure is constructed, on a word­by­word basis. In this case recomputation is required if and 
only if unanticipated disambiguating information is developed. In example 6 the initial analysis would identify answer as the object of the verb, and recomputation 
would be required upon reading the second verb (was), which indicates a more complex structure. This method would be an economical strategy because sentences 
such as (6) are somewhat unusual. Most of the time a noun phrase immediately following a verb is the object of the verb. Finally, it is possible that when readers 
encounter the noun phrase the answer they initially begin constructing both syntactical analyses, in parallel. Erroneous or unlikely constructions are dropped when 
disambiguating information is encountered (the was in example 6) or when short­term memory is overloaded.

McDonald, Just, and Carpenter (1992) report a psychological study intended to discriminate among these alternatives. First, they classified participants as having low, 
medium, or high memory spans for reading, on the basis of a previously developed test of a person's ability to hold words in short­term memory while continuing to 
read or hear a sentence. The participants then read sentences in which the first section was ambiguous and the ambiguity was resolved in a later section. An example is

(7) The experienced soldiers warned about the dangers conducted the midnight raid.

In this sentence "The experienced soldiers warned" could mean either that the experienced soldiers warned someone or that the experienced soldiers were themselves 
warned, by some unspecified person. The phrase cannot be disambiguated until the second verb, conducted, is encountered. McDonald et al. found that people with 
high memory spans read the disambiguating part (conducted the midnight raid) relatively slowly and were likely to comprehend the sentence correctly. People with 
low memory span did not slow down while reading the disambiguating information and showed poor sentence comprehension. The authors concluded that readers 
with high memory span considered both interpreta­

  
Page 29

tions of soldiers warned and then selected the correct one after reading the rest of the sentence, whereas the low memory­span readers, who did not have sufficient 
memory capacity to carry forward two interpretations, considered only one, usually assuming that soldiers warned meant that the soldiers did the warning. Upon 
encountering the disambiguating information, the low memory­span readers did not realize that it could be used to disambiguate the earlier phrase, because at that 
point they were unaware that an ambiguity had occurred. Therefore they seem to have ignored the information in the final phrase and, as a result, to have made quite a 
few errors in comprehension.

I do not want to put the McDonald, Just, and Carpenter study forward as the final word on this topic. As Garrett (1990) points out, there are many models of 
sentence processing. Deciding between the evidence for them would take us too far afield. What we are more concerned with is the logic of the study. McDonald et 
al.'s work was defined purely at the computational level. Furthermore, the laboratory procedures they used did not mirror the normal way in which discourse occurs. 
They used the rapid single visual presentation (RSVP) procedure for presenting text, in which the words in a sentence are presented one at a time, on a computer 
screen. Disconnected sentences were presented, rather than coherent text. The dependent variables that were recorded, the time to read a word and the percentage 
of sentences correctly interpreted, are computational rather than biological variables. Finally, the concept of memory span is clearly a system architecture concept. 
McDonald et al. made no attempt to tie memory span while reading to any particular brain region or process. Instead they treated memory span as a functional 
capacity of the mind.

The vast majority of studies in psycholinguistics, and for that matter in cognitive psychology in general, are defined at the computational level. A computational model 
of the mind is defined, and an experimental paradigm is developed to evaluate that model. If the model accurately describes a system that exists in the human mind, 
orderly relationships will be found, as occurred for McDonald et al. Cognitive psychologists, including myself, believe that studies of this sort make a valuable 
contribution to our understanding of human cognition, even if the studies do depend upon observations of how people behave in an unnatural

  
Page 30

laboratory setting, and even if no attempt is made to tie the observations to brain processes.

Language Use at the Representational Level

Representational models deal with "the real world," the content of what people are thinking about rather than the brain processes or computational procedures they 
use to do the thinking. To illustrate, I will examine a bit of recent history.

In 1989 the Indian author Salman Rushdie published a novel called The Satanic Verses, an allegorical study of Islamic traditions. One passage in the novel infuriated 
Islamic clerics, to the point that the Ayatollah Ruholla Khomeini, then probably the most prominent Islamic theologian in the world, 9  urged Muslims to kill Rushdie. 
The Ayatollah meant his threat to be taken literally, and it was. Rushdie went into hiding and as of this writing (March, 1998) he remains there, making only a very few 
public appearances. His books are banned in many Islamic countries, and some distributors of The Satanic Verses have been killed.

What did Rushdie say that raised such an uproar? The offending passage is an interchange between one of the novelist's protagonists, who represents the prophet 
Mohammed, and the angel Gabriel. In the novel Gabriel asserts that the entire Koran was dictated by God (Allah), including a section that is known as the Satanic 
verses. According to Islamic tradition, these verses, which are not part of the Koran, were actually dictated by Satan, who fooled Mohammed. Subsequently, Gabriel 
upbraided Mohammed and gave him the true word of Allah, which is now in the Koran. The Ayatollah and other fundamentalists concluded that Rushdie had 
questioned the authenticity of the Koran, which is an act of blasphemy (Pipes, 1990). To a non­Islamic, however, the book is merely an allegory and the offending 
passages well within the bounds of normal literary license.

Similar differences in reactions to the written word can occur in the West. When commenting on the Rushdie incident, former U.S. president Jimmy Carter observed 
that The Life of Brian, a 1970s movie, was deeply offensive to sincere Christians (including President Carter) because it was a crude and unsympathetic spoof of the 
life of Jesus. The same movie

  
Page 31

had something of a cult following among some intellectuals, who decried attempts to drive it out of theaters in the United States.

The different reactions people have to The Satanic Verses and The Life of Brian cannot be understood on linguistic grounds alone. A person's reaction to these 
accounts depends on the ideas represented in the text, not their linguistic form, and the way in which these ideas fit into a person's belief system. The psychological 
action, if you will, is neither at the brain process or computational level of thought. The interesting relationships are at the representational level.

No one would argue this point. Clearly, what a person makes of a text depends on what that person believes. But can we say anything more general? It turns out that 
we can but that to do so we must turn from a purely representational discussion to a discussion at the computational level. To illustrate, it will be a good idea to move 
away from such highly charged situations as the Salman Rushdie case and to concentrate on some more prosaic examples of language comprehension.

Spillich, Vesonder, Chiesi, and Voss (1979) had people listen to a "radio broadcast" of a fictitious baseball game. The listeners then answered questions about the 
broadcast. Spillich et al. found that people who were familiar with baseball (fans) remembered game­relevant events, such as the number of men on base when a 
particular play was made. People who were not baseball fans remembered as much information as the fans did, but they did not remember as much game­relevant 
information and they remembered more game­irrelevant statements, such as a comment about the weather. The fans focused their attention on what they thought was 
important, whereas the nonfans did not have any way to focus attention.

Lawrence (1986) looked at comprehension in a different setting. She studied the decisions made by sentencing magistrates in Australian courts. (These magistrates 
hear minor criminal cases, roughly equivalent to the American concept of a misdemeanor.) Williams found that the magistrates would first make a determination of the 
type of case in front of them in somewhat nonlegal terms. For instance, in shoplifting cases they would focus on whether the perpetrator was best described as simply 
greedy; acting in order to fulfill a real need, such as obtaining food for children; or behaving compulsively, without any need for the goods

  
Page 32

taken. This determination was made from a number of cues, such as the type of goods taken and the person's apparent need for these goods. Stealing jewelry would 
be seen as an indication of greediness, food as an indication of need, and items of little value as an indication of confusion. Once magistrates had determined the type 
of cases they (thought they) were dealing with they proceeded to develop appropriate sentences, which could vary from fines to references to social welfare agencies.

This type of behavior exhibited by the fans and the magistrates, which has been observed in many situations, is usually explained by recourse to the concept of a 
schema. A schema is seen as a sort of "fill­in­the­blanks" form that is maintained in the mind and that is called up to handle particular situations. A baseball schema, for 
instance, directs one's attention to events that are appropriate for a baseball game. A greedy shoplifter schema directs a magistrate's attention to some facts of a 
shoplifting case and not others. According to schema theory, most understanding of text involves recognizing what schema is appropriate and then fitting the text to the 
schema. In order to understand how a person is going to react to a text, you have to know what schema they have and the situations in which they believe each 
schema is appropriate.

Although not all people who study comprehension utilize the concept of a schema, all agree that texts are interpreted in the light of prior knowledge. Walter Kintsch's 
(1988, 1994; van Dijk & Kintsch, 1983) work on text comprehension provides a good example of this sort of reasoning. Kintsch argues for two separate stages in 
text understanding. In the first stage, the sentences in a text are translated into logical propositions and the logical propositions are knit together to form a model of the 
text. The text model is then formed into a situation model, which represents the comprehender's understanding of what is going on. The idea can be grasped by the 
following example, which is mine rather than Kintsch's but has been chosen to illustrate his ideas.

The text is an adaptation of an "Uncle Remus" children's story. The bear and the fox have just caught Brer Rabbit, who says,

(8) Please, please, don't throw me in the briar patch.

  
Page 33

Kintsch assumes that an unspecified sentence processor can translate this sentence into a mental representation consisting of logical propositions. If the propositions 
are written in the form "Verb (Subject, Object, Indirect Object)," sentence 8 becomes

(9) Request (Rabbit, Not (throw (Bear, Rabbit, in briar patch)), Bear).

Previous sentence analyses will have produced a text representation that might look like this:

(10) Cause (Catch (Bear, Rabbit), Frighten (Rabbit))

The rabbit is frightened because the bear caught him. The new sentence augments this by saying that because the rabbit is frightened, he asks not to be thrown into the 
briar patch,

(11) Cause (Frighten (Rabbit), Request (Rabbit, Not (throw (Bear, Rabbit, in briar patch)) Bear)).

This interpretation is consistent with what has been said in the text. In fact, though, a person experienced at listening to Uncle Remus stories will know that the rabbit 
lives in the briar patch and that the bear is not exactly a rocket scientist. Combining the expert knowledge with the knowledge presented in the text produces a 
situational model that is quite different from (11). It is

(12) Cause ((Desire (Rabbit, escape)) AND (Believe (Rabbit, stupid (Bear))) AND (Wish (Bear, harm (Rabbit))), Request (Rabbit, Not (throw (Bear, Rabbit, in 
briar patch)), Bear)).

The rabbit requests not to be thrown into the briar patch because he believes that the bear wishes him harm and that the bear is stupid enough to think that he (the 
rabbit) will be harmed by being thrown into the briar patch.

Kintsch has developed these ideas into an elaborate description of how situational models can be built up from texts. Once again, it would not be appropriate to go 
into the details here. What is important is the relation between Kintsch's work and representational­level models. Kintsch's theory of comprehension is a 
computational­level explanation that is intended to apply to a number of different situations at the representational

  
Page 34

level. For instance, in various applications he has considered how people understand fables, such as the preceding one, newspapers and elementary science texts. His 
model provides a common psychological analysis, at the computational level, for situations that from the viewpoint of an anthropologist are quite different from each 
other at the representational level.

Kintsch's work also illustrates the point made earlier about studying manageable systems. Kintsch was interested in how the information presented in individual 
sentences is incorporated into a person's understanding of a text. He acknowledges that at a lower (but still computational) level, text understanding must depend on 
lexical and sentence comprehension processes, but he does not depend upon their details for his analyses. Instead, he simply assumes that people somehow make the 
transition from the surface form of sentences to logical propositions. He then goes on to explain how we fit together separate logical propositions in order to develop a 
coherent representation of what a text really means.

A Summary of the Three Levels of Cognitive Theories

Social and behavioral scientists are often accused of simply proving the obvious. At other times they are accused of obscuring the obvious. Suppose that some 
cognitive psychologists were attending a cocktail party, and were asked to explain what they do. What would be the reaction to cognitive psychologists who worked 
at the neuroscience, computational, or representational levels of explanation?

The cognitive neuroscientist would have little trouble commanding respect. When a cognitive neuroscientist says that he or she is trying to find out where in the brain 
we analyze sentences, most people at a cocktail party will accept this as a reasonable goal. Studies that relate behavior to biological processes are "normal science" in 
the layperson's eyes. Although the lay public may not follow the technical details, the worthiness of the pursuit will not be challenged. Representational­level studies 
seem to smack more of social science or education. If a social scientist at a cocktail party says that he or she is studying the relation between, say, religious beliefs and 
attitudes toward social welfare programs, the other people at the cocktail party will understand what has been said, although

  
Page 35

they may question whether or not the answer isn't obvious. People think that their personal knowledge gives them some expertise at the representational level, which it 
may, but they acknowledge that they have very little idea of the internal processes of their brains.

Investigators whose work depends solely on computational­level concepts are more likely to be seen as arcane. It seems that theory is being piled on theory, without 
any tie to either biological concepts or to the realities of thinking in the world. Instead, the professors seem to be making up a world of laboratory­bound thought and 
then showing that they can find regularities of thinking within this world. This may be so, but who cares?

My own answer should be clear by now. Making a direct link between the neurosciences and representational­level thought would require linking brain processes to 
the content of thought, rather than to computationally defined acts of thinking. There is no prospect of doing this at the present moment, simply because we do not 
have the technology. I am not sure that even if we did have the technology, we could ever understand the results. The explanation that links the events in a lawyer's 
brain to the convolutions of a lawyer's argument might be so complex that scientists, who are human beings, could not understand it. Therefore we need computational 
theories, simply so that we can manage the data.

Arguments against the Three­Level Approach to Cognition

The argument for a three­level approach to cognition is not universally accepted. Not surprisingly, the strongest objections are directed at the computational level. 
Biological structures and thoughts about concrete objects are real; they make contact with the external world.The computational level of mental action is something 
that cognitive psychologists have made up. Is it really needed? Although I think it is, the arguments that it is not are worth considering.

Replacing Computational Concepts with Neuroscience Concepts

Probably the most publicized argument against the use of computational­level models comes from those interested in cognitive neurosciences. Once again we may 
quote Crick. According to him, the ''astonishing

  
Page 36

hypothesis" is that consciousness and all the thinking that goes with it are the product of neurons, and therefore the primary business of the scientific study of thought 
has to be the reduction of cognitive behavior to neurology. He says, "One may conclude, then, that to understand the various forms of consciousness we first need to 
know their neural correlates" (Crick, 1994, p. 10).

Crick is not opposed to studies of computational­level concepts of cognition when they are linked to physiological investigations. Indeed, he quotes with approval 
several such studies. It does seem reasonable to conclude that Crick would assign very low priority to studies of higher­order thinking, such as problem solving in 
chess and algebra, that are undoubtedly produced by brain action, but by such a complicated path that we cannot hope to trace it out at any time in the near future. 
Consistent with this view, Crick spends most of the rest of his book "explaining consciousness" by concentrating on studies of the neurological processes and 
anatomical structures involved in visual perception, on the grounds that this is one of the few situations where we have enough knowledge of the underlying biology to 
have a chance of understanding how we become aware of something. The message that cognitive psychology should stand on the neurosciences is clear, indeed.

The problem with this approach is that studies at the biological level cannot be interpreted without some sort of theory of cognition at the information­processing level. 
I do not think Crick would object to this statement, as long as the tie to the neurosciences is clear. What is further from his thinking is the argument that we need purely 
computational­level concepts because we simply could not make the leap from neurosciences to representational­level thinking. There is a counterargument to to this 
idea.

Advocates of computational­level models are careful to dissociate themselves from the idea that the computer, as a physical device, is being used as a model for the 
brain. Nevertheless, there is no doubt that the design of computers has provided a metaphor for many of the cognitive models studied since the 1950s. From time to 
time there have been suggestions that rather than use a computing metaphor psychologists should try to develop computational models using primitive elements that 
have some biological justification. This idea was actually put forward before

  
Page 37

the cognitive revolution began, when McCulloch and Pitts (1943) showed that the logic circuits required in computing machines could be constructed from elements 
that behaved like idealized neurons. The idea of using a network of neuronlike elements to mimic human perceptions and cognition was elaborated upon by a number 
of authors during the 1950s and 1960s, but they were clearly not in the mainstream of the 1950 to 1960 cognitive revolution. In the 1980s and 1990s the idea 
resurfaced, under the rubric connectionism. Some people (e.g., Rumelhart, 1989) argue that connectionism will provide the language that can tie molecular 
neuroscience findings about brain mechanisms to molar computational models of high­level thinking.

The basic idea of connectionism is that thinking is to be mimicked by computations in a network of neuronlike elements. Figure 1.2 shows one such element: a 
threshold detector. The threshold detector receives multiple inputs from other elements, weights them, and transmits a signal to other threshold detector units if the 
weighted sum of the inputs exceeds the unit's threshold level. Figure 1.3 shows a network of such elements that can compute the function Exclusive Or (XOR). This 
example is important because it can be shown that any logical function can be computed by combining the logical function NOT and XOR. Since networks can 
compute NOT and XOR, there must exist neural­like networks for all the computable functions.

What a network computes will be a function of the number of nodes and the weights that establish the strength of connections between each pair of nodes. One of the 
more interesting ideas of connectionism is the

Figure 1.2
A threshold detection unit. The unit receives input [x(i) = 1 or 0] from the elements 
on the left and computes a weighted sum. The unit outputs a 1 if 
the weighted sum exceeds a threshold, f. The output is 0 otherwise.

  
Page 38

All units are linear units with a threshold of zero
Figure 1.3
A network of threshold detection elements (with threshold 0) that can compute 
the logical function Exclusive Or. The network consists of two input units, two 
interior (hidden) units, and an output unit. The output unit will register a 1 if 
and only if one, but not both, of the input units are set to 1. All units are linear units with a 
threshold of zero.

notion of a trainable network. A trainable network is constructed by assigning the initial weights arbitrarily. An example stimulus is then shown to the network, and its 
response recorded. If the desired response is obtained, nothing is done. If the desired response is not obtained, a learning algorithm is applied to adjust the weights in 
a manner that makes it more likely that the desired response will be obtained if the stimulus is represented. This procedure can be repeated over and over again until 
the desired level of performance is obtained. When networks are used to simulate human performance, the "desired level" is determined by a comparison to human 
performance. For instance, in principle it would be possible to train a network to agree with a person's classification of photographs of scenes as being "attractive" or 
"unattractive.'' Once this was done, you could argue that the resulting network was a theory of the person's aesthetic judgments. Furthermore, if you were willing to 
argue that the individual nodes in the network were really analogous to neurons, and that the learning mechanism was biologically justifiable, you could claim that 
higher­order perception had been derived from principles of neuroscience.

  
Page 39

Proponents of connectionist approaches believe that some form of connectionism will provide the biologically justifiable language we need to link the neurosciences to 
models of higher­order cognition. Their enthusiasm cannot be gainsaid, for connectionist models have been developed to mimic very high levels of cognition indeed. 
For instance, Thagard (1990) has reported a connectionist model that mimicked the tactical decision making of a naval commander during a battle, and Holyoak and 
Thagard (1989) have reported connectionist simulations of analogical reasoning. At a lower level, connectionist models have been used to model the computations 
performed by specific neural systems or that are required for very simple learning situations (Hawkins & Bower, 1989). A certain amount of enthusiasm for the 
approach is clearly in order. On the optimistic side, connectionism might provide the language needed to connect low­order and high­order cognition.

Nevertheless, caution is also in order. Connectionist modeling has, at present, three drawbacks. In order to develop and understand these models, a good deal of 
mathematical sophistication is required. One observer (himself a well­known mathematical psychologist) has remarked that if connectionism becomes the dominant 
mode of theorizing, cognitive psychologists will have to take tensor calculus or early retirement (Hintzman, 1990). This is not an idle threat. Since the 1970s, 
mathematical training has dropped out of many graduate psychology programs, and if connectionism becomes the dominant mode for thinking about thinking, it is 
entirely possible that conventional psychologists will have to yield the field to cognitive neuroscientists. Although this change might create an employment problem for 
psychologists, it would not necessarily impede our development of better theories of thought.

Two related problems are more serious. When connectionist models are used to simulate "lower­order" thinking, such as classical conditioning in animals, the 
connection between the models and realistic neuroscience is fairly direct. The connection becomes more tenuous when the models are applied to higher­order thought, 
such as analogical reasoning or human memory. For instance, a class of connectionist models known as Hopfield networks can simulate some interesting phenomenon 
associated with the formation of abstractions, such as the development of a general concept of dog given experience with specific examples of dogs.

  
Page 40

Hopfield networks require symmetric connections between elements, so if element A feeds into element B, element B feeds back into element A (Hertz, Krogh, & 
Palmer, 1991). Crick (1994) points out that the nervous system simply is not built that way. This contradiction is not necessarily damning. To return to a point made 
earlier, all science involves the construction and study of ideal systems that do not exactly mirror the part of the world we are trying to understand. We have to 
remember that connectionist networks bear a loose resemblance to a biological network and that we are not sure how tight the resemblance must be to produce a 
realistic model of thought.

Finally, connectionist networks do provide one truly unique puzzle for those interested in the logic of scientific explanations. Suppose that a learning procedure is used 
to construct a connectionist network that mimics some interesting human behavior, such as scene classification. If the network contains more than about twenty 
elements, the connections may be so convoluted that a human, looking at the network, cannot tell how it computes whatever function it is computing. The theorist then 
faces a dilemma. Because the network mimics human behavior, the theorist can be sure that the right function is being computed. Because the theorist understands the 
learning algorithm used to construct the network, the theorist understands how the network came to be. However, the theorist does not know how the network 
computes whatever it is computing. Has this exercise in modeling increased our understanding of the original human behavior?

The Situated Cognition Objection to the Three­Level View

Having stated the case for making psychology derivative of the neurosciences, let us turn the argument around. Is it possible to study cognition solely by studying 
thought at the representational level? A more extensive quote from Simon sets the stage:
I have discussed the organization of the mind without saying anything about the structure of the brain....

The main reason for this disembodiment of mind is of course the thesis that I have just been discussing. The difference between the hardware of a computer and the "hardware" of 
the brain has not prevented computers from simulating a wide spectrum of kinds of human thinking ... just because both computer and

  
Page 41

brain, when engaged in thought, are adaptive systems that seek to mold themselves to the shape of the task environment. (Simon, 1981, p. 97)

This passage contains three important ideas. The first is that the mind can be studied without studying the brain, which is precisely the opposite conclusion that Crick 
reached. The second is that computer simulation has produced adequate models of the mind. This claim is empirical and has to be examined on a case­by­case basis. 
The third, which is our immediate concern, is that the reason different physical devices can be cognitive models of each other is that they must adapt to similar 
environments.

As has been noted earlier, Simon has argued that the human mind is, at the information­processing level, a rather simple device and that its apparent complexity is 
produced by the complexity of its environment. It follows from this argument that in order to reveal the general computational processes the mind uses, you ought to 
study relatively simple cognitive situations that will reveal those processes. In general, that is what cognitive psychologists have done. They have developed a large 
number of paradigms that are supposed to isolate pure cases of cognitive actions, and then they have performed laboratory studies to develop laws of behavior in 
those paradigms. The hope is that the results will generalize to situations outside the laboratory. This tradition dates back to Hermann Ebbinghaus's development of 
nonsense syllable learning in the nineteenth century and has since led to literally thousands of studies of cognition in controlled environments.

Some people think this emphasis on pure principles of thought throws the baby out with the bathwater. In the mid­1980s a number of scholars developed a different 
approach, called the study of situated action. There seem to have been multiple sources for the development of the situated action approach to cognition. Frequent 
citations are made to earlier work by J. J. Gibson (1950, 1979), who argued that perception was guided by direct responses to complex properties in the visual 
world, rather than being constructed from the sensation of elementary physical properties of the light falling on the retina. To me, though, the analogies seem strained, 
and I must admit that I find some of Gibson's own comments opaque. One thing is clear, though. In their everyday lives people display reasoning abilities that go well 
beyond what one would expect of them, based upon formal examinations of these same abilities. Greeno (1989)

  
Page 42

offers an elegant example. He described a situation in which a member of a weight watchers' group was told that the normal recipe for a dessert calls for 3/4 pound of 
cottage cheese but that the weight watcher recipe calls for 2/3 of the normal recipe's amount. How much cheese is required? It is somewhat discouraging, but most 
adults with high school educations have considerable difficulty with this sort of problem, when it is posed as one in fractional arithmetic. The weight watcher simply 
avoided arithmetic. She put a pound of cottage cheese on the table, formed it into a disk, cut the disk into quarters, separated one­quarter out so that three­quarters 
remained, and then took two of the remaining quarters. This is only one of many examples that can be offered to show that people who "can't do math" formally are 
quite capable of developing localized computing methods that work in the store and on the job (Lave, 1988; Scribner, 1984).

The advocates of situated cognition argue that these examples show that most thinking depends on specialized responses to environmental demands. The situationist 
claims that people make opportunistic use of any locally available computing aids, such as the way the weight watcher used a disk of cheese to avoid applying abstract 
arithmetical procedures. What does this mean for a theory of cognition?

Advocates of situated cognition display little concern for biological issues because they regard the (normal) human brain as being sufficiently malleable to deal with any 
cultural situation that exists. Here they have a point: if humans cannot do a task then human cultures do not evolve to require it. However, they go further by arguing 
that cognition is based on a collection of special problem­solving methods that are defined at the representational level, rather than on the translation of particular 
situations into instantiations of general classes of problems and then applying problem­solving rules associated with the general class. Of course, as Greeno clearly 
points out, it is still true that the brain represents every situation and that thinking is a manipulation of the symbolic representation inside the head. Such manipulations 
are limited by the information­processing characteristics of the brain, but, as an (often unstated) assumption, advocates of situated cognition believe that this is not a 
tight limitation. In the situated cognition view the brain provides tools for the mind, such as pattern recognition and short­term memory

  
Page 43

capacities, but it does not provide instructions for using them. Instead people, through experience, develop instructions for using their mental tools to solve specific 
problems.

It follows that if you want to study thinking at the representational level you must embark on an anthropological­educational program, developing microtheories of 
cognition in a particular situation. The idea that chess playing can play a role in cognitive psychology analogous to the role of fruit flies in genetics is rejected; if you 
study chess, you learn how people play chess. Going further, advocates of situated cognition believe that it is futile to search for any experimental paradigm that could 
play the role of Drosophila. Cognition is not like genetics, so cognitive psychologists cannot have fruit flies.

This argument has an important practical consequence. If advocates of situated cognition are correct, general thinking skills do not exist. Pushing this position to its 
extreme would have profound consequences for the educational establishment. Society's commitment to school­based education assumes the closely related premises 
that general­thinking skills can be taught out of the context in which they are to be used and that information acquired in school contexts will be translated to 
applications outside the schools. To the extent that cognition must be situated, learning to think cannot be so dissociated from practice.

What Might Future Theories Look Like?

Cognitive psychologists seem to be torn between the views of people such as Crick, who would replace them with neuroscientists, and those such as Greeno, who 
would replace them with cognitive anthropologists. I would like to argue for an intermediate position.

In discussing the role of information­processing theories of thought it is necessary to distinguish between architectural­level theories and computational­level theories. 
Architectural­level theories deal with static processes of the mind, such as the functional capacities of immediate and long­term memory. I have argued earlier that this 
sort of theory is required in order to guide neuroscientific investigations. Therefore, this work has to be continued, but it is only sensible to link it closely to the 
neurosciences.

  
Page 44

The issues posed by studies intended to reveal the algorithms of thought are more difficult to resolve. Newell (1980) is undoubtedly correct in saying that the mind is a 
physical symbol system, and it is appropriate to ask what programs this physical symbol system uses. How general these programs are is an empirical question. Early 
in the cognitive revolution, Newell and Simon (1972) proposed a "general problem­solving" program as a model of human thought in many different areas. This 
approach may have been overly optimistic. On the other hand, I do not think that we have unique problem­solving procedures for every problem we encounter.

What are the implications for a research agenda? Perhaps, most important, I suggest a certain amount of healthy skepticism about the generality of findings based on 
studies of paradigms that have been designed to reveal the key operations of an entirely algorithmic theory. Board games such as chess and checkers, for instance, do 
represent pure cases of zero­sum games, 10 in which the consequence of any course of action could, in principle, be determined in advance if one had sufficient 
computing power. Therefore chess, checkers, and similar games provide interesting forums for investigating certain types of computational algorithms for decision 
making. The claim that such situations are representative of normal human decision making is, to put it mildly, questionable. Findings about how people play chess (or 
solve the "missionaries and cannibal" problem, or any of a number of other popular paradigms in cognitive psychology) cannot automatically be generalized to other 
situations.

On the other hand, when a connection can be made between a laboratory paradigm and ecologically valid applications of thought, then the laboratory paradigm is 
something to be treasured and studied. The connection must be made by verifiable, empirically supported theories of why the laboratory task mimics the 
extralaboratory situation. I am not inveighing against laboratory studies of thought. I am inveighing against the study of paradigms that are used solely because traditions 
(and powerful advocates) have encouraged their use in the past.

Theories of thought at different levels have to be connected to each other. The brain provides the biological capacities that determine the mind's cognitive architecture. 
The architecture, in turn, provides the functional tools that experience (and occasionally biology) organize into sym­

  
Page 45

bolic problem­solving programs, and these programs operate upon our representations of external problems. Each level of thought constrains the other; mental 
architecture has to have a biological basis, our problem­solving procedures cannot demand functional capacities that people do not have, and, somehow, our 
problem­solving procedures must be sufficient to solve the problems that people demonstrably do solve. So long as we keep these connections in mind, we can study 
human thought at any one of the three levels. When cognitive psychologists begin to develop theories and procedures for testing theories that operate at one level of 
thought while ignoring the level next door, the psychologists are on the road, not to disaster, but to trivialization.

Notes

This chapter is an abridgement of the introductory chapter in my forthcoming book, Thoughts on Thought.

1. In the experiment, people drank tonic water with a very small amount of gin floating on top of it. Thus they smelled the alcohol, although they ingested a tiny amount.

2. George et al. conclude that it is not.

3. Following mathematical developments in the 1980s, some mathematicians and philosophers have argued that certain systems are chaotic and that prediction of such 
systems is inherently impossible (Gleick, 1988). An extended discussion of this concept is far beyond the scope of this book, but I will state the idea and its problems 
briefly. The classic notion of a closed system is that the location of a system (defined by the simultaneous values of all of its variables) is a point on a fixed time line. 
Thus if we knew the location X(t) at some time t we should be able to predict the location X(t') = f(X, d) at some time t' = t + d in the future. The problem is that in 
any actual situation the determination of X(t) will contain some error, e, so if we record X(t) when the system is actually in state X(t) + d(t), d(t) takes on value x with 
probability p(x|e), where p is a probability function with dispersion parameter e. (For instance, if p were the normal function, e would be the standard deviation.) 
Virtually all measurement procedures in the sciences assume that the system's equation, f(X, d), is such that the smaller the error in location is at time t the smaller the 
error of prediction is at time t + d. That is, the difference between f(X, d) and f(X + e, d) should be a monotonically increasing function of e. In the 1980s 
mathematicians discovered that there are some functions where this is not true. These are called chaotic functions. It is impossible to predict the future location of a 
chaotic system (one for which f is a chaotic function) if there is any error of measurement. Furthermore, we know, from Heisenberg's principle of uncertainty, that at 
the subatomic level it

  
Page 46

is fundamentally impossible to measure location and velocity without error. Combining these facts, some observers have argued that a materialistic approach to the 
study of the mind is fundamentally impossible (Penrose, 1991). Echoing a comment by Churchill & Sejnowski (1992, p. 2), I know of no even moderately 
convincing evidence that this is a serious concern.

4. This estimate is based on the facts that there are 106 lines of code in the program and 1011 neurons in the brain. However, it is not clear how to compare individual 
neurons to individual lines of code in computer programs. In mathematical terms, neurons map vectors representing their input into a single binary digit, representing 
the state of electrical transmission along the axon. A line of computer code can represent a more complicated mathematical function. On the other hand, neurons also 
have a storage function, in the structure of the membrane, and the communication paths between neurons are much more complicated than data transmission channels 
in a computer.

5. The last example, incidentally, illustrates the difference between artificial intelligence and simulation of cognitive processes. An artificial intelligence robot should 
detect all potentially explosive situations; a psychological simulation robot should succeed or fail in those situations where humans succeed or fail.

6. There are noncomputable functions, but it is not clear that their existence has any relevance at all for psychology. A classic one is the so­called Cretan paradox. A 
Cretan approaches a Greek and says, "I am lying." Should the Greek believe the Cretan? An omniscient statement evaluator would map from the set C of all 
statements that the Cretan is capable of making into the set {1, 0}, where 1 means "the statement is true" and 0 means "the statement is false." Therefore the function is 
definable. It is not computable, because if the statement is false it is true, and if it is true it is false, so an algorithm would flip back and forth between evaluations of true 
and false. Occasionally it is claimed that because there are functions that humans can define but computers cannot solve, the attempt to model human thinking by 
machines is inherently faulted because the machines are limited to the computable functions. But aren't humans similarly limited?

7. Users of desktop computers may claim that my description cannot be right, because if you try to print while doing word processing or spreadsheet computing the 
machine appears to hang up during printing. "Hanging up" means that the computer is unresponsive to input from the keyboard. There is a resource conflict, but not 
between the central processor of the computer and the printer controller. In many of the systems marketed in the mid­1990s some of the same circuits were used by 
the printer controller, the module that read input from the keyboard, and the module that controlled the display unit.

How much a computing system can benefit from interleaving depends upon the nature of the computations and printing to be done. If the time required to compute 
a section report is exactly the same as the time required to print it, the interleaved algorithm will take a little more than half the time the serial algorithm does. 
Savings are reduced if there is an imbalance, with the effect that the computing unit is sometimes idle while printing is being conducted or vice versa.

  
Page 47

8. The operation is performed in order to limit the spread of epileptic seizures from one side of the brain to the other.

9. The Ayatollah's writings had sparked the Iranian revolution. At the time the Ayatollah, though not part of the government, was the de facto ruler of Iran.

10. These are games in which wins for one player exactly mirror losses for the other.

References

Baars, B. J. (1986). The cognitive revolution in psychology. New York: Guilford.

Bechtel, W. (1988). Philosophy of mind: An overview for cognitive science. Hillsdale, NJ: Erlbaum.

Boorstin, D. J. (1983). The discoverers. New York: Random House.

Chomsky, N. (1957). Syntactic structures. The Hague, Netherlands: Mouton.

Chomsky, N. (1963). Formal properties of grammars. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 3, pp. 323–
418). New York: Wiley. Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA. MIT Press.

Crick, F. (1994). The astonishing hypothesis. New York: Scribner.

Dennett, D. C. (1992). Consciousness explained. Boston: Little, Brown.

Descartes. R. (1970) Discourse on Method. In E. S. Haldane & G. R. T. Brown (Eds.), The philosophical works of Descartes (Vol. 1, pp. 178–291). Cambridge, 
England: Cambridge University Press. (Original work published 1637.)

Garrett, M. F. (1990). Sentence processing. In D. N. Osherson & H. Lasnik (Eds.), Language: An invitation to cognitive science (Vol. 1, pp. 135–175). 
Cambridge, MA: MIT Press.

Gazzaniga, M. (1985). The social brain. New York: Basic Books.

George, W. H., Gournic, S. J. & McAfee, M. P. (1988). Perceptions of postdrinking female sexuality: Effects of gender, beverage choice, and drink payment. 
Journal of Applied Social Psychology, 15, 1295–1317.

George, W. H., & Norris, J. (1991). Alcohol, Disinhibition, Sexual Arousal, and Deviant Sexual Behavior. Alcohol Health & Research World, 15, 133–138.

Gibson, J. J. (1950). The perception of the visual world. Boston: Houghton Mifflin.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

Gleick, J. (1988). Chaos: Making a new science. New York: Penguin.

Greeno, J. G. (1989). Situations, models, and generative knowledge. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of 
Herbert A. Simon (pp. 285–318). Hillsdale, NJ: Erlbaum.

  
Page 48

Hawkins, R. D., & Bower, G. H. (1989). Computational models of learning in simple neural systems. San Diego, CA: Academic Press.

Hertz, J., Krogh, A. & Palmer, R. G. (1991). Introduction to the theory of neural computation. Redwood City, CA: Addison­Wesley.

Hintzman, D. L. (1990). Human learning and memory: Connections and dissociations. Annual Review of Psychology, 41, 109–139.

Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive Science, 13, 295–355.

Hunt, E. Thoughts on Thought. Forthcoming.

Kintsch, W. (1988). The role of knowledge in discourse comprehension: A Constructionist­integration model. Psychological Review, 95, 163–182.

Kintsch, W. (1994). Text comprehension, memory, and learning. American Psychologist, 49, 294–303.

Krause, L. M. (1995). The physics of Star Trek. New York: Basic Books.

Lave, J. (1988). Cognition in practice. Cambridge, England: Cambridge University Press.

Lawrence, J. A. (1986). Expertise on the bench: Modeling magistrates' judicial decision making. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of 
expertise (pp. 229–259) Hillsdale, N.J.: L. Erlbaum Associates.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous action. Bulletin of Mathematical Biophysics, 5, 115–133.

McDonald, M. C., Just, M. A., & Carpenter, P. A. (1992). Working memory constraints on the processing of syntactic ambiguity. Cognitive Psychology, 24, 56–
98.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135–183.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice­Hall.

Osterhout, L., & Holcomb P. J. (1992). Event­related brain potentials elicited by syntactic anomaly. Journal of Memory and Language, 31, 785–806.

Penrose, R. (1991). The emperor's new mind: Concerning computers, minds, and the laws of physics. Oxford, England: Oxford University Press.

Pipes, D. (1990). The Rushdie affair: The novel, the Ayatollah, and the West. New York: Carol.

Posner, M. I., & Raichle, M. E. (1994). Images of mind. San Francisco: Freeman.

Pylyshyn, Z. W. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge, MA: MIT Press.

Pylyshyn, Z. W. (1989). Computing in Cognitive Science. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 51–91). Cambridge, MA: MIT Press.

Rumelhart, D. E. (1989). The architecture of the mind: A connectionist approach. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 133–160). 
Cambridge, MA: MIT Press.

  
Page 49

Scribner, S. (1984). Studying working intelligence. In B. Rogoff & J. Lave (Eds.), Everyday cognition: Its development in social context (pp. 9–40). Cambridge, 
MA: Harvard University Press.

Simon, H. A. (1981). The sciences of the artificial (2nd ed.). Cambridge, MA: MIT Press.

Sperber, D., & Wilson, D. (1986). Relevance: Communication and cognition. London: Basil Blackwell.

Spillich, G. J., Vesonder, G. T., Chiesi, H. L., & Voss, J. L. (1979). Text processing of domain related information for individuals with high and low domain 
knowledge. Journal of Verbal Learning and Verbal Behavior, 18, 275–290.

Thagard, P. (1990). Explanatory coherence and naturalistic decision making. Proceedings of the Twelfth Annual Conference of the Cognitive Science Society (p. 
1064). Hillsdale, NJ: Erlbaum.

Thompson, R. F. (1995). The brain: A neuroscience primer. New York: Freeman.

van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic Press.

Zurif, E. B. (1990). Language and the brain. In D. N. Osherson & H. Lasnik (Eds.), Language: An invitation to cognitive science. Cambridge, MA: MIT Press.

  
Page 51

2
A Dialectical Basis for Understanding the Study of Cognition
Robert J. Sternberg

How does a student of Spanish learn that te amo means ''I love you" in Spanish? It depends, of course, on whom you ask. At one time, many psychologists might 
have said that it was by being rewarded, or reinforced, for making the right connection (and it is easy enough to think of a variety of ways in which such rewards might 
be forthcoming). Some psychologists would still take this point of view. Today, more psychologists might say that it is by having a propositional network that has in the 
past represented the idea of "I love you" in terms of those English words at a node within the propositional network and that now incorporates te amo into this node. 
Other contemporary psychologists might view the information as being encoded into a connection between two nodes, rather than at a node. And still other 
psychologists might reject all these explanations, arguing that we learn what the phrase means when we engage in the activity represented by the phrase.

The way we attempt to understand concepts (such as te amo), interpret contemporary ideas, and determine what seems reasonable (or unreasonable) about these 
concepts is shaped by our contemporary context of ideas (our Zeitgeist) and by the past ideas that have led up to the present ones. Today, we might consider many 
psychological ideas that were proposed recently to be outrageous, many other ideas proposed millennia ago to be reasonable, and still other intervening ideas to be 
surprising but appealing in some ways. This introductory chapter attempts to provide both the historical and the more contemporary context for many of the current 
perspectives in the study of the nature of cognition and to discuss how these perspectives have come and gone through a

  
Page 52

process of dialectical evolution (Kalmar & Sternberg, 1988; Sternberg, 1995, 1996).

First, I will discuss some of the ideas that were historical precursors to the study of cognition as a discipline. After discussing these early roots, I turn to some major 
schools of thought in the history of modern cognitive theory and research.

The Dialectical Progression of Ideas

Much of psychological thinking about cognition or anything proceeds in cycles, spiraling through the centuries of human thought. Philosophers, psychologists, and other 
people may propose and believe strongly in one view for a while (a thesis); then a contrasting view comes to light (an antithesis); and after a while, the most attractive 
or reasonable elements in each are melded into a new view (a synthesis), which then gains acceptance. This new integrated view then serves as the springboard 
(thesis) for a new contrasting view (antithesis) and eventually yet another melding (synthesis) of views. This process of evolving ideas through theses, antitheses, and 
syntheses was first termed a dialectic by Georg Hegel (1807/1931).

Dialectical progression depends on having a critical tradition that allows current beliefs (theses) to be challenged by alternative, contrasting, and sometimes even 
radically divergent views (antitheses), which may then lead to the origination of new ideas based on the old (syntheses). Western critical tradition is often traced back 
to the Greek philosopher Thales (624–545 B.C.), who invited his students to improve on his thinking, a stance not easy for any teacher to take. In addition, Thales did 
not hesitate to profit from knowledge accumulated in other parts of the world, far removed from Greece. Today, when we critique the ideas of our predecessors—
proposing antitheses to their theses—we accept Thales' invitation to make progress by building upon or springing away from old ideas. Of course, even when we 
reject outdated ideas, those ideas still move us forward, serving as the valuable springboards for new ideas—the theses to our innovative antitheses.

  
Page 53

A Brief Intellectual History: Western Antecedents of Psychology

Where and when did the study of cognition begin? Arguably, however far back our historical records may go, these documented accounts do not trace the earliest 
human efforts to understand the ways in which we humans think. In a sense, the mythical origins of psychology are in the ancient Greek myth of Psyche, whose name 
was synonymous with the vital "breath of life," the soul, believed to leave the body at death. The Greek term thymos was a motivational force generating feelings and 
actions, and to this day, the Greek root thym­ is used as a combinative form to mean feelings and motivations. The Greek word nous (an organ responsible for the 
clear perception of truth) is an uncommon English word for the mind, particularly for highly reasoned or divinely reasoned mentation. Thus, according to the archaic 
Greeks, the body and the mind are somewhat distinct, although the mind, perhaps influenced by external causes, does cause activity of the body. The dialectic of mind 
versus body has its roots, at the very latest, in ancient Greece.

Ancient Classical Greece and Rome (600–300 B.C.)

The study of cognition traces its roots to two different approaches to human behavior: philosophy and physiology. In the contemporary world, these two fields seem 
dialectically opposed—philosophy using more armchair speculation and physiology using more systematic empirical investigation, often via laboratory science. In 
ancient Greece, however, the approaches of these two fields did not differ much. Both fields used the more philosophical approach of introspective contemplation and 
speculation as a means of seeking to understand the nature of the body and the mind—how each works and how they interact. In ancient Greece, many philosophers 
and physiologists believed that understanding could be reached without having or even pursuing supporting observations.

As the fields of philosophy and physiology diverged, they continued to influence the way in which psychology was to develop. Several strands intertwine as important 
philosophical precursors to the dialectics of modern psychological thought about cognition: whether the mind and body are separate entities; whether knowledge is 
innate or is acquired through

  
Page 54

experience; what contributes to learning and the acquisition of knowledge; and how speculation and theory development, on the one hand, and observation and data 
gathering, on the other, are used in seeking an understanding of the truth.

The ancient Greek physician (and philosopher) Hippocrates (ca. 460–377 B.C.), commonly known as the father of medicine, left his mark on the then overlapping 
fields of physiology and philosophy. What sharply distinguished him from archaic Greek philosophers and physicians was his unorthodox idea that disease was not a 
punishment sent by the gods. Hippocrates also used unorthodox methods—empirical observations—to study medicine. Contrary to the mode of the day, he studied 
animal anatomy and physiology directly, using both dissection and vivisection as means of study. Thus, he moved the study of living organisms toward the empirical. 
He was not entirely empirical in his methods, however, for he often assumed that what he had observed in animals could be generalized to apply to humans. He did 
not, however, confirm that the animal and human structures and functions were indeed parallel (Trager, 1992).

Hippocrates was particularly interested in discovering the source of the cognizing mind. He saw the mind as a separate, distinct entity that controls the body. This belief 
that the body and the mind (or "spirit," or "soul") are qualitatively different, mind­body dualism, is the view that the body is composed of physical substance but that 
the mind is not. Unlike his archaic Greek ancestors, Hippocrates proposed that the mind resides in the brain. Hippocrates induced this conclusion by observing that 
when either side of the head was injured, spasms were observed in the opposite side of the body (Robinson, 1995). Thus, with regard to the dialectic of the causes of 
thought and behavior, Hippocrates held that the agent of control is within the body, not in external forces, whether gods or demons. He also presaged modern 
psychology by speculating that physiological malfunctions rather than demons cause mental illness—again turning away from divine intervention as a cause of human 
behavior.

Two younger contemporaries of Hippocrates also considered the location of the mind to be within the body: Plato (ca. 428–348 B.C.) agreed that the mind resides 
within the brain; his student Aristotle (384–322 B.C.) located the mind within the heart. These two philosophers pro­

  
Page 55

foundly affected modern thinking about cognition. Of the many, far­reaching aspects of Platonic and Aristotelian philosophies, there are three key areas in which the 
dialectics between these two philosophers are particularly relevant to modern psychology: the relationship between the mind and the body, the use of observation 
versus introspection as a means for discovering truth, and the original source for our ideas.

Plato and Aristotle differed in their views of the mind and body because of their differing views regarding the nature of reality. According to Plato, reality resides not in 
the concrete objects of which we are aware through our body's senses, but in the abstract forms these objects represent. These abstract forms exist in a timeless 
dimension of pure abstract thought. Thus, reality is not inherent in any particular chair we see or touch, but in the eternal abstract idea of a chair that exists in our 
minds.

The objects our bodies perceive are only transient and imperfect copies of these true, pure, abstract forms. In fact, Plato's reason for locating the mind in the head was 
based on his introspective reflections on these abstract forms, rather than on any observations of physiology or behavior: the head must contain the seat of the mind 
because the head resembles a sphere—a perfect abstract form. Thus, to Plato, the body and mind are interactive and interdependent but are essentially different, with 
the mind superior to the body. We reach truth not via our senses but via our thoughts.

Aristotle, in contrast, believed that reality lies only in the concrete world of objects that our bodies sense. To Aristotle, Plato's abstract forms—such as the idea of a 
chair—are only derivations of concrete objects.

Aristotle's concrete orientation set the stage for monism, a philosophy regarding the nature of the body and mind, based on the belief that reality is a unified whole, 
existing in a single plane, rather than the two planes specified by dualism. According to monism, the mind (or soul) does not exist in its own right but merely as an 
illusory by­product of anatomical and physiological activity. Thus, the study of the mind and the study of the body are one and the same. We can understand the mind 
only by understanding the body.

Their differing views regarding the nature of reality led Plato and Aristotle also to disagree about how to investigate their ideas. Aristotle's view

  
Page 56

that reality is based on concrete objects led him to research methods based on the observation of concrete objects—and of actions on those objects. Thus, Aristotle 
(a naturalist and biologist, as well as a philosopher) was an empiricist, believing that we acquire knowledge via empirical evidence, obtained through experience and 
observation. The Aristotelian view is associated with empirical methods, by which we conduct research—in laboratories or in the field—on how people think and 
behave. Aristotelians tend to induce general principles or tendencies, based on observations of many specific instances of a phenomenon.

Plato's views lie at the opposite end of the dialectical continuum. For Plato, empirical methods have little merit because true reality lies in the abstract forms, not in the 
imperfect copies of reality observable in the world outside our minds. Observations of these imperfect, nonreal objects and actions would be irrelevant to the pursuit of 
truth. Instead, Plato suggested a rationalist approach, using philosophical analysis in order to understand the world and people's relations to it. For Plato, rationalism 
is consistent with his dualistic view of the nature of the body and mind: we find knowledge only through using the mind, through reason and speculation about the ideal 
world, not about the corporeal world of the body. Rationalists, therefore, tend to be much less drawn to inductive methods. Rather, they usually tend to deduce 
specific instances of a phenomenon, based on general principles.

Aristotle's view, then, leads directly to empirical psychological research, whereas Plato's view foreshadows theorizing that might not be grounded in extensive empirical 
observation. Each approach has merit, of course, and thus a synthesis of the two views is necessary in scientific and other forms of thought. Rationalist theories without 
any connection to observations have little validity, but mountains of observational data without an organizing theoretical framework have little meaning and therefore 
little use.

In addition to differing both in their views of the relationship between the mind and body and in their methods for finding truth, Plato and Aristotle differed in their views 
regarding the dialectic of the origin of ideas. Where do ideas come from? Aristotle believed that ideas are acquired from experience. Plato, on the other hand, believed 
that ideas are innate and need only to be dug out from the sometimes hidden nooks and crannies of the mind.

  
Page 57

In the dialogue the Meno, Plato claims to show that the rules of geometry already resided within the mind of a slave boy, who needed only to be made aware of these 
innate ideas, not to be taught these ideas from the world outside of the boy's mind. That is, through dialogue, Socrates (the protagonist in this and other Platonic 
dialogues) helps the boy bring into awareness his innate mental concepts of these pure forms. Today, many people still debate whether abilities and dispositions such 
as language or intelligence are innate (a thesis) or are acquired through interactions with the environment (an antithesis). The most plausible solution is that a synthesis 
of both experience and innate ability contribute to many aspects of cognition and other psychological constructs.

The Early Christian Era (A.D.  200–450) and the Middle Ages (A.D. 400–1300)

The dialectics of monism versus dualism, empiricism versus rationalism, and innate versus acquired abilities continued in Europe, even throughout the early Christian 
Era and the Middle Ages. These epochs were not, however, a golden age for empirical science. Even some rationalists did not thrive during this time. The basis of 
philosophical discourse was faith in a Christian God and in scriptural accounts of phenomena. Neither empirical demonstrations nor rationalist arguments were 
considered valid or even permissible unless they illustrated what was already dictated to be true on the basis of religious faith and official doctrine. Whatever 
contradicted these beliefs was heretical and unacceptable—to the point where the freedom and even the life of the doubter were at risk.

Great Christian philosophers of this era, such as Saint Augustine of Hippo (354–430 A.D.), a bishop in Roman Africa, were much more interested in the afterlife than in 
life itself. They urged people to seek a desirable afterlife, rather than a desirable life. Unlike Plato, they were relatively doctrinaire and not fully open to the critical 
tradition. However, they agreed with Plato that the main basis for thought was introspection, not observation. Like Plato, they considered the concrete, material 
objects and phenomena of the world to be of interest primarily for what they symbolically represented, not for any empirical value that might lead to knowledge.

  
Page 58

The critical tradition is widely accepted in most societies today, but dogmatists of all kinds—political extremists, jingoists, chauvinists, and other ideologues—continue 
to accept as true only those ideas and observations that conform to their prior and often rigid beliefs, and people continue to die for opposing such rigid beliefs. Such 
attitudes diverge from contemporary notions of science, in which it is believed that, ultimately, the truth will come out, whether or not it conforms to our present 
convictions and beliefs.

It is easy to believe that only extremists fall prey to the neglect or rejection of the critical tradition. Unfortunately, we are all susceptible to such tendencies. For 
example, everyone is susceptible to the phenomenon of confirmation bias, whereby we sometimes cling to ideas in the face of contradictory evidence. In fact, although 
most of us, including scientists, cherish our belief that we are open to new ideas and that we are willing to change our minds when faced with contradictory evidence, 
most of us hesitate to embrace ideas that challenge some of our core beliefs. We see confirmation bias in dictators and their mindless subjects, but often not in 
ourselves.

After centuries of medieval dogmatism, some thinkers tried to provide a synthesis that integrated empiricism and faith. Saint Thomas Aquinas (1225–1274), the 
theologian and philosopher, was an avid student of and commentator on Aristotle and his works. He attempted to synthesize a sort of "Christian science," wherein 
empiricist philosophy was bounded by the dictates of Christian theology. According to Aquinas, reasoning also is important and acceptable because, in his view, such 
reason will lead to God. Aquinas's acceptance of reason as a route to truth opened the way for those who followed him yet did not share his religious dogma.

According to Aquinas's precariously perched empirical­rational­religious approach, humans are at the juncture of two universes, the corporeal and the spiritual (similar 
to Plato's mind­body dualism). The goal for humans is to understand the life of the body through the life of the spirit. Science must therefore take a backseat to 
religion. As the Middle Ages drew to a close, particularly in the eleventh and twelfth centuries, many changes heralded the arrival of the Renaissance: the first modern 
universities were founded, ancient Greek medical and natural­science texts were translated, and some experimental techniques were advanced.

  
Page 59

The Renaissance (Rebirth) of Criticism (A.D. 1300s–1600s) and the Nascence (Birth) of Science

As critical thought was reborn throughout Europe, modern views of science were born. During the Renaissance, the focus of philosophical thinking shifted from God to 
humankind, and from the afterlife to the present life. The established Roman Catholic Church remained a strong force both philosophically and politically, but the focus 
of philosophical thinking veered away from Christian doctrine's emphasis on God and the afterlife back to a renewed interest in humankind and the here and now. 
Science as we know it was born, and direct observation was established as the basis of knowledge.

Another name for the Renaissance (rebirth) is the Awakening, and during this period, the intellectual movement known as humanism awoke after centuries of slumber. 
Renaissance humanism investigated the role of humans in the world, centering on humans "as the measure of all things." Humanists exalted the role of humans in nature, 
which contrasted with the previous exaltation of God. Humanism grew out of the rediscovery and revival of ancient classics of Greek and Roman philosophy, 
literature, mathematics, medicine, and the natural sciences, which had been ignored, submerged, or even destroyed during the Middle Ages.

Revolutionary thinkers in mathematics and physics led the way toward empirical science as we know it today. Modern astronomy was heralded when Polish 
astronomer Nicolaus Copernicus (1473–1543) proposed his heliocentric theory, which argued that the sun and not the earth is at the center of our solar system. This 
theory contradicted the traditional Ptolemaic geocentric theory and the then official church doctrine. Later in this era, Italian astronomer, mathematician, and physicist 
Galileo Galilei (1564–1642) was branded a heretic and placed under lifelong house arrest by the Roman Catholic Church. His unorthodox use of scientific observation 
rather than religious faith as the basis for his conclusions earned him suspicion and contributed to his arrest.

During the Middle Ages, theory—Christian religious theory—was the engine that drove all attempts to understand human nature. The guidance by theory that 
sometimes occurs in science today differs from the extreme guidance by theory as it occurred during the Middle Ages: With moderate

  
Page 60

guidance by theory, the theory forms a path that is harder to swerve from than to stay on. However, with some effort, we can leave what has become a blind alley. In 
the Middle Ages, the role of theory was more like that of a train track, and any departure from the track meant sheer disaster and sometimes death for those who 
veered.

During the Renaissance, strict guidance by religious theory came under attack. Francis Bacon (1561–1626) proposed an antithesis to the medieval point of view: 
scientific thinking must be purely empirical—not guided by theory at all. Bacon believed that theories color our vision and thereby get in the way of our perceiving the 
truth. He therefore asserted that studies of nature and of humankind must be wholly unbiased and atheoretical.

Many contemporary scientists studying cognition and other phenomena seek to synthesize the two extreme views on the role of theory. Theory should guide and give 
meaning to our observations; yet our theories should be formed, modified, and perhaps even discarded as a result of our observations. The progress of the study of 
cognition or of any other science depends on a continual interaction between theory and data.

Beginnings of the Modern Period (1600s–1800s)

Descartes and Locke (1600s–1750)

The dialectic of theory versus data continued in the seventeenth century, when Rení Descartes (1596–1650) sharply disagreed with the glorification of the empirical 
methods espoused by Bacon and his intellectual predecessor Aristotle. Descartes agreed with Plato's rationalist belief that the introspective, reflective method is 
superior to empirical methods for finding truth. Cartesian rationalist philosophy contributed much to the modern philosophy of mind (a grandparent of psychology), and 
Descartes's views had numerous other implications for psychology.

Like Plato, Descartes believed in both mind­body dualism (that the mind and the body are qualitatively different and separate) and innate (versus acquired) 
knowledge. According to Descartes, the dualistic nature of the mind (nonmaterial, incorporeal, spiritual) and the body (material) separates humans from animals. For 
humans, the mind and its powers are supreme: cogito, ergo sum (Latin for "I think, therefore I am"). Ac­

  
Page 61

cording to Descartes, the mind has great influence over the body, but the body still has some effect on the mind. Thus, Descartes is considered both mentalistic 
(viewing the body as subordinate to the mind) and interactionistic, in that he held that there was two­way interaction between the mind and body.

On the other side of the dialectic, the British empiricist philosopher John Locke (1632–1704) believed that the interaction between the mind and body is a symmetrical 
relationship between two aspects of the same unified phenomenon. The mind depends on sense experience processed by the body for its information, whereas the 
body depends on the mind for the storage and later usage of processed sense experience. Locke and other British empiricists also shared Aristotle's and Bacon's 
reverence for empirical observation. Locke's Aristotelian (and perhaps anti­Cartesian) valuing of empirical observation naturally accompanied his view that humans are 
born without knowledge—and must therefore seek knowledge through empirical observation. Locke's term for this view is tabula rasa, meaning ''blank slate" in Latin: 
life and experience "write" knowledge upon us.

Mill and Kant (1750–1800)

Locke's philosophical successor was James Mill (1733–1836), who took British empiricism to its philosophical extreme. As a radical associationist, Mill believed that 
events occurring close to one another in time become associated in our minds, so that they can later be recalled in tandem by memory. Mill suggested that the mind 
can be viewed in entirely mechanistic terms. According to Mill, the laws of the physical universe can explain everything, including the activity of the mind. The idea of a 
separate mind or soul that exists independent of the body therefore is both unnecessary and wrong. This extreme version of monism is sometimes referred to as 
reductionism, in that it reduces the role of the mind to the status of a mere cog in a larger physiological machine. The important thing is therefore the environment and 
how the sense organs of the body—eyes, ears, and so on—perceive it. In one form of reductionism, the individual responds mechanistically, with all knowledge 
starting at the level of sensations and working up to the mind, which is merely the next step in the "intellectual assembly line" (Schultz, 1981).

  
Page 62

In the eighteenth century, the debates about dualism versus monism and about empiricism versus rationalism had peaked. German philosopher Immanuel Kant (1724–
1804) began the process of dialectical synthesis for these questions. He redefined the mind­body question by asking how the mind and body are related, rather than 
whether the mind is in control.

Instead of phrasing the problem in terms of duality or unity, Kant proposed a set of faculties, or mental powers: the senses, understanding, and reason. He believed 
that the faculties, working in concert, control and provide a link between the mind and body, integrating the two. Loosely speaking, Kant's faculty of the senses is 
closest to the idea of the body, his faculty of reason parallels the concept of the mind, and his faculty of understanding bridges the two. Faculties of the mind also 
figured prominently in psychology later on, when early twentieth­century psychologists tried to define and understand more clearly what the faculties of the mind might 
be. The debate still lives on today.

In terms of rationalism versus empiricism and whether knowledge is innate or is passively acquired through experience, Kant firmly declared that a synthesis of both 
rationalism and empiricism is needed whereby the two ways of thinking work together in the quest for truth. Kant called the empirically acquired experiential 
knowledge a posteriori knowledge (from the Latin meaning "from afterward"); we gain this knowledge after we have experience.

On the other hand, Kant recognized that some knowledge ("general truth") exists regardless of individual experience. Kant referred to this general truth as a priori 
knowledge; such knowledge exists whether or not we become aware of it through our own experiences. A key example of a priori knowledge is our knowledge of 
time. We know a priori to link together our fleeting sensations over time into a seemingly continuous stream of experience. However, for us to observe any cause­
effect relationship over time, we must have a posteriori knowledge of the related preceding and consequent events. According to Kant's synthesis, understanding 
requires both a posteriori, experience­based knowledge (thesis) and a priori, innate concepts (antithesis), such as knowledge of the concept of time and causality, 
which permit us to profit from our experiences. In this way, understanding evolves both through nature (innate) and through nurture (experience).

  
Page 63

Of course, Kant did not settle these debates once and for all. Questions probing the nature of cognition and reality have not been and probably never will be settled 
for good. In fact, two influential books have appeared within the past decade that continue the dialectic about the mind­body issue. D. Dennett (1991) takes a 
reductionist view, saying that there is no mind without the physical body. R. Penrose (1989), on the other hand, allows for a consciousness not linked to the physical 
realm.

Scholars will probably always wrestle with aspects of these problems. Kant did, however, effectively redefine many of the issues with which philosophers before him 
had grappled. Kant's enormous impact on philosophy interacted with nineteenth­century scientific exploration of the body and how such exploration worked to 
produce profound influences on the eventual establishment of psychology as a discipline in the 1800s.

Merging of Philosophy and Physiology into Modern Psychology (1800s–1900s)

Clearly, the study of cognition has much in common with other disciplines. The issues that have faced and continue to face philosophers, physicians, and other scholars 
also confront all those studying cognition. We have seen this confrontation in dialectics described earlier regarding the nature of the mind and body and regarding the 
sources of knowledge. So intertwined are the issues confronted by philosophers, physicians, and psychologists that in the 1800s (about the same time that Hegel 
proposed his idea of the dialectic), when psychology was starting out as a field, it was viewed by some as a branch of philosophy and by others as a branch of 
medicine. As psychology increasingly became a scientific discipline focused on the study of the mind and behavior, nineteenth­century philosophy merged increasingly 
with the study of physiological issues pertaining to sensory perception.

Gradually, the psychological branches of philosophy and of medicine diverged from the two parent disciplines and then merged to form the distinct unified discipline of 
psychology. Today, although psychology, philosophy, and medicine are essentially discrete, they are not completely so, for many psychological questions remain 
rooted in both philosophy (such as the nature of the mind and its relation to the body) and medicine (such as the biological causes of behavior).

  
Page 64

The Diverging Perspectives of Modern Psychology

Building on dialectics of the past, the study of cognition has hosted a wide variety of intellectual perspectives on the human mind and how it should be studied. In order 
to understand cognition as a whole, one needs to be familiar with the schools of thought that are precursors to and that have evolved as bases in psychology for the 
field of cognition. The main early psychological perspectives build on and react to those perspectives that came before; the dialectical process that appeared 
throughout the history of thought about cognition also threads through modern psychology, starting with approaches that focus on mental structures and continuing with 
approaches that focus on mental functions, or on mental associations.

Structuralism, Functionalism, Pragmatism, and Associationism: Early Dialectics in Psychology

Structuralism

The goal of structuralism, generally considered to be the first major school of thought in psychology, was to understand the structure (configuration of elements) of the 
mind by analyzing the mind into its constituent components or contents. When structuralism was a dominant school of psychological thought, scientists in other fields 
were similarly analyzing materials into basic elements and then studying combinations of these basic elements—chemists were analyzing substances into their 
constituent chemical elements, biologists were analyzing the biochemical constituents of cells, physiologists were analyzing physiological structures, and so on. Although 
structuralism is no longer a dynamic force in psychology, it is important for having taken the first steps toward making psychology a systematic, empirical science and 
for establishing some of the dialectics of contemporary psychology—for example, the dialectic between molecular analysis of behavior, on the one hand (the position 
of structuralism), and global analysis, on the other.

An important proponent of structuralism was German psychologist Wilhelm Wundt (1832–1920). Wundt believed that psychology and the study of cognition should 
focus on immediate and direct, as opposed to

  
Page 65

mediated (interpreted), conscious experience. For example, suppose that one looks at a green, grassy lawn. To Wundt, the concepts of lawn or even of grass would 
be irrelevant. Even one's awareness of looking at a grassy lawn would not have particularly interested Wundt. These conceptually mediated experiences are too far 
removed from the mental elements of one's experience, which one infers from the more important (to Wundt) immediate experience of seeing narrow, vertical, spiky, 
green protrusions of varying lengths and widths, amassed closely together on a two­dimensional surface. It was to these elementary sensations that Wundt gave his 
attention.

For Wundt, the optimal method by which a person can be trained to analyze these sensory experiences is introspection, looking inward at pieces of information 
passing through consciousness—a form of self­observation. Today, we would call introspection subjective, but it did not seem so to the structuralists of the time.

Wundt's student, Edward Titchener (1867–1927), held views that we would consider generally similar to Wundt's. Titchener believed that all consciousness can be 
reduced to three elementary states: sensations—the basic elements of perception; images—the pictures we form in our minds to characterize what we perceive; and 
affections—the constituents of emotions such as love and hate.

During most of his life, Titchener was a strict structuralist; he used structuralist principles in his teaching, research, and writings at Cornell University. Toward the end of 
his life, however, Titchener began to diverge from Wundt. He open­mindedly listened to alternative views (particularly the criticisms by functionalists, described in the 
following section), which suggested that structuralists had proposed too many sensations. Titchener eventually came to argue that psychology should study not merely 
the basic elements of sensation, but also the categories into which these sensations can be grouped (Hilgard, 1987).

Titchener's change of mind illustrates an important point about psychologists in particular and about scientists in general. Outstanding scientists do not necessarily adopt 
a particular viewpoint in the dialectical cycle and then stick with it for the rest of their lives. The thinking of most scientists and other good thinkers (see, e.g., 
Basseches, 1984; Labouvie­Vief, 1980, 1990; Pascual­Leone, 1987; Riegel, 1979) evolves dialec­

  
Page 66

tically; they reject or build on their earlier work (and the work of others), in the creation of what they hope will be their lasting contributions to scientific or other kinds 
of thinking. Truly outstanding scientists or other thinkers are not immune to criticism and change; instead, they consider antitheses to their own theses, and they 
formulate their own syntheses, incorporating the alternative views into their own thinking. Early in his career, Titchener had been considered dogmatic, but he had the 
intellectual strength and fortitude to allow his thinking to evolve and change.

Functionalism: An Alternative to Structuralism

The roots of structuralism were in Germany, but its countermovement, functionalism, was rooted in America—the first U.S.­born movement in psychology. It could be 
said that the key difference between structuralists and functionalists lay not in the answers they found, but in the fundamentally different questions they asked. Whereas 
structuralists asked, "What are the elementary contents [structures] of the human mind?" functionalists asked, "What do people do, and why do they do it?" Structure 
versus function thus constituted the basis of the dialectic that distinguished the two schools of thought.

Another way of viewing the difference between structuralism and functionalism is to say that structuralists viewed the human or other organism as an object that 
passively receives sensations to analyze. Functionalists, in contrast, viewed humans and others as more actively engaged in their sensations and actions. The 
functionalist addresses the broad question of how and why the mind works as it does, by seeking functional relationships between specific earlier stimulus events and 
specific subsequent response behaviors. Psychologist and educator James Rowland Angell (1869–1949), whose criticism of structuralism was instrumental in swaying 
Titchener to change his views, suggested three fundamental precepts of functionalism (Angell, 1907): (1) the study of mental processes, (2) the study of the uses of 
consciousness, and (3) the study of the total relationship of the organism to its environment.

Even given these precepts, the functionalist school of thought never had the unity that structuralism had. Functionalists were unified by the kinds of questions they 
asked, but not necessarily by the answers they found or by the methods they used for finding those answers. We might

  
Page 67

even suggest that they were unified in believing that a diversity of methods could be used, as long as each method helped to answer the particular question being 
probed.

Functionalists' openness to diverse methodologies broadened the scope of psychological methods. Among the various approaches used by functionalists was animal 
experimentation, perhaps prompted by Charles Darwin's revolutionary ideas on evolution.

Pragmatism: An Outgrowth of Functionalism

Because functionalists believed in using whichever methods best answered the researcher's questions, it seems natural for functionalism to have led to pragmatism. 
Pragmatists believe that knowledge is validated by its usefulness: what can you do with it? Pragmatists are concerned not only with knowing what people do, but also 
with what we can do with our knowledge of what people do.

A leader in guiding functionalism toward pragmatism was William James (1842–1910)—physician, philosopher, psychologist, and brother of author Henry James. The 
chief functional contribution of William James to the field of psychology is a single book: his landmark Principles of Psychology (James, 1890/1983). Today, many 
regard James as among the greatest psychologists ever, although James himself seems to have rejected psychology later in his life.

James minced no words in his criticism of structuralism's detail­oriented approach, snidely commenting that structuralism's nit­picking approach "taxes patience to the 
utmost, and could hardly have arisen in a country whose natives could be bored" (p. 192). James is particularly well known for his pragmatic theorizing about 
consciousness, emphasizing that the function of consciousness is to enable people to adapt to the environment and to give them choices for operating within that 
environment.

Another of the early pragmatists has profoundly influenced my own evolution of thinking about psychology, as well as the thinking of many others. John Dewey (1859–
1952), along with Angell, mentioned earlier, is credited with laying out the formal defining principles for the philosophical school of functionalism. Dewey was 
important to psychology for his contribution to functionalism, as well as for his stimulation of

  
Page 68

new ideas in others. Dewey is remembered primarily, however, as a philosopher of education; his pragmatic functionalist approach to thinking and schooling heralded 
many of the current notions in cognitive and educational psychology. Much of what cognitive and educational psychologists say today reiterates what Dewey said early 
in the twentieth century.

Dewey (1910, 1913, 1922), ever the pragmatist, emphasized motivation in education. If no one inspires you to learn, the chances are that you will not learn very well. 
To learn effectively, you need to see the point of your education—the practical use of it. One way to interest you in education is to give you more opportunity to select 
your own problems rather than always to tell you what problems to solve. Perhaps most important, you should learn by experimentation and by doing, rather than 
merely by being told facts, so that you can learn to think for yourself and to use information intelligently. Dewey also practiced what he preached: he opened an 
elementary school at Columbia University, which taught according to his precepts (Hilgard, 1987).

Dewey's practical applications of psychological principles were not universally well received, due to one of the many dialectics underlying the study of cognition and 
other aspects of the mind. Many psychologists felt that true scientists should avoid diverting their attention from the study of underlying principles merely to address 
some immediate applications of those principles. Other scientists believed, and still do, that basic research ultimately leads to many of the most practical applications. 
To this day, scientists disagree regarding how much of scientific research should be basic research and how much should be applied research. Ideally, we would have 
a synthetic balance between research that is basic and research that is applied.

In addition to the question of applied versus basic research, many of the dialectics that first emerged via functionalism and structuralism were fundamental to the 
development of the psychology of cognition. In particular, functionalism expanded the scope of the fledgling academic discipline to comprise a range of methodological 
techniques far wider than the structuralists ever would have permitted. Although functionalism, like structuralism, did not survive as an organized school of thought, its 
influence remains widespread in psychological specializations that stress both flexibility of research methods and practicality.

  
Page 69

Associationism: An Integrative Synthesis

Associationism, like functionalism, was less a rigid school of psychology than an influential way of thinking. In general, the main interests of associationism are the 
middle­level to higher­level mental processes, such as those of learning. Associationism examines how events or ideas can become associated with one another in the 
mind, to result in a form of learning. This focus on rather high­level mental processes runs exactly counter to Wundt's insistence on studying elementary sensations.

For example, with repetition, concepts such as thesis, antithesis, and synthesis will become linked in one's mind so often that they will become inextricably 
associated with one another. To put it another way, one will have learned that the dialectical process involves a thesis, an antithesis, and a synthesis. Learning and 
remembering thus depend on mental association.

Associationism itself has been associated with many other theoretical viewpoints. Traveling backward in time, its principles can be traced directly to James Mill; even 
further back, we find Locke's view that the mind and the body are two aspects of the same unified phenomenon, a view rooted in Aristotle's ideas. Subsequent 
contemporary views were also founded on associationism. Consequently, it is difficult to categorize associationism as belonging strictly to one era.

An influential associationist was the German experimenter Hermann Ebbinghaus (1850–1909), the first experimenter to apply associationist principles systematically. 
Ebbinghaus prided himself on using much more rigorous experimental techniques (counting his errors, recording his response times, etc.) than Wundt used during 
introspection. On the other hand, Ebbinghaus used himself as his only experimental subject, just as Wundt had done. In particular, Ebbinghaus used his self­
observations to study and quantify the relationship between rehearsal and recollection of material.

Psychologists' views about introspection have evolved since the days of Ebbinghaus and Wundt, but many dialectical controversies remain regarding its use. Some 
psychologists discount most self­observations as being fruitless for gathering empirical data because many of our thought processes are unconscious or at least not 
available to our conscious minds (Nisbett & Wilson, 1977). Others consider self­observations

  
Page 70

valuable for generating hypotheses but useless in evaluating hypotheses. Still others view subjects' introspective self­analyses while they perform a task to be an 
invaluable source of confirmatory data (Ericsson & Simon, 1980). Even those who value self­observations as a tool for empirical study disagree regarding when to 
obtain the observational data. Some contend that if observations are obtained during the performance of a task, the very act of observing the task performance 
changes it. Others argue that inaccurate (or at least imperfect) recall interferes with self­observations obtained after the task performance has ended.

Ebbinghaus's ideas were elaborated by Edwin Guthrie (1886–1959), who observed animals instead of himself. Guthrie proposed that two observed events (a stimulus 
and a response) become associated through their close temporal contiguity. That is, the stimulus and the response behaviors/events become associated because they 
continually occur at about the same time. In contrast, Edward Lee Thorndike (1874–1949) held that the role of "satisfaction," rather than of Guthrie's temporal 
contiguity, is the key to forming associations. Thorndike (1905) termed this principle the law of effect: A stimulus will tend to produce a certain response (the effect) 
over time if an organism is rewarded (the satisfaction) for that response.

In considering the methods of Ebbinghaus, Guthrie, and Thorndike, we see that the associationists followed the functionalist­pragmatic tradition of using various 
methods in their research. In fact, Thorndike can be tied directly back to his functionalist mentor, William James. James even encouraged Thorndike to conduct his 
experiments on animals, offering his own house as the locale for some of Thorndike's earliest studies of animals' learning to run through mazes.

Twentieth­Century Perspectives on Psychology

Origins of Behaviorism

Other researchers, who were contemporaries of Thorndike, used animal experiments to probe stimulus­response relationships in ways that differed from those of 
Thorndike and his fellow associationists. These researchers straddled the line between associationism and the emerging field

  
Page 71

of behaviorism. Some of these researchers, like Thorndike and other associationists, studied responses that were voluntary (though perhaps lacking any conscious 
thought, as in Thorndike's work), but others studied responses that were involuntarily triggered, in response to what appear to be unrelated external stimuli.

In Russia, Nobel Prize­winning physiologist Ivan Pavlov (1849–1936) studied involuntary learning behavior of this sort, beginning with his observation that dogs 
salivated in response to the sight of the lab technician who fed them before the dogs even saw whether the technician had food. To Pavlov, this response indicated a 
form of learning, termed classically conditioned learning, over which the dogs had no conscious control. In the dogs' minds, some type of involuntary learning was 
linking the technician with the food (Pavlov, 1955).

Behaviorism

Behaviorism, an American school of psychology, may be considered an extreme version of associationism, which focuses entirely on the association between 
environmental contingencies and emitted behavior. Behaviorism was born as a dialectical reaction against the focus on personally subjective mental states found in both 
structuralism and functionalism. Instead, behaviorism asserts that the science of psychology should deal only with observable behavior. According to strict, extreme 
(''radical") behaviorists, any conjectures about internal thoughts and ways of thinking are nothing more than speculation, and although they might belong within the 
domain of philosophy, they certainly have no place in psychology. This behaviorist view originates in the philosophical tradition of logical positivism, which asserts that 
the only basis for knowledge is sensory perceptions; all else is idle conjecture.

Watson's Groundwork

The man usually acknowledged as the father of radical behaviorism is American psychologist John Watson (1878–1958). Watson, like British empiricist James Mill, 
had no use for internal mental contents or mechanisms. Still, although Watson disdained key aspects of functionalism, he was clearly influenced by the functionalists in 
his emphasis on what people do and what causes their actions. In fact, arguably, behaviorism

  
Page 72

depends more on the study of functions in behavior than functionalism ever did!

Behaviorism also differed from previous movements in psychology by shifting the emphasis of experimental research from human to animal subjects (although animal 
studies have been used since the days of Hippocrates). Historically, much behavioristic work has been conducted (and still is) with laboratory animals such as rats. 
Watson himself preferred animal subjects. He believed that with animal subjects, it is easier to ensure behavioral control and to establish stimulus­response 
relationships while minimizing external interference. Indeed, the simpler the organism's emotional and physiological makeup, the less the researcher needs to worry 
about any of the interference that can plague psychological research with humans as subjects. Many nonbehavioral psychologists wonder whether animal research can 
be generalized to humans (i.e., applied more generally to humans instead of just specifically to the animals that were studied). In response, some behaviorists would 
argue that the study of animal behavior is a legitimate pursuit in its own right, and all behaviorists would assert that we can learn useful principles that generalize to other 
species, including humans.

Hull's Synthesis with Pavlovian Conditioning

An American behavioral psychologist who tried to connect the involuntary learning studied by Pavlov with the voluntary learning studied by Watson and Thorndike 
was Clark Hull (1884–1952). Hull had always shown a predilection for synthesis; even his dissertation synthesized strict experimental psychology with theoretical 
analyses of thought processes, particularly in regard to the learning of concepts. Although Hull's work was virtually ignored for nearly a decade, during which he 
became quite discouraged (see Hilgard, 1987), his work on learning eventually became among the most widely cited work of his time. Hull's ideas also enriched the 
field of psychology with ideas from such diverse fields as physiology and evolutionary biology (see Robinson, 1995).

Above all, Hull was particularly influential for his belief that the laws of behavior can be quantified, as are laws in other scientific disciplines such as physics. Hull's 
(1952) final presentation of his theory of behavior contains numerous mathematical postulates and corollaries. Hull's inter­

  
Page 73

est in mathematical precision also led to his development of an early computational device, which he used in his psychological research and which used punch cards for 
statistical calculations.

Skinner's Radicalism

In modern times, radical behaviorism has seemed almost synonymous with one of its most radical proponents, B. F. Skinner (1904–1990). For Skinner, virtually all of 
human behavior, and not just learning, can be explained by behavior emitted in response to environmental contingencies, which can be studied effectively by observing 
animal behaviors. Skinner applied the behaviorist model to almost everything, from learning to language acquisition to problem solving, and even to the control of 
behavior in society. As a consequence, he was criticized for overgeneralizing the applicability of his data by making pronouncements about what would be good for 
society as a whole, based largely on data from learning in animals.

Skinner also entered domains typically reserved nowadays for philosophers. For example, in his novel Walden Two (Skinner, 1948), Skinner depicts a utopian 
society run entirely on behaviorist principles. He also argues that ought and should are meaningless concepts outside of a specific environment. The environment 
controls behavior, and thus the setting in which a person is raised determines what he or she should do.

The following passage illustrates how behaviorists view social interactions in terms of the specific observable rewards that might be derived from a conversational 
interchange; they avoid references to the elusive, unobservable aspects of social relationships.

The [Walden] Code [by which the utopia's members agree to abide] even descends to the level of the social graces.... We've tried a number of experiments to expedite and improve 
personal relations. For example, introductions in Walden Two are solely for the purpose of communicating information; we don't wait to be introduced before speaking to a 
stranger, nor do we bother to make introductions if no relevant information is to be communicated. (B. F. Skinner, 1948, p. 163)

This deterministic view calls to mind the original radical conception of behaviorism, as proposed by Watson, which states that any behavior can be shaped and 
controlled:

  
Page 74

Give me a dozen healthy infants, well­formed, and my own specified world to bring them up in, and I'll guarantee to take any one at random and train him to become any type of 
specialist I might select—doctor, lawyer, artist, merchant—chief and yes, even beggarman and thief, regardless of his talents, penchants, tendencies, abilities, vocations, and race 
of his ancestors. (Watson, 1930, p. 104)

Many psychologists disagree with the behaviorist view. For example, in a debate between Watson and psychologist William McDougall, McDougall says,
I come into this hall and see a man on this platform scraping the guts of a cat with hairs from the tail of a horse; and, sitting silently in attitudes of rapt attention, are a thousand 
persons who presently break out into wild applause. How will the Behaviorist explain these strange incidents: How explain the fact that the vibrations emitted by the cat­gut 
stimulate all the thousand into absolute silence and quiescence; and the further fact that the cessation of the stimulus seems to be a stimulus to the most frantic activity? (Watson 
& McDougall, 1929, p. 63)

Gestalt Psychology

Of the many dialectical critics of behaviorism, Gestalt psychologists may be among the most avid. According to Gestalt psychology, we best understand psychological 
phenomena when we view them as organized, structured wholes, not when we break them down into pieces. Actually, this movement was not only an antithetical 
reaction against the behaviorist tendency to break down behaviors into stimulus­response units, but also against the structuralist tendency to analyze mental processes 
into elementary sensations. The maxim "the whole is different from the sum of its parts" aptly sums up the Gestalt perspective. The name of the approach comes from 
the German word Gestalt (now an English word). The German word does not have an exact synonym in English, although it is something close to "whole unitary 
form," "integral shape,'' or "fully integrated configuration" (Schultz, 1981). The movement originated in Germany, the fount of structuralism, and later spread to the 
United States, the fount of behaviorism, and to other countries.

Gestalt psychology is usually traced to the work of German psychologist Max Wertheimer (1880–1943), who collaborated with compatriots Kurt Koffka and 
Wolfgang Köhler to form a new school of psychology, with an emphasis on understanding wholes in their own right. The Gestaltists applied this framework to many 
areas in psychology. For exam­

  
Page 75

ple, they proposed that problem solving cannot be explained simply in terms of automatic responses to stimuli or to elementary sensations. Instead, new insights 
emerge in problem solving; people simply form entirely new ways to see problems.

Given some of the criticisms of the vagueness of the Gestalt perspective, many psychologists now believe that the most fruitful approach to understanding 
psychological phenomena is to synthesize analytic and holistic strategies. Cognitivists are among the many who use both analytic and holistic strategies.

Cognitivism

Finally, we reach cognitivism, the conceptual basis of this book. Cognitivism is the belief that much of human behavior can be understood if we understand first how 
people think. The contemporary cognitivist examines the elementary structuralist contents of thought, the functionalist processes of thought, and the Gestaltist holistic 
results of thinking. The cognitivist, like the Gestaltist, may well conclude that indeed the whole is different from the sum of its parts. At the same time, however, 
cognitive psychologists attempt to determine precisely which mental mechanisms and which elementary elements of thought make that conclusion true. Cognitivists 
would study the way in which we perceive the gestalt of the chapter or of the Seurat painting, but they also would want to determine precisely how we perceive it as 
such.

Early cognitivists, for example, Miller, Galanter, and Pribram (1960) argued that traditional behavioristic accounts of behavior were inadequate precisely because they 
said nothing about—indeed, they ignored—how people think. Subsequent cognitivists Allen Newell and Herbert Simon (1972) proposed detailed models of human 
thinking and problem solving from the most basic levels to the most complex (such as playing chess). Ulric Neisser (1967) was especially critical in bringing cognitivism 
to prominence. Neisser defined cognitive psychology as the study of how people learn, structure, store, and use knowledge. The cognitive approach has been applied 
in a variety of areas of psychology—including everything from thinking to emotion to the treatment of various psychological syndromes, including depression. Cognitive 
psychologists use a variety

  
Page 76

of methods to pursue their goal of understanding human thought, such as the study of reaction times, the study of people's subjective reports as they solve problems, 
and computer simulations.

Today, cognitivism incorporates many aspects of the biological approach to cognition. A direct descendant of evolutionary theory, for example, is behavioral genetics, 
which attempts to account for behavior by attributing it to the synthetic influence of particular combinations of genetic and environmental influences. A behavioral 
geneticist might attempt to explain, for example, the genetic and environmental elements contributing to general or specific cognitive abilities.

Another psychobiological approach is to determine which specific regions of the brain are responsible for the origination, learning, or expression of particular 
behaviors, feelings, or kinds of thoughts. For example, Roger Sperry (1920–1994) tried to determine what kinds of thinking occur in each of the two halves of the 
brain. These and other insights into our minds and bodies—and the interactions between the two—have synthesized the methods and the data from cognitive 
psychology and biological psychology.

In the 1960s cognitivism was just coming of age, and behaviorism seemed to be on its way out. Today, cognitivism is popular, and many fields within psychology have 
adopted a cognitive perspective. This perspective, too, may someday fade in importance and yield to other perspectives. The dominant perspective of the future may 
be unimaginable today. Psychology is a dynamic science, precisely because it is ever evolving in its dialectical perspectives on the puzzles of human behavior.

Acknowledgments

Preparation of this chapter was supported under the Javits Act Program (Grant #R206R50001) as administered by the Office of Educational Research and 
Improvement of the U.S. Department of Education. Grantees undertaking such projects are encouraged to express their professional judgments freely. This chapter, 
therefore, does not necessarily represent positions or policies of the government, and no official endorsement should be inferred. This chapter draws in part on 
Sternberg (1995, 1996).

  
Page 77

References

Angell, J. R. (1907). The province of functional psychology. Psychological Review, 14, 61–91.

Basseches, M. A. (1984). Dialectical thinking as an organized whole. In M. L. Commons, J. D. Sinnott, F. A. Richards, & C. Armon (Eds.), Beyond formal 
operations (pp. 216–238). New York: Praeger.

Dennett, D. (1991). Consciousness explained. Boston: Little, Brown.

Dewey, J. (1910). How we think. Boston: Heath.

Dewey, J. (1913). Interest and effort in education. New York: Houghton Mifflin.

Dewey, J. (1922). Human nature and conduct. An introduction to social psychology. New York: Holt.

Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87, 215–251.

Hegel, G. W. F. (1931). The phenomenology of mind (2nd ed., J. B. Baillie, Trans.). London: Allen & Unwin. (Original work published 1807.)

Hilgard, E. R. (1987). Psychology in America. Orlando, FL: Harcourt, Brace, Jovanovich.

Hull, C. L. (1952). A behavior system: An introduction to behavior theory concerning the individual organism. New Haven, CT: Yale University Press.

James, W. (1983). Principles of psychology. Cambridge: Harvard University Press. (Original work published New York: Holt, 1890.)

Kalmar, D. A., & Sternberg, R. J. (1988). Theory knitting: An integrative approach to theory development. Philosophical Psychology, 1, 153–170.

Labouvie­Vief, G. (1980). Beyond formal operations: Uses and limits of pure logic in life span development. Human Development, 23, 141–161.

Labouvie­Vief, G. (1989). Modes of knowledge and the organization of development. In M. L. Commons, J. D. Sinnott, F. A. Richards, & C. Armon (Eds.), 
Beyond formal operations: Vol. 2. Comparisons and applications of adolescent and adult development models (pp. 158–179). New York: Praeger.

Miller, G. A., Galanter, E. H., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart, & Winston.

Neisser, U. (1967). Cognitive psychology. New York: Appleton­Century­Crofts.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice­Hall.

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–259.

Pascual­Leone, J. (1987). Organismic processes for neo­Piagetian theories: A dialectical causal account of cognitive development. International Journal of 
Psychology, 22, 531–570.

  
Page 78

Pavlov, I. P. (1955). Selected works. Moscow: Foreign Languages Publishing House.

Penrose, R. (1989). The emperor's new mind: Concerning computers, minds, and the laws of physics. New York: Oxford University Press.

Riegel, K. F. (1979). Foundations of dialectical psychology. New York: Academic Press.

Robinson, D. N. (1995). An intellectual history of psychology (3rd ed.). Madison, WI: University of Wisconsin Press.

Schultz, D. (1981). A history of modern psychology (3rd ed.). New York: Academic Press.

Skinner, B. F. (1948). Walden II. New York: Macmillan.

Sternberg, R. J. (1995). In search of the human mind. Orlando, FL: Harcourt Brace College Publishers.

Sternberg, R. J. (1996). Cognitive psychology. Orlando, FL: Harcourt Brace College Publishers.

Thorndike, E. L. (1905). The elements of psychology. New York: Seiler.

Trager, J. (1992). The people's chronology. New York: Holt.

Watson, J. B. (1930). Behaviorism (rev. ed.). New York: Norton.

Watson, J. B., & McDougall, W. (1929). The battle of behaviorism. New York: Norton.

  
Page 79

3
Rationalism versus Empiricism in Cognition
Daniel N. Robinson

We must not corrupt our hope, To prostitute our past­cure malladie To empiricks. 
—Shakespeare, All's Well That Ends Well

A mere rationalist (that it to say, in plain English, an Atheist of the late Edition).
—Robert Sanderson, Preface to Ussher's Pouler Princes (1670)

A Word about Words

That most enduring of metaphysical problems—the problem of knowledge—expresses itself in any number of subsidiary problems at once ontological, 
methodological, lexical, logical, psychological. Barring total and unbridled skepticism, the claims of philosophy, of science, and of ordinary common sense are 
regarded as true or false, valid or infirm statements about what there is. But to take a position (an ontological position) on what there is presupposes a well­tested 
method by which to make such discoveries. It is also to locate the findings or facts within some larger or more general context and in a manner that satisfies ordinary or 
disciplinary standards of intelligibility and criteria of meaning. The complementary and competing tenets of empiricism and rationalism at once arise from and give bulk 
to the problem of knowledge. And, as knowledge (itself a term of art) is presumably what the cognitive "sciences" are about, the historical evolution and philosophical 
dimensions of these two isms cannot be safely ignored by students of these subjects.

That a seventeenth­century commentator thought of rationalism as but atheism "of the late Edition," as Shakespeare's character would spare hope itself from the 
machinations of the "Empirick," illustrates the

  
Page 80

historical instability of terms when used for purposes of learned name­calling. Accordingly, a word or two might profitably be devoted to the words themselves.

Empiricism was generally a pejorative term until well into the nineteenth century. In his History of India James Mill himself would write of "Mere observation and 
empiricism," declaring such to be "not even the commencement of science" (1818, vol. I, chap. II, sec. ix, p. 399). The English empirick and French empirique were 
formed from the Latin empirici, itself derived from the Greek empeirikoi, who were ancient doctors committed to observation and more or less hostile to or bereft of 
theory. The Greek empeiria translates more or less indifferently as "knowledge,'' "skill," or "experience," but typically connotes an ability or competence that is 
acquired in an essentially trial­and­error fashion or through persistent practice. Thus was the Empeirikos distinguished from the Dogmatikos, the latter's therapeutic 
practice being based on a rational system of health and disease. Ancient sources established the now traditional contrast between the followers of Pythagoras and 
those of Hippocrates as being theory bound and observation bound respectively. In time, philosophical partisans would conspire with comic playwrights and the 
skeptical intelligentsia to dub every species of dullard as a mere or brute empiric; as one who, in the felicitous prose of Sir Thomas Browne, "stares about with a gross 
rusticity."

By the middle of the nineteenth century, however, and chiefly as a result of the "textbook" empiricistic philosophers (John Locke, George Berkeley, David Hume, John 
Stuart Mill) empiricism would be widely understood as a metaphysical position on the ultimate source of all knowledge, namely, experience. This epistemological 
empiricism, as it might be called, was deployed in defense of a methodological empiricism advocated by Francis Bacon early in the seventeenth century and 
rendered canonical in Newton's Regulae philosophandi.

Rationalism has had a more winding lexical history and resists clear definition even at this date. If in the salient innings of the "long debate" the empiricist is understood 
as conferring epistemological authority on experience, then the rationalist might be most readily recognized as one who resists this, but on several different grounds. 
The rationalist, for example, might agree (as did Immanuel Kant) that all knowledge arises

  
Page 81

from experience but that it must itself take place within a (logically) prior rational or intuitive framework. On this account, rationalism is to be understood as a 
metaphysical theory about the necessary preconditions for experience and therefore for all that experience might yield. Accordingly, for the claims of the empiricist to 
be valid, a form of rationalism must be presupposed. With hesitation this form of rationalism will be referred to here as analytical rationalism.

Related to but distinct from analytical rationalism is what might be called teleological rationalism. A congeries of experiences can rise no higher than a mere buzz 
unless it is possible to locate these experiences within an intelligible context, unless one can come to grasp the very point of the sensed happenings. Aristotle famously 
included "final" causes in his theory of explanation, insisting that a complete understanding of any observed event must include a comprehension of the goals or 
purposes proximately and ultimately served by the events. The distinction between experience and understanding, then, is the distinction between isolated and 
incoherent perceptions and those experiences that have been integrated into a rational schema that discloses the that­for­the­sake­of­which the events took place in 
the first instance.

Finally, rationalism has been defended as a counter to skepticism, and particularly forms of skepticism deriving their force from the (allegedly) deceptive and 
untrustworthy operations of the senses. Satisfied that the merely factual ephemera of daily experience have nothing in common with truth itself, Plato (ca. 428–348 
B.C.) produced philosophical masterpieces in defense of the rational, theoretical, contemplative life. The world of the senses supports only the life of the cave dweller 
whose firmest epistemic convictions have no more substance than the projected shadows on which they are based. Once liberated, the truth seeker moves toward the 
light of reason and discovers that all prior understandings were illusory. Ultimate truths are unchanging, relational, abstract. They are inaccessible to the senses, the 
latter having commerce only with what is transitory and thus without essential being. The Platonic defense of rationalism is thus based on a prior theory regarding 
essential being or real existence. Rationalism in this sense might be best classified as ontological rationalism. 1

  
Page 82

In the balance of this essay different versions of empiricism and rationalism are considered and are given qualifying labels where clarity demands.

Framing the Issues

The answer to the question, Was Aristotle an empiricist or a rationalist? is, yes. A student in Plato's Academy for twenty years, Aristotle (384–322 B.C.) was 
thoroughly acquainted with the philosophically rich and deep challenges to the claims of experience. The very inconstancy of the perceptible world was indelibly 
recorded by Heracleitus's famous maxim, "No one can enter twice into the same stream." Not only is the flux of matter incessant, but the senses too, as material 
organs and processes, suffer similar vicissitudes. If the aim of a genuinely philosophical or scientific understanding is the discovery of what truly is and the underlying 
lawful principles, the senses can only be a distraction and a path to self­deception. It is something of a declaration of independence, then, when Aristotle begins his 
monumental Metaphysics with the well­known passage "All men by nature desire to know. An example of this is the delight we take in our senses" (Metaph., 
980a22). 2  The juxtaposition here between wanting to be knowing or knowledgeable (eidenai) and a love of the senses (tOn aisthEseOn agapEsis)3  calls into 
question traditional skepticism about empirical sources of knowledge.

It is in his Metaphysics, chiefly book 4, that Aristotle pauses to consider the reach and limits of various epistemological resources. He reviews several of the 
commoner charges against the senses: something may taste sweet to one person and bitter to another; a strong man finds light the same weight that a weak man finds 
heavy; the very same person experiences the same object differently at different times; different animals (ourselves included) experience the same physical stimulus 
differently; alterations in conditions of the body—as in instances of disease—radically alter certain perceptions. To proclaim the authority of experience is finally to 
submit truth to some sort of vote or plebescite, for must not the experiences of the many count more than those of the few? Would not the insane many judge the sane 
few to be diseased (1009b5–10)? Innumerable kindred examples tell against any general theory offering

  
Page 83

experience or perception as the ultimate arbiter of truth. Thus, where experience is the official guide, philosophy's vaunted goal becomes no more than "chasing birds 
on the wing" (ta petomena diOkein; 1009b40).

Aristotle's counters to these claims are measured and sometimes not entirely transparent. He agrees that it is an error to equate truth (alEtheia) with appearances 
(phainomena), but it is also a mistake to equate the latter with perception itself (aisthEsis). When the proper object of sense (sound for hearing ear, light for vision, 
contact for touch) is delivered to a healthy sensory organ, the resulting sensation faithfully records the stimulus. However, the mental impression derived from such a 
sensation may under various circumstances be a false representation of the stimulus and the sensory response to it (1010b1–5).

Aristotle distinguishes between the physical response of a sense organ to its adequate stimulus, and the phenomenal impression that arises. After all, one can dream of 
events that are making no contact whatever with the senses. In such instances, it would be foolish to charge the senses with inventing or distorting reality, for the senses 
are not involved at all. The first step, then, in answering skeptical charges against empirical knowledge is to distinguish between aisthEsis and phainomena. 
Moreover, although it is true that things undergo changes of a quantitative sort, reflecting more or less of an attribute under conditions of growth and decay, this does 
not invariably alter their qualitative or essential nature. The sense in which Coriscus is a man is essential; the sense in which he is musical is not. Thus, in one sense the 
musical Coriscus is different from the Coriscus who has yet to master the lyre, but in the essential respects he is not. Though it be granted that quantitative changes are 
ever present, "it is by the form that we recognize everything" (1010a25–27) and the form (eidos) does not invariably change. Indeed, even in the matter of quantitative 
alterations, these are common only among the earthly flotsam confronted in daily life that are, after all, "a practically negligible part of the whole (cosmos)" (1010a35–
40). Aristotle was a confident empiricist!

This much said, it is necessary to acknowledge that statements about reality or statements regarding what is (peri tOn ontOn) are not to be confined to sensible 
things, for the senses are indeed limited and, in any case, cannot comprehend either the essence of things or their causes. In

  
Page 84

Aristotle's theory of knowledge, an object or event is not fully known or understood until all of the causal modalities on which its being depends have been unearthed; 
the "textbook" material, formal, efficient, and final causes. To know is to comprehend both the whatness and the whyness of a thing: its matter, its form, and its 
purpose. Thus, for example, the soul is the form of the (material) body. Only a certain (essential kind of) material entity can be ensouled or animated. To be thus 
animated is to be able to achieve those ends that identify a form of life as a given form of life. Coriscus is not essentially musical, but, if he is an instance of anthropos, 
he is essentially rational.

Aristotle's theory of what might be called a scientific understanding or knowledge of things is developed in his Posterior Analytics. The main point of this theory for 
present purposes is that scientific knowledge is demonstrative: to understand anything scientifically is to recognize it as an instance of a universal class or the effect of 
a universal law and therefore to understand that the "because of which the object is" just is its explanation. Where this is so, "it is not possible for it to be 
otherwise" (Post. Anal., 70b10–15). Of course none of this comprehension falls within the ambit of mere observation, and this establishes the limit of empirical modes 
of knowing. Direct observation provides extensive and generally quite accurate knowledge of the attributes of events and things in the world. Through associative 
principles, recurring observations build up a store of memories and nurture useful habits of both body and mind, for, as he says, ''frequency creates nature" (On 
Memory, 452b5–6).

However, it is reserved for a rational being to comprehend the principles underlying the order of things and to discover the general laws by which events invariably 
occur or do so for the most part. Smith and Jones both know that the angles of a square add up to 360°. Thus, they both "know" that square X contains 360°. Smith 
knows it as a result of (empirical) measurement. Jones knows it as the necessary conclusion of a deductive argument whose major premises are the axioms of 
geometry. Clearly, Smith and Jones know the same fact but know it in quite different senses (Post. Anal., 71a25–30). Ultimate knowledge includes not only an 
accurate account of what a thing is but also and more significantly the very reason behind it. "If the art of ship­building were in the wood, there would be ships by 
nature" (Physics, 984a17–25). One knows fully

  
Page 85

what a ship is not through an empirical inquiry into its material composition or the shape of it but through a rational awareness of its intended function and the 
anticipation of this that guided the designers and builders. If the orderly and functional adequacy of triremes discloses a purpose, it is clear that the order of nature is 
not purposeless. Rationality is the means by which one might locate, as it were, the reason behind the cause. Understood in this light, rationality is not some add­on or 
ex post facto supplement to what is fundamentally an empirical enterprise. Rather, it is the overarching framework within which observations become integrated, 
meaningful, and systematic. Aristotle was a committed rationalist!

Nominalism, Realism, and the Problem of Universals

Plato's debts to Pythagoras are now incalculable, but it is fair to say that a Pythagorean subtext fortifies if it does not actually generate the Platonic ontology of true 
forms. Moreover, though Plato's less than distinct philosophical "stages" reveal shifting loyalties to this ontology, there is no significant departure from the principle that 
truth, if there is such, is universal. 4  Accordingly, the essence of a thing—that which makes it what it is and not something else—is its sharing in the universal thingness. 
Aristotle rejects the theory of forms and claims further that Socrates himself never affirmed it: "Socrates did not make the universals or the definitions exist apart; his 
successors, however, gave them separate existence and this [these separately existing universals] was the kind of thing they called Ideas" (Metaph., 1078b29–32).

Nonetheless, medieval commentators, both Eastern and Western, focused on the so­called problem of universals and in the process put empiricism and rationalism on 
something of a collision course. This is a long and complex chapter in intellectual history and one that can be compressed only with caveats and reservations. It is 
enough for present purposes to note that the central epistemological issue of medieval philosophy turned on the question of whether sensible particulars exhausted the 
domain of the knowable, or whether such particulars triggered an a priori set of universal cognitions. Philosophical arguments were much in the service of what were 
taken to be theological matters of far greater consequence. If one is to know God, then the question

  
Page 86

naturally arises as to whether such knowledge is limited to the mere empirical facts of the Creation.

Except for the daring few—notably William of Ockham (ca. 1300–1349)—the most influential religious philosophers of the period took the Creation itself to be the 
product of a rational plan and to be emblematic of abstract and universal truths accessible to reason. The senses respond to the particulars, but the rational mind is 
able to move from the contents of perception to those universal truths immanent in these. What reason thus unearths is not a fabrication, for the rational abstraction is 
no lie ("Abstrahentium non est mendacium"). Defenders of the thesis that such rational abstractions discovered ontologically real universals—quasi­Platonic "forms," as 
it were, from which particulars derived their utterly dependent ontological standing—would come to bear the misleading label realists.

Those, such as Ockham, 5  who argued that there is only knowledge of particulars and that all general or universal categories are but class names within which 
particulars are included, came to be called nominalists. On the nominalist account, universals do not exist outside the mind (extra animam) of the cognizer but are 
constructed within the mind by frequent association and a mental disposition to generalize across similar experiences. Ockham was especially aware of the part played 
by language in creating mental constructs then taken to have some real rather than lexical existence. In this respect his analytical philosophy prefigured much found later 
in Locke and in Hume. Indeed, the more familiar disputes between eighteenth­ and nineteenth­century empiricists and rationalists continued, if in a somewhat different 
key, the scholastic debates that had raged between realists and nominalists a half­millennium earlier.

Empiricism, Materialism, and Skepticism

The modern defense of empiricism, in the form of a developed theory of knowledge, began with An Essay Concerning Human Understanding (1690/1956) by 
John Locke (1632–1704). There were earlier works of course, including works of philosophical rigor and influence. One need

  
Page 87

only consider Francis Bacon's Novum organum among the seventeenth­century rallying cries in defense of observational and experimental modes of inquiry. But 
Locke's Essay would come to be the locus classicus of those issues and arguments on which successive generations of empiricistic philosophers refined their thinking 
and rested their claims. It was written by the same author whose political treatises had given the rhetoric of rights a sound philosophical foundation, the same author 
who would extend triumphant Newtonianism into the realms of psychological and social phenomena. Locke's Essay would come to have a nearly scriptural authority 
among the philosophes of the French Enlightenment and the leading thinkers of colonial and revolutionary America. Its relentless defense of experience as the source 
of all epistemic authority served purposes beyond those of philosophy itself. "Nothing is more indisputable," Jean Le Rond D'Alembert would write in his introduction 
to Denis Diderot's Encyclopedia, "than the existence of our sensations. Thus, in order to prove that they are the principles of all our knowledge, it suffices to show 
that they can be [exist]" (1751/1963, p. 7).

It is worth noting that the Essay does not advance a radical empiricism. Locke acknowledges that the understanding possesses different degrees of confidence, 
marking out different modes of knowing. He dubs these intuitive, demonstrative, and sensitive. That a circle is not a triangle is something known immediately and 
with certainty. It is known intuitively in that neither learning nor practice nor calculation nor argument is necessary to establish the truth of it. One who would discredit 
such intuitive knowledge, says Locke, "has a mind to be a skeptic" (1690/1956, bk. 4, chap. 2, sec. 1, italics in original). It is also certain that two triangles, with equal 
bases and constructed between parallel lines, are equal. Although this knowledge is certain, however, it is not immediate. Rather, it calls for a demonstrative argument, 
specifically the one developed by Euclid. What intuitive and demonstrative knowledge have in common is their certainty, though only the former is immediately 
apprehended. Framing such knowledge—all knowledge—is the awareness that a thing necessarily cannot be and at the same time not be. There is this "first act of the 
mind" (bk. 4, chap. 1, sec. 2), as Locke calls it. It is the "Law of Contradiction'' itself and does not (because it could not) arise from

  
Page 88

experience. In all, then, Locke grants innate powers, intuitions, and original acts to the mind, finding these in the very nature of mind itself rather than in sources external 
to it. Sensitive knowledge, however, is a different matter. What is thus known is never certain, never necessary. The contingent facts of the world are known by way 
of sensation, for, absent sensory experience, the mind with respect to these facts is a tabula rasa. It is with respect to knowledge of this kind that Locke answered the 
question, How comes the mind to be furnished? with a one­word reply: experience.

It was Locke's aim in the Essay to begin to develop a science of the mind patterned on Newtonian science and theory. The Lockean elementary sensations, which 
combine to form simple ideas, themselves the combinatory elements of more complex ideas, are held together by associative mechanisms. The match between this sort 
of mental mechanics and the corpuscular world of Newton, with its gravitational binding forces, is both obvious and suggestive. But with the usual persistence the 
problem of knowledge arose for Locke as he considered the faithfulness with which experience recorded the actual facts of the physical world. Locke's solution was 
his famous division of the known into primary and secondary qualities, a distinction anticipated by both Galileo Galilei and Robert Boyle. Where the elementary 
components of a thing are densely packed, the object is hard and is experienced as being hard. Similarly, the shape and extent of palpable and visible objects are as 
they are perceived to be. The "primary qualities" are those properties perceptually attributed to things that are in fact possessed of the things themselves. Here there is 
no qualitative transformation imposed by the mediating steps between objects and the percipient's experience of them.

What of colors or odors or tastes? Whatever it is that gives rise to the experience of "blue" is not something that is blue at the ultimate corpuscular level of physical 
being. Rather, there is something in the physics of the matter that, when acting upon the sensory organs with their own special material composition, gives rise to 
perceived qualities reflecting this interaction. The secondary qualities of bodies are those contingent on being perceived by a given sort of percipient. When an object is 
seen as blue or is tasted as sweet, therefore, the sensory report is not a faithful recording of properties of the object, but the result of an interac­

  
Page 89

tion leading to the experiential representation of a physical property that is not directly perceived. In Locke, then, one finds the seeds of phenomenalism planted, and 
an unintended revival of the ancient skepticisms that are based on the premise that unmediated knowledge of the external world is impossible.

It is not coincidental (though it is also not logically mandated) that empiricistic philosophies support or are fortified by a materialistic psychology. To take experience as 
the ultimate arbiter on matters of fact is to install the organs of perception as the sole avenues along which facts gain entry into the mind. It was a veritable maxim 
among Scholastics of the Ockhamistic stripe that "Nothing is in the mind which was not first in the senses" ("Nihil in intellectu quod erat non prius in sensu"). And, by a 
kind of ontological reciprocity, the same line of thinking tends to conclude in a more radical materialism according to which the contents of the cosmos are solely 
material. Knowledge claims not grounded in sensory commerce with the material world thereby become, quite literally, nonsense. The ethereal realms of the religious 
imagination are and must be among the first casualties of the war on abstractions.

The materialistic features of Locke's psychology are present throughout the Essay but are not advanced stridently. Locke was a physician, a fellow of the Royal 
Society, and a committed Newtonian. Like the cleric Pierre Gassendi, Descartes's contemporary critic and enthusiastic defender of Epicurean materialism, Locke saw 
no incompatibility between the tenets of Christian faith and an ontology based on the assumption that God constituted the physical universe physically. Others, 
needless to say, found in the very coherence of such teaching good reason to reject all theories that went beyond the material facts. It was in opposition to these 
skeptical tendencies that George Berkeley (1685–1753) offered as a remedy A Treatise concerning the Principles of Human Knowledge (1710/1963). The 
position ably defended by Berkeley is that all the Lockean qualities are "secondary" in that the concept of a property or quality of a thing presupposes its being 
experienced. And, as any and every material object is but a congeries of such properties, there can be no independently subsisting material world at all. "To be is to be 
perceived" ("Esse est percipi''), declares Berkeley, as a last word on the pretensions of materialism (1710/1963, part I, sec. 3; p. 31).

  
Page 90

Berkeley's achievement was but the stretching of empiricism to the end of its conceptual tether. If all that is knowable is reached solely by way of experience, then 
what is finally known are the experiences themselves or, as Berkeley put it, ideas in the mind. It is nothing less than a contradiction, argued Berkeley, to claim to know 
that of which one has no idea. Claims of knowledge, then, refer not to objects in some external and independent duchy of material things, but to objects of thought, to 
ideas. Nor are these replicas of material things, for an idea can only be like another idea and certainly not like something physical. The idea of a square is not a square 
idea, nor is the idea (experience) of a heavy object a heavy idea. Ontologically, there are in the end only ideas and spirits as independently existing, and the material 
world of objects owes its utterly dependent subsistence to these. In the process of developing this surprising thesis, however, Berkeley provided additional support for 
mediational theories of knowledge; theories that yield yet another species of skepticism, for what they deny is any possibility of direct, nonrepresentational knowledge 
of the external world.

The philosophical culmination of these tendencies was reached in David Hume's (1711–1776) A Treatise of Human Nature (1739/1973), his An Enquiry 
concerning Human Understanding (1758/1965), and his Essays Moral, Political and Literary. 6  Perhaps the most influential philosopher in the English­speaking 
world, Hume mounted precise and formidable defenses of an empirical epistemology, an associationistic theory of cognitive psychology, a utilitarian theory of ethics, 
and a sentimentalist theory of aesthetics and morality. Because all epistemic, moral, political, and aesthetic conjectures and debates proceed on the basis of human 
understanding, it becomes necessary to examine the detailed nature and structure of that understanding. For this one must have a method of inquiry sufficiently 
independent of the forms and habits of thought that are the subject of the inquiry itself. Thus the subtitle of the Treatise is "An ATTEMPT to introduce the 
experimental Method of Reasoning INTO MORAL SUBJECTS." This "experimental" method calls for repeated observations and the recognition that the most 
reasonable explanation of any phenomenon is the one compatible with the most frequently associated conditions. When A and B are constantly conjoined in experi­

  
Page 91

ence, with B reliably following A in time, it is a fixed tendency of the mind to regard A as the cause of B. There are no certainties in the domain of contingent fact, so 
the most reasonable conjectures (here following Locke) are those grounded in probabilities based on a history of relevant experiences. 7

The universal causal laws of the universe, long regarded as rationalism's chief line of defense, are conceived, according to Hume, as a result of associational principles 
and related mental dispositions. Hume is not skeptical about causation itself, but he is at pains to develop an adequate psychological theory to account for our 
conception of causation. To speak of causes is not to identify something obtaining between perceived antecedents and perceived consequences. Rather, it is for the 
mind itself to comprehend such conjunctions as causally related. The more reliable the conjunction, the firmer the belief, for the belief accumulates with rising 
probabilities. Just as in the following century J. S. Mill (fully in the patrimony of Hume) concluded that a universal truth can refer only to that which is exceptionless in 
experience, Hume systematically reduced the claims of rationalism either to veiled tautologies or to experience and the complex ideas formed out of it.

If all knowledge is dependent upon experience, this must include as well moral and aesthetic knowledge or what is more aptly called moral and aesthetic judgment. 
The reference of such judgments is not to be found in the external actions or objects but in the mind of the percipient. To believe something to be good or bad, 
beautiful or ugly, is not to have a given order of ideas or impressions but "their feeling to the mind ... [B]elief is something felt by the mind" (Hume, 1758/1965, sec. 5, 
part 2). The man in love declares the object of his affection to be nothing less than a "divine creature," though she is nonetheless found to be utterly mortal by a 
different man. Parents confer virtues on their own children not always obvious to others. "Nature," after all, "has given all animals a like prejudice in favour of their 
offspring" (Hume, 1777/1988, p. 162). In all, moral and aesthetic qualities are not properties of things but are imputed to things by a mind that is either habitually or 
instinctually so inclined, though this correct but controversial thesis will not easily be made palpable ''to negligent thinkers" (p. 163).

  
Page 92

"Essentialism" and Personal Identity

Heaven waxeth old, and all the spheres above
Shall one day faint, and their swift motion stay:
And Time itself in time shall cease to move:
Only the Soul survives, and lives for aye.
—John Davies, Nosce teipsum (1599)

[W]hat we call a mind is nothing but a heap or collection of different perceptions, united together by certain relations, and suppos'd, tho' falsely, to be endow'd with a perfect 
simplicity and identity.
—David Hume, Treatise

The venerable ontology of substances is invoked to account for the continuity of identity amidst change. 8  The position of the so­called essentialist is that attributes 
inhere in something and that the essential something survives even as its surface (accidental) attributes undergo generation or corruption. Essentialism poses a 
challenge to the empiricist to the extent that the abiding essence of a thing is (rationally or intuitively) knowable despite its variability at the empirical level. The most 
vivid form of the challenge comes about as a result of personal identity: the continuity of one's own identity in the face of daily and even momentary changes in all of the 
material components of one's physical being. Beneath the skin all is a shifting storm of processes leading to the birth and death of myriad cells, the onset and 
termination of myriad physiological and chemical processes. Through it all, however, Smith remains the same person; hence the theory according to which Smith's self 
is a substantial entity in which various properties inhere.

Locke was to focus on the issue of personal identity and attempt to deal with it in a manner consistent with his empiticistic psychology. The Lockean "self" and the 
continuity of consciousness are featured in the second edition of the Essay in the chapter "Identity and Diversity," written in response to Molyneux's suggestion that a 
new edition address the matter of the principium Individuationis. For the (Newtonian) Locke, the ultimate constituents of the physical world are corpuscles; those of 
the mental world, sensations. Neither ensemble is a substance. Thus,
personal identity—that is, the sameness of a rational being—consists in consciousness alone, and, as far as this consciousness can be extended backwards to

  
Page 93

any past action or thought, so far reaches the identity of that person. So that whatever hath the consciousness of present and past actions, is the same person to whom they 
belong ... self is not determined by Identity ... of Substance, which it cannot be sure of ... but only by Identity of consciousness. (1690/1956, bk. 2, chap. 27, secs. 16–23)

Locke is prepared to grant that consciousness may be said to inhere in some sort of substance, but we can know nothing of it, for such cannot be the subject of 
experience. Nor is he convinced at all that said "substance" is not a material substance, for surely, "GOD can, if he pleases, superadd to Matter a Faculty of 
Thinking ... since we know not wherein Thinking consists" (1690/1956, bk. 4, chap. 3, sec. 6). It is in virtue of a particular physical organization that certain powers 
and properties come into being and qualify a given entity as the sort of thing it is. It is not enough that there be such powers and properties; they must be integrated 
within a given identifiable system. Neither speech nor rationality is sufficient to establish a human being. Thus, Prince Maurice's Brazilian parrot fails to be a man on 
Locke's account, even if the bird does qualify as a rational animal. The failure is a failure of the body. What we have is a rational bird, whatever its discursive powers. 
9  Nor would speech and rationality establish (or individuate) a given person, for the person one is finally is no more than the contents of a given consciousness: a 
constellation of memories over a span of time within the ambit of consciousness. What makes Smith the person he is, therefore, is not something ''essential" grounded 
in substance but something psychological grounded in experience.10

The radical implications of Locke's theory include that there is no continuing personal identity and therefore no (substantial) self to be held morally responsible. Alas, 
one may at the same time be and not be the same person. It is even imaginable that indefinitely many men might be the same person, something Locke illustrates by 
way of the "prince and the cobbler" example. After the mind of the elegant, affluent, and refined prince enters the cobbler's body there is no other conclusion possible 
but that the same princely person is now within a different man. The person is a shifting and unstable item, forged out of experiences, something of a cultural artifact, a 
product of memory and those processes that connect experiences over a span of time. What was long taken to be one's abiding character is replaced by the protean 
personality.

  
Page 94

It did not take long for criticisms and alarms to be sounded. John Sergeant in his Solid Philosophy Asserted (1697/1984, p. 47) notes that Locke's theory leads to 
the inevitable conclusion that "the Individuality of Man [must] alter every moment." Henry Lee observes (1702/1978, p. 88) that on Locke's account we can "as wisely 
bury our Friends when fast asleep, as when they are dead. For when ... asleep ... they are not conscious" and are thus not persons. Lee goes on to note that persons 
cannot even be tried for crimes on this theory.

For how can any judge or jury be certain, that a man (during the Commission of any Fact, or entering into any Covenants) was sleepy or broad awake, sober or mad, sedate or 
passionate.... For any of these ... circumstances may so alter the State of the Case, as to denominate him a different person.

Undaunted, Hume both develops and criticizes the Lockean theory, concluding that the "heap ... of perceptions" constitutive of mind was all he could find when he 
undertook a search for his self. Rejecting Locke's "memory" theory of identity on the grounds that one's personal identity can be extended beyond what memory 
provides, Hume applies his ''relation of cause and effect" as a corrective. Impressions give rise to ideas, these then producing other impressions: "One thought chases 
another, and draws after it a third, by which it is expell'd in its turn." The analogy of a parade formation is illustrative. Each of the marchers can be replaced by another 
marcher, but with the overall formation preserved. The relation of cause and effect is what preserves the "identity": as each perception within the bundle enters into 
associative bonds with others, the functional consequence is that ideas hold together in unique ways, not unlike the functional organization of the march. Thus, it is the 
same march even as the individual participants are replaced, as long as the replacements enter into the drill in proper fashion. Hume offers another analogy: the soul is 
like a republic or commonwealth whose citizens come into being and pass away, but with each generation retaining the same republic even as the laws and 
constitutions change. It is "in like manner that the same person may vary his character and disposition, as well as his impressions and ideas, without losing his 
identity" (1739/1973, bk. 1, pt. 4, sec. 6, p. 281). The causal connections within the pool of impressions and ideas constitute the basis of the continuity of the person, 
for all identity depends finally and solely on the relations among ideas.

  
Page 95

By the middle of the nineteenth century the essential terms of the long debate were articulated well enough for the increasingly independent discipline of psychology to 
be developed along more or less distinct lines. The claims of empiricism were given their most authoritative post­Humean expression in the writings of John Stuart Mill 
(1806–1873), who provided both a rationale and a methodology for what would become an independent and "scientific" (experimental) psychology. 11

Intuitionism and Rationalism: The Measured Reply

The target of Locke's Essay was not simply Descartes's (alleged) theory of innate ideas but an entire pattern of thought indebted to both Scholasticism and 
Neoplatonism. Locke's contemporaries included the influential group of Cambridge Platonists, who argued in behalf of a priori and rational principles of knowledge 
and for essentially deductive systems of morality. As for Cartesian innate ideas, perhaps the less said the better, for Descartes explicitly denied ever having advanced 
such a theory in the form that invited (and has since invited) criticism.12 Actually, it was the empiricistic side of Descartes's philosophy of mind (or psychology) that led 
him to dub certain ideas as innate rather than derived from experience. One example of this is the idea of matter itself. Supposing all knowledge of externals to be 
mediated by the senses, Descartes reached the (phenomenalist) conclusion that what is directly known must be the sensation or perception itself. Assuming further 
that the facts of the world have no access to consciousness except by way of the senses, it follows that all of the contents of consciousness must be sensations, 
perceptions, ideas—anything but material objects. Nonetheless, everyone regards the objects of the external world as material entities causally related to our 
perceptions of them. The idea of matter, however, cannot be derived from anything mental (i.e., sensations, perceptions, ideas), so it must arise from a native power or 
disposition of the mind triggered by experiences of a certain kind. This disposition allows us to form ideas that link our perceptions to the external world. Understood 
this way, then at least with respect to knowledge of the external world, "there is nothing in our ideas which is not innate to the mind" (Descartes, 1648/1987, p. 304). 
Had Descartes the prescience to describe such knowledge in terms of "primary

  
Page 96

and secondary qualities," Locke might have been spared a hundred pages of text.

For all of the squalls of controversy there are few empiricists or rationalists in the periods under consideration who have not subscribed to one or another form of 
"intuitionism." Behind the notion is the recognition that something about mind (body, brain, consciousness, perception) is constituted in such a way as to receive or 
convert or translate the bare physical events of the external world in such a way to render them meaningful, intelligible, and useful. The debate, then, tends to center on 
just what it is that performs such functions, whether the performance is at the expense of truth, and whether the right way to address such questions is by way of 
further observation or through systematic and rational analysis.

Hume's most acute and influential contemporary critic was Thomas Reid (1710–1796), whose An Inquiry into the Human Mind (1764/ 1863b) remains a 
compelling defense of one species of intuitionism and a trenchant analysis of the assets and liabilities of empiricistic theories of mind. This father of Scottish 
"commonsense" philosophy would be the principal target of John Stuart Mill's critique of "intuitionism" and a central figure in that part of Scottish thought that 
influenced Kant and other German Enlightenment writers. 13 A brief sketch of several of Reid's major criticisms and principles is useful as an introduction to 
rationalistic psychology in the modern era.

Against what he took to be the very basis of skepticism, namely, that all knowledge of the external world is representational, Reid affirms the theory of direct realism. 
He rejects the view (dubbed by Reid the ideal theory) that percipients never know things themselves but only the "idea" of things that the mind represents in the form 
of "images" of things. Reid insists that there is actually no evidence of this and that such a theory could only apply to visual perception; there can be no image of an 
odor! Moreover, a close analysis of the theory of visual images finds it hopelessly defective.

In chapter 6 ("Of Seeing") of his Inquiry Reid develops this theory in the section he titles "The Geometry of Visibles," where he anticipates Riemannian geometry by 
decades. The main line of argument here may be summarized as follows: Objects in the external world are projected

  
Page 97

on the spherical surface of the cornea and then to the bottom of the eye, which is also spherical. If, in fact, "ideas" of external objects are, to use Hume's term, copies 
of these sensory impressions, the perceived object (e.g., a rectilinear triangle) should appear spherical, which it does not. Were it the case that what is visually 
perceived are copies made of objects projected onto the surface of a sphere, the visual perceptual outcomes would differ radically from what is reported by touch. 
Tangibly straight lines would be seen as curved, tangible straight triangles would be spherical, and so on. Such projected forms within Reid's geometric system are 
nonetheless based on a deductive geometric system as coherent and defined as Euclid's. However, within this system the angles of triangles sum to more than 180°; 
parallel lines intersect at two loci; the only visibly straight lines are circumferential lines spanning the sphere. Were all these features common to ordinary visual 
perception, it is this geometry and not Euclid's that would have been developed first. True, perceived objects in this system are projected onto a very small area of the 
retina where differences between Euclidean and non­Euclidean forms are negligible, but this perceptual ability further supports the general realist thesis according to 
which animals are constituted in such a way as to give them valid information of the facts of the external world. The caterpillar, observes Reid, will climb over a 
thousand leaves until it finds one that is right for its needs, the results here pragmatically defeating the skeptic's challenge.

Reid observes that apart from the idle speculations of philosophers, no one has ever doubted the difference between objects perceived in the external world and our 
ideas about them. The concept of illusion presupposes nonillusory knowledge of the external world and the fact of daily success in dealing with the external world 
indicates that organisms are designed in such a way as to have realistic contact with the world about them. Surely the difference between the lion now making an 
impression on the visual organ, and one's idea of a lion, is rather more substantial than the Humean account, according to which the former is just more lively or vivid. 
On the question of just how it is that percipients, whose knowledge of objects in the external world is in fact the result of complex sensory processes, do perceive the 
objects themselves and not the intervening processes, Reid does not pretend to have an answer. There is

  
Page 98

no logical reason why food is digested in the stomach rather than in the foot. The order of nature predates logic. All knowledge has a starting point: the "common 
notions" of the ancient mathematicians in the matter of formal systems, the principles of "common sense" in the matter of objective knowledge of the world. Knowledge 
itself presupposes any number of truths that cannot be derived from more basic precepts. Reid notes that external objects stimulate sensory structures whose 
responses are the natural signs of these objects. What is perceived, however, are not these, but the objects themselves. By its very constitution and in a way that is not 
and perhaps cannot be known, the mind is able to go from the physiological signs of such things to the things thus signified. Governing all such transactions are what 
Reid with reluctance calls the ''principles of common sense," taking these to be what we (and in some cases the animal kingdom in general) are under an obligation to 
take for granted. Hume doubts much, but not his own sensations, and this because he can't.

In "Essay­Three" (chapters 4–7) of his Essays on the Intellectual Powers of Man (1785/1863a), Reid examines personal identity and the Lockean and Humean 
reduction of self to experience and mental associations. He makes short work of Locke's memory theory. Needless to say, all but the insane have the strongest 
conviction that their personal identities stretch back as far as their memories reach, but it is not memory that achieves the identity. Recalling oneself to have been 
defeated at the Battle of Waterloo is not what makes one Napoleon. Then taking a page from Berkeley's Alciphron, Reid illustrates the formal defects of the Lockean 
account. Imagine a young officer (dubbed B) decorated for valor in battle and recalling when years earlier he had been a boy (dubbed A) punished for taking fruit from 
the orchard. Consider now an aged general (dubbed C) remembering his decoration for valor but having no recollection whatever of punishment in childhood. 
Assuming the self to be nothing more than whatever is present in consciousness, including all that memory can reach, A = B, B = C, but A   C. Thus does the identity 
collapse.

It is worth noting, especially in light of efforts to salvage the Lockean theory of self, that Reid had a deeper understanding of Locke's reasoning on this subject than 
later commentators were and current commentators are, wont to recognize or, alas, share. Recall Locke's three modes of

  
Page 99

knowing (intuitive, demonstrative, and sensitive), now in relation to personal identity: Personal identity cannot be known by demonstration, for in that case knowledge 
of the self would be logical and derived from principles and would be available only to those skilled in demonstrative sciences. It also cannot arise as a result of 
sensory experience, for there is nothing in experience per se that identifies its subject; rather, the subject identifies the experience. Moreover, as the stream of 
consciousness is ever changing, consciousness cannot provide the grounds of a continuing personal identity. Nor (as Hume had shown) can one's personal identity be 
projected into the future and, in that imagined place, be distinguished from one's personal identity in the past. Accordingly, on Locke's own epistemology, this leaves 
only an intuitive knowledge of one's personal identity, which is Reid's position.

Reid's critique of Hume is different, for Hume's theory of personal identity is different from Locke's (Robinson & Beauchamp, 1978). The "bundle of perceptions" that 
turn up when Hume undertakes a search for his self are held together by causal relations in the mind, and it is the uniqueness of these relations that generate a unique 
self. Reid devotes less space to this proposition, largely because he has already satisfied himself that the Humean account of causality is itself defective. Reid judges the 
regularity ("constant conjunction") theory of causation to be discredited in common experience; no one thinks that day is the cause of night or vice versa merely 
because the two are "constantly conjoin'd" in experience. Further, the concept of causality cannot be got from the perception of external events (as Hume himself has 
argued). What, then, is its source? On Reid's account, the notion of a cause is probably an inference developed very early in life and drawn from the immediate 
recognition of ourselves as having active powers. That is, someone's (infant's) recognition of his or her having the ability to bring certain events about (bringing a thumb 
to the mouth) conduces to the notion of a power. Absent this notion, there would be no basis upon which to rest the assumption that events external to oneself are 
similarly (i.e., causally) brought about. But the possession of active power presupposes the intuitive awareness of oneself as the source of one's actions. Thus, for there 
to be causal relations in experience there must be a prior conception of causality; for there to be a conception of causality there must be an awareness of active

  
Page 100

power; for there to be active powers there must be an intuitive awareness of oneself as the source of one's actions. Conclusion: a (substantial) self is presupposed in 
both the Lockean and Humean theories of personal identity. This species of intuitionism has been something of a fixture in rationalistic philosophies, and it becomes a 
central feature of them through the influence of Kant.

If Locke may be said (but only with needed reservation) to have endorsed the ageless maxim "Nihil in intellectu quod non fuerit prius in sensu," then the shortest path 
to the intuitionist's or rationalist's critique is by way of Gottfried Wilhelm Leibniz's, "Nisi intellectus ipse": nothing is in the intellect except the intellect itself. 14 In his 
New Essays on the Understanding (1765/1982), Leibniz (1646–1716) closely examines the controversies arising from the works of Descartes and his continental 
critics (notably Pierre Gassendi) and from Locke's Essay. His defense of innate ideas is grounded in the claim that certain established principles of thought itself cannot 
be gleaned from experience and must be granted if the mind is to be receptive to experience itself. There is, then, that same intuitionism in Leibniz that is found in Reid 
and that comes to be fully developed in Kant's Critique of Pure Reason.

The Kantian "a priori"

Immanuel Kant (1724–1804), along with Descartes and Leibniz, was one of the "textbook" rationalists. He claimed that he had been shaken out of his philosophical 
complacency—that he had been awakened from his "dogmatic slumber"—by David Hume. The question that remains unanswered is whether thus awakened Kant 
thereupon defeated or completed what might be called Hume's project. It is in the Critique of Pure Reason (1781/1965) that Kant tests the claims of empiricism and 
the limits of reason in the matter of what is knowable.15 A review of his position begins with a clarification of terms.

As Kant would use the word, transcendental refers to that which transcends the level of (empirical) observation. Pure, too, is contrasted with that which is given in 
experience and thus refers to what is nonempirical. Analytic and synthetic refer to the truth conditions of propositions. A proposition is synthetic when what it affirms 
is subject to empirical modes

  
Page 101

of verification. A proposition is analytic when the meaning of the subject term is included in the meaning of the predicate; for example, unmarried men are bachelors. 
The truth of analytic propositions is established independently of experience and is in this logical sense prior to any and all empirical modes of confirmation or test. 
Thus, what is analytically true is true a priori. Understood in these terms, Hume's central thesis, consistent with the tenets of empiricism, is that the truth of a synthetic 
proposition can never be established a priori. Kant's criticism then succeeds just in case there is at least one synthetic proposition the truth of which is known a priori. 
16

Granting Hume's claim that all knowledge arises from experience, Kant notes nonetheless that all knowledge is not grounded in experience, for experience itself needs 
a grounding. Under the heading of the "Analytic of Concepts," Kant develops his "transcendental deduction" and lays the foundation for what is finally a theory of 
knowledge: "We are already in possession of concepts which are of two quite different kinds, and which yet agree in that they relate to objects in a completely a 
priori manner, namely, the concepts of space and time as forms of sensibility, and the categories as concepts of the understanding" (1787/1965, B118).17

In referring to the concepts of space and time as forms of sensibility Kant registers the logically necessary conditions for there to be experience of any sort at all. 
Neither time nor space is given in experience, so both concepts are pure (i.e., nonempirical). Yet, both are necessarily related to "objects" and are so related to each 
other "in a completely a priori manner." They are, then, pure intuitions (Anschauungen), not derivable from experience but necessarily grounding experience. The 
famous Kantian categories are the pure concepts of the understanding that exhaust the forms of knowing, as time and space exhaust the forms of sensibility. They are 
reduced to tabular form (table 3.1) at B106 and analyzed in detail under the heading "Transcendental Doctrine of Judgment," in chapter 1, "The Schematism of the 
Pure Concepts of Understanding."

Within this fourfold table Kant includes the schemata, or frameworks, within which all knowledge can be had. The categories are not supplied by experience—
nothing in experience qualifies as "necessary," for example—and therefore are pure. They are also logically prior to

  
Page 102

Table 3.1
Kant's Table of Categories
I. Quantity II. Quality III. Relation IV. Modality
Unity Reality Inherence and subsistence Possibility­impossibility
Plurality Negation Causality and dependence Existence­nonexistence
Totality Limitation Community Necessity­contingency
Sources: From Kant (1785/1965, chap. 1, A137–150, B176–189).

cognitive encounters of any kind, whether with the world of fact or the formal world of abstractions. No number of discrete events can be added to yield "all." Rather, 
numerosity itself presupposes a framework, or schema, for categorical distinctions between and among unity, plurality, and totality. Similarly, absent the (pure) concept 
of causality, there could be no basis upon which temporally coincidental events could be thus classified.

The points of compatibility between Kant and Hume are numerous and suggestive. Kant grants, for example, that all empirical knowledge is mediated by sensory 
processes and is thus representational and not direct. What is known empirically are phenomena, but the things they really are in themselves are the noumena. The 
understanding is able to conclude from the existence of phenomena that something must stand behind them, but cannot know what it is. Kantian epistemology, 
therefore, breeds its own and even more daunting variety of skepticism. On the Kantian account empirical knowledge bears the stamp of merely contingent 
mechanisms of perception, the fidelity of whose representations can never be known; and the necessary forms of knowledge—the categories—are logically 
unassailable but at the same time entirely empty of content. None of this supports the more radical "sociologies of knowledge" now so influential. Kant's categories are 
not established by anything about us that is human as such; they are rather the formal framework within which there can be concepts of the understanding for anything 
that has understanding. Note, then, that Kant is not defending a version of epistemological relativism; quite the contrary. Rather, he is establishing the boundary 
conditions beyond which neither perception nor reason can reach.

  
Page 103

Rationalism and Empiricism—Are There Implications for Cognitive Psychology?

Considering only the half­century of Piagetian research on children's concepts ("schemata") of necessity and of universals ("totality") the influence of Kantian 
epistemology on cognitive psychology becomes quite apparent. But there are far more foundational aspects of the historic dialogue between the major representatives 
of these two schools. Indeed, radically different implications can be and have been drawn from the same treatises. It is sufficient within the aims of this essay merely to 
illustrate the point.

Consider first the issues raised by language. A radically empiricistic account of language is advanced by behavioristic psychologists, notably B. F. Skinner in his 
Verbal Behavior (Skinner, 1957). On this account, language is an acquired behavior that, though complex, is subject to the same "operant" analysis as bar pressing or 
bicycle riding. Critics of this thesis, notably the linguist Noam Chomsky, have countered with nativistic theories according to which the structural or grammatical 
features of language express "prewired" features of the brain. Despite widely varying practices of child rearing, children begin to frame statements grammatically at 
about the same age the world over; and this occurs notwithstanding the strong tendency of parents to "reinforce" not the structure of such utterances but their content 
(Chomsky, 1959).

The tendency within contemporary cognitive psychology is to understand an issue of this sort as, to use the overworked and misleading term, empirical. The strategy 
then is to study little linguists in early stages of development and record their linguistic achievements, carefully assessing the environmental influences. But it is clear that 
the existence of language must depend on powers and capacities present before any relevant experience, powers whose absence would make it impossible for 
language to be learned at all. Perhaps the shortest proof of this was supplied by Reid in the eighteenth century:
I think it is demonstrable that, if mankind had not a natural language, they could never have invented an artificial one by their reason and ingenuity. For all artificial language 
supposes some compact or agreement to affix a certain meaning to certain signs; therefore there must be compacts or agreements before the use of

  
Page 104

artificial signs; but there can be no compact or agreement without signs, nor without language; and therefore there must be a natural language before any artificial language can be 
invented: Which was to be demonstrated. (Reid, 1764/1863b, p. 93)

At the foundation of Reid's argument is the recognition that language is the means by which human communities enter into shared practices and cooperative ventures. 
His account is ethological, social, and realistic. Contrast this with the popular program within contemporary cognitive science, the program that strives to explain such 
achievements by proposing "processes" and models that allegedly mimic human cognition. If human language is inextricably bound up with social plans and purposes, 
and is thus grounded in uniquely human cultures of thought and value, what explanatory power is likely to reside in noncultural, noncontextual devices?

Such so­called functionalist accounts would advance cognitive science by establishing systems whose hardware and software configurations—modularity, as Minsky 
calls it (Minsky, 1981)—generate just those "functions" identified as sufficient for one or another cognitive achievement. The modularity theory of mind would explain 
complex achievements by recourse to some number of subsidiary functions performed by identifiable modules, presumably without any need for mentalistic or folk­
psychology terms. But the functions themselves are so laced with these very folk understandings that, stripped of them, the ensemble of modules might just as well be 
found in a hardware store. In this connection arguments of the sort advanced by, for example, S. Stich (1983) to the effect that such folk concepts as belief and desire 
are reducible to the operations of identifiable modules, take on the character of Molière's vis dormativa. It is entirely unclear in such accounts just what would be 
achieved if, in fact, the operation of some modular mechanism generated states recognizable by believers as "belief " states.

In the matter of beliefs, orthodoxy and heterodoxy presuppose a cultural ethos and are unintelligible in any other terms. The exception to this is the (Reidian) belief 
each actor has in the potential efficacy of his own actions, Reid insisting that no one undertakes what he truly believes to be beyond his powers (save for some 
symbolic purpose, as in futile gestures). But belief thus understood now requires the very agency and

  
Page 105

self at once central to folk­psychology explanations of significant actions and anathema to the reductionist.

In like fashion, for it is a fashion, there are "neurocognitive" projects of one sort or another, fortified by the thick book of fact compiled by neurology and the neural 
sciences over the past century and especially in the most recent decades. It is with restrained irony that one reads criticisms of the rationalist tradition by those whose 
own neurophilosophy more or less follows, even if blindly, in the Kantian tracks. 18 It may well be that nervous systems are structured in such a way as to permit the 
elaboration of ever more complex states. The standard functionalist argument, however, accepts that what makes a system worthy of cognitive ascriptions is nothing 
necessarily material or physical about it. Rather, it is its ability to realize some program that serves as the formal basis for its functioning. On this account, a system is a 
cognitive system when its functions, for all philosophically or conceptually valid purposes, are taken to be grounded in a priori principles indistinguishable from pure 
intuitions and concepts of the understanding. In the absence of such (pre­wired? hardwired?) formal and a priori organization, the events in the external world 
could never be relevantly connected; they could not even be events. Presumably there is or will be sufficient technology to produce programs and machines able to 
realize them in such a manner as to recover the Kantian categories, one and all. What conclusions would follow from this, other than that all problems become 
problems in virtue of certain "pure concepts" that provide the necessary context for cognition itself? That is, what would be yielded other than a needlessly clumsy 
rediscovery of the main themes of Kant's first Critique?

Suppose, further, that it can be shown that highly evolved nervous systems, by way of the richness of the connections within them, have sufficient resources to generate 
"Kantian" forms of cognition; that they can, as it were, compute modal categories, causal relationships, and so forth. Again, it is not clear what of consequence would 
follow. Surely Kant at least suspected that his own philosophical undertakings required a functioning brain. But a functioning brain is not what determines the 
categories, nor is it the necessary precondition for their elucidation.

The question must remain open as to the extent to which scientific inquiry and experimental findings can vindicate or defeat a developed

  
Page 106

philosophical theory, a systematic philosophy. To some extent the task of philosophy is the clarification of concepts and testing the implications derived from them 
when they are deployed in one or another set of propositions. It is not philosophy that legislates what will or will not qualify as fact, and it is not experimental science 
that legislates how a body of fact is most coherently and defensibly interpreted. Accordingly, nothing in the most recent century of experimental psychology bears 
directly (or could bear directly) on the larger philosophical claims of empiricist and rationalist philosophers. To think that the laboratory is the court of last recourse in 
such matters is to beg, not settle the matter. The scientific undertaking itself is a vindication of rationalism's most consistent claim, namely, that there are answers to all 
meaningful questions and that the rational and judicious mind stands as the final arbiter when conflicting answers arise.

The general point was offered with clarity and economy by Werner Heisenberg:
If we go beyond biology and include psychology in the discussion, then there can scarcely be any doubt but that the concepts of physics, chemistry, and evolution together will 
not be sufficient to describe the facts.... [W]e ... start from the fact that the human mind enters as object and subject into the scientific process of psychology." (Heisenberg, 1959)

As for the implications of empiricism, it is worth recalling the radical empiricism of William James, radical because it rules out nothing that has been featured in the 
human experience. 19 James's version of empiricism takes the shifting, cluttered, and chaotic world of human experience as the undoing of each and every "block 
universe" minted by the confident theorist.

Notes

1. Needless to say, Plato's own position on this matter was not constant. The supremacy of the rational in such dialogues as the Meno, the Republic, and the Laws is 
cogently challenged by the ontological powers of eros in the Symposium and the Phaedrus.

2. Passages in Aristotle are located by the traditional Bekker numbers given in most editions of the works of Aristotle so that readers can find passages in whatever 
edition they are using. In most instances citations in the present chapter are

  
Page 107

taken from The Complete Works of Aristotle, edited by Jonathan Barnes (1984). Greek terms are taken from the Greek text provided by the Loeb Classics 
editions.

3. In transliterating the Greek capital letters are used for long vowels and lowercase letters for short vowels; e.g., eta (E) and epsilon (e); omega (O) and omicron (o).

4. Plato's early period covers the years when Socrates was still alive and when Plato may have been composing such early dialogues as the Protagoras, Meno, and 
Gorgias. That he later completely abandoned the theory of the "forms" is arguable, for it is featured in the late dialogue the Theaetetus.

5. Germane to the issues under consideration here is Ockham's "Seven Quodlibeta" (Quadlibeta septem). Question 13 of Quadlibet I is "Whether that which is 
known by the understanding first according to a primacy of generation is the individual." A redaction of the seven is given in MkKeon's Selections from Medieval 
Philosophers.

6. The Enquiry appeared with this title in the 1758 edition of Hume's Essays and Treatises on Several Subjects. It had been earlier published (1748) as 
Philosophical Essays concerning Human Understanding. The main purpose of the Enquiry was to compensate for the relative indifference shown his Treatise of 
1739 by putting that work's central arguments in a more accessible form. For a quarter of a century Hume wrote, revised, and added to a collection of Essays Moral, 
Political and Literary (1740–1776), the final and fully edited version appearing posthumously in 1777.

7. Hume's consideration of probabilities is most keen in book 1, part 3, sections 2 and 12, and part 4, section 1 of the Treatise. In Locke's Essay (bk. 4, chaps. 15–
16) "degrees of probability" are discussed within the context of juridical reasoning. Juries run the gamut from total assenting belief to total doubt. The basis for this 
must be ideas about the relevance and reliability of certain combinations of facts. Belief, then, varies in strength with degrees of probability, and these degrees are 
established empirically. For a thorough analysis of the history of probabilistic thinking and the place of Locke's and Hume's writings therein, consult Lorraine Daston, 
Classical Probability in the Enlightenment (1988).

8. The concept of substance has been variously understood and expressed. For Aristotle the essence (ousia) of a thing is that of which attributes are predicated but is 
not itself a predicate of anything else. For Descartes man is essentially a "thinking thing" (res cogitans), this essence being irreducible to the material composition of the 
body. Thomas Reid (1710–1796) expresses the more general sense of substance as "an unchanging subject of thought."

9. See Yolton's Thinking Matter (1983) for the sources and inferences of this eighteenth­century predilection regarding language.

10. The Lockean and Humean positions are different and call for different critical appraisals. In corrections to the first edition of his Treatise, where Hume seeks to 
qualify certain arguments developed in the body of the text, he is especially vexed by the question of personal identity. He says, "I find myself involv'd in

  
Page 108

such a labyrinth, that, I must confess, I neither know how to correct my former opinions, nor how to render them consistent'' (p. 633). On the general issue, see 
also D. N. Robinson and T. L. Beauchamp (1978).

11. For a discussion of Mill's psychology and its place within the modern history of the discipline, see D. N. Robinson (1982, chap. 2; 1995, pp. 263–270). Wundt, 
of course, is the widely acknowledged father of experimental psychology, but within the empiricistic tradition Mill's works—chiefly his A System of Logic (1843) and 
An Examination of Sir William Hamilton's Philosophy (1865)—supplied the most detailed and developed philosophical context within which a scientific 
psychology might evolve.

12. Replying to a broadsheet posted by Regius in 1647, Descartes defends himself against the criticism thus: "I have never written or taken the view that the mind 
requires innate ideas which are something distinct from its own faculty of thinking. I did, however, observe that there were certain thoughts within me which neither 
came to me from external objects nor were determined by my will, but which came solely from the power of thinking.... So I applied the term 'innate' to the ideas ... in 
order to distinguish them from others, which I called 'adventitious' or 'made up' " (Descartes, 1648/1987, p. 303).

13. On Mill's focus on Reid's Inquiry, see Robinson (1982, chap. 2). Scottish and specifically Reid's influence on Kant is closely examined by Manfred Keuhn 
(1987).

14. Leibniz undertakes a detailed criticism of Lockean empiricism in his New Essays on the Understanding. Though completed in 1704, the work was not published 
until 1765. Leibniz withheld it owing to the recency of Locke's death (1704) and at a time when the Newton­Leibniz controversy needed no further fuel. The form of 
the treatise is a dialogue between Philalethes and Theophilus. It is in book 2, chapter 1. (p. 110) that the "nisi intellectus ipse" passage is offered as a counter to the 
maxim, though the maxim itself is not found as such in Locke's Essay. Indeed, after declaring that "an exception [to the maxim] must be made of the soul itself and its 
states" (p. 110), Theophilus notes that his position "agrees pretty well" with Locke, "for he looks for a good proportion of ideas in the mind's reflection on its own 
nature."

15. The first edition of the Critique of Pure Reason appeared in 1781. It is the second edition (1787) that was authoritatively translated by Norman Kemp Smith and 
first published in 1929 and reprinted thereafter. All references here are to the 1929 translation.

16. Still illuminating on this point is L. W. Beck's 1967 essay, which reaches the conclusion that Hume's empiricistic argument succeeds only if Kant's rationalistic 
argument is assumed to be true.

17. By convention the letters A and B refer to the first and second editions, and the numbers to the pagination in these respective editions.

18. For instructive examples of this, see P. S. Churchland and T. J. Sejnowski (1989) and D. M. Armstrong (1981).

19. See his Essays in Radical Empiricism (1912).

  
Page 109

References

Aristotle (1984). The complete works of Aristotle (2 vols., Jonathan Barnes, Ed.). Princeton, NJ: Princeton University Press.

Aristotle (1933). Metaphysics (Hugh Tredennick,Trans.). Cambridge, MA: Harvard University Press.

Armstrong, D. M. (1981). The nature of mind and other essays. Ithaca, NY: Cornell University Press.

Beck, L. W. (1967). Once more unto the breach: Kant's answer to Hume again. Ratio, 9, 33–37.

Berkeley, G. (1963). A treatise concerning the principles of human knowledge. La Salle, IL: Open Court. (Original work published 1710.)

Chomsky, N. (1959). [Review of Skinner's Verbal behavior.] Language, 35, 26–58.

Churchland, P. S., & Sejnowski, T. (1989), Neural representation and neural computation. In Neural connections, mental computations (L. Nadel et al., Eds.). 
Cambridge, MA: MIT Press.

D'Alembert, Jean Le Rond (1963). Preliminary discourse to the encyclopedia of Diderot (Richard Schwab, Trans.). Indianapolis: Bobbs­Merrill. (Original work 
published 1751.)

Daston, L. (1988). Classical probability in the Enlightenment. Princeton, NJ: Princeton University Press.

Descartes, R. (1987). Comments on a certain broadsheet (Dugald Murdoch, Trans.; original work published 1648). In vol. 1, J. Cottingham, R. Stoothoff, & D. 
Murdoch (Trans.), The philosophical writings of Descartes (pp. 293–311). Cambridge, England: Cambridge University Press.

Heisenberg, W. (1959). Physics and philosophy. London: George Allen & Unwin.

Hume, D. (1965). An enquiry concerning human understanding. In Ralph Cohen (Ed.), The essential works of David Hume. New York: Bantam. (Original 
work published 1758.)

Hume, D. (1973). A treatise of human nature (L. A. Selby­Bigge, Ed.). Oxford, England: Oxford University Press. (Original work published 1739.)

Hume, D. (1988). Essays moral, political and literary (Eugene Miller, Ed.). Indianapolis: Liberty Fund Press. (Original work published 1777.)

James, W. (1912). Essays in radical empiricism. New York: Longmans Green.

Kant, I. (1965). Critique of pure reason (Norman Kemp Smith, Trans.). New York: St. Martin's Press. (Original work published 1787.)

Kuehn, M. (1987). Scottish common sense in Germany. Montreal: McGill­Queen's University Press.

Lee, H. (1978). Anti­scepticism. London: Clavil & Harper. New York: Garland. (Original work published 1702.)

  
Page 110

Leibniz, G. W. (1982). New essays on the human understanding (Abridged ed., P. Remnant & J. Bennett, Trans. & Eds.). Cambridge, England: Cambridge 
University Press. (Original work published 1765.)

Locke, J. (1956). An essay concerning human understanding. Chicago: Henry Regnery. (Original work published 1690.)

Mill, J. History of India (1818). London: Longmans Green.

Mill, J. S. (1843). A System of Logic. London: Longmans Green.

Mill, J. S. (1979). An examination of Sir William Hamilton's philosophy. (Original work published 1865.). In J. M. Robinson (Ed.), Collected works (Vol. 9). 
Toronto: University of Toronto Press.

Minsky, M. (1981). K­lines. In D. Norman (Ed.), Perspectives on cognitive science (pp. 87–103). A theory of memory. NJ: Ablex.

MkKeon, R. (1930). Selections from the medieval philosophers (Vol. 2, pp. 351–421). New York: Scribner's.

Reid, T. (1863a). Essays on the intellectual powers of man (Original work published 1785). In Sir William Hamilton (Ed.), The works of Thomas Reid (6th ed.) 
Edinburgh, Scotland: Maclachlan & Stewart.

Reid, T. (1863b). An inquiry into the human mind. (Original work published 1764.) In Sir William Norton (Ed.), The works of Thomas Reid (6th ed., pp. 87–
103). Edinburgh, Scotland: Maclachlan & Stewart.

Robinson, D. N. (1982). Toward a science of human nature: Essays on the psychologies of Mill, Hegel, Wundt and James. New York: Columbia University 
Press.

Robinson, D. N. (1995). An intellectual history of psychology (3rd ed.). Madison: University of Wisconsin Press.

Robinson, D. N., & Beauchamp, T. (1978). Personal identity: Reid's answer to Hume. Monist, 61, 326–339.

Sergeant, J. (1984). Solid philosophy asserted. New York: Garland. (Original work published London: R. Clavil, 1697.)

Skinner, B. F. (1957). Verbal behavior. New York: Appleton­Century, Crofts.

Stich, S. (1983). From folk psychology to cognitive science: The case against belief. Cambridge, MA: MIT Press.

Yolton, J. (1983). Thinking matter. Minneapolis: University of Minnesota Press.

  
Page 111

II
REPRESENTATION AND PROCESS IN COGNITION

  
Page 113

4
Single­Code versus Multiple­Code Theories in Cognition
Timothy P. McNamara

I begin this chapter by having the reader answer two simple questions:

How many windows does your home have?
1.
2. In two or three sentences, explain the causes of the U.S. Civil War.

The experiences I have while answering these questions differ dramatically. To answer the first question, I visualize my house, one side at a time, and count the 
windows. The knowledge I use to answer the question seems to represent the properties of my house in a direct, perceptual manner. In contrast, I am able to answer 
the second question by retrieving, in a pretty much unconscious manner, the relevant information from memory. Certainly, I do not need to visualize scenes from the 
Civil War to answer the question. Complexities aside, the major question that I examine in this chapter is this: Is the knowledge that I use to answer the first question 
the same kind of knowledge as the knowledge that allows me to answer the second? If so, why are my experiences so different; and if not, what is the nature of each 
kind of knowledge?

The goal of this chapter is to explore a fundamental problem in cognitive psychology, namely, how our knowledge of the world is represented in the mind. Specifically, 
I hope to provide a tutorial review of two major classes of theories of knowledge representation. According to one class of theories, human knowledge is represented 
in an abstract format, called propositions. The other major class of theories accepts that much of human knowledge can be represented propositionally but rejects the 
claim that all knowledge is so represented. According to these theories, a significant portion of knowledge is represented in a perceptual format, often referred to as 
images or more generally as analogical representations. In

  
Page 114

this chapter, I will refer to the first class of theories as single­code theories and to the second class of theories as multiple­code theories.

The plan of this chapter is as follows. I begin by discussing the nature of mental representation. In that section, I explore what mental representations are and why 
cognitive scientists believe that they exist. In the second section, I examine single­code and multiple­code theories of knowledge representation. The third section of 
the paper reviews the so­called imagery debate of the 1970s and the early 1980s. Although this debate focused on issues more narrow than those examined in this 
chapter, it produced several general lessons for researchers interested in knowledge representation. The fourth and final section summarizes the discussion.

The Nature of Knowledge Representations

What Are Mental Representations?

A representation is something that stands for something else. The words of any human language are examples of a form of representation because they stand for 
objects, events, and ideas. Words are an abstract representation because the relation between a word and the object or the idea it represents is arbitrary; words in 
other languages can refer to the same objects and ideas, and with few exceptions the referent of a word cannot be predicted from its auditory or visual form. I will 
refer to representations of this kind as symbolic. A representation can also be concrete. For example, the silhouette in figure 4.1 is a representation of a falcon taken 
from an encyclopedia of birds (Terres, 1980). This silhouette could be used by a beginning bird watcher to identify a falcon in flight. An important characteristic of this 
representation is that it represents a falcon in a direct, perceptual way: falcons often display long, thin tails in flight, and so does the silhouette. I will refer to these 
representations as analogical.

A mental representation is a structure in the mind that preserves information about objects or events in the world. For example, you have a mental representation of 
the spatial layout of your bedroom, and this representation preserves relative locations of objects in the space. This mental representation supports a number of 
abilities, including imagining the room from different viewpoints, estimating distances from memory,

  
Page 115

Figure 4.1
A depiction of a bird. (Reprinted from Terres, J. K. [1980]. The Audubon Society 
Encyclopedia of North American Birds.

navigating in the dark, and so on, all of which depend on mental processes that operate on the spatial representation. As we shall see later, the fact that you can 
imagine what your room looks like does not imply that the mental representation is analogical. The mental representation may be very abstract.

Are Mental Representations Necessary?

There are many reasons to posit the existence of mental representations. One of the more important reasons is that human behavior cannot be explained without 
specifying how individuals represent the world to themselves. The contemporary history of this idea can be traced to Chomsky's (1959) critique of behaviorist 
accounts of language acquisition (e.g., Skinner, 1957). As an example, consider the following anecdote. Recently, I was driving around Nashville trying to find a 
plumbing store, and I ended up driving several miles out of my way because I thought I could exit from the interstate highway onto a cross street, Fessler's Lane, when 
in fact there was no exit. To explain my behavior, one must appeal to ideas of the following kind: "McNamara was looking for a plumbing store because he wanted to 
fix his sink." "McNamara thought that he could exit the highway onto Fessler's Lane," and so forth. One must know how I interpreted the world and represented it 
mentally to understand why I did what I did. My belief that I could get to Fessler's Lane from the interstate highway is especially enlightening because it makes

  
Page 116

no sense at all given the physical arrangement of the highways and cross streets. This belief is sensible only if one knows that I misrepresented crucial information 
about the roads of Nashville.

In summary, the concept of mental representation is fundamental to the cognitive sciences. The controversial questions have to do with how information is represented, 
whether different types of information (e.g., visual vs. verbal) are represented in different ways, and whether theories of mental representation can be tested 
experimentally. These are the questions we shall examine in this chapter.

Single­Code versus Multiple­Code Theories of Knowledge Representation

When we say that a person "knows" something, there are at least two senses in which we use the term (e.g., Ryle, 1949). One kind of knowledge can be verbalized, 
visualized, or declared in some manner, and for these reasons has been called declarative knowledge. A second type of knowledge consists of skills, cognitive 
operations, knowledge of how to do things, and has been called procedural knowledge. If I ask when you were born, what you had for breakfast this morning, or 
what the Eiffel tower looks like, you will be able to respond in a way that allows you to communicate an answer, even though the response may require drawing a 
picture. In contrast, if I ask how you are able to ride a bicycle or how you are able to understand what I write in this passage, you will not be able to give a 
satisfactory answer, and, certainly, another person could not learn from the answer how to perform the activity.

There is a growing consensus in cognitive psychology that a complete theory of knowledge representation must explain both declarative knowledge and procedural 
knowledge (e.g., Anderson, 1993, and Squire, 1992; but see Ratcliff & McKoon, 1996, for an alternative point of view). This incipient consensus did not exist, 
however, when many influential theories of knowledge representation were originally proposed. Consistent with the scope of these theories, the scope of this chapter 
will be limited to declarative knowledge. Hence, the term single­code theories will be used to refer to single­code theories of declarative knowledge. This usage is 
consistent with usage in the field, even though it misrepresents a few

  
Page 117

theories of knowledge representation (e.g., Anderson's, 1976, original ACT theory, which used propositions to represent declarative knowledge and productions 
[condition­action rules] to represent procedural knowledge).

Single­Code Theories

Single­code theories might just as well be called propositional theories because all of the major single­code theories of knowledge representation are propositional 
theories (e.g., Anderson, 1976; Collins & Loftus, 1975; Fodor, 1975; Kintsch, 1974; Norman, Rumelhart, & LNR Research Group, 1975; Quillian, 1967). 
According to these theories, human knowledge is represented in terms of a single code: propositions.

A proposition is the smallest unit of knowledge that can stand as an assertion, the smallest unit that can be true or false. For example, consider the sentence "Bush 
declared war against the oil­rich country of Iraq, which was led by Saddam Hussein." This sentence contains three propositions:

Bush declared war against Iraq.
1.
2. Iraq has an abundance of oil.
3. Saddam Hussein was the leader of Iraq.

Propositions are not the same as words; they are best thought of as ideas that can be expressed in words. The same three propositions could be expressed in another 
language, such as Spanish, using different words and somewhat different grammar: "Bush declaró la guerra contra el rico país petrolero de Iraq, el cual era liderado 
por Saddam Hussein." In fact, a proposition has been characterized as the meaning that is preserved under paraphrase or translation. To divorce propositions from the 
words used to express them, it is customary to use special notation to designate propositions. For example, using a variant of Kintsch's (1974) notation, the three 
propositions in the Bush sentence can be written as follows:

(DECLARE­WAR, Bush, Iraq)
1'.
2'. (OIL­RICH, Iraq)
3'. (LEADER­OF, Saddam Hussein, Iraq)

The first word in each proposition expresses the relation, and the next one or two words are called arguments of the proposition.

  
Page 118

Figure 4.2
A propositional network representation of the sentence "Bush declared war 
against the oil­rich country of Iraq, which was led by Saddam Hussein."

Propositional representations are often depicted in networks, and there are many schemes for doing so (e.g., Anderson, 1976; Norman et al., 1975). The example in 
figure 4.2 represents a combination of several of these methods. In this network, the circles represent the propositions, the ellipses represent relations and arguments, 
and the lines represent the associations between them. The circles and ellipses are commonly called nodes, and the lines are called links. The only spatial relation of 
importance in the network is whether or not things are connected to each other.

There are many retrieval schemes associated with propositional networks, but most are based on a concept of spreading activation (e.g., Anderson, 1976, 1983; 
Collins & Loftus, 1975; Quillian, 1967). Specific properties of this process vary from theory to theory, but the general features are that the retrieval of an item from 
memory consists of activating its internal representation, the activation of a node spreads through the links to other nodes in the network, and the time required to 
retrieve an item from memory is inversely related to its activation level; that is, more active items in memory are retrieved faster than less active ones.

  
Page 119

Single­code—in particular, propositional—theories have been proposed for several reasons. First, there is general agreement that propositions can represent any well­
specified set of information, which implies that propositional representation is a general formalism for representing human knowledge. The power of propositional 
representations is a major reason that single­code theories have been proposed: why use two (or more) codes if one will do the job? A second attraction of 
propositional theories, especially in the domain of meaning representation, is that propositions preserve the meaning but not the surface form of a sentence or 
utterance. For example, there is no way to recover from a propositional representation whether an idea was expressed in an active or a passive sentence. This feature 
is attractive because research on memory for language has shown again and again that people remember the gist of a passage much better than properties of the 
language used to express it (e.g., Bransford, Barclay, & Franks, 1972; Sachs, 1967). A third attractive feature of propositional theories is that propositions support in 
a natural way the making of inferences. Propositional representations are powerful, and when they are combined with appropriate inferential machinery, they almost 
certainly have sufficient computational power to explain human cognition (Anderson, 1976). Importantly, the inferential rules are simplified because propositions only 
represent what is essential to judge the validity or the plausibility of an inference; irrelevant details are omitted from a propositional representation. For example, in a 
propositional representation the active sentence ''The President kissed the woman" and the passive sentence "The woman was kissed by the President" would be 
represented in the same way. Hence, the same inferential rules could be used for both; there is no need to have separate rules for active and passive sentences.

The empirical evidence in support of propositional theories is strong (e.g., Anderson, 1976; Kintsch, 1974; Ratcliff & McKoon, 1978). For instance, in one of Ratcliff 
and McKoon's (1978) experiments, subjects studied a series of sentences, such as these:

The host mixed a cocktail but the guest wanted coffee.
4.
5. The driver bruised a hip and the passenger strained a knee.
6. A gust crushed the umbrella and rain soaked the man.

  
Page 120

Figure 4.3
A simplified propositional network representation of the sentence "The driver 
bruised a hip and the passenger strained a knee."

After reading a set of sentences, subjects received a recognition test in which they saw a series of words on a computer display and had to decide whether each had 
been in the set of sentences. Ratcliff and McKoon were interested in the speed of responding on a particular item (e.g., passenger), depending on what item had 
appeared on the previous trial (e.g., hip vs. knee).

Figure 4.3 contains a network representation of the propositional structure of sentence 5. This network represents the major conceptual relations in the sentence but 
omits details to keep the diagram simple. The proposition attached to & corresponds to the proposition defined by the conjunction of the simple propositions in the 
sentence. Notice that distances between concepts in the same proposition are less than distances between concepts in different propositions; compare, for example, 
knee­passenger to hip­passenger. According to the retrieval assumptions outlined earlier, more activation will accumulate at passenger when it is preceded, or 
primed, by knee than when it is primed by hip. Thus, if sentences are mentally represented in terms of propositions, then responses to a target word should be faster 
when it is primed by a word from the same proposition than when it is primed by a word from a different proposition. This facilitation is called associative priming.

The experiments showed clearly that priming was determined by propositional relations. Mean response times were 550 ms when a word was

  
Page 121

primed by a word from the same proposition, but 595 ms when it was primed by a word from a different proposition. Crucially, same and different proposition pairs 
were separated in the sentences by the same number of words. Another important finding in these experiments was that distance in the surface form of the sentence 
had no effect on priming. For example, no more priming occurred between hip and passenger than between hip and knee. These results argue strongly that mental 
representations of even simple sentences preserve propositional relations but not perceptual properties of the stimulus. Similar results have been obtained in tests of 
generic (i.e., "semantic") memory (e.g., McNamara, 1992; McNamara & Altarriba, 1988).

Multiple­Code Theories

The fundamental tenet of multiple­code theories is that one code is not enough: the properties of human behavior are too rich to be explained in a single form of 
representation (e.g., Anderson, 1983; Kosslyn, 1980; Paivio, 1971, 1983). Although these theories differ in many important ways, the common thread that ties them 
together is that they include, in one form or another, analogical representations.

Analogical representations preserve properties of objects and events in an intrinsic manner. Intrinsic representations are those in which the representational system has 
the same inherent constraints as the system being represented (McNamara, 1994; Palmer, 1978). Figure 4.1 is a representation of a falcon in flight, and it preserves 
visually salient and distinctive properties of the birds in a concrete way. In fact, spatial properties of the birds are preserved in the same spatial properties of the 
representation. Analogical representations need not be so concrete, however. There is evidence that neurons in the motor cortex of primates represent the direction of 
movement of an arm by firing rate: the firing rate of a neuron gradually increases as the direction of movement approaches the neuron's preferred direction, and then 
falls off as the direction of movement goes past the preferred direction (Georgopoulos, Schwartz, & Kettner, 1986). This direct, nonarbitrary relation between the 
thing being represented—direction of movement—and the thing doing the representing—neuronal firing rate—is a signature of analogical representation.

  
Page 122

Why have multiple­code theorists argued for analogical representation? A significant (if not scientific) argument is that many conscious experiences beg for an 
explanation in terms of analogical representations and processes. Bugelski (1970) and Paivio (1969), among others, were struck by how visual imagery improved 
paired­associate learning. These researchers would not accept that the experience of imagery and the effects it had on learning and memory could be explained in 
terms of propositional, verbal, or associative codes.

The evidence consistent with analogical representations and processes, and, hence, multiple­code theories, is too extensive to be reviewed here (see Finke, 1986; 
Kosslyn, 1980; Shepard & Cooper, 1982). General interest in analogical representations and processes was probably stimulated more by Shepard and Metzler's 
(1971) experiments on mental rotation than by any other single source. Shepard and Metzler found that the time to judge whether or not two line drawings depicted 
the same three­dimensional object was a linear function of the difference in angular rotation between the two figures. Shepard and Metzler concluded that mental 
rotation was analogical: the mental events occurring during imagined rotation were very similar to the mental events occurring during the perception of actual rotation. 
Subsequent experiments by Cooper and Shepard strongly supported this conjecture because they showed that the process of imagined mental rotation actually passed 
through intermediate states that corresponded to the intermediate states of actual rotation (see Shepard & Cooper, 1982).

Another influential (but controversial—see Pylyshyn, 1981) line of research examined mental scanning of images. In an experiment reported by Kosslyn, Ball, and 
Reiser (1978), subjects studied a map of a fictitious island (figure 4.4). After subjects had memorized the island and were able to visualize it with their eyes closed, 
they took part in a task in which they had to scan from one location to another. The experimenter named a starting location (e.g., the grass hut) and then named a 
destination (e.g., the tree). The subjects' task was to imagine a black dot moving from the starting location to the destination and to press a response button as soon as 
the dot arrived at the destination. The map was not visible during this test phase; subjects imagined the dot moving on a mental image of the map. The major finding 
was that scan time increased as a linear function

  
Page 123

Figure 4.4
A replica of the map used by Kosslyn, Ball, & Reiser (1978) in the experiment 
on image scanning. (Reprinted from Kosslyn, S. M., Ball, T. M., & Reiser, B. J. 
[1978]. Visual images preserve metric spatial information: Evidence from studies 
of image scanning. Journal of Experimental Psychology: Human Perception and 
Performance, 4, 47–60.)

of distance on the map (figure 4.5). This result points to another correspondence between the representations and the processes used in imagery and those used in 
perception. Scanning a mental image seems to require the same or similar mental processes as those required in scanning an actual object, map, or scene.

These and other findings indicate that one important function of mental imagery may be to preserve information that is not recognized as important at the time of an 
experience and to provide means by which this implicit knowledge can be made explicit. Apparently, for example, I never recognized the potential importance of the 
number of windows in my house and, consequently, did not encode that information in an explicit manner (e.g., "my house has 22 windows"). However, my 
experiences in and around my house produced a sufficiently rich spatial representation that I was able to infer the number of windows by applying a

  
Page 124

Figure 4.5
Image­scanning time plotted as a function of Euclidean distance on the map.

counting process to the spatial representation. Put another way, mental imagery may comprise the mind's attempt to re­create the world as it was previously 
experienced.

The Imagery Debate

Mental imagery was a mainstay of psychology in the early development of the field (e.g., James, 1890). However, research on and even discussions of mental imagery 
were effectively killed by the rise of behaviorism in the early twentieth century (e.g., Watson, 1913). As Brown (1958, p. 93) colorfully put it: Watson "mercifully 
closed the bloodshot inner eye of American psychology."

It was not until the late 1960s and early 1970s that imagery began to be investigated scientifically. The revival of interest in mental imagery was stimulated by research 
on the role of imagery in human learning and memory (e.g., Bower, 1972; Bugelski, 1970; Paivio, 1969). This research demonstrated that mental imagery typically 
facilitated learning and memory: for example, words that readily evoked mental images (e.g., alligator) were usually remembered better than words that did not (e.g., 
force). This research was sound, but the concept of the mental image was not well defined. According to Bugelski (1970), an image was an indirect reac­

  
Page 125

tivation of former sensory or perceptual information. Paivio (1969, p. 243) defined an image as a symbolic process linked to associative experiences involving 
concrete objects and events. Visual images were, according to Paivio, functionally related to visual perception and were specialized for representing spatial 
information.

Sixty years following the publication of Watson's (1913) paper on behaviorism, and on the heels of Bower's (1972), Bugelski's (1970), and Paivio's (1969) articles, 
Pylyshyn (1973) published a stinging critique of then current conceptualizations of imagery. Pylyshyn asked whether the mental image could be a primitive explanatory 
construct in cognitive psychology. His answer was that it could not. Pylyshyn did not doubt that people experienced mental imagery; nor did he claim that studying 
mental imagery was a waste of time. Rather, Pylyshyn doubted whether mental images were a different kind of mental representation from propositions. He argued 
that mental images were generated from a more fundamental representation (propositions, or something similar) and were not themselves functional in human cognition.

Pylyshyn's (1973) article ignited a raging debate in cognitive psychology on the nature of mental representation. Initially, the debate centered on whether mental images 
were functional in cognition or were generated from something more primitive (e.g., Kosslyn & Pomerantz, 1977; Pylyshyn, 1973); the debate then turned to the 
question of whether theories of knowledge representation could be tested in behavioral experiments (e.g., Anderson, 1978; Pylyshyn, 1979); finally, the debate 
centered on whether mental imagery was affected by tacit knowledge (e.g., Kosslyn, Pinker, Smith, & Shwartz, 1979; Pylyshyn, 1981). Although many cognitive 
psychologists may think that this debate generated more heat than light, I believe that it produced several essential lessons for future generations of scientists. In the 
next few paragraphs, I will summarize a few of the more important ones.

One of Pylyshyn's (1973) arguments was that the representations and processes that are functional in cognition may not be consciously accessible and that just 
because something is consciously accessible does not guarantee that it is functional. So, for example, the mental images of my house that I experience while trying to 
count the windows may not be primitive mental representations that are analyzed by some counting

  
Page 126

process but, rather, products of those mental representations and processes used to count the windows in my house. Put another way, mental imagery may be the very 
thing in need of explanation, not the thing providing the explanation. A corollary of this principle is that researchers must distinguish between what people normally do 
and what they must do to solve a problem. People may report the use of imagery because that is the way they normally go about solving a problem, not because the 
information is inaccessible in other ways.

A second lesson that emerged from the imagery debate is that theories of mental representation cannot be tested without specifying the mental processes that operate 
on the representation (e.g., Anderson, 1978; Pylyshyn, 1979). Mental representations exist in a representational system that includes mental processes. Experiments 
test the entire system, not just the representations or the processes. The concept of a representational system can be illustrated with a concrete example. Consider 
judgments of the spatial relations between geographical landmarks: many people believe that San Diego, California, is west of Reno, Nevada, when in fact the 
opposite is true (Stevens & Coupe, 1978). An analogical model might specify that spatial relations are represented in mental images and that these images may, on 
occasion, be incorrect (e.g., San Diego may be represented in the image as west of Reno). According to a propositional model, the error may be caused by inferential 
processes that operate on incomplete but accurate propositional representations (e.g., San Diego is in California, Reno is in Nevada, and California is west of Nevada; 
therefore, San Diego must be west of Reno).

This principle does not imply that a theory of representation can be perfectly mimicked by another theory of representation as long as the mental processes are chosen 
judiciously (cf. Anderson, 1978). Perfect behavioral mimicry is possible only if the two forms of representation are isomorphic (i.e., preserve the same distinctions and 
differ only in notation). This constraint will be violated, however, by any reasonable pair of alternative theories because theories of representation are proposed to 
distinguish events that are not distinguished by other theories or to blur events that are distinguished by other theories; in other words, alternative theories are designed 
to be nonisomorphic. Another problem with mimicry is that representational systems are not usually equivalent and cannot

  
Page 127

be made to be equivalent in general, at the level of complexity (Pylyshyn, 1979). Complexity will reveal itself in certain behavioral measures, such as processing time. 
Finally, alternative representational systems will differ, in the long haul, in explanatory adequacy. Data alone will not be able to adjudicate between theories of 
cognition; no finite amount of data can uniquely determine a theory of any natural phenomenon. The evaluation of a theory also depends on how well the theory 
explains the relevant phenomena (e.g., Pylyshyn, 1981). The explanatory adequacy of a theory is evaluated by looking at how general the theory is, how well the 
theory captures important generalizations in other areas, how constrained the theory is in terms of the number of free parameters, and so on. Scientists must distinguish 
curve fitting, which may be empirically perfect but is conceptually vacuous, from true scientific explanation.

The third and final principle is that progress will be made in understanding cognitive phenomena only if converging operations are applied diligently (e.g., Garner, Hake, 
& Eriksen, 1956). Converging operations can be used within a level of analysis, as when two or more tasks (e.g., recognition and recall) are used to test theoretical 
predictions, or between levels of analysis, as when behavioral measures are combined with neurophysiological measures. The goal of converging operations is to force 
theoretical commitments in one domain of investigation that must be honored in other domains. A successful theory is one that successfully explains human behavior in 
the multitude of ways it is manifested and does so with a minimum number of unprincipled modifications.

It is natural to ask, however, whether Pylyshyn's (1973) original challenge was answered: Is the mental image a primitive explanatory construct in cognitive 
psychology? On this issue, there is probably still disagreement in the field, although the consensus seems to be closer in spirit to the claims made by proponents of 
imagery than to the claims made by its opponents.

One of Pylyshyn's (1973) most important arguments was that images were not "pictures in the head." His analysis is intact: there is uniform agreement now that images 
are conceptually interpreted, not raw sensory information that must be reperceived by the "mind's eye" (cf. Bugelski, 1970). Experimental investigations of imagery 
have documented that images have internal structure and are constructed in working memory.

  
Page 128

Reed (1974), for example, showed that some parts of an imagined figure could be recognized more quickly than other parts, indicating that the internal representation 
of the figure had hierarchical structure. Studies by Kosslyn, Cave, Provost, and von Gierke (1988) indicate that mental images of letters and letterlike patterns are 
generated part by part in sequences that correspond to how the patterns are drawn.

It is also widely recognized that we may never know whether images as they are experienced are generated from another form of representation, such as propositions, 
or are constructed from primitive analogical components. However, it is also recognized that this issue may not be important (Kosslyn & Pomerantz, 1977). The 
crucial issue is whether mental imagery is produced by mental representations and processes that must produce and use analogical representations to solve the 
problems that they have been marshaled to solve. To illustrate what is at stake here, consider one of Pylyshyn's (1981) criticisms of Kosslyn, Ball, and Reiser's (1978) 
image­scanning experiment: Pylyshyn argued that subjects might have been trying to re­create what it would be like to scan from location to location on the map, 
rather than actually using the analogical process of scanning on an analogical representation of the map. This distinction is vital: according to Pylyshyn's analysis, 
subjects were using their tacit knowledge about space to do what they were told to do by the experimenter; according to Kosslyn et al., subjects were actually 
processing an analogical representation in an analogical manner.

Finke and Pinker (1983) responded to this criticism by designing an experiment in which there were no explicit demands to use mental images but in which scanning 
was an effective way to perform the task. In their experiment, subjects first saw a display of dots, like the one in figure 4.6A. The dots were then removed, and in their 
place appeared an arrow, like the one in figure 4.6B. The subjects' task was to decide whether the arrow pointed at any of the dots in the original display (the correct 
answer was yes in 4.6B and no in 4.6C). The independent variable was the distance between the tip of the arrow and the dot at which it pointed. This task is quite 
different from the one used by Kosslyn et al. (1978). Subjects were not instructed to scan from one place to another; their task was to decide whether or not the 
arrow pointed at any of the dots. Cru­

  
Page 129

Figure 4.6
Examples of stimuli used by Finke & Pinker (1983).

cially, Finke and Pinker found the same linear relation between distance and decision time as had Kosslyn, Ball, and Reiser (figure 4.7).

In recent years, several investigators have picked up Pylyshyn's gauntlet and turned to neurophysiological studies to resolve the imagery debate. For example, 
Kosslyn, Thompson, Kim, and Alpert (1995) measured cerebral blood flow with positron­emission tomography (PET) while subjects were engaged in imagery tasks. 
The results showed that the primary visual cortex was activated when subjects closed their eyes and visualized objects and that the location of maximal activation in the 
brain was di­

Figure 4.7
Response time as a function of the distance between the tip of the arrow and the 
dot in Finke and Pinker's (1983) experiment. (Adapted from Finke & Pinker, 
1983, figure 1.)

  
Page 130

rectly related to the size of the image generated. These and related findings (e.g., Farah, 1985; Farah, Péronnet, Gonon, & Giard, 1988; Kosslyn et al., 1993, Parsons 
et al., 1995) indicate that the representational system activated by visual imagery is used in visual perception, and at very early stages, when vision almost certainly 
relies on analogical representations (e.g., Tootell, Silverman, Switkes, & De Valois, 1982).

The analogical nature of imagination has also been revealed in investigations of the primate motor system. Georgopoulos and his colleagues (e.g., Georgopoulos et al., 
1986) showed that the angular direction of a monkey's arm movements could be predicted by the activity of neurons in the motor cortex. In effect, the pattern of 
activity over a collection of neurons points (in an abstract frame of reference) in the direction of the arm movement. This discovery was exploited by Georgopoulos, 
Lurito, Petrides, Schwartz, and Massey (1989), who trained monkeys to move a handle in the direction 90° to the left of a stimulus. The crucial finding was that the 
collection of neurons encoding the direction of movement initially pointed at the stimulus and then ''rotated" continuously until it pointed in the direction 90° to the left of 
the stimulus. All of this happened before the monkey actually moved his arm. Georgopoulos and his coworkers seem to have found a neural implementation of mental 
rotation (figure 4.8).

Figure 4.8
Neuronal population vector plotted as a function of time. The vector summarizes 
the directional tendency of a population of neurons in the motor cortex. Initially, 
the vector points in the direction of the stimulus; it then rotates continuously and 
points in the direction of the arm movement. All of this neural activity occurred 
before the arm was actually moved. (Adapted from Pellizzer & Georgopoulos, 
1993, figure 4.)

  
Page 131

In summary, the results of brain­imaging studies of humans and of single­unit recording studies of monkeys provide compelling evidence of the existence of analogical 
representations and processes in the primate brain (also see Kosslyn, 1994). It is difficult to countenance a single­code theory of knowledge representation in the 
presence of these findings.

Summary and Conclusions

To understand why people act in the ways that they do, one must know how people mentally represent their physical, social, and emotional worlds. Hence, the topic 
of mental representation has always been and will always be a central one in cognitive science.

Theories of the mental representation of knowledge have appeared in many forms and differ in many important ways. Nevertheless, these theories can be divided into 
two categories. According to single­code theories, human knowledge is represented in a single format, usually identified as propositions. Propositions are abstract 
representations of ideas and are not tied to any particular sensory modality. Propositional systems are computationally powerful, and for this reason, some cognitive 
scientists doubted whether any other form of internal representation was necessary. The other category of theories is multiple­code theories. According to these 
theories, human knowledge is represented in several types of codes, the most common of which are propositional and analogical codes. Analogical representations 
preserve information in a direct perceptual way, are linked to particular sensory modalities, and play a crucial role in many tasks, but especially those whose solution 
requires the reenactment of previous experiences.

Although these theories seem dramatically different, they were difficult to distinguish empirically. The problem was that single­code theories could explain findings that 
were attributed to analogical representations and processes. This conundrum, as well as conceptual problems in distinguishing images from propositions, led to a major 
debate on knowledge representation in cognitive psychology.

Several important lessons were learned from the imagery debate. Two of the more important ones were these: First, because mental representations exist in a 
representational system that includes mental processes,

  
Page 132

experiments test representation process pairs, not just representations. Second, progress in cognitive psychology will depend on the sedulous application of converging 
operations, at the behavioral and neurophysiological levels.

The imagery debate also led to new theoretical and empirical inquiries into the nature of mental imagery. Recent findings have documented functional relations between 
imagination, perception, and action, and they suggest that analogical representations and processes comprise a representational system separate from the propositional 
system. This conclusion finds form in the most recent version of Anderson's ACT theory (1993), which explicitly endorses multiple types of knowledge representation. 
Squire's (1992) views on memory are also of this ilk, in that he posits multiple memory systems with separate functions and anatomical organizations.

The imagery debate is just one of many debates on knowledge representation that have, and will, split the discipline of cognitive psychology. Indeed, the field is in the 
midst of yet another debate on the nature of human knowledge representation, a connectionist versus information processing debate (e.g., Fodor & Pylyshyn, 1988; 
McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986). The issues at stake in this debate, however, are more fundamental than those at stake in the 
imagery debate. Single­code and multiple­code theorists at least agreed that human cognition consisted of the interpretation, manipulation, and transformation of 
mental representations. Proponents of connectionism, however, reject most, if not all, of these assumptions. The concept of a mental representation may be so 
different in future theories that the distinction between single­code and multiple­code theories may be meaningless. Although many students may be frustrated by this 
kind of instability, for many of us it is what makes cognitive science so exciting.

References

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85, 249–277.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

  
Page 133

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

Anderson, J. R., & Bower, G. H. (1973). Human associative memory. Washington, DC: Winston.

Bower, G. H. (1972). Mental imagery and associative learning. In L. Gregg (Ed.), Cognition in learning and memory. New York: Wiley.

Bransford, J. D., Barclay, J. R., & Franks, J. J. (1972). Sentence memory: A constructive versus interpretive approach. Cognitive Psychology, 3, 193–209.

Brown, R. (1958). Words and things. Glencoe, IL: Free Press.

Bugelski, B. R. (1970). Words and things and images. American Psychologist, 25, 1002–1012.

Chomsky, N. (1959). [Review of Skinner's Verbal behavior.] Language, 35, 26–58.

Collins, A. M., & Loftus, E. F. (1975). A spreading­activation theory of semantic processing. Psychological Review, 82, 407–428.

Farah, M. J. (1985). Psychophysical evidence for a shared representational medium for mental images and percepts. Journal of Experimental Psychology: 
General, 114, 91–103.

Farah, M. J., Péronnet, F., Gonon, M. A., & Giard, M. H. (1988). Electrophysiological evidence for a shared representational medium for visual images and visual 
percepts. Journal of Experimental Psychology: General, 117, 248–257.

Finke, R. A. (1986). Mental imagery and the visual system. Scientific American, 254, 88–95.

Finke, R. A., & Pinker, S. (1983). Directional scanning of remembered visual patterns. Journal of Experimental Psychology: Learning, Memory, and Cognition, 
9, 398–410.

Fodor, J. A. (1975). The language of thought. New York: Thomas Y. Crowell.

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. In S. Pinker & J. Mehler (Eds.), Connections and symbols 
(pp. 3–71). Cambridge, MA: MIT Press.

Garner, W. R., Hake, H. W., & Eriksen, C. W. (1956). Operationism and the concept of perception. Psychological Review, 63, 149–159.

Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., & Massey, J. T. (1989). Mental rotation of the neuronal population vector. Science, 243, 234–
236.

Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233, 1416–1419.

James, W. (1890). Principles of psychology. New York: Henry Holt.

Kintsch, W. (1974). The representation of meaning in memory. Hillsdale, NJ: Erlbaum.

Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University Press.

  
Page 134

Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA: MIT Press.

Kosslyn, S. M., Alper, N. M., Thompson, W. L., Maljkovic, V., Weise, S. B., Chabris, C. F., Hamilton, S. E., Rauch, S. L., & Buonanno, F. S. (1993). Visual 
mental imagery activates topographically organized visual cortex: PET investigations. Journal of Cognitive Neuroscience, 5, 263–287.

Kosslyn, S. M., Ball, T. M., & Reiser, B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of 
Experimental Psychology: Human Perception and Performance, 4, 47–60.

Kosslyn, S. M., Cave, C. B., Provost, D. A., & von Gierke, S. M. (1988). Sequential processes in image generation. Cognitive Psychology, 20, 319–343.

Kosslyn, S. M., Pinker, S., Smith, G., & Shwartz, S. P. (1979). On the demystification of mental imagery. Behavioral and Brain Sciences, 2, 535–581.

Kosslyn, S. M., & Pomerantz, J. R. (1977). Imagery, propositions, and the form of internal representations. Cognitive Psychology, 9, 52–76.

Kosslyn, S. M., Thompson, W. L., Kim, I. J., & Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378, 496–
498.

McClelland, J. L., & Rumelhart, D. E. (1986). Parallel distributed processing (Vol. 2). Cambridge, MA: MIT Press.

McNamara, T. P. (1992). Theories of priming: I. Associative distance and lag. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 
1173–1190.

McNamara, T. P. (1994). Knowledge representation. In E. C. Carterette & M. P. Friedman (Series Eds.) & R. J. Sternberg (Vol. Ed.), Handbook of perception 
and cognition: Vol. 12. Thinking (pp. 81–117). Orlando FL: Academic Press.

McNamara, T. P., & Altarriba, J. (1988). Depth of spreading activation revisited: Semantic mediated priming occurs in lexical decisions. Journal of Memory and 
Language, 27, 545–559.

Norman, D. A., Rumelhart, D. E., & LNR Research Group (1975). Explorations in cognition. San Francisco: Freeman.

Paivio, A. (1969). Mental imagery in associative learning and memory. Psychological Review, 76, 241–263.

Paivio, A. (1971). Imagery and verbal processes. New York: Holt, Rinehart, Winston.

Paivio, A. (1983). Mental representations. New York: Oxford University Press.

Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Erlbaum.

Parsons, L. M., Fox, P. T., Downs, J. H., Glass, T., Hirsch, T. B., Martin, C. C., Jerabek, P. A., & Lancaster, J. L. (1995). Use of implicit motor imagery for visual 
shape discrimination as revealed by PET. Nature, 375, 54–58.

  
Page 135

Pellizzer, G., & Georgopoulos, A. P. (1993). Mental rotation of the intended direction of movement. Current Directions in Psychological Science, 2, 12–17.

Pylyshyn, Z. W. (1973). What the mind's eye tells the mind's brain: A critique of mental imagery. Psychological Bulletin, 80, 1–24.

Pylyshyn, Z. W. (1979). Validating computational models: A critique of Anderson's indeterminacy of representation claim. Psychological Review, 86, 383–394.

Pylyshyn, Z. W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological Review, 88, 16–44.

Quillian, M. R. (1967). Word concepts: A theory and simulation of some basic semantic capabilities. Behavioral Science, 12, 410–430.

Ratcliff, R., & McKoon, G. (1978). Priming in item recognition: Evidence for the propositional structure of sentences. Journal of Verbal Learning and Verbal 
Behavior, 17, 403–417.

Ratcliff, R., & McKoon, G. (1996). Bias effects in implicit memory tasks. Journal of Experimental Psychology: General, 125, 403–421.

Reed, S. K. (1974). Structural descriptions and the limitations of visual images. Memory & Cognition, 2, 329–336.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing (Vol. 1). Cambridge, MA: MIT Press.

Ryle, G. (1949). The concept of mind. London: Hutchinson.

Sachs, J. (1967). Recognition memory for syntactic and semantic aspects of connected discourse. Perception & Psychophysics, 2, 437–442.

Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three­dimensional objects. Science, 171, 701–703.

Skinner, B. F. (1957). Verbal behavior. New York: Appleton.

Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10, 422–437.

Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.

Terres, J. K. (1980). The Audubon Society encyclopedia of North American birds. New York: Knopf.

Tootell, R. B. H., Silverman, M. S., Switkes, E., & De Valois, R. L. (1982). Deoxyglucose analysis of retinotoptic organization in primate striate cortex. Science, 
218, 902–904.

Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20, 158–177.

  
Page 137

5
Domain­Generality versus Domain­Specificity in Cognition
Peter A. Frensch and Axel Buchner

Can you "learn to think" and become a creative problem solver for all sorts of problems? For a creativity­training program (e.g., Crawford, 1966) to make sense, the 
answer should be yes. Proponents of such a training would need to assume that creative thinking is a teachable skill that generalizes across different domains such as 
mechanical problems, logistic problems, graphic design problems, political problems, and social problems. However, many people might disagree with the idea that the 
skill of creative problem solving can be so domain­general. For instance, solving problems in the domain of mechanics and solving problems in the domain of graphic 
design appear to have little, if anything, in common.

The preceding example captures the essence of the binary concept that we are concerned with in this chapter: domain­generality versus domain­specificity. At a 
general and abstract level, domain­generality stands for the uniting of a wide range of diverse phenomena by the positing of a relatively small set of general underlying 
principles. This idea can be found in the thinking of Aristotle, and it is one of the main premises of British empiricism (e.g., George Berkeley, David Hartley, David 
Hume) and behaviorism (e.g., B. F. Skinner, C. L. Hull, John Watson). More recently, Piaget's (1970) theory in developmental psychology provides a general model 
of this kind, as does Anderson's (1983) attempt at formulating explanatory principles that apply equally well to all domains of thought, including language, problem 
solving, and arithmetic.

Domain­specificity, by comparison, stands for the view that the mind consists of different entities whose functioning obeys different rules. Domain­specific ideas can be 
found, for example, in the epistemologies

  
Page 138

of Plato, René Descartes, and Immanuel Kant, in the various versions of faculty psychology, and in the psychologies of Edward L. Thorndike, A. D. de Groot, and L. 
S. Vygotsky. Vygotsky (1978), for instance, argued that

the mind is not a complex network of general capabilities such as observation, attention, memory, judgment, and so forth, but a set of specific capabilities, each of which is, to 
some extent, independent of others and is developed independently. Learning is more than the acquisition of the ability to think; it is the acquisition of many specialized abilities 
for thinking about a variety of things. (p. 83)

The binary contrast between domain­generality and domain­specificity has been a predominant force in shaping concepts of the mind for a long time and has been at 
the center of a wide variety of scientific debates. Table 5.1 illustrates the diversity of the psychological phenomena to which the domain­generality versus domain­
specificity issue has been applied. The table displays a collection of selected book chapter and journal titles containing the terms domain generality or domain 
specificity that resulted from a PsycLIT search covering publications between 1990 and 1995.

Our primary goal in this chapter is to convey an understanding of what domain­generality versus domain­specificity (henceforth DG­DS) debates are all about. The 
remainder of the chapter is divided into two main sections. The first section is devoted to a theoretical clarification of the issue of domain­generality versus domain­
specificity. In the second section, we summarize and discuss two well­known DG­DS debates, debates centering on the nature of expertise and the nature of human 
development. We conclude the chapter with a few comments on the usefulness of the binary concept of domain­generality versus domain­specificity for psychological 
theorizing in general.

Domain­Generality versus Domain­Specificity: Navigating through the Theoretical Morass

Debates on domain­generality versus domain­specificity can be found in many different areas of psychology (see table 5.1) and differ in many aspects, most obviously 
perhaps in the conceptual questions to which they are applied and in the methods that are deemed acceptable to solve

  
Page 139

Table 5.1
Selected recent book chapter and journal titles on domain­generality versus domain­specificity

Discovering linguistic differences: Domain specificity and the young child's awareness of multiple 
languages

Of beasties and butterflies: Evidence for the stability and domain­specificity of individual differences in 
categorization

The interaction of domain­specific and strategic knowledge in academic performance

An investigation of life satisfaction following a vacation: A domain­specific approach

Anxiety sensitivity: Unitary personality trait or domain­specific appraisals?

How domain­general and domain­specific knowledge interact to produce strategy choices

Domain­specific social judgments and domain ambiguities

Acquisition of domain­specific knowledge in organic amnesia: Training for computer­related work

Theoretical and methodological issues in domain­specific problem­solving research

Acquisition of domain­specific knowledge in patients with organic memory disorders

Investigation of children's three dimensional and domain­specific scale of perceived control

Metacognitive versus traditional reading instructions: The mediating role of domain­specific knowledge on 
children's text processing

School and peer competence in early adolescence: A test of domain­specific self­perceived competence

Source: PsychLIT search covering publications between 1990 and 1995.

the debates. Our first goal in this section is to provide a theoretical framework for understanding DG­DS debates in general, that is, a framework that applies to all 
debates. Providing such a framework implies, at minimum, answering three interrelated questions: (1) what are the goals of DG­DS debates? (2) what is meant by 
domain­generality and ­specificity? and (3) what is a domain?

Our second goal in this section is to gain an understanding of the wide range of DG­DS debates that is found in the psychological literature. We will suggest that the 
diversity of DG­DS debates is due to systematic

  
Page 140

variations in the conceptual questions for which DG­DS debates arise, and we will describe a number of dimensions that capture these variations.

What Are DG­DS Debates All About?

Central to any DG­DS debate is the question of how widely applicable a particular theoretical statement or empirical finding is. Thus, for instance, the empirical 
phenomenon of negative priming with pictorial material (Tipper, 1985) 1  triggers the question of whether the same results can be obtained with letters (Tipper & 
Cranston, 1985). The empirical phenomenon that women demonstrate a preference for a certain life goal at age 20 raises the question of whether males show a similar 
preference (Heckhausen, in press). The fact that providing a verbal summary of the principle underlying a certain problem solution is not helpful for finding the solution 
to a similar new problem might stimulate asking whether a graphical illustration of the principle would be more useful than the verbal summary (Gick & Holyoak, 
1983). Finally, the theory that expert human chess players create elaborated memory retrieval representations (Chase & Ericsson, 1981) might lead to the question of 
whether the same might be true for expert physicists and psychologists.

DG­DS debates are, thus, concerned with the question of how widely a statement can be applied. As the examples just given demonstrate, asking the width­of­
applicability question often defines the empirical approach to be taken as well and thus serves to guide research. Put differently, adopting a DG­DS perspective has 
theoretical and methodological implications for the way the human mind is studied, defining and generating research problems, and suggesting specific research 
strategies and methodologies. In some sense, DG­DS debates function as a scientific paradigm in the Kuhnian (1962) sense (Garfield, 1987).

For the DG­DS question to be meaningful, of course, it needs to be tied to a meaningful statement about the functioning of the human mind. Determining the domain­
generality or domain­specificity of the statement "the head is round" is not meaningful because the statement "the head is round" does not describe how the mind 
works. Applying the DG­DS question to the statement "humans can remember only seven phonological sounds in their short­term memory" (Miller, 1956) is 
meaningful because the latter statement describes the functioning of mind. Technically,

  
Page 141

we therefore define the goal of DG­DS debates as determining the width of applicability of a psychological constraint.

By psychological constraint we mean any theoretical statement that is (a) tied to an empirical phenomenon 2  and (b) narrows the number of possibilities of how the 
human mind (in its broadest sense) may function. Put differently, constraint is any statement that allows one to predict the outcome of mental activity.3  For example, 
stating that ''expertise correlates with test intelligence" places restrictions on the way the mind functions, and it allows us to predict a person's level of expertise if we 
know his or her level of test intelligence. On the other hand, stating that "the human mind is complex" does not aid in predicting humans' mental performance.

Building on the definition given earlier, we are now ready to tackle the question of what we mean by domain­generality and domain­specificity. Both of these terms 
need to be tied to the notion of a psychological constraint. Stating that a particular psychological constraint is domain­general, consequently, is stating that the 
constraint is invariant; that is, it applies to all actions and properties of the human mind. Stating that a constraint is domain­specific is stating that it applies to some but 
not all actions and properties of the mind.

The psychologically interesting question linked to the DG­DS issue is, however, not whether a constraint is domain­general or domain­specific in some absolute sense. 
Rather, it is how, specific or how general a constraint is. The width of applicability of a constraint should be viewed as a continuum with domain­specific on one end 
and domain­general on the other. To illustrate, the driving force behind the question of whether the limit of human short­term memory is domain­specific or domain­
general, whether it applies to verbal information only or to nonverbal information as well, is to find out how far the constraint can be applied, that is, how invariant the 
constraint is. Domain­specificity and domain­generality are thus no more than the two endpoints on the applicability continuum.

Defining the DG­DS issue in terms of the width of applicability of psychological constraints, of course, also raises the question of what the units of the applicability 
continuum are. Stated differently, it raises the question of what a domain is. If the notion of a domain may refer to phonological and nonphonological information, on 
the one hand, and to expert

  
Page 142

knowledge of physics, on the other hand, then any attempt at defining the notion of domain in some absolute objective sense can never hope to succeed. Any 
specification of what is meant by domain must be tied to the specific psychological constraint under consideration.

For example, the constraint that an expert's knowledge in physics is arranged hierarchically implies physics as a domain. The constraint that belief systems for school 
success are structured in a certain way implies school as a domain. The constraint that repetition priming can be observed with letters implies letters as a domain. Of 
course, constraints may imply more than one domain. The constraint that negative priming for visual objects seems to persist unchanged for stimulus­response intervals 
of up to 6.6 seconds (Tipper, Weaver, Cameron, Berhaut, & Bastedo, 1991) implies both visual objects and the 6.6 seconds as domains. In principle, a domain is 
anything that a given constraint can potentially be generalized to and from.

It would be wrong to conclude, however, that what is considered a domain depends only on the constraint involved. What is considered a domain is affected by many 
additional factors, most importantly the general paradigm encompassing current psychological explanations (e.g., the information­processing paradigm, behaviorism, 
action theory), the researcher's individual belief about which goals should guide the psychological enterprise, and the researcher's knowledge of psychology. For 
example, exploring the nature of human learning from a behaviorist or from an information­processing perspective leads to different notions of what is called a domain. 
Furthermore, believing that the ultimate goal of psychology is to explain behavior at the neuronal level will lead to very different ideas about what is accepted as a 
domain than believing that behavior should be explained at a psychological level (see Frensch & Funke, 1995b, for a similar argument). In general, what is considered 
a domain is a function of various variables, one of which is the nature of a constraint; because it is never possible to know all of these variables, what constitutes a 
domain is not objectively definable.

In summary and in answer to the three questions raised at the beginning of this section, the goal of any DG­DS debate is to determine the width of applicability of a 
psychological constraint. Constraints thus form the basis around which DG­DS debates evolve, and they codetermine the

  
Page 143

meaning of domain. Constraints are also the main source of variability among DG­DS debates. That is, many of the DG­DS debates found in the literature differ in the 
type of constraint they are applied to. Stated differently, differences in the type of constraint are responsible for the wide range of DG­DS debates encountered in 
psychology (see table 5.1). Because of the central importance of constraints for the issue of domain­generality versus domain­specificity, we will next consider the 
nature of constraints in more detail.

Classifying Constraints

Low­Level versus High­Level Constraints

Constraints can be formulated at many different levels of abstraction, ranging from behavioristic couplings of stimuli and responses near one end of the continuum (low­
level constraints) to general evolutionary considerations near the other end (high­level constraints). Furthermore, constraints can be formulated at the level of task 
analysis, the level of implementation, or the metalevel (Marr, 1982; Rosenthal, 1988). Constraints can thus refer to the cognitive processing of the mind, to the 
neuronal implementation of cognitive processing, and to the general conditions that underlie different learning objectives.

For example, repeated exposure to aversive stimuli that cannot be avoided reduces the probability that a person (or an animal) will learn to avoid the aversive stimulus 
once avoiding it is possible (Hiroto, 1974). This phenomenon has been termed learned helplessness. It constrains the possibilities of how the human mind may 
function, as does the much more general and abstract idea that the mind is composed of a large number of psychological mechanisms each dedicated to a specific 
problem, the solution of which was of benefit in the evolutionary development of humans (e.g., Cosmides & Tooby, 1987, 1989).

Internal versus External Constraints

Constraints can be formulated with regard to either the functioning of the human mind itself (internal constraints) or the relation between environment and mind 
(external constraints). Simon (1995), for instance, argues that internal constraints are "the natural laws that determine the structure and behavior of any

  
Page 144

artificial or living object" (p. 99), whereas external constraints are "the initial and boundary conditions under which the object exists" (p. 100). Similarly, Chomsky 
(1975) envisions external constraints as partially specifying a function that maps sets of environments onto sets of mental representations. External constraints are thus 
regularities in the mind­environment mapping that are, according to Simon (1995), partly responsible for the evolution of the mind and are necessary to guarantee the 
mind's existence. Internal constraints, by comparison, are architectural reasons for the nonrandom functioning of the mind, reasons that lie in the organism itself.

External constraints are, for example, the oxygen in the air or the range of the color spectrum available in the environment; these facts shape the way mind works. In a 
different environment, present human minds might not work at all. By comparison, priming (e.g., Neely, 1991) and negative priming (e.g., Tipper, 1985) phenomena 
reflect internal constraints that have to do with the inability of the mind's architecture to terminate its processing abruptly.

Process versus Structure Constraints

Many theorists have made the distinction between process and structure constraints (e.g., Keil, 1990a; Maratsos, 1992). Structure constraints concern knowledge 
structures and can hold that a particular structural relation is favored over others, that some structural relations cannot occur, and so on. The idea of experts' 
hierarchical knowledge representations (e.g., Chi, 1989) falls under the rubric of structure constraint. By contrast, the notion of process constraints applies to the 
processing that occurs within an organism. 4  For instance, Treisman's feature integration theory of attention (Treisman & Gelade, 1980) holds that simple features in 
the visual field such as color or line orientation are registered early, automatically, and in parallel, whereas visual objects, that is, combinations of features "glued" 
together by focal attention (such as a red vertical line), have to be scanned serially, one after another.

Structure and process constraints may coexist in a field and even complement each other. For instance, according to the so­called multiple memory systems view, the 
general faculty of memory must be divided into a number of substructures, such as declarative and procedural mem­

  
Page 145

ory (e.g., Cohen & Squire, 1980). The fact that amnesiacs can learn certain motor skills but cannot recall having acquired them may then be accounted for by 
assuming that procedural, but not declarative, memory is spared in amnesia. The transfer­appropriate processing approach as developed by Roediger and his 
coworkers (e.g., Roediger, 1990) ignores memory structures and specifies that performance on memory tests benefits to the extent that the cognitive operations 
involved in the test recapitulate those engaged during initial learning. For instance, simply reading a word improves its later identification under difficult viewing 
conditions relative to generating the word from its antonym (e.g., "hot­?; answer: cold"). However, generating the word from its antonym (i.e., processing its semantic 
content) improves later recognition of a read word (Jacoby, 1983).

Static versus Dynamic Constraints

Many empirical and theoretical statements in psychology make conditional assertions such as "Given x, then y will result," correlational statements such as "If the 
independent variable, x, increases, then the dependent variable, y, will increase," or quantitative statements such as ''y = a × x ­b." The latter, for instance, is known as 
the power law of practice, which specifies that the time to solve a task, y, is a power function of the amount of practice on the task, x, and some constants a and b. 
These three statements describe structural static constraints of the mind, although the third statement goes further in specifying the system than the former, especially 
when the parameters a and b are known or estimated quantities.

Static constraints, thus, are statements that relate two aspects of the mind or behavior to each other without reference to time. The human mind is an adaptive system, 
however; it can learn. As a consequence, static constraints can capture only part of the functioning of the mind. Dynamic constraints, by comparison, are statements 
that characterize the transition between different mind states. The need for dynamic constraints is nowhere more obvious than in human development. For instance, 
Piaget's conception of developmental stages is a dynamic constraint because it limits the possible developmental patterns that can occur. Indeed, the constructing of 
theories of human development can be viewed as an attempt to understand the dynamic

  
Page 146

constraints that govern change in the operation of the human mind (see next section).

Innate versus Acquired Constraints

Distinguishing innate from acquired constraints is problematic, as Keil (1990a) observes, given the many arguments about the intrinsically interactional nature of 
development (e.g., Johnston, 1988; Lehrman, 1953; Lerner, 1983). Nothing is strictly innate or learned, the argument goes, because there must always be an 
organism in which learning takes place and an environment to be learned. Use of the term innate remains controversial, but somewhat less so with respect to 
constraints because constraints are partly based on the notion of interaction itself. For instance, following Chomsky (1975), one can envision innate constraints as 
partially specifying the function that maps sets of environments onto sets of mental representations. In this view, the mapping function and the constraints that it 
embodies may be innate. Innate constraints, thus, tie certain events in the environment to specific states of the human mind. Any spoken word, for instance, can only 
be "interpreted" by the mind as an utterance, nothing else.

Innate constraints can also be inherent in the functional "hardware" of the human mind, determining the architecture of the mind. Thus, as stated earlier, empirical 
demonstrations of repetition priming (e.g., Neely, 1991) and negative priming (e.g., Tipper, 1985) reflect internal properties of the cognitive system that may be 
present from birth or that may mature at a later date.

Acquired constraints, by contrast, can neither be present at birth nor maturationally predetermined. They emerge out of acquired knowledge and capture the notion 
that what one has learned in turn constrains how easily what kinds of things can be learned next. Proactive inhibition (Underwood, 1957) is an almost paradigmatic 
example of a set of empirical phenomena demonstrating the existence of acquired constraints.

The Consequences of Contrasting Constraint Dimensions

The discussion of the various types of constraints has important consequences for the domain­generality versus domain­specificity issue. First, constraint distinctions 
may have important bearings on how one conducts research and formulates theoretical ideas on the DG­DS issue. De­

  
Page 147

pending on the sorts of constraints one thinks are at work, one may adopt very different research styles. Thus, internal and change constraints may push one to 
examine empirically a set of completely artificial stimuli and to search for process models of learning. A famous example is Ebbinghaus, who took the pains to 
memorize thousands of nonsense syllables in order to investigate the processes of learning, retention, and forgetting (Ebbinghaus, 1885/1966). Structural and change 
constraints may force one to focus on structural descriptions of natural knowledge at different points in development, and so on.

Second, and perhaps more important, the discussion of various types of constraints makes it obvious that any general attempt to characterize the working of the human 
mind in its entirety as domain­general or domain­specific is doomed to fail. Some constraints may be conceived of as domain­general and others may be conceived of 
as domain­specific. Given that many different constraints together—some domain­specific, some domain­general—shape the mind's processing of even the most 
minor event or task, the perhaps most interesting question is how the various constraints interact to produce the appearance of a uniform, meaningful human mind (e.g., 
Sternberg, 1989).

Summary

We began this section by asking what the general goal of any DG­DS debate is and what is meant by domain­generality, domain­specificity, and domain. The goal of 
any DG­DS debate is to determine how widely any psychological constraint can be applied. Domain­generality is an absolute concept and implies that the constraint is 
invariant; that is, it applies to all actions and properties of the human mind. Domain­specificity, by comparison, is a relative, rather than absolute, concept, implying that 
the constraint applies to some, but not all actions and properties of the mind. Finally, domain is viewed as a relative and subjectively defined concept that partly 
depends on the constraint under consideration.

Because DG­DS debates evolve around constraints, constraints are at the center of DG­DS debates. We broadly defined constraint as any theoretical statement tied 
to an empirical phenomenon that narrows the number of possibilities of how the human mind may operate. Constraints come in many different forms but can be 
reasonably well described in

  
Page 148

terms of the five partially overlapping dimensions discussed. The type of constraint determines whether asking the DG­DS question is meaningful to begin with, and it 
strongly influences both the theoretical goal of research and the research strategy. In the next section, we exemplify the diversity of DG­DS debates in psychological 
theory and research by summarizing two important and well­known debates.

Domain­Generality versus Domain­Specificity: Two Debates

In this section, we briefly describe and discuss two of the best­known DG­DS debates in psychology, debates focusing on the characteristics of human expertise and 
the nature of human development. Our discussion of the debates is guided, albeit rather informally, by four main questions: First, what are the constraints that each of 
the debates centers on? Second, which views on the domain­generality and domain­specificity of these constraints have been formulated? Third, what are the 
empirical phenomena that most directly speak to the DG­DS issue? And fourth, what were the reasons for preferring domain­specific or domain­general views? We 
begin with what is arguably the most famous of the recent DG­DS controversies.

The Nature of Expertise

At the most general level, the study of expertise seeks to understand what distinguishes outstanding individuals in any area from less outstanding individuals. As 
Ericsson and Smith (1991) argue, theoretical conceptions of expertise favor one of four possible explanations: innate/domain­general, innate/domain­specific, 
acquired/domain­general, and acquired/ domain­specific. The four different explanations reflect the basic belief that expertise is either predominantly influenced by 
inherited qualities or is a function of learning and that it can either be attributed to general characteristics of the individual or to specific aspects. In research on the 
nature of expertise, the DG­DS issue has thus played a major role.

The theoretical discussion in the first section of this chapter has taught us that any general statement of the form "Expertise is domain­general" or "Expertise is domain­
specific" is neither meaningful nor helpful. The question of domain­generality versus domain­specificity is meaningful

  
Page 149

only in the context of particular psychological constraints. Accordingly, a variety of constraints on the nature of expertise have been formulated in the past, most of 
them implicitly, rather than explicitly. Perhaps two of the best­researched constraints can be informally formulated as follows: (1) "Experts perform better than novices" 
and (2) "The organization of an expert's knowledge base is hierarchical."

Asking the DG­DS question for the two constraints means determining how far (i.e., across how many domains) they can be applied. Empirical research focusing on 
the first constraint has typically been searching for performance correlations across different knowledge domains (e.g., chess playing, physics), whereas research 
focusing on the second constraint has usually been trying to establish functional equivalence of experts' knowledge bases in different knowledge domains. 
Consequently, much of the former research has been correlational in character (e.g., Ceci & Liker, 1986), whereas much of the latter research has been experimental 
(e.g., Chi, Feltovich, & Glaser, 1981). In the following, we limit ourselves primarily to a discussion of research on the first constraint.

Early research on the domain­general versus domain­specific nature of the first constraint tended to lean toward the domain­general view. The general assumption was 
that stable characteristics of the individual determined whether the individual demonstrated outstanding performance in any domain or not. Innate general 
characteristics are, for example, intelligence and personality; acquired general characteristics are, for instance, general problem­solving strategies. Because expertise 
was due to stable individual characteristics, the argument went, people who performed outstandingly in one domain would do so in a different domain as well.

This domain­general view of expertise seemed appropriate because it corresponded to early informal and formal observations of experts. 5  Galton (1869), for 
instance, identified eminent individuals in a wide range of fields and then studied their familial and genetic origins. He reported strong evidence for eminence's being 
limited to a relatively small number of families stemming from common ancestors, and inferred that expertise was domain­general and genetically determined.

Similarly, summaries of biographical data obtained by de Groot (1965) and Elo (1978) also indicated that experts in the area of chess did not represent a random 
sample from the general population. Elo's (1978)

  
Page 150

comprehensive sample of 180 highly skilled players showed that 63% of the players had obtained at least some education at the university level, as had 38% of their 
parents. Also, 40% of the players reported as their profession chess journalism, a profession that seemed to require at least some verbal ability, which, in turn, has 
been shown to be one of the better indicators of general intelligence (Sternberg, 1985). In addition, 96% of the players reported proficiency in at least two different 
languages, with 25% reporting proficiency in five or more languages, again indicating that the sample was unlikely to be randomly derived from the general population.

In contrast to these formal and informal observations, however, methodologically sound empirical studies have had a difficult time demonstrating the domain­generality 
of expertise. First, the relations between expertise and intelligence and between expertise and basic cognitive abilities have not been demonstrated consistently. 
Second, expertise has not been found to correlate with stable personality characteristics. Third, expertise can apparently not be explained by the positing of general 
problem­solving strategies.

For example, tests measuring general intelligence have been remarkably unsuccessful in accounting for individual differences in levels of performance in the arts and 
sciences and advanced professions, as measured by social indicators (e.g., money earned, status) and judgments (e.g., prizes, awards) (Tyler, 1965). Ceci and Liker 
(1986), for instance, reported correlations in the range of r = .04 to r = .07 between a measure of general intelligence and several measure of expertise in the area of 
horse race handicapping.

Other research motivated by the belief that expertise reflects some basic cognitive ability involving attention, memory, general speed of reaction, or command of logic 
has been similarly unsuccessful. For example, Guilford (1967) reported disappointingly low correlations between expertise and basic cognitive individual 
characteristics, such as speed of mental processing. More recent attempts (Baron, 1978; Carroll, 1978; Cooper & Regan, 1982; Hunt, 1980) have also yielded 
inconclusive results. For instance, research on individual differences in general memory performances has found low correlations of memory performance across 
different types of material and methods of testing (Kelley, 1964). Doll

  
Page 151

and Mayr (1987), comparing some of the best chess players in West Germany with normal subjects of similar age, found no evidence that expertise in chess was 
related to performance on spatial tasks.

Of the research that has focused not on intelligence or general cognitive abilities, but on other stable, or innate, characteristics of the individual, that by Cattell (1963; 
Cattell & Drevdahl, 1955) is perhaps the best example. Cattell tried to determine whether the personality profiles of eminent researchers in physics, biology, and 
psychology could be distinguished from those of teachers and administrators in the same fields and from those of the general population. Compared with all other 
groups, top researchers were found to exhibit a consistent profile, being more self­sufficient, dominant, emotionally unstable, introverted, and reflective. Despite these 
hints at possible personality patterns, the idea to account for expertise in terms of general personality characteristics has been largely unsuccessful (Ericsson & Smith, 
1991). Indeed it becomes difficult to rule out the possibility that certain personality characteristics have not been acquired as a result of many years of extensive 
practice.

Expertise does not seem to be based on the availability of general problem­solving strategies either. This particular conclusion has been supported by recent work in 
artificial intelligence, where researchers are trying to develop nonhuman systems that can mimic intelligent human task performance in a variety of domains (e.g., 
Feigenbaum, 1989). Most of the early work in artificial intelligence in the late 1950s and early 1960s was based on the assumption that domain­general problem­
solving heuristics and domain­general rules of learning were the most important ingredients of an expert system (for a review see Sternberg & Frensch, 1989). Perhaps 
the most prominent enterprise conducted in this spirit was the General Problem Solver (Ernst & Newell, 1969). This computer program was designed to translate and 
then represent internally the components of a certain problem and then to solve it by applying certain problem­solving heuristics based on the idea of means­ends 
analysis.

Early failures to write programs that could compete with human experts (particularly in the area of chess; Berliner, 1978) have led researchers to acknowledge that 
domain­independent expert systems do not exist. Rather, different expert systems have to, be created for different domains,

  
Page 152

at least partly because the nature and structure of knowledge differs from one domain to another (Duda & Shortliffe, 1983; Hayes­Roth, Waterman, & Lenat, 1983).

As a result of the difficulties linking empirically any stable domain­general individual characteristics to measures of expertise, recent research on the nature of expertise 
has turned to domain­specific explanations. The turn toward domain­specific explanations has been brought about as much by the failure to establish empirical links 
between individual characteristics and expertise as by empirical findings that directly demonstrate domain­specificity in expertise. As a result, most modern researchers 
have come to accept, more or less, a domain­specific view of expertise, and they have concentrated their efforts on finding skill­related differences within, rather than 
outside, expertise domains, such as chess playing, physics, electronics, and so on.

Modern experimental efforts in the knowledge­based domain­specific tradition date back at least to de Groot. In one of his studies, de Groot (1965) showed two 
groups of chess players (five grandmasters and five experts) a set of unfamiliar positions and asked them to think out loud while choosing a move. The verbal 
statements were recorded by hand. De Groot's subjects ranged from grandmasters, some of the best players in the world, to club players. The results were rather 
surprising: although the grandmasters chose better moves than the less skilled players and did so in less time, the two groups did not differ on any of the quantitative 
indices of their move selection processes. That is, both groups considered roughly the same number of potential moves and initial base moves. Also, they did not differ 
in how far they were looking ahead to find the best move. Still, four of the five grandmasters ended up choosing the objectively best move whereas none of the experts 
did so.

It appeared that the major difference between the two groups of players was simply that the grandmasters did not waste any time exploring moves and move 
constellations that did not lead anywhere, instead concentrating their time and efforts on the exploration of promising moves, whereas the less skilled players wasted 
much time exploring moves that were not even candidates for the grandmasters' search processes. De Groot (1965) hypothesized that the experts' larger knowledge 
base guided their better selection of moves.

  
Page 153

More recently, the ideas formulated by de Groot were extended by Chase and Simon (1973a, 1973b), who proposed a somewhat more sophisticated theory of 
chess playing. Chase and Simon studied three chess players (a master, a class­A player, and a beginner) in a variety of experimental situations. They found that the 
master's ability to recall briefly presented meaningful chess positions was better than the class­A player's and the novice's. Furthermore, the master reproduced the 
board perfectly in three of four trials, whereas the class­A player typically required one or two more trials than the master. The beginner needed up to 14 trials to 
reproduce the entire board configuration.

When random configurations were recalled, however, the results changed dramatically. Now, there were no differences in the number of pieces correctly recalled 
among the three players. Furthermore, the first­trial performance of all three subjects was even poorer than the first­trial performance of the beginner on meaningful 
chess configurations.

Chase and Simon (1973b) interpreted these results in the following way, roughly following the conclusions arrived at earlier by de Groot (1965) and Jongman (1968): 
the superior ability of experienced over less experienced chess players to recall briefly presented meaningful chess patterns cannot be explained by superior storage 
capacity. That is, masters cannot keep more chess pieces in their short­term memory than can less experienced players. Rather, their superiority is based upon a 
knowledge of a vast number of basic, meaningful chess patterns, called chunks, that are stored in long­term memory. Each of these patterns can be quickly identified 
and can be accessed in long­term memory through a label. When faced with the memory task, expert players match the chess configuration they perceive on the board 
with their long­term memory chunks. When they find a match, they retrieve the label for the pattern and store this label in short­term memory. At recall time, they can 
then use the label to access and retrieve the pattern from long­term memory.

This line of reasoning also explains why experience does not aid recall performance for randomly generated chess patterns. In this case, matching long­term memory 
chunks simply do not exist. Therefore, the individual chess pieces, rather than labels of chunks, have to be memorized.

  
Page 154

Consequently, because their short­term memory capacity is not different from that of less experienced chess players, masters do not perform any better than beginners 
on random chess patterns.

De Groot's (1965) and Chase and Simon's (1973a, 1973b) subsequent findings were largely responsible for steering the interest of expertise researchers away from 
domain­general search­related issues and toward domain­specific perceptual­and knowledge­based issues. The exploration of domain­specific explanations of 
expertise has come to heavily dominate research, not only in the area of chess playing, but in many other areas as well (e.g., electronics, physics, managerial problem 
solving, and problem solving in international relations; see contributions in Frensch & Funke, 1995a, and Sternberg & Frensch, 1991).

Summary

The theoretical treatment of the nature of expertise has been guided rather directly by the domain­generality versus domain­specificity distinction. Two of the best­
researched constraints are (1) "Experts perform better than novices" and (2) "The organization of an expert's knowledge base is hierarchical." Early views on the 
former constraint reflected the belief that stable domain­general individual characteristics were responsible for outstanding performance. Lately, these views have been 
replaced by the opposite assumption, namely, that expert performance is determined by domain­specific factors. Theoretical accounts of this aspect of the nature of 
expertise have thus drifted from one extreme view to the other and have left little ground for intermediate positions.

Interestingly, research on the second constraint has come to exactly the opposite conclusion, namely that the hierarchical nature of an expert's knowledge base 
organization can be found across many different expertise domains (e.g., Chi et al., 1981). The fact that applying the DG­DS question to different constraints within 
the same general research area can lead to completely different conclusions, of course, strengthens our earlier argument that any DG­DS debate can only be 
understood in the context of a particular constraint. By the same token, it demonstrates nicely Sternberg's (1989) general claim that researchers need to address the 
interaction of domain­specific and domain­general aspects of cognitive functioning.

  
Page 155

Human Development

The study of human development is the study of change. One would like to know, for example, why the vocabulary explosion of children consistently occurs at around 
18 months (Smith, 1926), why 30­month­olds so rarely and 36­month­olds so consistently succeed in using scale maps to locate hidden objects (DeLoache, 1987), 
and why 5­year­olds almost never and 10­year­olds almost always understand conservation of liquid quantity (Piaget, 1952).

Virtually all theoretical accounts of human development center, explicitly or implicity, on the notion of constraints. The general argument is that the uniformity of 
development cannot be understood without reference to some underlying constraints that govern the changes that take place in the human mind. As Peirce (1931–
1935, vol. 1, p. 121) so succinctly put it,
suppose a being from some remote part of the universe, where the conditions of existence are inconceivably different from ours, to be presented with a United States Census 
Report which is for us a mine of valuable inductions, so vast as almost to give that epithet a new signification. He begins, perhaps, by comparing the ratio of indebtedness to 
deaths by consumption in counties whose names begin with different letters of the alphabet. It is safe to say that he would find the ratio everywhere the same, and thus his 
inquiry would lead to nothing. The stranger to this planet might go on for some time asking inductive questions that the Census would faithfully answer without learning anything 
except that certain conditions were independent of others.... Nature is a far vaster and less clearly arranged repertoire of facts than a census report; and if men had not come to it 
with special aptitudes for guessing right, it may well be doubted whether in the ten or twenty thousand years that they may have existed their greatest mind would have attained 
the amount of knowledge which is actually possessed by the lowest idiot. But, in point of fact, not man merely, but all animals derive by inheritance (presumably by natural 
selection) ... classes of ideas which adapt them to their environment.

Theories of human development can thus be viewed—in our terminology—as descriptions of the dynamic constraints that govern change in the operation of the human 
mind. Much of the theoretical debate on the nature of human development has centered on three questions: First, what are the exact constraints governing 
development? Second, are these constraints innate or acquired? Third, how domain­specific are the constraints? The issue of domain­generality versus domain­
specificity, thus, has been a major issue in the study of human development.

  
Page 156

Despite their general acceptance of constraints governing development, theories of human development differ markedly in which sorts of constraints they posit and in 
the scope they ascribe to constraints. In principle, the DG­DS issue could be, and indeed has been applied to, dynamic constraints ranging from the very specific to 
the very abstract. For example, one might ask whether particular lexical acquisition constraints, such as the whole object constraint, the taxonomic constraint, or the 
mutual exclusivity constraint (Markman, 1990) apply to nonlanguage domains as well. Alternatively, one might ask whether all developmental constraints that exist 
apply in general or apply only to one or several domains. The most important debates have centered on the latter; we therefore concentrate in the following on DG­DS 
debates at a relatively abstract level.

Historically, most of the prominent older and more recent theoretical views on development fall into one of the four different categories that are created by crossing the 
binary concepts of the innate versus acquired constraint with the domain­general versus domain­specific. Theories of human development, thus, emphasize the role 
either of domain­specific innate constraints, domain­general innate constraints, domain­specific acquired constraints, or domain­general acquired constraints. 6

Emphasis on Domain­Specific Innate Constraints

The most extreme proponents of a domain­specific/innate constraints view see human development as driven by innate constraints, where the details of the constraints 
differ qualitatively across domains. Fodor might be attributed with such a view when he argues that ''all concepts are innate" (Fodor, 1981) or when he claims that 
cognitive development consists of increasing access to preexisting structures rather than the differentiation and elaboration of knowledge structures (Fodor, 1972, 
1975). Fodor (1972, p. 93) writes,
Classical developmental psychology invites us to think of the child as a realization of an algebra which can be applied, relatively indifferently, to a wide variety of types of 
cognitive integrations, but which differs in essential respects from the mathematics underlying adult mentation. The alternative picture is that the child is a bundle of relatively 
special purpose computational systems which are formally analogous to those involved in adult cognition but which are quite restricted in their range of application, each being 
more or less tightly tied to the computation

  
Page 157

of a specific sort of data, more or less rigidly endogenously paced, and relatively inaccessible to purposes and influences other than those which conditioned its evolution. 
Cognitive development, on this view, is the maturation of the processes such systems subserve, and the gradual broadening of the kinds of computations to which they can 
apply.

In support of this view, one can find many cases in perception where domain­specific constraints dominate development, such as the development of binocular vision 
(Aslin & Smith, 1988) or of speech perception (Eimas, Miller, & Jusczyk, 1987). However, these cases are rarely disagreed upon any longer. Even empiricists who 
seek to explain development in terms of domain­general constraints usually acknowledge domain­specificity at the sensory level. Thus, of much more interest and more 
hotly debated are claims that locate domain­specific innate constraints at the more central, knowledge and belief­laden aspects of cognition, such as intuitive physics 
and intuitive folk psychology (Keil, 1990a). Here, the current wisdom appears to be that young children's expectations concerning the behavior of objects and people 
may be guided by domain­specific innate constraints.

However, there are still many controversies among even those favoring a domain­specific innate­constraints view of intuitive physics and folk psychology. For 
example, Carey (1985) suggests that intuitive physics and folk psychology may be the only domains guided by domain­specific innate constraints and that all other 
theoretical beliefs emerge out of these two domains. Keil (1989), in contrast, argues for domain­specific constraints in a much larger number of theoretical domains.

Emphasis on Domain­General Innate Constraints

Perhaps the most prototypical proponent of a domain­general/innate constraints view on understanding change, be it in development or learning, was Hull (1943), who 
argued for a small set of axioms governing all of human learning. In this view, human development is guided by a few general principles that apply across domains. 
Although Hull's influence has waned, the same principled argument for domain­generality can be observed in more recent information­processing theorists, such as 
Anderson (1983), or in even more recent connectionist theorists, such as McClelland and Rumelhart (1986). Anderson (1983), for example, acknowledges the 
necessity of domain­specific sensory systems, but argues,

  
Page 158

The most deeply rooted preconception guiding my theorizing is a belief in the unity of human cognition, that is that all higher cognitive processes, such as memory, language, 
problem solving, imagery, deduction, and induction, are different manifestations of the same underlying system. This is not to deny that there are many powerful special­purpose 
'peripheral' systems for processing perceptual information and coordinating motor performance. However, behind these lies a common cognitive system for higher level 
processing. Moreover, the essence of what it is to be human lies in the principles of this core, higher level system.... The unitary position should not be confused with the belief 
that the human mind is simple and can be explained by just one or two principles. However, it is general­purpose, that is one can use the same data structures and processes in 
programs for language and for problem solving. (pp. 1–5)

Anderson's theoretical view on the domain­generality of change constraints is mirrored by his construction of production systems to model many facets of human 
functioning and learning. Production systems consist of a large number of if­then rules whose application is governed by a small set of laws of operation. 
Developmental psychologists that share Anderson's use of production systems as models of human performance and learning, and his theoretical views, include, for 
instance, Klahr (1984), Salthouse (1991), and Siegler (1986). Siegler (1986), for example, states,
Are the mechanisms specifically designed for language learning (e.g. a specific language acquisition device) or are they the same mechanisms that lead to other types of learning 
(e.g. a general ability to induce rules)? My personal suspicion is that widely applicable learning mechanisms produce most forms of language learning.... Thus, children's 
acquisition of language rules can be viewed as simply one manifestation of a basic human rule­learning ability, no different from any of the others except for the massive amount of 
opportunities the world affords for practice and learning through observation. (pp. 179–180)

A conceptually similar argument, albeit for a different developmental age trend and at a different constraint level, is made by Salthouse (1991). Salthouse argues that 
much, if not all, of the developmental declines that occur from middle to older age on many measures of cognitive performance are due to a general slowing of people's 
information processing. The slowing is expression of a domain­general innate constraint that is most likely located at the neurological level.

Newport (1989) gives a very striking example of how a critical period in development—typically viewed as evidence for the maturation of domain­specific systems—
can be explained on the basis of domain­

  
Page 159

general innate constraints and thereby greatly enhances the attractivity of this particular theoretical position. Newport argues that the critical period in the acquisition of 
(the syntax of the native language) is tied to the development of domain­general constraints in the amount of information that can be stored. According to this 
explanation, young children are able to store only component parts of syntactical information whereas older children can store the entire linguistic stimulus. However, 
by storing only part of the syntactic stimulus, so the argument goes, younger children are better able to locate the relevant syntax information than are older children. 
Consequently, learning of natural language is easier for younger than for older children.

Emphasis on Domain­Specific Acquired Constraints

Whereas the two preceding views are logically sufficient to explain human development, this view, as the following view, is not. Domain­specific acquired constraints 
cannot explain all of development because they cannot explain how initial learning gets off the ground. Thus, the domain­specific solidus/acquired constraints 
assumption always needs to be accompanied by one or both of the two innate views discussed.

In general, accounts of human development that fall into this category typically rely on structure constraints, rather than process constraints, assuming that the child's 
initial acquisition of knowledge occurs in the same manner across domains. With additional experience, however, the knowledge already acquired exerts an influence 
on the knowledge to be acquired. The exact effect the old knowledge exerts on the new can either be the same across domains, as in the domain­general/acquired 
constraints view, to be presented in the next section, or it can differ for different domains, as for the present account.

Perhaps one of the best examples of the domain­specific/acquired constraints view can be seen in Quine's discussion of concept development (Quine, 1977). Quine 
views the child as developing different similarity spaces in different domains, due to different theories about the domains that, in turn, lead to different knowledge 
representations. Although Quine is not explicit about whether the constraints underlying knowledge representation in different domains are qualitatively different, such a 
view is at least consistent with his general argument.

  
Page 160

Similarly, Chi's (1989) work comparing experts and novices in different knowledge domains also suggests that the constraints governing change can be different in 
different domains. For example, Chi (1989) reports that knowledge about dinosaurs contains many heavily connected sets of causal beliefs, whereas knowledge of 
chess might involve spatial, rather than causal, relations. Again, the exact details of the constraints governing knowledge acquisition in the two domains are not 
specified in detail, however, and it is therefore not entirely clear whether they are really domain­specific or domain­general.

Keil (1986) offers yet another example of an empirical finding that appears to at least be consistent with a domain­specific/acquired constraints view on development. 
Keil can show that for some well­defined concepts and word meanings, children shift from representations based on domain­general tabulations of all typically co­
occurring characteristic features to representations based on only a few critical features. This characteristic­to­defining shift, as Keil terms it, seems to occur in 
relatively the same manner within domains but appears to be very different between domains.

From the examples discussed thus far, it should be clear that accounts of human development based on domain­specific acquired constraints can be rather different 
from accounts based on domain­specific innate constraints. First, innate constraints typically cover a wider range than acquired constraints that might apply only to 
very specific knowledge areas. Second, innate constraints apply in the same manner to all people; they tend to be universal, whereas acquired constraints can differ for 
different people and for people living in different cultures. Cross­cultural research on expertise (e.g., Scribner, 1983) is consistent with the acquired constraints view.

Emphasis on Domain­General Acquired Constraints

In the early 1970s, the prevailing view on human development appeared to be that it could be largely understood in terms of domain­general acquired constraints. 
Many theorists viewed the growth of knowledge as enabling the emergence of new structures that could in turn exert influences on the acquisition of new knowledge. 
The manner in which old knowledge affected the acquisition of new knowledge was thereby viewed as identical across all

  
Page 161

developmental domains. Piaget (1929, 1970), for example, viewed the domain­general constraints as emerging out of existing knowledge when it reached a critical 
mass.

Despite the general theoretical agreements, there was much controversy about the details of the constraints. For example, Bruner's enactive­iconic­symbolic sequence 
of development (Bruner, Olver, & Greenfield, 1965) was seen as sharply contrasting with Piaget's sensorimotor­preoperational­concrete operational stages. 
Vygotsky's (1965) and Werner's (1948) views were even more different.

Piaget's views, as one example of a primarily domain­general acquired constraints view of development, have not fared well. According to Case (1992), some of the 
reasons for the dismantling of Piagetian theory have been empirical and some theoretical. For example, the formulation and presentation of Piagetian theory made it 
difficult to test it empirically. Furthermore, when tested empirically it could not always be supported. For instance, many short­term training studies on Piagetian tasks 
exerted an impact on one class of task without exerting an influence on a structurally related class of tasks (Gelman, 1969). Also, children's intellectual development, 
when measured across many tasks, contexts, and domains, was much more uneven than the theory would permit (Beilin, 1971; Gelman & Baillargeon, 1983).

A further reason for the dismantling of Piagetian theory was the rise of domain­specific innate constraints views on development that allowed for qualitative changes 
occurring differently for different domains and not in an across­the­board fashion. Even highly similar developmental patterns, such as seen in stage changes according 
to Piagetians, could be explained in terms of these views. Stage changes could, for example, be viewed as caused by the maturation of new structures that were either 
dependent or independent of prior knowledge.

Criticisms of Piagetian views, however, have not necessarily led to abandoning the domain­general/acquired constraints view altogether. Case (1992), for example, 
has argued rather persuasively in favor of a new neo­Piagetian view of development that combines classic Piagetian as well as cognitive information­processing views. 
Case argues that with increasing age, automatization and chunking processes (e.g., Anderson, 1983; Frensch, 1991, 1994) increase overall processing efficiency and

  
Page 162

thereby free working memory capacity, which in turn allows new modes of thinking to emerge. Similar views based on the domain­general/ acquired constraints 
assumption have been formulated by Halford (1980; for a summary see Levin, 1986).

Summary

The binary concept of domain­generality versus domain­specificity has driven much of past and present theorizing about the nature of human development. Views of 
development have ranged from art emphasis on domain­specific innate constraints to an emphasis on domain­general acquired constraints. However, except perhaps 
for some proponents of domain­general acquired constraints (e.g., Piaget), theories have typically acknowledged that the four different views on human development 
are not mutually exclusive. That is, most theorists have assumed that development is driven by an interaction of different types of constraints, even though the emphasis 
on what was considered the most important type of constraints has differed among theories.

At present, one cannot detect a widely held consensus on the issue of domain­generality and domain­specificity in the field of human development; too different are the 
various theoretical views. Nevertheless, a few commonalities seem to emerge. First, it is generally acknowledged that there exists a certain number of highly domain­
specific innate constraints (e.g., for the visual and auditory systems and for language) that guide the development of primarily sensory and perceptual systems. Second, 
views emphasizing primarily domain­general acquired constraints have run out of steam; the consensus, if there is one, appears to be that domain­generality is more 
likely to be the result of innate rather than acquired constraints. Third, and perhaps most important, it is now generally acknowledged that human development is the 
result of an interaction of constraints, some of which are very specific and some of which are very general. This particular conclusion, of course, is one we have 
encountered in our discussion of the previous debate as well.

General Comments on the Debates

The two debates discussed differ in many respects. They differ in terms of the psychological constraints they consider, in research strategies, in what is considered 
support for particular domain­specific or domain­

  
Page 163

general views, in how broad or narrow domain­specific mechanisms can be, and so on. Nevertheless, our discussion of the debates highlights some important aspects 
common to most DG­DS debates. First, it nicely demonstrates that applying the DG­DS question has both theoretical and empirical implications, reflecting a search 
for the width of applicability of psychological constraints and also guiding the corresponding empirical research. These two aspects are clearly visible in both debates.

Second, both debates are primarily oriented toward domain­generality or domain­specificity of relatively high­level, abstract constraints. For example, the DG­DS 
debate on the nature of human development has been primarily concerned with the question of whether all of the dynamic constraints that govern development are 
domain­specific or domain­general. More recently, however, a shift in orientation has occurred—visible, for instance, in the debate on human development—toward 
acknowledging that any interesting psychological phenomenon involves the interaction of many different constraints, that is, constraints differing on the five dimensions 
outlined earlier. This shift has led to a wealth of new DG­DS debates, debates that are sometimes concerned with very specific, and sometimes rather obscure, 
constraints (for examples see table 5.1).

Third, the acknowledgment that every psychological phenomenon is the result of an interaction among many different constraints has not (yet) led to the general insight 
that it is the interaction of constraints that needs to be addressed empirically. Despite the plea of some theorists (e.g., Sternberg, 1989), debates continue, as the two 
debates discussed do, to center on individual constraints with little attention to the way in which different constraints interact.

Fourth, both debates focus on the endpoints of the width­of­applicability dimension of a constraint. DG­DS debates generally continue to be couched in terms of the 
domain­generality versus domain­specificity opposition, without paying much attention to the more important question of where exactly on the width­of­applicability 
dimension a particular constraint might be located. Theorizing has been, and is still, characterized by an either­or mentality; constraints are viewed as either domain­
specific or domain­general, without much thought of what exactly domain­general or domain­specific means.

  
Page 164

Conclusions

Our primary goal in this chapter has been to convey an understanding of what the domain­generality versus domain­specificity issue is all about. We have defined the 
goal of DG­DS debates as determining how widely any psychological constraint can be applied. We broadly defined constraint as any theoretical statement tied to an 
empirical phenomenon that narrows the number of possibilities of how the human mind may operate. Domain­generality is an absolute concept and implies that the 
constraint is invariant, that is, that it applies to all actions and properties of the human mind. Domain­specificity, by comparison, is a relative, rather than absolute, 
concept, implying that the constraint applies to some but not all actions and properties of the mind. Domain we viewed as a relative and subjectively defined concept 
that partly depends on the constraint under consideration.

We discussed two DG­DS debates that have figured prominently in psychology, debates centering on the nature of human expertise and human development. 
Common to both debates is an emphasis on relatively high­level constraints, a focus on the two endpoints of the width­of­applicability dimension, and a general failure 
to acknowledge that domain­general and domain­specific constraints may coexist in descriptions and explanations of empirical phenomena (or else these debates 
would not have started in the first place).

Why is it, then, that despite the shortcomings of DG­DS debates in the past and present, the issue continues to influence much of our thinking about how the human 
mind works? One possible reason is the unwavering hope that we will be able (one day!) to describe mind in a parsimonious manner, with a few general principles. 
This hope is misguided, we argue, for at least two reasons. First, our chances of capturing the functioning of the mind by positing a few underlying principles is, as 
history tells us, equal to nil.

Second, parsimony is usually achieved at the expense of precision. Thus, even if one were able to find truly domain­general principles that characterize the functioning 
of mind, these principles would probably be of little use to predicting individual behavior in a particular situation, or even the "modal" behavior of a person given a 
sample of situations. In

  
Page 165

all likelihood, they would be of little use for certain practical purposes as well, such as the construction of programs of intervention in certain behaviors.

Does this mean then that DG­DS debates are obsolete, serving no purpose? To the contrary, these debates are meaningful and helpful if they focus on determining the 
width of applicability of thoroughly defined psychological constraints. They are not meaningful if they concentrate on contrasting only the two endpoints of the width­
of­applicability dimension.

Determining the exact location on the width­of­applicability dimension is important for at least two reasons. First, it helps researchers to find the proper level of 
psychological explanation. For instance, if we discover that negative priming can be observed with letters, words, line drawings, complex drawings, and photographs, 
then we may consider the constraint to be domain­general in the sense that it applies to all these types of visual materials. We may then propose a mechanism that 
explains negative priming for "visual materials" and not just one for letters, one for words, and so on.

Second, determining the width of applicability may have important practical consequences, addressing, for instance, the feasibility of intervention programs. Knowing 
that the ability to find creative solutions to problems in the domain of mechanics has nothing in common with the ability to be creative in the domain of graphic design, 
to return to the example we gave at the beginning of this chapter, has obvious consequences for the way creativity­training programs need to be constructed.

Thus, DG­DS debates are meaningful to the extent that they focus on the width­of­applicability question. This insight needs to be supplemented by the further insight, 
however, that most, if not all interesting psychological phenomena are affected by the interactions of many constraints varying in width of applicability and that 
explanation of behavior can only be achieved if these interactions are understood. Sternberg (1989) writes that "researchers should be asking in what ways 
representation and processing are domain­general and in what ways they are domain­specific, and why. Researchers need to explore the interactions between general 
and specific aspects of functioning" (p. 115). We could not have said it any better!

  
Page 166

Notes

1. Negative priming refers to the phenomenon that responses to recently ignored stimuli may be slower and less accurate than responses to new stimuli.

2. By empirical phenomenon we mean an empirical effect that has been observed repeatedly and not just once. A singular empirical finding may be due to chance. It 
need not reflect an empirical effect that can be measured reliably, and thus, asking the DG­DS question may be a waste of time and resources. In other words, the 
establishing of reliable effects should preceed the asking of the DG­DS question.

3. This definition is reminiscent of several other definitions that can be found in the literature. For example, Keil (1990b) conceives of constraint as ''any factors ... that 
result in nonrandom selection of the logically possible characterizations of an informational pattern" (p. 136). Maratsos (1992) argues that "in its widest sense, 
constraint would apply very broadly to what organisms do, and how they think" (p. 4). Simon (1995), referring to internal constraints, argues that "The natural laws 
that determine the structure and behavior of an object, natural or artificial, are its internal constraints" (p. 99).

4. The relation between process and structure is complicated by the problematic distinction between the two. Newell (1972), for example, pointed out that computer 
programs are completely ambiguous as to whether they should be considered a process or structure.

5. When we refer to the domain­generality or domain­specificity of expertise or simply to expertise in the following text, we are referring to domain­generality or ­
specificity of the first constraint, as stated earlier in the text. Any use of the shorter expression is strictly for simplicity's sake.

6. The following discussion summarizes many arguments that can be found in Keil (1990a, 1990b).

References

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

Aslin, R. N., & Smith, L. B. (1988). Perceptual development. Annual Review of Psychology, 39, 435–473.

Baron, J. (1978). Intelligence and general strategies. In G. Underwood (Ed.), Strategies in information processing (pp. 403–450). London: Academic Press.

Beilin, H. (1971). Developmental stages and developmental processes. In D. R. Green, M. P. Ford, & G. B. Flamer (Eds.), Measurement and Piaget. New York: 
McGraw­Hill.

Berliner, H. (1978). A chronology of computer chess and its literature. Artificial Intelligence, 10, 201–214.

  
Page 167

Bruner, J. S., Olver, R. R., & Greenfield, P. M. (1965). Studies in cognitive growth. New York: Wiley.

Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.

Carroll, J. B. (1978). How shall we study individual differences in cognitive abilities? Methodological and theoretical perspectives. Intelligence, 2, 87–115.

Case, R. (1992). Neo­Piagetian theories of child development. In R. J. Sternberg & C. A. Berg (Eds.), Intellectual development (pp. 161–196). Cambridge, MA: 
Cambridge University Press.

Cattell, R. B. (1963). The personality and motivation of the researcher from measurements of contemporaries and from bibliography. In C. W. Taylor & F. Barron 
(Eds.), Scientific creativity: Its recognition and development (pp. 119–131). New York: Wiley.

Cattell, R. B., & Drevdahl, J. E. (1955). A comparison of the personality profile (16 PF) of eminent researchers with that of eminent teachers and administrators, and 
of the general population. British Journal of Psychology, 46, 248–261.

Ceci, S. J., & Liker, J. K. (1986). A day at the races: A study of IQ, expertise, and cognitive complexity. Journal of Experimental Psychology: General, 155, 
255–266.

Chase, W. G., & Ericsson, K. A. (1981). Skilled memory. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 141–189). Hillsdale, NJ: Erlbaum.

Chase, W. G., & Simon, H. A. (1973a). The mind's eye in chess. In W. G. Chase (Ed.), Visual information processing (pp. 215–281). New York: Academic 
Press.

Chase, W. G., & Simon, H. A. (1973b). Perception in chess. Cognitive Psychology, 4, 55–81.

Chi, M. T. H. (1989). How inferences about novel domain­related concepts can be constrained by structural knowledge. Merrill­Palmer Quarterly, 36, 27–62.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

Chomsky, N. (1975). Reflections on language. New York: Pantheon.

Cohen, N. J., & Squire, L. R. (1980). Preserved learning and retention of pattern­analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 
210, 207–210.

Cooper, L. A., & Regan, D. T. (1982). Attention, perception and intelligence. In R. J. Sternberg (Ed.), Handbook of human intelligence (pp. 123–169). 
Cambridge, MA: Cambridge University Press.

Cosmides, L., & Tooby, J. (1987). From evolution to behaviour: evolutionary psychology as the missing link. In J. Dupre (Ed.), The latest on the best: Essays on 
evolution and optimality (pp. 277–306). Cambridge, MA: MIT Press.

Cosmides, L., & Tooby, J. (1989). Evolutionary psychology and the generation of culture, part I. Ethology and Sociobiology, 10, 19–29.

  
Page 168

Crawford, R. P. (1966). The techniques of creative thinking; How to use your ideas to achieve success. New York: Hawthorn Books.

de Groot, A. D. (1965). Thought and choice in chess. The Hague, Netherlands: Mouton.

DeLoache, J. S. (1987). Rapid change in the symbolic functioning of young children. Science, 238, 1556–1557.

Doll, J., & Mayr, U. (1987). Intelligenz und Schachleistung—eine Untersuchung an Schachexperten. [Intelligence and achievement in chess—A study of chess 
masters.] Psychologische Belträge, 29, 270–289.

Duda, R. O., & Shortliffe, E. H. (1983). Expert systems research. Science, 220, 261–268.

Ebbinghaus, H. (1966). Über das Gedächtnis. Amsterdam: E. J. Bonset. (Original work published 1885.)

Eimas, P. D., Miller, J. L., & Jusczyk, P. (1987). On infant speech perception and the acquisition of language. In S. Harnad (Ed.), Categorical perception (pp. 
161–195). New York: Cambridge University Press.

Elo, A. (1978). The rating of chessplayers, past and present. New York: Arco.

Ericsson, K. A., & Smith, J. (1991). Prospects and limits of the empirical study of expertise: An introduction. In K. A. Ericsson & J. Smith (Eds.), Toward a general 
theory of expertise: Prospects and limits (pp. 1–38). Cambridge, MA: Cambridge University Press.

Ernst, G. W., & Newell, A. (1969). GPS: A case study in generality and problem solving. New York: Academic Press.

Feigenbaum, E. A. (1989). What hath Simon wrought? In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert A. Simon 
(pp. 165–182). Hillsdale, NJ: Erlbaum.

Fodor, J. A. (1972). Some reflections on L. S. Vygotsky's Thought and Language. Cognition, 1, 83–95.

Fodor, J. A. (1975). The language of thought. New York: Thomas Y. Crowell.

Fodor, J. A. (1981). The current status of the innateness controversy. In J. A. Fodor (Ed.), Representations: Philosophical essays on the foundations of 
cognitive science. Cambridge, MA: MIT Press.

Frensch, P. A. (1991). Transfer of composed knowledge in a multi­step serial task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 
997–1016.

Frensch, P. A. (1994). Composition during serial learning: A serial position effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 
423–442.

Frensch, P. A., & Funke, J. (Eds.) (1995a). Complex problem solving: The European perspective. Hillsdale, NJ: Erlbaum.

Frensch, P. A., & Funke, J. (1995b). Definitions, traditions, and a framework for understanding complex problem solving. In P. A. Frensch & J. Funke, (Eds.),

  
Page 169

Complex problem solving: The European perspective (pp. 3–26). Hillsdale, NJ: Erlbaum.

Galton, F. (1869). Hereditary genius. New York: Macmillan.

Garfield, J. L. (1987). Introduction. In J. L. Garfield (Ed.), Modularity in knowledge representation and natural­language understanding (pp. 17–23). 
Cambridge, MA: MIT Press.

Gelman, R. (1969). Conservation acquisition: A problem of learning to attend to relevant attributes. Journal of Experimental Child Psychology, 7, 167–187.

Gelman, R., & Baillargeon, R. (1983). A review of some Piagetian concepts. In J. H. Flavell & E. M. Markman (Eds.), Handbook of child psychology. Vol. 3. 
Cognitive development. New York: Wiley.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38.

Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw­Hill.

Halford, G. (1980). Toward a redefinition of cognitive developmental stages. In J. Kirby & J. B. Biggs (Eds.), Cognition, development and instruction (pp. 39–
64). New York: Academic Press.

Hayes­Roth, F., Waterman, D. A., & Lenat, D. B. (1983). An overview of expert systems. In F. Hayes­Roth, D. A. Waterman, & D. B. Lenat (Eds.), Building 
expert systems (pp. 3–29). Reading, MA: Addison­Wesley.

Heckhausen, J. (in press). Developmental regulation in adulthood: Age­normative and sociostructural constraints as adaptive challenges. Cambridge, MA: 
Cambridge University Press.

Hiroto, D. S. (1974). Locus of control and learned helplessness. Journal of Experimental Psychology, 102, 187–193.

Hull, C. L. (1943). Principles of behavior. New York: Appleton­Century­Crofts.

Hunt, E. (1980). Intelligence as an information processing concept. Journal of British Psychology, 71, 449–474.

Jacoby, L. L. (1983). Remembering the data: Analyzing interactive processes in reading. Journal of Verbal Learning and Verbal Behavior, 22, 485–508.

Johnston, T. D. (1988). Developmental explanation and the ontogeny of birdsong: Nature/nurture redux. Behavioral and Brain Sciences, 11, 617–773.

Jongman, R. W. (1968). Het oog van de meester. Amsterdam: Van Gorcum.

Keil, F. C. (1986). On the structure­dependent nature of stages of cognitive development. In I. Levin (Ed.), Stage and structure: Reopening the debate (pp. 144–
163). Norwood, NJ: Ablex.

Keil, F. C. (1989). Concepts, kinds, and cognitive development. Cambridge, MA: Bradford Books.

Keil, F. C. (1990a). Constraints on the acquisition and representation of knowledge. In M. W. Eysenck (Ed.), Cognitive psychology: An international review (pp. 
197–219). Chicester, England: Wiley.

  
Page 170

Keil, F. C. (1990b). Constraints on constraints: Surveying the epigenetic landscape. Cognitive Science, 14, 135–168.

Kelley, H. P. (1964). Memory abilities: A factor analysis. Psychometric Society Monographs, 11, 1–53.

Klahr, D. (1984). Transition mechanisms in quantitative development. In R. J. Sternberg (Ed.), Mechanisms of cognitive development. San Francisco: Freeman.

Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

Lehrman, D. (1953). A critique of Konrad Lorenz's theory of instinctive behavior. Quarterly Review of Biology, 28, 337–363.

Lerner, R. (1983). Development and plasticity. New York: Academic Press.

Levin, I. (Ed.) (1986). Stage and structure: Reopening the debate. Norwood, NJ: Ablex.

Maratsos, M. (1992). Constraints, modules, and domain specificity: An introduction. In M. R. Gunnar & M. Maratsos (Eds.), Modularity and constraints in 
language and cognition: The Minnesota Symposia on child psychology (Vol. 25, pp. 1–23). Hillsdale, NJ: Erlbaum.

Markman, E. M. (1990). Constraints children place on word meanings. Cognitive Science, 14, 57–77.

Marr, D. (1982). Vision. New York: Freeman.

McClelland, J. L., & Rumelhart, D. E. (Eds.) (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT 
Press.

Miller, G. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

Neely, J. H. (1991). Semantic priming effects on visual word recognition: A selective review of current findings and theories. In D. Besner and G. Humphreys (Eds.), 
Basic processes in reading: Visual word recognition (pp. 264–336). Hillsdale, NJ: Erlbaum.

Newell, A. (1972). A note on process/structure distinctions in developmental psychology. In S. Farnham­Diggory (Ed.), Information processing in children. New 
York: Academic Press.

Newport, E. (1989). Maturational constraints on language learning. Cognitive Science, 14, 11–28.

Peirce, C. S. (1931–1935). Collected papers of Charles Sanders Pierce (6 vols.). (C. Hartshorne & P. Weiss, Eds.) Cambridge, MA: Harvard University Press.

Piaget, J. (1929). The child's conception of the world. New York: Harcourt Brace.

Piaget, J. (1952). The child's concept of number. New York: Norton.

Piaget, J. (1970). Piaget's theory. In P. H. Mussen (Ed.), Carmichael's manual of child psychology (3rd ed., Vol. 1). New York: Wiley.

  
Page 171

Posner, M. I. (1988). Introduction: What is it to be an expert? In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. xxix–xxxvi). Hillsdale, 
NJ: Erlbaum.

Quine, W. V. O. (1977). Natural kinds. In S. P. Schwartz (Ed.), Naming, necessity and natural kinds. Ithaca, NY: Cornell University Press.

Roediger, H. L. (1990). Implicit memory. Retention without awareness. American Psychologist, 45, 1043–1056.

Rosenthal, V. (1988). Does it rattle when you shake it? Modularity of mind and the epistemology of cognitive research. In G. Denes, C. Semenza, & P. Bissiacchi 
(Eds.), Perspectives on cognitive neuropsychology (pp. 31–58). Hove, England: Erlbaum.

Salthouse, T. A. (1991). Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychological Science, 2, 179–
183.

Scribner, S. (1983). Studying working intelligence. In B. Rogoff and J. Lave (Eds.), Everydays cognition: Its development in social context (pp. 9–40). 
Cambridge, MA: Harvard University Press.

Siegler, R. S. (1986). Children's thinking. Englewood Cliffs, NJ: Prentice Hall.

Simon, H. A. (1995). Artificial intelligence: An empirical science. Artificial Intelligence, 77, 95–127.

Smith, M. E. (1926). An investigation of the development of the sentence and the extent of vocabulary in young children. University of Iowa Studies in 
Child Welfare, 3 (5).

Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. Cambridge, MA: Cambridge University Press.

Sternberg, R. J. (1989). Domain­generality versus domain­specificity:The life and impending death of a false dichotomy. Merrill­Palmer Quarterly, 35, 115–130.

Sternberg, R. J., & Frensch, P. A. (1989). Intelligence and cognition. In M. Eysenck (Ed.), International Review of Cognitive Psychology (Vol. 1, pp. 57–103). 
Chichester, England: Wiley.

Sternberg, R. J., & Frensch, P. A. (Eds.) (1991). Complex problem solving: Principles and mechanisms. Hillsdale, NJ: Erlbaum.

Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, 37A, 571–590.

Tipper, S. P., & Cranston, M. (1985). Selective attention and priming: Inhibitory and facilitatory effects of ignored primes. The Quarterly Journal of Experimental 
Psychology, 37A, 591–611.

Tipper, S. P., Weaver, B., Cameron, S., Berhaut, J. C., & Bastedo, J. (1991). Inhibitory mechanisms of attention in identification and localization tasks: Time course 
and disruption. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 681–692.

  
Page 172

Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.

Tyler, L. E. (1965). The psychology of human differences. New York: Appleton­Century­Crofts.

Underwood, B. J. (1957). Interference and forgetting. Psychological Review, 64, 49–60.

Vygotsky, L. S. (1965). Thought and language. Cambridge, MA: MIT Press.

Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.

Werner, H. (1948). Comparative psychology of mental development (2nd ed.). New York: International Universities Press.

  
Page 173

6
Conscious versus Unconscious Cognition
John F. Kihlstrom

Conscious and Unconscious Cognition

The cognitive revolution made the study of consciousness respectable again, if only in the form of studies of attention, primary memory, and imagery. The legitimation 
of consciousness was not inevitable, however: one of the dirty secrets of cognitive psychology is that many of those who practice it can get along perfectly well without 
displaying any interest in consciousness at all. Flanagan (1991) has pointed out four reasons for this state of affairs:

Positivistic Reserve: Cognitive psychology inherited some of the methodological assumptions of the behaviorism it replaced, in particular an emphasis on publicly 
observable behavior as the window into the mind. Because consciousness is inherently private, as well as somewhat metaphysical, it still seems somehow beyond the 
pale of a science of the mind.

Piecemeal Approach: Furthermore, even among those cognitive psychologists who affirm an interest in consciousness, there is a tacit assumption that an 
understanding of consciousness will emerge, in a bottom­up fashion, from studies of individual phenomena. Many cognitive psychologists have made their careers by 
studying the phenomena of consciousness, such as attention, episodic memory, and imagery, without ever referring to consciousness itself. The effect has been to 
marginalize consciousness, as a topic that, perhaps like pornography, is too embarrassing to discuss in polite company even if we might admit privately that it's 
something we're really interested in.

Conscious Inessentialism: To make things even worse, the doctrine of computational functionalism, which underlies so much contemporary modeling of cognitive 
processes and systems, assumes that we can produce a perfectly adequate description of human information processing

  
Page 174

solely in terms of the functional relations between stimulus inputs and response outputs, with perhaps a hidden layer or two in between. After all the effort to get past 
behaviorism, this apparent throwback to the connectionism of Edward L. Thorndike and the radical formulations of B. F. Skinner renders consciousness, once again, 
inessential to the study of the mind.

Epiphenomalist Suspicion: Finally, many of those computational functionalists who, however grudgingly, admit that consciousness is part of the human experience, 
nonetheless argue that consciousness is the end product of cognitive functioning, and plays no causal role in human experience, thought, and action—thus rendering us 
merely conscious automata. For example, connectionist analyses of cognition state or imply that conscious awareness is the last thing that happens, after the network 
has settled into a steady state—that is, after all of the interesting and important work is done. The thrust of this argument is that while we humans may happen to be 
conscious, nothing much hangs on this fact, and things wouldn't be any different if we weren't conscious at all.

All this sounds pretty bad if one is interested in consciousness, but the upside is that conscious inessentialism and the epiphenomenalist suspicion, taken together, 
provide cognitive psychologists with ample motivation for exploring the psychological unconscious—that is, the idea that conscious experience, thought, and action are 
influenced by percepts, memories, and other mental states inaccessible to phenomenal awareness and independent of voluntary control. So it is one of the ironies of 
contemporary cognitive psychology that many of those who might have made a science of consciousness have instead gravitated, knowingly or not, toward a science 
of the mind that gives precedence to unconscious processes.

Automatic versus Controlled Processing

So far as modern psychology is concerned, the psychological unconscious began life as a kind of mental wastebasket: it was the repository for unattended inputs, 
memories rendered unavailable by decay or displacement, and latent knowledge not currently being utilized by the cognitive system. Consider the multistore modal 
models of memory of the sort proposed by Waugh and Norman (1965) and Atkinson and Shiffrin (1968), depicted schematically in figure 6.1 (for a review, see 
Healy & McNamara, 1996).

  
Page 175

Figure 6.
Schematic description of the three­store modal model of memory, with the psychological  
unconscious reserved for items lost from the sensory registers by decay 
or from primary (short­term) memory by displacement, or residing in a latent  
state in secondary (long­term) memory.

Although its advocates rarely discussed the topic as such (a reflection of the piecemeal approach described by Flanagan), the modal model essentially identifies 
consciousness with attention and short­term memory. Thus, mental representations enter short­term memory when attention is paid to them; only at this point are they 
accessible to phenomenal awareness (Posner, 1980, 1982)—a condition they retain only so long as they are rehearsed. From this perspective, debates about 
unconscious processing generally take the form of questions about how much information can be processed preattentively (Neisser, 1967).

The earliest filter theories (e.g., Broad bent, 1958) proposed that attentional selection occurred early in cognitive processing and was based on perceptual features. 
According to these models, preattentive semantic analysis was not possible, and so there could be no preconscious processing of meaning. Consider, for example, the 
dichotic listening paradigm, in which the subject is presented with a different auditory message in each ear, but told to attend to only one of them. Treisman's (1960) 
discovery of semantic intrusions from the unattended channel in dichotic listening led to the replacement of the filter with an attenuator, so unattended information is 
not completely filtered out. Still, the implication was that semantic processing occurred only after information had passed through an attentional bottleneck—hence, no 
preattentive semantic

  
Page 176

processing. Finally, there emerged a number of late selection theories of attention (Deutsch & Deutsch, 1963; Norman, 1968), which allowed for full semantic 
processing of the unattended channel, permitting attentional selection to be based on the pertinence of information to ongoing tasks. The question of preattentive 
semantic processing came to a head with Marcel's (1983) demonstration of masked semantic priming and with the subsequent debate (e.g., Holender, 1986) over 
whether semantic processing could occur in the absence of attention and conscious identification.

At about the same time, however, theories of attention underwent a shift from filter to capacity theories (Kahneman, 1973; Posner, 1980; for an account of this shift, 
see Kahneman & Treisman, 1984). According to this view, attention is equated with mental effort, cognitive resources are held to be limited, and the perceiver's ability 
to process information depends on the resources required by the task(s) at hand. If these tasks are undemanding, several can be carried out simultaneously, so long as 
there is no structural interference between them. The success of the capacity view quickly led to a distinction between automatic and controlled cognitive processes 
(LaBerge & Samuels, 1974; Posner & Snyder, 1975; Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977).

As defined by Posner and Snyder (1975), automatic processes are—in a word—automatic: they are initiated independently of the person's conscious intentions, and 
they cannot be terminated until their execution has been completed. Controlled processes, by contrast, are initiated and terminated voluntarily. Moreover, whereas we 
are phenomenally aware of our controlled processes, automatic processes are executed outside of awareness. Automatic processes might be innate, or they may have 
become automatized by virtue of extensive practice (Anderson, 1982; LaBerge & Samuels, 1974; Logan, 1988); but the models for automatic processes seem to be 
the innate, incorrigible stimulus­response connections familiar to psychobiologists: spinal reflexes, which can occur without the involvement of ''higher" cortical centers; 
taxes, the gross orientation responses observed in many invertebrates; instincts, species­specific responses to specific patterns of stimulation; and the habits acquired 
through classical and instrumental conditioning. In principle, at least, automatic processes are unconscious in the strict sense of the term

  
Page 177

because they are executed outside phenomenal awareness and are independent of voluntary control.

Intentionality and Cognitive Resources

Of course, the positivistic reserve carried over from functional behaviorism still makes many cognitive psychologists nervous about defining their concepts in terms of 
such private, mentalistic constructs as awareness and intention. Perhaps for that reason, certain other attributes were quickly added onto the concept of automaticity. 
So, for example, Posner and Snyder (1975) asserted that automatic processes consumed no attentional resources, while Schneider and Shiffrin (1977) argued that 
they were carried out in parallel rather than in series. Hasher and Zacks (1979, 1984) elaborated the concept of automaticity still further. According to their definition, 
a process was automatic if performance was (1) insensitive to intentions; (2) equivalent under intentional and incidental conditions; (3) not modified by training and 
feedback; (4) invariant with respect to individual differences (e.g., in intelligence); (5) invariant with respect to age; and (6) unaffected by arousal, stress, or the 
requirements of simultaneous tasks.

Some of these additional properties, especially the idea that automatic processes consume no attentional resources, have become part and parcel of the very notion of 
automaticity. However, they are better construed as empirical questions than as definitional criteria. There is no a priori reason, for example, why an automatic process 
should consume no attentional resources; it is easy to imagine a process whose execution, though independent of conscious intention, necessarily requires cognitive 
resources. Even thermostats draw electricity, as do the furnaces and air conditioners they automatically regulate.

An attempt to break out of the positivistic reserve, and define automatic processes solely in terms of intentionality, has been proposed by Jacoby (1991), in terms of 
his process dissociation framework. According to Jacoby, an automatic process is one that occurs despite the person's intention that it should not do so. For 
example, if prior study of a word list automatically primes performance on a word stem completion task, this influence would persist even if subjects were specifically 
instructed to complete word stems with items that were not on the studied

  
Page 178

list. Thus, intention, not the consumption of resources, is the defining feature of automaticity. Jacoby's process dissociation framework has become enormously 
influential, at the same time that it has also come under severe criticism. For example, it rests on the assumption that the exclusion task is a pure measure of automatic 
influence, which may not be true (for other criticisms, see Curran & Hintzman, 1995). However, in the present context what is appealing about the framework is 
Jacoby's attempt to develop an operational definition of automaticity strictly in terms of subjects' conscious intentions, while relegating such matters as the consumption 
of cognitive resources to the status of empirical questions.

Toward a Psychology of Zombies?

The distinction between automatic and controlled processes is somewhat muddied by the fact that in principle, even deliberate, conscious actions are mediated by 
unconscious, automatic processes. Thus, driving a car over a familiar route may be automatic, in the sense that one can carry on a complex conversation while driving 
and arrive at one's destination without any awareness of various turns, gearshifts, and speed changes made along the way. But the decision to get in the car and drive it 
from point A to point B is surely a conscious one. Still, the attractions of conscious inessentialism are so strong that some psychologists and other cognitive scientists 
have argued that automatic processing dominates mental life and interpersonal behavior. For example, Dennett's (1991) Multiple­Drafts Model, based on a strong 
version of computational functionalism, explains consciousness as merely a snapshot of one of the many discriminative states that continuously arise between stimulus 
input and behavioral response. Computers have consciousness in this sense, according to Dennett's theory, and so do zombies. Consciousness is a momentary 
byproduct of a cognitive machinery that is grinding away automatically; it plays no special role in mental life; we might as well be zombies ourselves (and we probably 
are!).

The embrace of automaticity is particularly visible within social psychology, where some theorists have argued that certain critical interpersonal processes are 
automatic and thus both unconscious and uncontrollable. Thus, Nisbett and Wilson (1977) have argued that our

  
Page 179

conscious beliefs are simply after­the­fact explanations that have nothing to do with why we do what we do because our behavior is mediated by processes that are 
themselves unconscious. Similarly, Berkowitz (1993) has argued that aggressive responses to frustration are automatically triggered by particular cues in the 
environment; and many theorists concerned with stereotyping and prejudice have concluded that the negative views that men hold of women, whites of blacks, Anglos 
of Hispanics, and so on, reflect an automatic evocation of negative stereotypes leading to prejudicial behavior (e.g., Devine, 1989; Fazio, Sanbonmatsu, Powell, & 
Kardes, 1986; Greenwald & Banaji, 1995).

Berkowitz and Devine (1995) have been especially astute in seeing the close relationship between a modern social psychology whose cognitive components are 
largely automatic and an earlier one based on S­R associationism. Bargh (1997) has brought cognitive social psychology full circle by explicitly embracing Skinner's 
(1953) rejection of free will and conscious choice as determinants of behavior. At the beginning of his essay he writes that "Much of everyday life—thinking, feeling, 
and doing—is automatic in that it is driven by current features of the environment ... as mediated by automatic cognitive processing of those features, and not mediated 
by conscious choice or reflection" (pp. 2).

And toward the end, he concludes:

Automaticity pervades everyday life, playing an important role in creating the psychological situation from which subjective experience and subsequent conscious and intentional 
processes originate. Our perceptions, evaluations, and the goals we pursue can and do come under environmental control. Because these perceptual interpretations, likes and 
dislikes, and reasons for our behavior are not consciously experienced, we make sense of them in terms of those aspects of which we are consciously aware, and our theories as to 
what would have caused us to feel or act that way. (pp. 50)

Bargh especially seems to be leading us toward a psychology of a special class of zombies, creatures who are not quite unconscious, but for whom consciousness has 
no function other than to erect personal theories—quite literally afterthoughts—concerning our own experience, thought, and action that are wholly irrelevant to what 
actually goes on in our minds and our lives. One can only wonder whether, when the reduction of mental life to automatic mental processes (e.g., Dennett, 1991), and 
then to brain processes (e.g., Churchland, 1995) is complete,

  
Page 180

there will be any place left for conscious awareness and control in James's (1890/1981, p. 1) science of mental life.

Implicit versus Explicit Memory

No such concerns attach to the concept of implicit memory (Graf & Schacter, 1985; Schacter, 1987), which along with automaticity has been largely responsible for 
the revival of interest in the cognitive unconscious. This is because implicit memory has a specific contrast in explicit memory. Explicit memory refers to the conscious 
recollection of some past event (as revealed, for example, in recall and recognition), whereas implicit memory refers simply to any effect on a person's experience, 
thought, or action that is attributable to a past event (as revealed, for example, in priming effects), independent of conscious recollection of that event. By 
acknowledging that there are two expressions of memory, one with and the other without conscious awareness of the past, theories of implicit memory do not seek, 
even by implication, to banish consciousness to the realm of folk psychology. Moreover, Jacoby's (1991) process dissociation procedure, which evolved in the 
context of research on implicit memory, asserts a specific role for consciousness in behavior. That is, conscious awareness of the past allows us to exercise conscious 
control over the automatic influence of the past on our current experience, thought, and action.

Although the explicit­implicit distinction drawn in memory had many precursors in both philosophy and psychology (reviewed by Schacter, 1987), its more immediate 
sources were experimental studies that revealed evidence of learning and transfer even though subjects had no recollection of what they had learned. For example, 
Warrington and Weiskrantz (1968) found that while amnesic patients were unable to recall recently presented words, they produced these items at higher than 
baseline rates when asked to complete stems and fragments with words. Even earlier, Evans and Thorn (1966; see also Evans, 1979) found that subjects displaying 
posthypnotic amnesia could answer trivia questions based on information acquired while they were hypnotized—a phenomenon they termed source amnesia and 
which has since been explored in amnesic patients as well. Later, Nelson (1978) found that normal subjects

  
Page 181

showed savings in relearning paired­associate items that they could neither recall nor recognize from a prior study trial. Finally, Jacoby and Dallas (1981) found 
repetition priming effects on the perceptual identification of words that were independent of subjects' conscious recollection of their prior presentation. In these and 
other ways, research showed that implicit memory could be spared even though explicit memory was grossly impaired; or, alternatively, that implicit memory was in 
some sense independent of explicit memory, so the two expressions of memory could be functionally dissociated in terms of the experimental manipulations that 
affected them.

Taxonomy of Memory Tasks

Research on implicit memory has suffered from a considerable degree of terminological confusion (Roediger, 1990a). At roughly the same time that Graf and Schacter 
(1985) announced the distinction between explicit and implicit memory, Johnson and Hasher (1987) and Richardson­Klavehn and Bjork (1988) articulated a 
distinction between direct and indirect tests of memory. And even earlier, Cohen and Squire (1980) had already adopted the distinction, originally drawn. by 
Bergson (1911.) and Ryle (1949), between knowing that and knowing how—which later became a distinction between declarative and procedural memory 
(Squire & Cohen, 1984) and then evolved into a distinction between declarative and nondeclarative memory (Squire & Knowlton, 1995).

It should be noted, however, that the declarative­procedural distinction refers to two different types of knowledge, rather than two different expressions of memory. 
As formulated by Winograd (1972, 1975) and Anderson (1976, 1983), declarative knowledge is factual in nature and can be represented in terms of sentencelike 
propositions; by contrast, procedural knowledge concerns mental and behavioral operations and can be represented in a production system of condition­action rules. 
There is an assumption that declarative knowledge is available to conscious introspection whereas procedural knowledge is unconscious, but this does not mean that 
unconscious influences should be identified with procedural knowledge. After all, declarative knowledge—in the form of propositional networks and the like—is just 
as unconscious as procedural knowledge is. We have no direct introspective access to the perception­based

  
Page 182

and meaning­based structures that comprise our fund of declarative knowledge—they, too, are known only by inference. What is conscious are the percepts, 
memories, images, and thoughts that come to mind when unconscious procedural knowledge operates on unconscious declarative knowledge. By identifying 
declarative knowledge with conscious recollection, and relegating all unconscious influences to the realm of the procedural (or merely nondeclarative), Squire and his 
colleagues seem to have conflated the technical meaning of declarative, which refers to the format in which knowledge is represented, with the ordinary­language 
definition, in terms of what knowledge can be reported.

Although the direct­indirect contrast is generally considered to be tantamount to the explicit­implicit one (e.g., Roediger & McDermott, 1993), an interesting 
classification of memory tasks emerges when the two distinctions are treated as independent (table 6.1; see also Barnhardt, 1993). Thus, explicit and implicit tasks 
differ from each other in terms of whether they require conscious recollection of some event, whereas direct and indirect tasks differ in terms of whether studied items 
are presented at the time of the memory test. Recall and recognition tests are both explicit and direct because they require the subject to consciously recollect 
previously studied items. In stem completion, subjects are presented with the initial letters of a word, while in fragment completion, they are presented with some 
letters of a word, interspersed with blanks. In either case, when asked to complete the stem or fragment with the first word that comes to mind, they will often do so 
with an appropriate word from a previously studied list—an effect known as priming. Stem­completion

Table 6.1
Fourfold classification of memory tasks

Memory Task Explicit Implicit

Direct Free recall, cued recall Stem completion


Recognition Fragment completion
Savings in relearning (?) Savings in relearning (?)

Indirect Proactive inhibition Free association


Retroactive inhibition Category generation

Source: After Barnhardt (1993).

  
Page 183

and fragment­completion tests are both direct, because they present at the test the same items that were studied; but implicit, because they do not require conscious 
recollection of the study episode. Proactive inhibition (PI) and retroactive inhibition (RI) tests are explicit because they require conscious recollection (of the 
interpolated or the original list, respectively), but indirect because these effects reveal memory for items (on the original or the interpolated list, respectively) that are 
not themselves presented at the test. Semantic priming is both implicit and indirect because the items presented at test are not those presented at study and because 
subjects are not required to recollect study items at all. The classification of savings in relearning is variable, depending on how the test is presented. If on the relearning 
trials the subject is told of the relation between the first and second lists, and instructed to use his or her memory of the first list in order to learn the second, the test is 
both direct and explicit (this is also true for PI and RI). If this information is withheld from the subject, and the second list is presented as if it were new, the test is 
direct but implicit.

In fact, there is some evidence for dissociations between implicit and indirect memory tasks. For example, Barnhardt (1993) conducted a directed forgetting 
experiment in which subjects studied two lists, A and B; between these phases one group of subjects was directed to forget list A, while the other was instructed to 
remember it. Testing list B by stem­cued recall showed that administration of the forget cue reduced the PI of list A on list B; but testing list A by stem completion 
showed no effects of the forget cue on priming. Thus, even though PI is commonly considered to be an implicit memory test, assessment of PI indicated that list­A 
items had been forgotten, while assessment of priming indicated that these same items had been remembered.

This classification of memory tasks, viewed in the context of Barnhardt's (1993) results, reminds us that we know little about the relations among various implicit and 
indirect tests of memory. In particular, we know little about the relations between priming effects, on the one hand, and procedural knowledge on the other—for the 
simple reason that the vast bulk of literature on implicit memory focuses on priming. The reason for this is that priming procedures allow investigators to devise explicit 
and implicit memory tests that are equivalent in terms of the cues

  
Page 184

presented to the subject at the time of retrieval and differ only in terms of the task to be performed. Thus, in both stem­cued recall and stem completion, subjects are 
presented with three­letter stems; in the former case, they are asked to use the stems as cues for recall of previously studied list items; in the latter, to complete the 
stems with the first word that comes to mind. This procedural elegance is missing in tests of procedural knowledge, where—for example—subjects must recall a 
learning experience for the explicit memory test, but demonstrate what they have learned for the implicit memory test.

Furthermore, it turns out that we know little about priming effects themselves, for the simple reason that the recent literature on priming has been almost completely 
dominated by studies of repetition effects of the sort observed on lexical decision, perceptual identification, and stem and fragment completion tasks. As will become 
clear, this strategic choice may have severely distorted our theoretical understanding of the nature of implicit memory.

Theories of Implicit Memory

The currently prominent theories of implicit memory may be arranged in the two­way classification depicted in figure 6.2, depending on whether they postulate single 
versus multiple memory systems, or whether they emphasize the activation and integration of preexisting knowledge or the acquisition of new knowledge.

Figure 6.2
Taxonomy of current theories of implicit memory.

  
Page 185

The most popular theories among cognitive neuroscientists are those that argue that explicit and implicit memory reflect the operation of separate memory systems, 
mental modules that have their biological substrates in separate brain systems. For example, Tulving and Schacter (1990) argue that implicit memory is based on 
several perceptual representation systems (PRSs) that store modality­specific representations of the perceptual structure, but not the meaning, of a stimulus. Explicit 
memory is based on other systems serving semantic and episodic memory. The best evidence favoring the PRS view is provided by the repeated failure to find 
evidence of priming of impossible figures—two­dimensional projections that cannot be constructed in three­dimensional space. Tulving and Schacter (1990; Schacter, 
1995) have so far presented evidence for three different PRSs: a visual word form system, which represents the orthographic features of printed words, associated 
with the extrastriate cortex; a structural description system, representing the relations among the parts of objects, associated with the inferior temporal cortex; and 
an auditory word form system, representing acoustic and phonological properties of spoken words, and associated with the perisylvian cortex.

On the other hand, Squire (Squire & Cohen, 1984; Squire & Knowlton, 1995) has argued that explicit memory is based on a medial­temporal lobe memory system 
consisting of the hippocampus and other nearby structures. The two theories are not, of course, incompatible: it may be that the role of medial­temporal structures is to 
link discrete perceptual representations into an integrated memory of an event.

In contrast to the multiple­system theories of Tulving, Schacter, and Squire, other theories assume (sometimes tacitly) that explicit and implicit memory reflect the 
operation of a single memory system, the difference between the two expressions of memory being that they make different requirements on that single system. Single­
memory­system views of implicit memory come in two forms, depending on whether they emphasize activation or acquisition. The activation view, exemplified by 
the work of Mandler (1980; see also Morton, 1969), holds that encoding a memory entails the activation and integration of preexisting knowledge and then the 
elaboration of this activated material into a representation of the event itself. In this view, implicit memory is the product of activation and integration, whereas explicit 
memory is the product of elaboration.

  
Page 186

The acquisition view essentially holds that encoding entails the formation of a new representation of each experience, and this view comes in two principal forms. 
According to Roediger's (1990b; Roediger & McDermott, 1993) transfer­appropriate processing view, most explicit memory tasks are conceptually driven, 
whereas most implicit memory tasks are perceptually driven. According to Jacoby's (1991) process dissociation view, described earlier, most implicit memory tasks 
require only automatic processing, whereas most explicit memory tasks require conscious processing as well.

The distinctions among these theories should not be drawn too sharply. For example, the perceptual representations view appears to agree with the transfer­
appropriate processing view that implicit memory is mediated by representations of a perceptual, structural, and presemantic nature. And both types of view have 
difficulty accounting for evidence that implicit memory extends to semantic and conceptual priming of a sort that cannot be mediated by perceptual representations and 
data­driven processing—for example, semantic priming, observed in both subjects during posthypnotic amnesia (Kihlstrom, 1980) and amnesic patients (Gardner, 
Boller, Moreines, & Butters, 1973; Graf, Shimamura, & Squire, 1985; Shimamura & Squire, 1984) on tests of free association and category generation. Although 
Tulving and Schacter (1990) acknowledge that semantic priming cannot be accomplished within a perceptual representation system, such empirical difficulties have 
gone largely unrecognized by the field as a whole, probably because of its infatuation with repetition priming effects. 1

Furthermore, the perceptual representations view agrees with the transfer­appropriate processing view that implicit memory reflects the formation of new 
representations during encoding. Thus, the fate of unfamiliar events in implicit memory becomes critical to distinguishing between both these theories and the activation 
view proposed by Mandler and others: novel events cannot activate preexisting memory structures and so would seem to require the encoding of entirely new memory 
traces. An experiment by Diamond and Rozin (1984; but reported informally by Rozin, 1976) was perhaps the earliest attempt to perform this critical test. Amnesic 
patients and normal controls studied paired associates consisting of disyllabic words, such as candy and number, and disyllabic

  
Page 187

pseudowords, such as canber and numdy, formed by repairing the syllables of the real words. Amnesics were severely impaired on tests of stem­cued recall for both 
types of items. On a stem completion test, however, the patients showed levels of priming comparable to the controls only on the real words and not the 
pseudowords.

Diamond and Rozin (1984; Rozin, 1976) interpreted their findings as consistent with the activation view: priming was preserved only when there were preexisting 
lexical representations of list items to be activated during the study phase. Subsequent studies, however, did demonstrate priming for novel materials—a fact consistent 
with the acquisition and perceptual representations views and apparently inconsistent with the activation view (for reviews, see Bowers, 1994; Dorfman, 1994a).

However, as Dorfman (1994a) has noted, these studies did not carefully analyze the relations between ostensibly novel events and preexisting knowledge. Because 
perceivers necessarily make sense out of new events in terms of what has been perceived before, percepts of new objects must be constructed based on 
representations acquired in the past and retained in memory until the present. According to Mandler's (1980) dual­process model of memory, for example, 
presentation of a word automatically activates sublexical components that make up the word and them into a unified representation; this representation is then 
effortfully elaborated with respect to other activated structures (e.g., markers representing time, place, and the role of the self; see Kihlstrom, 1995a) to form a 
representation of the entire episode. Thus, from the activation point of view, the priming of novel materials such as nonwords depends intimately on how these 
materials are constructed. If they are constructed from components that have preexisting representations in memory, then priming is possible; if not, then priming 
should not occur.

To test the activation view, Dorfman (1994a) constructed novel words according to three rules: morphemic pseudowords (e.g., genvive) were constructed of actual 
English morphemes (gen as in genius, general, and gender; vive as in survive, revive, and vivify); syllabic pseudowords (e.g., fasney) were composed of 
nonmorphernic syllables (fas as in fasten, fascinate, and fascist; ney as in chimney, journey, and kidney); and pseudosyllabic pseudowords (e.g., erktofe) were 
constructed of letter strings that were neither morphemes nor syllables (e.g., erk and tofe). After a

  
Page 188

single study trial, the subjects were presented with explicit and implicit memory tests. The explicit test was two­alternative forced choice recognition (2AFC); for the 
implicit test, the subjects were presented with items from the study list (targets) and control items (lures) and asked which item seemed to be the ''better" English word. 
Across five experiments, Dorfman observed priming consistently for morphemic pseudowords, less consistently for syllabic items, and rarely for pseudosyllabic ones. 
Similar trends also were obtained with a standard perceptual identification task (Dorfman, 1994b). These findings are consistent with at least a weak version of the 
activation view: priming occurs more reliably when presentation of an item can activate preexisting knowledge structures.

In the final analysis, it may not be necessary, or even desirable, to choose among the competing theories of implicit memory. It may well be that the nature of implicit 
memory depends on the resources available to the subject at the time of encoding and retrieval. For example, the use of encoding conditions that do not favor 
semantic processing at the time of encoding make it unlikely that strong associative or conceptual priming effects will be observed on an implicit memory test. If novel 
stimuli are formed from sublexical components or their nonverbal analogs, such as the geons postulated by Biederman (1987) as the elementary components of 
pictorial representations, priming will be based on the activation and integration of preexisting knowledge; but when the construction process avoids such building 
blocks, priming necessarily will be based on whatever jury­rigged perceptual representation the cognitive system can form. Such a proposal may seem to lack 
parsimony, but it should be noted that current theories of implicit memory are based almost entirely on studies of repetition priming following impoverished encoding. It 
is not clear that theoretical parsimony achieved under such restricted research conditions is in fact a virtue.

Extensions of the Explicit­Implicit Distinction to Other Cognitive Domains

Theories aside, it should be understood that the explicit­implicit distinction in memory is primarily phenomenological. That is, explicit and im­

  
Page 189

plicit memory are, first and foremost, different expressions of memory for some past event—different in terms of the role played by conscious awareness. Explicit 
memory involves conscious recollection of a past event, whether deliberate or involuntary; implicit memory entails the influence of such an event on subsequent 
experience, thought, and action in the absence (or, at least, independent) of conscious recollection. From this point of view, it would seem that the explicit­implicit 
distinction could be extended to other cognitive domains where the issue of consciousness arises.

Explicit versus Implicit Perception

Many effects often ascribed to implicit memory do not really count as expressions of memory per se—at least, not as expressions of secondary memory, defined as 
whatever trace remains of an event after the person has stopped attending to it (James, 1890/1991). Thus, in experiments by Marcel (1983) on masked semantic 
priming, and by Forster (1987) on masked lexical priming, the prime and target are separated by a period of seconds (or less); moreover, the masking conditions 
prevent the subject from consciously attending to the items in the first place. Under these conditions it seems inappropriate to think of implicit memory, but more 
natural to think of implicit perception. Kihlstrom, Barnhardt, and Tataryn (1992; see also Kihlstrom, 1996) offer a contrast between explicit perception, which entails 
the subject's conscious perception of the presence, location, form, identity, and activity of some object present in the current environment (or the very recent past), 
and implicit perception, which (by direct analogy to implicit memory) they define as any effect on experience, thought, and action attributable to a current event, in the 
absence of conscious perception of that event.

Implicit perception, so defined, includes the traditional category of subliminal perception, in which stimuli are too weak or too brief to be consciously perceived. It 
also includes cases where conscious perception is prevented by forward and/or backward masking of a stimulus, as in the classic experiments by Marcel (1983), and 
where a supraliminal stimulus is unattended, as in cases of dichotic listening or parafoveal viewing (in which a stimulus is presented in the periphery of the visual field). 
However, implicit perception also subsumes other cases where the stimulus is

  
Page 190

in no sense subliminal. In blindsight (Weiskrantz, 1986), for example, some patients with damage to the striate cortex no longer have the conscious experience of 
seeing; nevertheless, they are able to respond at above­chance levels to visual stimuli presented in their scotoma. Similarly, in hypnotic analgesia, subjects do not feel 
the pain of an aversive stimulus; even so, they show by physiological and other responses that the stimulus has registered outside of conscious awareness (Hilgard, 
1977). Finally, "hysterical" patients with functional blindness or deafness complain that they cannot hear or see, but they still respond appropriately to visual or auditory 
stimuli (e.g., Brady & Lind, 1961; Barraclough, 1966).

Memory for the events of anesthesia provides an opportunity to define the boundary between implicit memory and implicit perception (for reviews, see Cork, 
Couture, & Kihlstrom, 1997; Kihlstrom, 1993; Merikle & Daneman, 1996). By definition, adequately anesthetized surgical patients have no memory of events that 
transpired during their surgery; they are, to all intents and purposes, unconscious. Nevertheless, it has been demonstrated that such patients may show priming effects 
attributable to stimuli presented during surgery. In one experiment, for example, patients were played a tape recording consisting of paired associates of the form 
ocean­water (Kihlstrom, Schacter, Cork, Hurt, & Behr, 1990). On an explicit memory test, they were presented with the cue term and asked to produce the 
associated response; on an implicit memory test, they were asked to produce the first word that came to mind. The patients showed no cued recall, but they did show 
priming on the test of free association. Because memory in the present implies perception in the past, in this case preserved implicit memory also provides evidence for 
implicit perception: some degree of perceptual processing was performed by these unconscious patients (for reviews, see Cork, Couture, & Kihlstrom, 1997; Merikle 
& Daneman, 1996). The distinction between implicit memory and implicit perception is not simply a matter of the retention interval involved (e.g., seconds versus 
minutes, hours, or days). Perhaps implicit memory should be confined to those cases where the person was consciously aware of the event at the time of encoding; 
where such awareness is lacking, the effects—regardless of the retention interval—may be classified as evidence of implicit perception.

  
Page 191

Implicit perception, especially in "subliminal" cases, is a continuing hotbed of controversy. Thus, Eriksen (1960) criticized claims of subliminal perception by the New 
Look theorists and others on the grounds that their procedures for establishing threshold for detection or discrimination were inadequate. In the post­Marcel (1983) 
era, similar criticisms have been offered by Holender (1986) and by Shanks and St. John (1994). Such criticisms have elicited two different types of response. On the 
one hand, investigators such as Greenwald (e.g., Greenwald, Klinger, & Liu, 1989; Greenwald, Klinger, & Schuh, 1995) have gone to extreme lengths to establish 
that their stimuli are incontrovertibly subliminal. Another response has been simply to reject Eriksen's critique, on the ground that it defines implicit perception out of 
existence (Bowers, 1984). For example, Cheesman and Merikle (1985) argue that subliminal perception occurs in the space between the subjective threshold (the 
point at which the subject's confidence in his or her discriminative responses falls to zero) and the objective threshold (the point at which the accuracy of those 
choices falls to chance levels). In order to escape the criticism that the subjective threshold is just an underestimate of the true, objective threshold, Merikle and his 
colleagues further require that there be a qualitative difference between performance above and below the subjective threshold.

The most contentious issue concerning implicit perception is whether it can include semantic analyses of the stimulus (Holender, 1986). Most likely, the answer 
depends on the means by which conscious perception is denied to the subject. Only in the case of hypnotic blindness is there any evidence for long­lasting semantic 
priming effects (Bryant & McConkey, 1989). With truly subliminal stimulus presentations, the answer seems to be that the semantic­priming effects of masked stimuli 
are extremely weak and short lived (Greenwald et al., 1989, 1995). Moreover, they are analytically limited (Greenwald, 1992), in that priming can be produced by 
single words but not two­word phrases. However, it should be noted that Greenwald's experiments involve presentations that are as close to Merikle's objective 
threshold as it is possible to get; more substantial semantic priming may be possible with presentations that are closer to the subjective threshold. Semantic priming has 
not been obtained in the case of general anesthesia, where the stimuli are supraliminal but the

  
Page 192

subject is unconscious: rather, the best evidence is for repetition priming, which reflects structural processing of a sort that could be mediated by a perceptual 
representation system. Although such results may disappoint those who advocate subliminal stimulation as a major vehicle for social influence, it should surprise 
nobody to learn that semantic­priming effects are weak under conditions that afford little opportunity for complex semantic analyses.

Explicit versus Implicit Thought

If there is evidence for implicit perception and memory, why not seek evidence for implicit thought as well? Put another way, is it possible to use paradigms initially 
employed in the study of implicit memory and perception to study the implicit effects of mental representations that are neither percepts nor memories, but rather 
something more akin to ideas and images? Anecdotal accounts of thinking (e.g., Wallas, 1926) offer such a possibility in their accounts of intuition, a form of 
metacognition (Nelson, 1996) in which problem solvers feel that a solution to a problem is forthcoming, even though they do not know what that solution is. Formal 
accounts of problem solving often refer to these intuitions as feelings of warmth (e.g., Newell, Simon, & Shaw, 1962/1979); something similar occurs in the feelings 
of knowing observed on semantic memory tasks (Hart, 1965).

Some evidence of implicit thought is provided by a series of experiments by Bowers and his colleagues (Bowers, Regehr, Balthazard, & Parker, 1995; Bowers, 
Farvolden, & Mermigis, 1990) with a variant of Mednick's (1962) Remote Associate Test (RAT). On the RAT, subjects view a set of three words, such as goat, 
pass, and green, and then must generate an associate that all three items have in common (mountain). In their experiments, Bowers et al. (1990, 1995) presented 
subjects with two RAT­like items, one soluble and the other insoluble. If the subject could not produce the answer to the soluble triad, he or she was asked to guess 
which triad was in fact soluble. Bowers et al. (1990) found that subjects were able to do this at better than chance levels, even though they were not aware of the 
solution to the triad they selected. Bowers et al. (1990) suggested that this ability was due to a priming effect of the sort observed in implicit memory. That is, 
processing of the cues activated

  
Page 193

their corresponding representations in semantic memory, from which activation spread to other, associated representations; some of this activation converged on the 
representation of the associate common to the three cues. The level of activation attained by this common associate did not cross a threshold required for conscious 
awareness, but it was sufficient to influence subjects' choice behavior.

Some evidence favoring this spreading­activation account was provided by Bowers et al. (1990) themselves, who observed that their subjects' intuitions were correct 
above chance levels when the solution preserved its meaning across the three, cues, but not when its meaning changed. In the former case, activation accrued at a 
node representing a single word; in the latter, activation spread to two or more different nodes representing different words with the same spelling. Further evidence 
for spreading activation was obtained by Shames, Forster, & Kihlstrom (1994), who adapted a paradigm initially developed by Yaniv and Meyer (1987) to study 
spreading activation in the feeling of knowing. Shames et al. (1994) presented RAT problems, followed by a lexical decision task in which subjects had to decide 
whether each of a series of letter strings was an English word. When the answers to unsolved RAT items appeared as targets for lexical decisions, response latency 
was speeded—a priming effect. Interestingly, this priming effect was not observed for RAT items which were solved. Shames et al. (1994) interpreted this difference 
as a sort of Zeigarnik (1927) effect, reflecting the persistence in memory of uncompleted tasks.

In the experiments of Bowers et al. (1990) and Shames et al. (1994), the subject's task performance (e.g., choosing the soluble triad) is affected by the correct 
solution to the problem, even though the subject is not consciously aware of what that solution is. This summary fits the generic form of the explicit­implicit distinction 
as applied to perception and memory. It should be understood, however, that whatever is affecting the subject's behavior is neither an implicit perception nor an 
implicit memory—for the simple reason that the solution itself is never presented to the subject, but is internally generated. If it is not a percept or a memory, it must be 
a thought—an implicit thought. Application of the explicit­implicit distinction to thinking and problem solving may afford a new perspective on a number of thorny 
issues (Dorfman, Shames, &

  
Page 194

Kihlstrom, 1996; Kihlstrom, Shames, & Dorfman, 1996). For example, whereas intuition may reflect the influence of implicit thought, incubation may reflect the 
process by which an implicit thought gains strength outside of awareness, and insight the point at which an implicit thought becomes explicit and accessible to 
conscious awareness.

Unconscious Processes versus Nonconscious Contents

The cognitive study of mind and behavior is concerned with both content and the process—with declarative and procedural knowledge, in the terms of Winograd 
(1972, 1975) and Anderson (1976, 1983). Within this framework, it is common to argue that although cognitive contents—what we perceive, remember, think, and 
imagine—are conscious, the processes by which these cognitions arise are not. Thus, the content­process distinction contains within it a distinction between those 
aspects of cognition that are conscious and those that are unconscious. And, indeed, it seems that there is a class of automatic cognitive processes that appear to be 
unavailable to either the monitoring or controlling functions of consciousness. That is, they operate independent of conscious intention and can be known only through 
inference. These automatic processes are unconscious in the strict sense of the word.

If procedural knowledge is unconscious, then the contrast between declarative and procedural knowledge would seem to imply that declarative knowledge must be 
conscious or at least available to conscious introspection. But, as indicated earlier, this is not really the case. Declarative and procedural knowledge, as elements of 
cognitive architecture, are both unconscious in the strict sense of the term, in that they are unavailable to conscious introspection and can be known only by inference. 
What are ordinarily conscious are the percepts, memories, thoughts, and other mental states constructed by the operation of procedural knowledge on declarative 
knowledge structures. The burden of this chapter has been to argue that the psychological unconscious includes, in addition to strictly unconscious knowledge 
structures that compose the architecture of cognition, mental states corresponding to percepts, memories, and thoughts that influence experience, thought, and action 
outside of phenomenal awareness and voluntary control.

  
Page 195

In contrast to unconscious procedural knowledge, which is unavailable to conscious awareness and control in principle, the declarative knowledge involved in these 
cognitive states of perception, memory, and thought is available to consciousness in principle, but inaccessible to consciousness under certain circumstances (Tulving & 
Pearlstone, 1966). Some of these inaccessible mental states may be described as preconscious—a term borrowed from Freud (1900/1953) to denote percepts, 
memories, and thoughts that have been degraded by circumstances affecting either the environment in which cognition takes place (e.g., subliminal presentation, 
divided attention, or other suboptimal encoding conditions; long retention intervals; or impoverished retrieval cues) or the person him or herself (e.g., brain damage or 
general anesthesia). Processing of preconscious percepts and memories appears to be analytically limited—in fact, this processing may be restricted to those 
operations that are performed automatically by the perceptual­cognitive system.

Preconscious percepts, memories, and thoughts reside on the fringes of consciousness. But other percepts, memories, and thoughts are inaccessible to phenomenal 
awareness even though environmental and personal circumstances would seem to favor awareness of them. The functional deafness and blindness observed in clinical 
cases of conversion disorder, for example, involve auditory and visual stimuli which are by any standard above the threshold required for conscious perception; the 
dissociative disorders of memory observed in psychogenic amnesia, fugue, and multiple­personality disorder involve experiences that normally would be memorable. 
These events are not consciously perceived and remembered, yet they influence the patients' experience, thought, and action outside of phenomenal awareness. In the 
hypnosis laboratory, otherwise normal subjects experience suggested amnesias, negative hallucinations, and amnesias that bear a phenotypic similarity to those 
observed in clinical syndromes of conversion and dissociation. These percepts, memories, and thoughts, cannot be classified as either unconscious (because they are 
available in principle to conscious awareness) or as preconscious (because their underlying representations have not been degraded by impoverished encoding 
conditions, brain damage, and the like). Following James (1890/1991) and Janet (1907), these mental states may be classified as subconscious or coconscious.

  
Page 196

The phenomena of implicit memory, perception, and thought make it clear that the cognitive unconscious extends beyond the strictly unconscious procedural and 
declarative knowledge structures that provide the foundations of conscious perception, memory, and thought. Percepts, memories, and thoughts themselves may be 
inaccessible to consciousness. In the preconscious case, it appears that percepts, memories, and thoughts have not achieved a level of activation necessary for 
introspective phenomenal awareness. But studies of hypnotic phenomena indicate that consciousness is not a matter of activation levels any more than it is a matter of 
automaticity. Apparently, consciousness can be divided (Hilgard, 1977), so a stream of thought involving fully activated percepts, memories, and thoughts, as well as 
controlled, effortful processes, can proceed outside of phenomenal awareness.

The expansive description of the cognitive unconscious offered here should not be misunderstood as an argument for either the epiphenomenalist suspicion or 
conscious inessentialism. The distinction between conscious and unconscious mental life is fundamental to human cognitive architecture, and it has adaptive significance 
as well. Because conscious awareness is the prerequisite for conscious control, our ability to reflect on the past, present, and future liberates us from control by both 
the immediate stimulus and our histories of stimulus contingencies. At the same time, empirical evidence of preconscious and subconscious percepts, memories, and 
thoughts reminds us that we are not always aware of why we do what we do and that the difference that makes for consciousness is not merely a matter of activation 
or attentional effort.

Acknowledgments

The point of view represented herein is based on research supported by Grant #MH 35856 from the National Institute of Mental Health. I thank Terrence Barnhardt, 
Talia Ben­Zeev, Marilyn Dabady, Jennifer Dorfman, and Katharine Shobe for their helpful comments.

Note

1. Another conspicuous omission in the literature on implicit memory is any attempt to connect dissociations between explicit and implicit memory to computa­

  
Page 197

tional models of memory such as ACT (Anderson, 1976, 1983) or search of associative memory (SAM; Shiffrin & Raaijmakers, 1992). Such an exercise would 
be interesting, if only because such models assume a single memory system and operate according to principles of activation. Evidence that ACT or SAM can 
produce explicit­implicit dissociations of the sort observed in the laboratory would provide additional evidence for the viability of the activation view of implicit 
memory.

References

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369–406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence &. J. T. Spence (Eds.), The psychology 
of learning and motivation: Advances in research and theory (Vol. 2, pp. 89–195). New York: Academic Press.

Bargh, J. A. (1997). The automaticity of everyday life. In R. S. Wyer (Ed.), Advances in social cognition (Vol. 10, pp. 1–61). Mahwah, NJ: Erlbaum.

Barnhardt, T. M. (1993). Directed forgetting in explicit and implicit memory. Unpublished doctoral dissertation, University of Arizona.

Barraclough, M. (1966). A method of testing hearing based on operant conditioning. Behavior Research & Therapy, 4, 237–238.

Biederman, I. (1987). Recognition­by­components: A theory of human image understanding. Psychological Review, 94, 115–147.

Bergson, H. (1911). Matter and memory. New York: Macmillan.

Berkowitz, L. (1993). Towards a general theory of anger and emotional aggression: Implications of the cognitive­neoassociationistic perspective for the analysis of 
anger and other emotions. In R. S. Wyer & T. K. Srull (Eds.), Advances in social cognition (Vol. 6, pp. 1–46). Hillsdale, NJ: Erlbaum.

Berkowitz, L., & Devine, P. G. (1995). Has social psychology always been cognitive? What is "cognitive" anyhow? Personality & Social Psychology Bulletin, 21, 
696–703.

Bowers, J. S. (1994). Does implicit memory extend to legal and illegal nonwords? Journal of Experimental Psychology: Learning, Memory, & Cognition, 20, 
534–549.

Bowers, K. S. (1984). On being unconsciously influenced and informed. In K. S. Bowers & D. Meichenbaum (Eds.), The unconscious reconsidered (pp. 227–
272). New York: Wiley­Interscience.

  
Page 198

Bowers, K. S., Farvolden, P., & Mermigis, L. (1995). Intuitive antecedents of insight. In S. M. Smith, T. M. Ward, & R. A. Finke (Eds.), The creative cognition 
approach (pp. 27–52). Cambridge, MA: MIT Press.

Bowers, K. S., Regehr, G., Balthazard, C. G., & Parker, K. (1990). Intuition in the context of discovery. Cognitive Psychology, 22, 72–110.

Brady, J. P., & Lind, D. L. (1961). Experimental analysis of hysterical blindness. Archives of General Psychiatry, 4, 331–339.

Broadbent, D. (1958). Perception and communication. Oxford, England: Pergamon Press.

Bryant, R. A., & McConkey, K. M. (1989). Hypnotic blindness: A behavioral and experiential analysis. Journal of Abnormal Psychology, 98, 71–77.

Cheesman, J., & Merikle, P. M. (1985). Word recognition and consciousness. In D. Besner, T. G. Waller, & G. E. Mackinnon (Eds.), Reading research: 
Advances in theory and practice (Vol. 5, pp. 311–352). New York: Academic Press.

Churchland, P. M. (1995). The engine of reason, the seat of the soul: A philosophical journey into the brain. Cambridge, MA: MIT Press.

Cohen, N. J., & Squire, L. R. (1980). Preserved learning and retention of pattern­analyzing skill in amnesia: Dissociation of ''knowing how" and "knowing that." 
Science, 210, 207–209.

Cork, R. C., Couture, L. J., & Kihlstrom, J. F. (1997). Memory and recall. In J. F. Biebuyck, C. Lynch, M. Maze, L. J. Saidman, T. L. Yaksh, & Zapol, W. M. 
(Eds.), Anesthesia: Biologic foundations (pp. 451–469). New York: Raven Press.

Curran, T., & Hintzman, D. L. (1995). Violations of the independence assumption in process dissociation. Journal of Experimental Psychology: Learning, 
Memory, & Cognition, 21, 531–547.

Dennett, D. (1991). Consciousness explained. Boston: Little, Brown.

Deutsch, J. A., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70, 80–90.

Devine, P. G. (1989). Stereotypes and prejudice: Their automatic and controlled components. Journal of Personality & Social Psychology, 56, 680–690.

Diamond, R., & Rozin, P. (1984). Activation of existing memories in the amnesic syndromes. Journal of Abnormal Psychology, 93, 98–105.

Dorfman, J. (1994a). Sublexical components in implicit memory for novel words. Journal of Experimental Psychology: Learning, Memory, & Cognition, 20, 
1108–1125.

Dorfman, J. (1994b, November). Further evidence for sublexical components in implicit memory for novel words. Paper presented at the annual meeting of the 
Psychonomic Society, St. Louis.

Dorfman, J., Shames, V. A., & Kihlstrom, J. F. (1996). Intuition, incubation, and insight: Implicit cognition in problem­solving. In G. Underwood (Ed.), Implicit 
cognition (pp. 257–296). Oxford, England: Oxford University Press.

  
Page 199

Eriksen, C. W. (1960). Discrimination and learning without awareness: A methodological survey and evaluation. Psychological Review, 67, 279–300.

Evans, F. J. (1979). Contextual forgetting: Posthypnotic source amnesia. Journal of Abnormal Psychology, 88, 556–563.

Evans, F. J., & Thorn, W. A. F. (1966). Two types of posthypnotic amnesia: Recall amnesia and source amnesia. International Journal of Clinical & 
Experimental Hypnosis, 14, 162–179.

Fazio, R. H., Sanbonmatsu, D. M., Powell, M. C., & Kardes, F. R. (1986). On the automatic activation of attitudes. Journal of Personality & Social Psychology, 
50, 229–238.

Flanagan, O. (1991). The science of mind (2nd ed.). Cambridge, MA: MIT Press.

Forster, K. I. (1987). Form­priming with masked primes:The best­match hypothesis. In M. Coltheart (Ed.), Attention and performance (Vol. 12, pp. 127–146). 
Hillsdale, NJ: Erlbaum.

Freud, S. (1953). The interpretation of dreams. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vols. 4 
and 5). London: Hogarth Press. (Original work published 1900.)

Gardner, H., Boller, F., Moreines, J., & Butters, N. (1973). Retrieving information from Korsakoff patients: Effects of categorical cues and reference to the task. 
Cortex, 9, 165–175.

Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 11, 501–518.

Graf, P., Shimamura, A. P., & Squire, L. R. (1985). Priming across modalities and priming across category levels: Extending the domain of preserved function in 
amnesia. Journal of Experimental Psychology: Learning, Memory, & Cognition, 11, 385–395.

Greenwald, A. G. (1992). New Look 3: Unconscious cognition reclaimed. American Psychologist, 47, 766–779.

Greenwald, A. G., & Banaji, M. R. (1995.). Implicit social cognition: Attitudes, self­esteem, and stereotypes. Psychological Review, 102, 4–27.

Greenwald, A. G., Klinger, M. R., & Liu, T. J. (1989). Unconscious processing of dichoptically masked words. Memory & Cognition, 17, 35–47.

Greenwald, A. G., Klinger, M. R., & Schuh, E. S. (1995). Activation by marginally perceptible ("subliminal") stimuli: Dissociation of unconscious from conscious 
cognition. Journal of Experimental Psychology: General, 124, 22–42.

Hart, J. T. (1965). Memory and the feeling­of­knowing experience. Journal of Educational Psychology, 56, 208–216.

Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108, 356–388.

  
Page 200

Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. American Psychologist, 39, 1372–
1388.

Healy, A. F., & McNamara, D. S. (1996). Verbal learning and memory: Does the modal model still work? Annual Review of Psychology, 47, 143–172.

Hilgard, E. R. (1977). Divided consciousness: Multiple controls in human thought and action. New York: Wiley­Interscience.

Holender, D. (1986). Semantic activation without conscious identification in dichotic listening, parafoveal vision, and visual masking: A survey and appraisal. 
Behavioral & Brain Sciences, 9, 1–23.

Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory & Language, 30, 513–541.

Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 
110, 306–340.

James, W. (1991). Principles of Psychology (2 vols). Cambridge, MA: Harvard University Press. (Original work published 1890.)

Janet, P. (1907). The major symptoms of hysteria. New York: Macmillan.

Johnson, M. K., & Hasher, L. (1987). Human learning and memory. Annual Review of Psychology, 38, 631–668.

Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice­Hall.

Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp. 29–61). 
New York: Academic Press.

Kihlstrom, J. F. (1980). Posthypnotic amnesia for recently learned material: Interactions with "episodic" and "semantic" memory. Cognitive Psychology, 12, 227–
251.

Kihlstrom, J. F. (1993). Implicit memory function during anesthesia. In P. S. Sebel, B. Bonke, & E. Winograd (Eds.), Memory and Awareness in Anesthesia (pp. 
10–30). New York: Prentice­Hall.

Kihlstrom, J. F. (1996). Perception without awareness of what is perceived, learning without awareness of what is learned. In M. Velmans (Ed.), The science of 
consciousness: Psychological, neuropsychological, and clinical reviews (pp. 23–46). London: Routledge.

Kihlstrom, J. F. (1997). Consciousness and me­ness. In J. Cohen & J. Schooler (Eds.), Scientific approaches to the question of consciousness (pp. 451–468). 
Hillsdale, NJ: Erlbaum.

Kihlstrom, J. F., Barnhardt, T. M., & Tataryn, D. J. (1992). Implicit perception. In R. F. Bornstein & T. S. Pittman (Eds.), Perception without awareness (pp. 17–
54). New York: Guilford.

  
Page 201

Kihlstrom, J. F., Schacter, D. L., Cork, R. C., Hurt, C. A., & Behr, S. E. (1990). Implicit and explicit memory following surgical anesthesia. Psychological Science, 
1, 303–306.

Kihlstrom, J. F., Shames, V. A., & Dorfman, J. (1996). Intimations of memory and thought. In L. Reder (Ed.), Implicit Memory and Metacognition (pp. 1–23). 
Hillsdale, NJ: Erlbaum.

LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic information processing in reading. Cognitive Psychology, 6, 293–323.

Logan, G. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.

Mandler, G. (1980). Recognizing: The judgment of prior occurrence. Psychological Review, 87, 252–271.

Marcel, A. (1983). Conscious and unconscious perception: Experiments on visual masking and word recognition. Cognitive Psychology, 15, 197–237.

Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69, 220–232.

Merikle, P. M., & Daneman, M. (1996). Memory for unconsciously perceived events: Evidence from anesthetized patients. Consciousness & Cognition, 5, 525–
541.

Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76, 165–178.

Neisser, U. (1967). Cognitive psychology. New York: Appleton­Century­Crofts.

Nelson, T. O. (1978). Detecting small amounts of information in memory: Savings for nonrecognized items. Journal of Experimental Psychology: Human Learning 
& Memory, 4, 453–468.

Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51, 102–116.

Newell, A., Simon, H. A., & Shaw, J. (1979). The process of creative thinking. In H. A. Simon, Models of thought (pp. 144–174). New Haven, CT: Yale 
University Press. (Original work published 1962)

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–259.

Posner, M. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.

Posner, M. (1982). Cumulative development of attentional theory. American Psychologist, 37, 168–179.

Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. So­so (Ed.), Information processing and cognition: The Loyola Symposium (pp. 
55–85). Hillsdale, NJ: Erlbaum.

Richardson­Klavehn, A., & Bjork, R. A. (1988). Measures of memory. Annual Review of Psychology, 39, 475–543.

  
Page 202

Roediger, H. L. (1990a). Implicit memory: A commentary. Bulletin of the Psychonomic Society, 28, 373–380.

Roediger, H. L. (1990b). Implicit memory: Retention without remembering. American Psychologist, 45, 1043–1056.

Roediger, H. L., & McDermott, D. B. (1993). Implicit memory in normal human subjects. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 8, 
pp. 63–131). Amsterdam: Elsevier Science.

Rozin, P. (1976). A psychobiological approach to human memory. In M. R. Rosenzweig & E. L. Bennett (Eds.), Neural mechanisms of memory and learning (pp. 
3–48). Cambridge, MA.: MIT Press.

Ryle, G. (1949). The concept of mind. London: Routledge & Kegan Paul.

Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental Psychology Learning, Memory, & Cognition, 13, 501–518.

Schacter, D. L. (1995). Implicit memory: A new frontier for cognitive neuroscience. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 815–824). 
Cambridge, MA: MIT Press.

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing. Psychological Review, 84, 1–66.

Shames, V. A., Forster, K. I., & Kihlstrom, J. F. (1994). Implicit problem­solving. Unpublished manuscript, University of Arizona.

Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable learning systems. Behavioral & Brain Sciences, 17, 367–447.

Shiffrin, R. M., & Raaijmakers, J. (1992). The SAA retrieval model: A retrospective and prospective. In A. F. Healy, S. M. Kosslyn, & R. M. Shiffrin (Eds.), Essays 
in honor of William K. Estes. Vol. 1: From Learning theory to connectionist theory (pp. 69–86). Hillsdale, NJ: Erlbaum.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: Pt. 2. Perceptual learning, automatic attending, and a general 
theory. Psychological Review, 84, 127–190.

Shimamura, A. P., & Squire, L. R. (1984). Paired­associate learning and priming effects in amnesia: A neuropsychological study. Journal of Experimental 
Psychology: General, 113, 556–570.

Skinner, B. F. (1953). Science and human behavior. New York: Free Press.

Squire, L. R., & Cohen, N. J. (1984). Human memory and amnesia. In J. McGaugh & N. Weinberger (Eds.), The neurobiology of learning and memory (pp. 3–
64). New York: Guilford.

Squire, L. R., & Knowlton, B. J. (1995). Memory, hippocampus, and brain systems. In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 825–837). 
Cambridge, MA: MIT Press.

Treisman, A. M. (1960). Contextual cues in selective listening. Quarterly Journal of Experimental Psychology, 12, 242–248.

  
Page 203

Tulving, E., & Pearlstone, Z. (1966). Availability versus accessibility of information in memory for words. Journal of Verbal Learning & Verbal Behavior, 5, 381–
391.

Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247, 301–306.

Wallas, G. (1926). The art of thought. New York: Franklin, Watts.

Warrington, E. K., & Weiskrantz, L. (1968). New method for testing long­term retention with special reference to amnesic patients. Nature, 228, 628–630.

Waugh, N. C., & Norman, D. A. (1965). Primary memory. Psychological Review, 72, 89–104.

Weiskrantz, L. (1986). Blindsight. Oxford, England: Oxford University Press.

Winograd, T. (1975). Frame representations and the procedural­declarative controversy. In D. Bobrow & A. Collins (Eds.), Representation and understanding: 
Studies in cognitive science (pp. 185–210). New York: Academic Press.

Winograd, T. (1972). Understanding natural language. New York: Academic Press.

Yaniv, I., & Meyer, D. E. (1987). Activation and metacognition of inaccessible stored information: Potential bases for incubation effects in problem solving. Journal 
of Experimental Psychology: Learning, Memory, & Cognition, 13, 187–205.

Zeigarnik, B. (1927). Das Behalten von erledigten und unerledigtell Handlungen [Memory for completed and uncompleted tasks). Psychologie Forschung, 9, 1–85.

  
Page 205

7
Prototype versus Exemplar Models in Cognition
Brian H. Ross and Valerie S. Makin

Introduction

Categories are essential for intelligent thought and action. When faced with a new object, situation, or problem, people often access knowledge to classify it as being 
of a certain type and then use their knowledge of this type to determine how to deal with it. An unfamiliar object is classified as a pen, and our knowledge of the 
category of pens is used to help us know how to write with it. Thus, categories allow us to access and use relevant knowledge, even for items we have never 
encountered before.

Given the importance of categories, a critical research question is to understand how category knowledge is represented. A particular focus of research in this area has 
been on the representation of knowledge used for classification. A number of possibilities exist, but the two that have been most prominent, and which form the basis 
for this chapter, are the prototype view and the exemplar view. A brief example may help to clarify these two views. Suppose you saw an unfamiliar animal and 
classified it as a dog. The prototype view would claim that you used knowledge about dogs in general to classify this new animal—in particular, your knowledge 
consists of a kind of average of dog features, built up from having seen many dogs in the past. The exemplar view would claim that this dog evoked memories of one 
or more specific earlier dogs and that you used the similarity of the new animal to your memory of dog exemplars to decide that this new animal was a dog.

This distinction of prototypes versus exemplars has been a central one within research on classification, leading to a variety of research findings,

  
Page 206

as will be discussed in this chapter. In addition, similar contrasts have been made in many other research areas. The general issue is whether the knowledge underlying 
cognitive performance is a general abstraction built up from earlier experiences or is a function of more specific instances.

Preliminary Remarks

The goal of this chapter is to contrast two very different views of categories, partly to see the advantages of each, but mainly to better understand how categories 
might be represented and used. We will begin by explaining what categories are, the domains to be considered, and how the models will be used.

Concepts and Categories

A concept is a mental representation of a class (e.g., dogs, professors), which includes our knowledge about such things. A category is the set of examples picked 
out by a concept. However, these two terms are often used synonymously to refer to both the mental representation and the set of examples it picks out.

Domains

Many ideas about categorization have come from considering biological categories, such as birds. However, these categories are not designed to allow a clear 
discrimination of hypotheses, so much of the experimental work to distinguish theories has used artificial categories that are learned in the laboratory. The prototype­
exemplar controversy has often relied on such artificial categories for deriving distinctive predictions, and much of the work we review will be with artificial categories. 
However, we will try to stress the connection to more natural categories as well.

Models and Model Classes

A specification of a model requires presenting its representation and its processes. In this chapter, the representations will usually consist of a set of features, such as 
color or shape, with a particular value for each feature, such as red or square. This general representational scheme allows an easier comparison between the 
prototype and exemplar models, though much work has also been done with dimensional representations, in which the feature values are ordered, such

  
Page 207

as for height or darkness (e.g., Nosofsky, 1986). In addition, some recent work examines more complex representations than sets of features, such as structured 
representations in which the features are organized by representing particular relations among them, such as next­to, supports, or causes (e.g., Goldstone, 1994).

The prototype and exemplar views are really classes of models, rather than two specific models. That is, people can believe that there is abstracted knowledge about 
each category that is gained from experience and yet propose very different prototype models. For example, the models might differ on how the abstraction occurs, 
what information is retained, or how the information from different features of the items is combined (e.g., Barsalou, 1990; Reed, 1972). All of these could reasonably 
be called prototype models, yet they might make substantially different predictions. Similarly, exemplar models may make different predictions, with some exemplar 
models being more similar to certain prototype models than to some models in their own class (Medin, 1986). Barsalou (1990) even argued that the models are not 
distinguishable, especially if one focuses on representation alone: for any prototype model, one could construct an exemplar model that mimics it, and vice versa.

Although it may be impossible to compare the entire class of prototype models to the entire class of exemplar models, it is useful to discuss the general properties of 
each class and to compare particular models in each class. In this chapter, we will first compare the most prominent views of prototype and exemplar models, both to 
give a better understanding of the research area and to illustrate the strengths and weaknesses of many members in each class of models. Following this discussion, we 
will consider more complex mixed views. We will now elaborate on the two prominent prototype and exemplar models.

The Prototype versus Exemplar Distinction

History

Many early ideas of categories assumed that each category could be defined by a set of necessary and sufficient features (this idea was termed the classical view by 
Smith & Medin, 1981). By this account, one determines classification by checking whether the new instance has all of

  
Page 208

the necessary properties to be in the category. If it does, it is classified as a member of the category; otherwise, it is not. The classical view does seem to be a 
reasonable account for a small number of well­defined categories, such as square. Any closed figure with four equal sides and four equal angles is a square, and all 
squares have these properties. However, this classical view fails to explain many of the research findings that categories are often "fuzzy" or ill defined. For example, 
some members of a category are rated as being more typical exemplars than other members, and the typical members are classified more quickly than are atypical 
members (e.g., Smith, Shoben, & Rips, 1974). A robin is a more typical bird than is a penguin. An accurate representation of people's categories has to allow for 
differences in the typicality of exemplars. However, if the category representation has only necessary and sufficient features, then an instance either has these features 
and is a category number, or it does not have these features and is not a category member. Thus, typicality differences cannot be explained by the classical view.

Prototype Model

The prototype view (see Rosch, 1973, 1975; also Hampton, 1993, 1995) assumes that there is a summary representation of the category, called a prototype, which 
consists of some central tendency of the features of the category members. Classification is determined by similarity to the prototype. When a new instance is 
encountered, its similarity to the prototype is computed (in terms of feature matches), and if the similarity is greater than some threshold criterion, it is considered a 
category member. If the instance is to be classified into one of several possible categories, it is assigned to the category whose prototype it most closely matches. This 
idea of representing a concept as its central tendency has a long tradition in psychology (e.g., Galton, 1883).

Details of the prototype representation and the similarity computation are often vague, but Hampton (1993) presented a recent explicit version of the prototype theory 
that captures the main ideas. In this view, the similarity to the prototype is computed as a weighted sum of the features, with the weights determined by the importance 
of the feature for that concept. More formally (adapting Hampton's, 1995, eq. 1), let item t be

  
Page 209

the test item. Let S(A, t) be the similarity of t to category A, which for a prototype view means the similarity of t to the prototype of A:

where wi is the weight of the ith feature in the prototype, and v it is the extent to which item t possesses the feature i (0   wi, v it   1). The prototype is assumed to 


consist of the central tendency of the features of the category instances, so this formula computes similarity to the center of the category, weighted by the importance of 
the features. For determining classification among contrasting categories, item t would be assigned to the category whose prototype it most closely matched, perhaps 
using Luce's Choice Rule, with the probability of assigning item t to category A:

Table 7.1 uses a simple numerical example (in which the weights are all equal) to show how this computation is done.

For the purposes of this chapter, there are two important points about prototype models. First, the similarity computation is an additive function across the features. 
Thus, low similarity on some features can be compensated for by high similarity on other features. Second, the same summary representation, the prototype, is used to 
classify each instance of a category.

Evidence for the Prototype View

The prototype view predicts a large number of robust effects in category research, just a few of which will be discussed here (see Smith & Medin, 1981; Medin & 
Smith, 1984). First, as mentioned with regard to problems of the classical view, there are differences in typicality of the category members. Some category members 
are rated as better, or more typical (such as robin for the category birds) than are other category members (e.g., penguin). The prototype view would predict that 
those members with more characteristic features (or more of the heavily weighted features) would be viewed as

  
Page 210

Table 7.1
Numerical example of classification under prototype and exemplar theories
    Features*
Study exemplar Category 1 2 3 4
1 A 1 1 1 1
2 A 1 1 0 0
  Prototype A 1 1 .5 .5

3 B 1 0 0 0
4 B 0 0 0 1
  Prototype B .5 0 0 .5

Test item t   0 1 1 1

Classification under Prototype Theory
Using equation 7.1 (with wi = 1, and vit is the extent to which the test exemplar and prototype feature values match),

S(A, t) = 0 + 1 + .5 + .5 = 2; S(B, t) = .5 + 0 + 0 + .5 = 1.
Therefore, the test instance has greater similarity to category A.
Using Luce's Choice Rule (equation 7.2),

 
So test item t would be classified in category A under the prototype theory, with .67 probability.
Classification under Exemplar Theory
Using equation 7.4, and letting all mi = m for simplicity, we calculate the similarity of each exemplar in category A to test item 
t, S(a i, t),

S(a 1, t) = m × 1 × 1 × 1 = m; S(a 2, t) = m × 1 × m × m = m3.


The similarities for category B are
S(b 3, t) = m × m × m × m = m4; S(b 4, t) = 1 × m × m × 1 = m2.

Using equation 7.3,
S(A, t) = m + m3; S(B, t) = m4 + m2.
So here, too, the test item t is more similar to category A.
Using Luce's choice rule (equation 7.2),

 
(table continued on next page)

  
Page 211

Table 7.1 (continued)
As m varies from 0 to 1, this quotient varies from 1.0 to .5. As an example, if m = .2, indicating much attention was being paid 
to each feature, then

 
So test item t would be classified in category A under the exemplar theory, with .83 probability (assuming mi = m = .2).
*Features in this example are binary values, with an intermediate value of .5 assumed for simplicity; the prototype is assumed 
to be the arithmetic mean of the exemplar features.

better category members. Second, these differences in typicality lead to large differences in classification performance. For example, typical category members 
(whether they are presented as names or as pictures) are classified faster than less typical members (e.g., Murphy & Brownell, 1985; Rips, Shoben, & Smith, 1973). 
Even in artificial categories, more typical members are learned earlier and classified faster (Rosch & Mervis, 1975). Third, people often have trouble deciding whether 
an item is a member of a particular category (McCloskey & Glucksberg, 1978). For example, is a television in the furniture category? If items were classified by well­
defined rules, such unclear cases would not occur. However, if classification depends upon similarity to a prototype, it is likely that the low similarity of some items will 
make it hard to decide about their classification. Fourth, in some experiments, a prototype that had not been presented at study can be classified as well or even better 
than the category members pertaining to that prototype, which were seen often during study (Posner & Keele, 1968, 1970). All of these results suggest that there is a 
summary representation that captures the structure of the category as a whole.

Problems with the Prototype View

Although the prototype view does predict an impressive array of results, it has two major difficulties in accounting for a variety of additional findings (see Medin & 
Ross, 1989; Nosofsky, 1992; Ross & Spalding, 1994, for fuller presentations). First, people appear to use more information than just similarity to prototypes for 
classifying new instances. For example, if two instances are equally

  
Page 212

similar to a prototype, the one that is more similar to studied instances will be classified more accurately (e.g., Whittlesea, 1987). In other cases, test instances that are 
less similar to a prototype may be more accurately classified if they are very similar to a studied instance (e.g., Brooks, 1978; Medin & Schaffer, 1978). Second, 
people not only know the central tendency of features within a category, but discern and use other statistical properties of the features, such as the range of values of 
each feature (e.g., Rips, 1989) or the correlations of features with each other (e.g., Malt & Smith, 1984). The standard prototype view has no way to account for 
such effects because the prototype consists of the central tendency of each feature (calculated independently of the other features). In addition to problems accounting 
for data, the prototype view has never presented a clear learning theory—how is information about instances combined to form a prototype? There appears to be an 
assumption of a type of associationist learning view, but the learning of prototypes has not been detailed. (See Galton, 1883, for an interesting example of this, in which 
pictures of faces are overlapped to get a prototypical face.)

The problems that the prototype view encounters are due to its two important characteristics mentioned earlier: a single summary representation is used to classify all 
instances, and similarity is computed as an additive function over features. The single summary representation makes it difficult to be sensitive to both the typicality of 
the test instance and its similarity to studied instances. The use of an additive function makes it impossible to take into account information about relations among 
features, such as correlations. The exemplar view, which we examine next, has neither of these characteristics.

Exemplar Model

Exemplar models assume that categories consist of a set of exemplars and that the classification of new instances is by their similarity to these stored exemplars. We 
focus here on the most prominent exemplar model, the context model of Medin and Schaffer (1978). This model has been extended in a series of well­known papers 
by Nosofsky (e.g., 1986). Other prominent exemplar views include those of Brooks (1978, 1987) and Hintzman (1986).

  
Page 213

Under the exemplar view, the representation of the category is not a single summary representation, but rather a collection of instance representations. For now, we 
consider the representations to be particular instances, though we discuss other possibilities later. Each instance consists of a set of feature values with the same 
features for all instances, but with the values varying. The context model makes two important process assumptions. First, the similarity of the new instance to 
previously learned instances is a multiplicative function of the similarity of their features. Thus, instances that match well on all features have much higher similarity than 
do instances that match well on only some features. One very dissimilar feature may lead to a low similarity, even if the other features match well. Second, the 
classification is determined by comparing the similarity of the new instance to all previously learned instances in each category and then classifying it to the category that 
has the greatest overall similarity, using the same decision rule as in equation 7.2.

The context model of Medin and Schaffer (1978) is a simple exemplar model for binary­valued features, in which the similarity of the test item t to the category A, S
(A, t), is not its similarity to the prototype, but the sum of its similarity to each exemplar of the category:

This computation of similarity does not appear to be very different from that of the prototype view, because the prototype is the central tendency of the exemplars. 
What makes it different is that the computation of similarity to each exemplar uses a multiplicative rule, rather than the additive rule of equation 7.1:

where si = 1 if the ith features of items a and t match, and si = mi if they mismatch. The last section of table 7.1 applies this exemplar model to a simple classification 
example, as was done for the prototype model.

The exemplar and multiplicative similarity assumptions mean that the previously stored exemplars that are highly similar to a new instance will largely determine its 
classification. Thus, rather than a single summary

  
Page 214

representation, as in the prototype view, the exemplar view can be thought of as weighting those instances most similar to the current instance being classified (the 
exemplar model of Hintzman, 1986, does this explicitly). Note that the exemplar view makes claims about the types of information used for classification and how the 
decision is made; however, there is no claim that the instances themselves are consciously available for this classification.

Evidence for the Exemplar View

Although it may seem counterintuitive, the exemplar model can account for all of the results presented as evidence for the prototype view. First, according to the 
exemplar view, some instances are more typical than other instances, both because typical instances usually occur more frequently (so there are more exemplars of 
typical instances) and because typical instances tend to be highly similar to other instances (Rosch & Mervis, 1975). For example, robins are similar to many other 
songbirds (sparrows, thrushes, etc.), whereas atypical birds like penguins and ostriches have few similar instances. Second, the differences in classification 
performance that result from typicality occur for related reasons. For example, if classification time is a function of how quickly one finds a highly similar instance in the 
category, then typical instances will be classified faster, both because of their greater frequency and their high similarity to more category members. Third, exemplar 
models can even predict that prototypes that are not seen during learning may be classified more accurately at test than previously studied instances under some 
circumstances (see Hintzman & Ludlam, 1980, for one derivation). The reason is that the prototype test item may be highly similar to a number of instances, so its 
classification, according to the exemplar model, will be getting high weight from multiple instances, whereas, the classification of studied items will usually be getting 
weight from just one instance.

The exemplar view also deals well with the two problems mentioned for the prototype view. First, the effect of instance similarity on classification is obviously not a 
problem for the exemplar view, because that is the primary assumption of the view. Second, the exemplar view provides a simple way for implicitly keeping track of 
much additional information about the features of the category members (e.g., range, correlation). If

  
Page 215

the individual instances are stored, then various statistics can be computed as they are needed. For example, in the category of birds, singing is negatively correlated 
with beak size (larger beaks generally go with larger birds, which are less likely to sing). Even if one had never thought about this correlation, it is implicitly encoded in 
the set of exemplars that one has experienced, so it could influence the classification (especially because of the multiplicative similarity function).

Problems for the Exemplar View

The main problems for the exemplar view are not problems in fitting data, but conceptual problems. First, by claiming that categories are collections of instances, the 
exemplar view seems to take away the ''categoriness" of categories. That is, why are these instances members of the same category? Although the prototype view 
does not address this issue directly, it does so implicitly by using central tendencies of the feature values; the category members are assumed to be related to the 
prototype through similarity, although their degree of similarity may vary. The flexibility of the exemplar view, which is important in helping to account for the data, has 
the disadvantage of making it difficult to understand why these items cohere as a category (Murphy & Medin, 1985). Second, many people question the claim that 
abstractions are never used to help classify an unfamiliar instance. Even proponents of exemplar views agree that people do know abstractions about categories (e.g., 
birds have wings), but they argue that this knowledge is not used for classification. However, if people do have such knowledge about category members, might there 
not be times when it is used to aid classification? Third, it is not clear how to apply the exemplar view to some of the issues in category research, such as hierarchical 
effects or basic levels, to be discussed later.

Final Comments on the Exemplar View

In most experimental contrasts, the exemplar view provides a better fit for the data than does the prototype view (Medin & Smith, 1984; Nosofsky, 1992). The main 
advantages of the exemplar view, we believe, are the two characteristics that we contrasted with the prototype view. First, the use of multiple representations for a 
category allows for selective use of knowledge. That is, the most relevant information is accessed and used because the most similar

  
Page 216

exemplars greatly determine the classification. Second, rather than an additive function to combine feature information, the exemplar view uses a multiplicative function. 
Although the exact mathematical form is not crucial, it is important that the model does not independently combine information but takes into account relational 
information. The use of multiplicative similarity, combined with multiple representations, provides much greater sensitivity to relational information for classification. A 
prototype model has great difficulty in keeping track of all the possible statistics that might influence classification (feature correlations, variances, forms of distributions, 
frequencies), and updating such summary statistics with each new exemplar would be very difficult. The exemplar model overcomes these problems by keeping this 
information distributed across the exemplars and only making use of it when necessary.

Combining Exemplar and Prototype Models

Some readers may wonder whether the exemplar and prototype models are really competitors—perhaps they are both true. For example, one common idea is that an 
exemplar representation characterizes categories with very few instances, but as more instances are experienced, an abstraction is formed to represent the category. If 
both specific and abstract representations are used, then one needs to address such issues as how the abstractions are formed and what determines when each 
representation is used. In this section, we discuss some possible combined views and also consider an alternative parallel distributed processing (PDP), or 
connectionist, view. First, we mention some empirical evidence that favors a combined model.

Empirical Evidence for a Combined View

The empirical evidence is of two general types. First, several studies have shown that even when people use an exemplar strategy to classify new exemplars, they may 
end up learning something more general about the category (Medin & Edelson, 1988; Medin & Florian, 1992; Ross, Perkins, & Tenpenny, 1990; Spalding & Ross, 
1994). For example, Ross et al. (1990) examined exemplar­based abstractions in a series of experiments involving classification of fictitious people into groups. A 
sample

  
Page 217

Table 7.2
Sample stimuli from one category of Ross et al.'s exemplar­based abstraction experiments (Phases of Experiments)

1. Study (Each subject would learn both of these study exemplars for this category)

Study Exemplar A likes ice cream Study Exemplar B likes to read Westerns


buys nails buys a swimsuit

2. First test: Classification (Each subject would see one of these test exemplars)

Test Exemplar A likes sherbet or Test Exemplar B likes to read Cowboy


buys wood and Indian stories
buys a towel buys wood
buys a towel

3. Final test: Feature ranking

    buys a chisel  
buys sunglasses
2 filler features

Source: Adapted from Ross, Perkins, & Tenpenny (1990).

of their materials is presented in table 7.2. Each exemplar shown during the study phase consisted of two features, and there were two exemplars per category. 
Subjects were obliged to use an exemplar­based strategy to learn the categories because each instance had different features. At test, subjects were given one new 
instance from each category to classify. A test exemplar consisted of three features from within the same category—one reminding feature and two related features. 
The reminding feature was highly similar to a feature that had appeared in one of the study exemplars (e.g., the reminding feature likes sherbet of test exemplar A was 
highly similar to the feature likes ice cream in study exemplar A). Each related feature was associated with a feature that had appeared in one of the two study 
exemplars. By associated, we mean that the features often occur together as part of a more general theme. To illustrate, the related feature buys wood is associated 
with the feature buys nails from study exemplar A as part of a carpentrylike theme. The other related feature, buys a towel, is associated with the feature buys a 
swimsuit in study exemplar B as part of a beach or swimming theme. The same related features occurred with both possible test exemplars of a category (i.e., test 
exemplar A and B both had these same two related features). However, it was hypothesized that the reminding feature would prompt subjects to

  
Page 218

think back to a specific study exemplar, causing them to make an explicit comparison between the test exemplar and the previously studied exemplar as part of their 
classification process. Generalized knowledge about the commonalities between the two exemplars would then be stored as part of the category knowledge. For 
example, the test exemplar A (consisting of features likes sherbet, buys wood, buys a towel) would remind subjects of study exemplar A (with features likes ice 
cream, buys nails), leading subjects to encode the similarities of the features likes ice cream and likes sherbet, along with buys nails and buys wood, as 
generalizations about this category. In this case, the exemplar abstractions would be a fondness for frozen desserts and the purchase of carpentry materials. Subjects 
receiving test exemplar B would instead encode the similarities of the features likes to read Westerns and likes to read Cowboy and Indian stories, along with buys 
a swimsuit and buys a towel, leading to very different generalizations about the category (concerning reading preference and the beach­swimming theme). The 
important point about this design was that all subjects studied the same study exemplars and saw the same related features in the test exemplar (buys wood and buys 
a towel). The hypothesis was that the reminding feature would make subjects think back to different study exemplars, and that the related features would lead to 
different generalizations about the category (either carpentry or beach).

This link between novel test exemplars and prior study exemplars was confirmed in a feature­ranking test. Subjects were presented with a listing of four features for 
each category and were asked to rank the features according to the likelihood of their occurrence within that category. Two of the features (buys a chisel, buys 
sunglasses) were from the same generalization or theme (carpentry and beach, respectively) as the related features that had appeared in the study and test exemplars, 
while the other two features were filler features. Subjects ranked the related feature that had been common to both the test instance that they had seen and an earlier 
study instance as being more central to that particular category, despite the equal frequency of the two related features (buys wood, buys a towel) within the category. 
Specifically, subjects who had been presented with test exemplar A ranked the feature buys a chisel as being

  
Page 219

more likely to occur, while those who had classified test exemplar B gave a higher ranking to the feature buys sunglasses. This finding indicated that subjects were 
using generalized knowledge about feature commonalities among exemplars in their category judgments. This knowledge was learned from the use of specific studied 
exemplars for classifying new instances, thereby blending the exemplar and prototype views of categorization (Ross & Kennedy, 1990, showed similar results in 
problem solving).

The second type of evidence for a combined view is that a number of studies have found circumstances under which each view may predict the data better. As one 
example, Malt (1989) directly contrasted the two views with a new reaction time procedure and found evidence for both prototype and exemplar classifications. In 
particular, she asked whether categorization reaction time to a test instance was facilitated by its similarity to the preceding test instance. If the current test instance had 
been activated in the immediately preceding trial to help classify the previous test instance, then one might expect a faster classification response to the current test 
instance (because it would still be somewhat activated from the previous trial). On the other hand, if exemplar representations were not used in classification, then one 
would not expect a faster response to the current test instance. Malt showed that the faster classification response occurred under some conditions but not others. Her 
findings support the idea that classification may consist of a mixture of exemplar and prototype strategies. As another example, in Medin, Dewey, and Murphy (1983), 
subjects studied yearbook photographs under instructions intended to focus them on exemplar­level information (such as different first names) or on category­level 
information (such as last names for two different families). For our purposes, the important result was that whether the exemplar or prototype model provided a better 
fit depended upon the instructions: generalization did not occur automatically but depended on how people learned the information.

The empirical results from these studies suggest that people may encode and use both specific and generalized representations. Some theorists also argue that 
exemplars and abstractions may represent points along a continuum and that the same set of processes could use either type (or both

  
Page 220

types) of representation in classifying new instances (e.g., Elio & Anderson, 1981; Estes, 1986; Homa, 1984). We now turn to some models that combine exemplars 
and abstractions.

Combined Models

In this section, we consider three types of models that include a combination of exemplar and more prototypelike information but do so in very different ways: a 
selective attention exemplar model, an exemplar­based abstraction view, and Anderson's (1991) rational model.

Selective Attention in Exemplar Models

Before examining explicit combined models, we first point out that exemplar models are not as "exemplarlike" as the name would suggest. In particular, under some 
circumstances, they can end up with abstractions. The exemplar models all have a selective attention parameter, such as mi (see equation 7.4 and table 7.1). The 
reason is simple—some features or dimensions are attended to more than others, so the encoding of each exemplar cannot be considered to be a simple copy of the 
instance, but rather one in which some aspects may have been attended to more than others. If a particular feature is not encoded, then it does not matter if a new 
instance matches or mismatches on this feature. More specifically, if a feature is not attended to, then its mismatch value, mi, is near 1 (showing that the mismatching 
value is about the same as a matching value). If a feature is not attended to, then one can think of the exemplar representation as an abstraction over this feature, 
because the value for that feature does not influence the similarity.

Selective attention is crucial in exemplar models—it allows a represented exemplar to be a partial abstraction rather than a complete representation of an exemplar. 
Extensions to the context model have emphasized the role of attention weights in classification. Nosofsky (1986), in addition to extending the context model to include 
dimensional representations, showed that people often weight the dimensions to optimize classification performance. Kruschke (1992) added a connectionist learning 
of attention weights to Nosofsky's model to show how such attention weights might be learned. (Another interesting adaptation is presented in Lamberts, 1994.)

  
Page 221

Exemplar­Based Abstractions

Not only might selective attention weights lead people to learn an abstract "exemplar"; the use of exemplars may lead to abstractions. The exemplar­based 
abstraction view (Brooks, 1987; Jacoby & Brooks, 1984; Medin & Edelson, 1988; Medin & Florian, 1992; Ross et al., 1990; Spalding & Ross, 1994) assumes 
that many categorizations are made using exemplars but that the effect of using exemplars leads to an abstraction that may also be stored and used for categorizing 
later instances. Thus, if a current situation reminds you of an earlier one, using the previous experience to determine your current action may cause you to learn 
something about dealing with situations of this type, in addition to what you learn about the two particular incidents. The results of Ross et al. (1990) that were 
discussed earlier (and presented in table 7.2) are one illustration of exemplar­based abstraction.

When a current instance reminds one of a previous instance, the two representations may be compared and the similarities and differences noted. The idea is that the 
similarities provide an abstraction over these two instances—the similar features are the commonalities between the two instances and include features that are likely to 
be important for the category. These similar features represent a type of "local" abstraction that can be stored and used later for classifying instances. By local 
abstraction, we mean that the abstraction is made over a small (in this case, two) number of instances, not over the entire set of category members, as in prototype 
models. These abstractions will often be far more specific than the prototype would be, because they include information that applies to these two instances but that 
may not be true of the category in general. However, if these abstractions are used later in classifying another instance, a still more general abstraction may be made, 
consisting of the commonalities between the first local abstraction and the new instance.

It is worth noting three points about these exemplar­based abstractions. First, the exemplar used for classifying the new instance is not simply any category instance, 
but one of which the person was reminded. Remindings are usually greatly influenced by all types of similarities, including superficial ones (e.g., Ross, 1984), so the 
two instances compared are likely to be similar in some ways that are not crucial for the category.

  
Page 222

This fact means that the abstractions will often include many features that are not category relevant but that have consistently co­occurred with particular category­
relevant features. Second, this scheme will result in the category representation consisting of both exemplars and abstractions (at varying levels of generality). Thus, 
there will not be a single summary representation. Third, even once abstractions have been learned, the classification of new instances will use a variety of category 
knowledge—sometimes earlier instances (leading to exemplar­based abstractions), sometimes exemplar­based abstractions (leading to more general abstractions), 
and sometimes both. Which knowledge is used depends upon the similarity of the knowledge to the test instance.

This exemplar­based abstraction view is one way in which both prototypes and exemplars may coexist and provide input to classification. Under this approach, 
abstractions are formed from comparisons made during classification, but no information is discarded, because exemplars are also stored and used.

Rational Model

Anderson (1991) has proposed a very different category learning model which arises from his rational analysis of cognition view (Anderson, 1990). Limited space 
prohibits a full exposition of this rational model, but the main point is that category structure evolves to allow the best performance possible for predicting features. 
(This assumption also includes classification because the category label is considered one of the features.) During learning, exemplars get grouped together into 
clusters. Each cluster of exemplars has a central tendency that represents that particular cluster, like a mimprototype. For each new exemplar, the model determines 
whether to add it to an existing cluster or start a new cluster. This determination is made by calculating the similarity of the new item to each of the various clusters, 
using a multiplicative similarity rule, much like the context model. The item is then assigned to that cluster to which it is most similar. The assignment is also affected by 
the size of the clusters and the likelihood that instances group together. When predicting a feature for a new instance, such as the category label, the model does not 
simply find the most similar cluster and use that to make the prediction. Rather, it uses all the clusters, weighting the prediction

  
Page 223

of each cluster by the probability that the instance would be assigned to that cluster. In addition, this same scheme can be used not only for classifying new instances, 
but for predicting any unknown feature of a new instance.

How does this model relate to exemplar and prototype models? Nosofsky (1991) presented a number of interesting findings. Of most interest here, the model has a 
parameter, called the coupling parameter, that influences how much grouping of items occurs. If this coupling parameter is set to 0, then no grouping occurs, and each 
item is a separate cluster. Nosofsky showed that under these circumstances, the rational model becomes isomorphic to the context model of the exemplar view. When 
the coupling parameter is set to 1 and the category label similarity is high (so that exemplars with the same category label are likely to be grouped together), then the 
model leads to a clustering of all exemplars with the same label (i.e., the experimenter­defined category members are grouped together), and this cluster is represented 
by a summary representation. (The rational model is not a prototype model as defined here, because a multiplicative similarity calculation is used.)

For intermediate values of the coupling parameter, the rational model can be viewed as a combination of exemplar and prototype models. If members of a category 
occur in multiple clusters, then the central tendencies of these clusters can be viewed as multiple prototypes of the category. (We are simplifying here by assuming that 
the cluster items are all from one category and by ignoring the multiplicative similarity.) Although the idea of having multiple prototypes is not new, the rational model 
provides a principled way of determining which prototypes would be formed (Nosofsky, 1991).

The rational model provides an interesting combination of exemplar and prototype approaches, but it has been criticized on a number of fronts. Murphy and Ross 
(1994; Ross & Murphy, 1996) found little evidence for its core assumption that all categories are used in making predictions for a new feature. In addition, Murphy 
(1993) raised a number of conceptual problems that remain unresolved. However, see Anderson and Fincham (1996) for a recent version of the rational model that 
addressed some of these issues.

  
Page 224

Other Ways of Combining Prototype and Exemplar Information

In addition to models that explicitly include both prototypes and exemplars, there are alternative ways in which people's classification might be influenced by both 
specific and general properties of the category instances. Three possibilities are mentioned here: PDP views, different structures for distinct levels of categories, and 
different types of categories.

PDP Models of Categorization

Until now, we have focused on models in which the knowledge being stored can be thought of as abstractions or exemplars, with each representation stored 
separately from the other representations. The connectionist, or PDP, approach argues instead that the representation of knowledge is distributed across many 
connection weights in a network and that there is no representation of the category (neither abstractions nor exemplars), except as embedded in the many connection 
weights between units. We do not have space to provide the details of such models, but they are explained in a variety of papers (e.g., Gluck & Bower, 1988; Knapp 
& Anderson, 1984; McClelland & Rumelhart, 1986).

The PDP model does technically have a single summary representation—namely, the whole network—that is used for classifying new instances, so it may seem to be 
prototypelike, but it also has many exemplarlike properties. Although the entire network is used to classify, the particular input determines which connection weights 
have the most influence, a characteristic more like the selective use of knowledge found in exemplar models. The response to any item relies extensively on the 
correlations among features in the instances that have been experienced, not the additive combination of features proposed by the prototype view. These properties 
allow it to overcome both of the major difficulties with the prototype view. First, although the PDP model does show sensitivity to typicality, it also is sensitive to 
exemplar similarity, especially if the test instance is atypical or the studied instances are very dissimilar from one another (Knapp & Anderson, 1984). Second, the 
reliance on correlations of features occurs because of the connectionist learning mechanism, and this allows the model to be sensitive to the within­category 
correlations that pose difficulties for the prototype model. In addition, these

  
Page 225

models provide an explicit learning mechanism in which each new instance leads to specifiable changes in the connection weights.

Despite these advantageous properties, no current connectionist model has been able to account for as wide a variety of categorization data as the exemplar models 
do. Nosofsky, Kruschke, and McKinley (1992) argued that the failure to represent the category in terms of exemplars is a major problem for connectionist models. 
More generally, we believe that many of the categorization results suggest the importance of having multiple representations for a category. This problem does not 
mean that connectionist ideas are not useful in modeling classification. Kruschke (1992) has produced impressive fits of data by combining an error­driven 
connectionist learning process for learning the selective attention weights with a model that has exemplar representations (see also Nosofsky et al., 1992).

Different Category Levels

A different way to think about the combination of prototype and exemplar views is that they may each apply in different circumstances. We illustrate this possibility by 
using a robust and important idea in the category literature: basic levels. Objects can be classified at various levels of specificity. For example, a particular piece of fruit 
might be classified as a fruit, as an apple, or as a McIntosh apple. Similarly, a particular item of furniture might be considered a piece of furniture, a chair, or a desk 
chair. Roscb and her colleagues (Rosch, Mervis, Gray, Johnson, & Boyes­Braem, 1976) demonstrated that one level, the basic level, is psychologically privileged. 
This corresponds to the apple and chair levels in the examples given, with the next highest level (fruit, furniture) being called the superordinate level and the next 
lowest level (McIntosh apple, desk chair) being called the subordinate level. The basic level is ''privileged" in that people are most likely to use this level in naming; 
people are faster to verify objects at this level; people learn basic level concepts earlier; and so forth. (See Lassaline, Wisniewski, & Medin, 1992, for an extended 
review of the many findings supporting the basic level, as well as some criticisms.)

We do not wish to delve into the many details of the basic­level debate, except to point out a speculative possibility, raised in Ross and Spalding (1994), that different 
levels may have different types of category

  
Page 226

structures (i.e., prototype or exemplar). Consider the categories of fruit, apple, and McIntosh apple. The subordinate level of McIntosh apples seems well suited to be 
represented by a prototype. Although people might remember a particular McIntosh apple, it seems unlikely that such exemplars are used for classifying new 
McIntosh apples. Instead, perhaps the many highly similar McIntosh apples we have seen are all mushed together in some summary representation that is used for 
classifying new instances. However, the superordinate level of fruit does not seem so amenable to a prototype representation. One could have a fruit prototype 
consisting of some typical fruit, such as apple, or of the central tendency of fruits, but is that really going to be helpful in classifying pineapples, bananas, and kiwis? 
Apples may be usual fruits, but using them as the summary representations of all fruits is going to make classification difficult. Instead, perhaps we have a set of 
disjunctive concepts, such as apple, plum, nectarine, and so on and something is classified as a fruit if it is any one of these (e.g., Murphy & Smith, 1982). Such a 
representation would be disjunctive, as exemplar models are, but the exemplars here would be categories, not instances. Interestingly, American Sign Language 
explicitly includes such types of categories—for example, fruit may be expressed by signing "apples and oranges and bananas and etc." (Newport & Bellugi, 1978).

If the subordinate level uses prototypes and the superordinate level consists of exemplars, what about the basic level, with items such as apple or chair? One possibility 
is that it consists of prototypes of the categories that are used by the superordinate level. Thus, there may be prototypes of apple, banana, and so forth. These 
prototypes might be formed from combining the instances that went into the subordinate level prototypes (McIntosh apples, Delicious apples, etc.). This idea seems 
fine for some categories, such as apples, but perhaps less useful for categories in which the subordinates vary greatly, such as chair. Another possibility for such 
categories is that they consist of multiple prototypes derived from the subordinate level (e.g., desk chairs, easy chairs, recliners, lawn chairs, etc.), which would be 
more exemplarlike. It may be that both of these possibilities for representing categories at the basic level are true, with some basic­level categories represented as 
prototypes and others as disjunctions of subordinate prototypes.

  
Page 227

Although this account of varying representation by category level is clearly speculative, it suggests another way in which prototype and exemplar representation may be 
combined. As a further conjecture, these representations could result from exemplar­based abstractions; that is, similar instances lead to prototypes derived from that 
cluster of instances.

Different Types of Categories

As we have seen, there may be no general answer to whether categories are represented as prototypes or exemplars—it may be a combination of these, with either 
both kinds of representations used, or at least each type of representation used in different cases. In addition to the combined models and the speculation about 
different representations at different levels, other research suggests that the representations may even depend upon the content of the category (e.g., Homa, 1984). 
For example, Medin, Wattenmaker, and Hampson (1987) showed that the summing of independent features (as in the additive combination rule) applies for some 
categories, such as whether a particular person is honest (where the features would be observed behaviors of the person), but the multiplicative rule applies to other 
categories, such as whether the features allow an object to be used as a hammer. Also, Wattenmaker (1995) argued that there may be fundamental differences in the 
structure of representations used for social categories (e.g., traits, such as honesty) and for objects.

A very different example of how category representations may vary according to category content would be ad hoc, or goal­derived, categories (Barsalou, 1983, 
1991). Unlike common taxonomic categories, ad hoc categories, such as things to eat on a diet or things to take out of your house in case of a fire are 
constructed in the course of meeting some goal. In a variety of interesting experiments, Barsalou showed that ad hoc categories often do have a summary 
representation, but rather than a central tendency or average, the representation is an ideal. For example, among diet foods, the ideal would be a food with zero 
calories.

Before ending this discussion of combined models, it is worth noting that in addition to prototypes and exemplars, another common representation for categories, as 
mentioned earlier, is rules or definitions (the classical view of concepts). Rules are a more specific type of summary

  
Page 228

representation in which category membership is assigned only if all the features are true. The early work in hypothesis testing (e.g., Bruner, Goodnow, & Austin, 1956) 
focused largely on how such rules are acquired. Although a simple rule model will not account for many findings, a number of suggestions have been made for 
augmenting this idea with additional knowledge or conditions (e.g., Medin & Smith, 1984; Nosofsky, Palmeri, & McKinley, 1994).

Conclusions

This section on combined models of prototype and exemplar information suggests that there may be ways to combine the advantages of summary representations with 
the advantages of more specific representations. Summary representations make use of more of the data, whereas exemplar representations are more sensitive to 
correlations and the particulars of the instance to be classified. The exemplar­based abstraction view and the rational model provide specific ways in which more 
general representations may be formed from exemplars. The PDP model includes a means by which both types of information may be represented together. Finally, 
the discussions of levels of categories and different types of categories are speculations about how representations may vary between categories.

Use of Categories

Classification is rarely your ultimate goal when you are faced with an unfamiliar object or new situation. If an approaching animal is classified as a dog, the classification 
is not sufficient to allow you to know what to do. Rather, you need to access your knowledge about dogs to make a prediction about whether it would be best to flee 
or not. Classifying a situation, a math problem, or a person, for example, is a first step in allowing you to know how to deal with the entity. In addition to classification, 
category knowledge plays a critical role in a variety of other cognitive activities, such as explanation, conceptual combination, communication, and inference. The use 
of categories for inference is particularly important and has been the subject of an increasing amount of research (e.g., Anderson, 1991; Gelman & Markman, 1986; 
Heit, 1992; Murphy & Ross, 1994; Osherson, Smith, Wilkie, Lopez, & Shafir, 1990;

  
Page 229

Ross & Murphy, 1996). Given the importance of inference in category research, it is useful to consider what the prototype, exemplar, and combined views might claim 
about how inferences are made following classifications. The exact way in which inferences would be made under each view has not yet been detailed by researchers, 
but we can sketch out enough of the process to examine the differences between the views. We consider the particular case in which some features are presented and 
an unobserved feature has to be predicted. (In this case, we view prediction as a simple but common type of inference.) For example, one sees an animal and has to 
predict its ferocity or one sees the silhouette of a bird and has to predict what food it might eat. Although any differences in predictions for this simple type of category 
use may not definitively discriminate among the views of category representation that we have discussed, we do think it important that the use of categories be 
considered in the debate on category representations.

Prototype View

The prototype view assumes that the summary representation of the category would be used to make inferences about unobserved features. So, if the presented 
features on an item caused it to be classified as a member of category X (i.e., it was similar enough to the prototype of category X), then the prototype of category X 
would be used to predict the unobserved feature. Assuming that the features are considered independently (as they are in classification because of the additive 
combination), then the prediction would be the central tendency of that feature for category members. That is, if the average dog ferocity were "friendly" and a new 
animal were classified as a dog, then the predicted ferocity would be "friendly."

The advantage of this prototype prediction process is that the prediction uses a central tendency derived from all of the category instances. If one has no additional 
information on which to base a prediction, the best guess one can make is the central tendency. Thus, if all you know is that a particular animal is a dog, then the 
average dog ferocity is the best prediction to make.

The disadvantage of relying on the prototype is that predictions may sometimes depend on more specific clusterings of information. For example, the predicted ferocity 
of a new dog might be very different if it were

  
Page 230

a spaniel than if it were a pit bull. On could argue that the new dog would be classified more specifically than dog, such as a spaniel, but that poses three problems. 
First, as discussed in the previous section, the data suggest that dog is the basic level, so dogs are usually classified first as dogs, not as a particular kind of dog (Rosch 
et al., 1976; Tanaka & Taylor, 1991). Second, using subordinate­level information would necessitate the representation of additional prototypes at this lower level. 
This arrangement would then require a means of knowing when to use each type of representation for prediction. Such a proposal may be a correct one for prediction, 
but it has not yet been worked out in any detail for a prototype view. Third, if more specific subcategories are used, then those prototypes are constructed from fewer 
data. That may be necessary, but one also needs to realize that many predictions about dogs do seem to be true of many dogs, such as tail wagging or coldness of 
noses. Subcategory prototypes could also lead to correct predictions, but they would be more influenced by unusual observations because the prototypes would be 
based on fewer data. Thus, although it seems that predictions might sometimes be made on the basis of subordinate­level information, the prototype view does not yet 
include a means of deciding what level of knowledge is used for making different predictions.

Exemplar View

The exemplar view uses the same processes to predict features as it uses to classify instances. However, one compares the presented features of the new instance to 
previously learned instances, causing similar instances within each category to be more influential in the prediction. This means that the predicted feature would not be a 
simple central tendency of all category members, but a weighted central tendency, with the weight of each instance a function of its similarity to the new instance. Thus, 
in a similarity comparison to the features of a new dog, dog exemplars that were very similar would be most weighted. The resulting predicted feature would then be a 
weighted central tendency of those similar instances. For example, the predicted ferocity of a new dog would depend on its similarity to other dog instances. If the 
similarity comparison led to high weights on various spaniels, then the predicted ferocity would be low, whereas if it led to high weights on various pit bulls, then the 
predicted ferocity would be high.

  
Page 231

The advantage of this exemplar prediction process is that the most similar instances are used to make the feature prediction. Thus, any within­category correlations can 
be captured at this more specific level. Even though most birds do not eat rodents, if a new bird were much like hawks and falcons that one had seen, then one might 
predict it would eat rodents. Brooks (1987) pointed out how the distribution of knowledge across instances allows learning correlations of features, which may be 
especially useful for prediction.

The main disadvantage of using exemplars in this way is that a prediction based principally on a small number of exemplars has the danger of being affected by unusual 
observations. To the extent that a small number of exemplars are highly weighted for the prediction, then one or two unusual observations may lead to a very 
inaccurate prediction. However, there is some evidence from categorization studies that people do highly weight a few very similar exemplars when making a 
prediction (Brooks, Norman, & Allen, 1991).

Combined Views

The prototype view of inference has the advantage of using data from all exemplars but the disadvantage of being insensitive to within­category correlations. The 
exemplar view has the opposite problem—it is sensitive to these correlations, but the inference may be based on few data. A final possibility to be considered is how a 
combined view, in which both exemplars and summary representations are stored, may be utilized to make such inferences. For illustration, consider the exemplar­
based abstraction view, which has both exemplars and any abstractions built up from comparisons that have occurred during classification and use of new instances. 
Such a combined view may make use of both types of representations for inferences. For instance, suppose a prediction of a feature value for a new instance makes 
use of both exemplars and abstractions (i.e., both are weighted enough to influence the judgment). Then if there were agreement about the predicted feature value, the 
inference could be made with confidence. Without agreement, some further process might be required, such as a more detailed consideration of the source of conflict 
or the use of further representations. The multiple representations and the selective access of knowledge in this combined view could lead to very diffirent knowledge 
being used as a

  
Page 232

function of the new instance. For example, if the novel instance were typical, then it would be likely to activate both abstractions and exemplars. In contrast, if the 
instance were atypical, then there would be a greater likelihood that the exemplar representations would dominate. Clearly, much needs to be detailed about such a 
combined view for inference, but it does allow the use of many data (both specific and abstracted) for typical instances, while relying on fewer but more specific data 
for atypical instances.

The goal of this section on the use of categories has been to point out that we need to consider more than just classification performance when discussing how 
categories are represented. Research on categories has focused mainly on classification, but the use of categories for prediction appears to be a fruitful area, both for 
expanding our understanding of categorical knowledge and for examining the implications of classification theories.

Specificity and Generality in Cognition

We have been focusing on prototypes versus exemplars in categorization, but the general issue is a broader one that touches upon many areas of cognition: what 
knowledge do people access and use to accomplish particular cognitive tasks? In many situations, as in categorization, it seems likely that people have knowledge 
about both specific occurrences and more general regularities. Examining this issue in other areas of cognition may extend our understanding of the work in 
categorization and provide us with a clearer perspective of how specific and general representations play a role in other cognitive tasks.

In other research areas, a wide variety of results can be interpreted as aids to understanding the relation between specific instances and more general or abstract 
representations. As one illustration of this idea, many research projects examine basic perceptual and attentional processes, such as word recognition and automaticity. 
Many researchers assume that people use abstract representations to accomplish such tasks. For example, identifying a briefly presented word would appear to rely 
on a general representation of that word, abstracted from many experiences with that word. However, such identification is also affected by the spe­

  
Page 233

cifics of earlier episodes (e.g., Jacoby & Brooks, 1984). Even the automa­ticity built up from much practice in a domain may not necessarily result from the refining 
and tuning of a general procedure, but rather from accessing more and more exemplars (Logan, 1988). In Logan's theory, the response to each item is determined by 
a race among the independent exemplars that closely match it. He showed that many aspects of the data that have been taken as evidence for general procedures can 
also be accounted for by his exemplar model. In addition, this exemplar model makes unique predictions that have since been confirmed (e.g., Logan, 1992). These 
projects indicate that even when it seems "obvious" that some abstract representation underlies performance, exemplar­based knowledge may be used.

This influence of specific experiences extends to many complex behaviors as well. Much research has examined how schemas such as event scripts might underlie 
comprehension and memory (e.g., Bower, Black, & Turner, 1979; Schank & Abelson, 1977. However, these large abstract representations are often not flexible 
enough to easily address the wide range of situations people experience. A different possibility is that our understanding of even routine events might be tied to more 
specific experiences (Schank, 1982). Case­based reasoning, a large area of research in artificial intelligence, is based upon this idea of using specific earlier 
experiences to help perform cognitive tasks. Such research has produced a number of different computer programs that can give advice, solve problems, or help in 
design tasks (see Kolodner, 1993). Even psychological studies of expertise sometimes reveal that performance that appears to be based on a deep general 
understanding of the domain is sometimes based on a deep specific understanding. For example, chess masters have much general knowledge about the game, but 
they may also rely on their memories of moves in specific games when deciding what move to make.

An additional illustration of the investigation of specific and general knowledge can be seen in research examining the learning of simple rules. Sometimes when people 
are given generalizations or rules to help them accomplish some task, specific instances still affect their performance. For example, Allen and Brooks (1991) provided 
people with rules for making a simple categorization and then had them practice with particular instances. Although the rule was simple, and learners were able to use 
it,

  
Page 234

test items that were similar to the practice items were often classified using the practice instances, not the rule. Rothkopf and Dashen (1995) found a related effect in 
which extended practice using particular instances led to the rules being "specialized" in terms of the exemplars. In more complex domains, such specialization of 
abstract principles is common. As one example that we have all had experience with, algebraic principles taught using word problems become specialized by the 
content of the word problems. If people hear just the first few words of a word problem, such as "The riverboat ..." they often can quickly tell what type of problem it 
is and begin to access the schemas for solving these problems (e.g., Blessing & Ross, 1996; Hinsley, Hayes, & Simon, 1977). Although the principles may have been 
taught more abstractly, extended practice with riverboat word problems can lead to specialization of the abstract principles.

In all of these cases, there is a general tension between two forces. On the one hand, it is important to take advantage of the regularities within a domain in order to 
perform both efficiently and effectively. To the extent that there are rules or generalizations that apply to most instances, using an abstract representation allows one to 
function in a way that is usually appropriate, even when new instances are dissimilar to previously learned instances. On the other hand, using specific instances has a 
number of advantages as well (see Medin & Ross, 1989, for a thorough discussion). Exemplar representations can encode complex interactions within categories, 
such as feature correlations, as discussed earlier. Even if a generalization is sufficient for classifying and responding to a specific instance, an exemplar representation 
might facilitate the process if the instance has a set of features that has often co­occurred in previously learned exemplars. Abstract representations provide wide 
coverage, whereas specific representations allow faster and more varied responses.

Summary and Conclusions

In this chapter, we have presented a brief overview of the controversy about prototype and exemplar views in categorization. We began by considering two specific 
models to illustrate the advantages and disadvan­

  
Page 235

tages of each view. The next section considered the evidence that both types of representations might be used, and presented several models and ways of combining 
the representations. We then moved away from classification to consider how categories might be used to make inferences. Finally, we discussed research that 
contrasts the use of general and specific representations in other cognitive tasks. So, what does it all mean for the distinction between prototype and exemplar 
theories?

Overall, we believe that the evidence favors a view in which both exemplars and more abstract representations are used in categorization. The exemplar view includes 
two properties important in many category­related tasks: multiplicative similarity and multiple representations. Multiplicative similarity, which could also be used with 
prototype views, leads to a much greater weighting of similar representations. The availability of multiple representations, when combined with multiplicative similarity, 
means that the access and use of knowledge will tend to be selective. This selectivity allows the exemplar view to make use of complex co­occurring patterns of 
features in the instances. In contrast, the prototype view does not have this selectivity, but it does respond on the basis of all the category exemplars and thus is not 
influenced by particular idiosyncratic patterns that may have no category relevance. If there are regularities in a category that occur across many instances, it seems 
useful to encode these regularities for aiding the classification and use of new instances. Which view does a better job classifying and predicting may depend upon the 
category structure and the task, but each provides important category knowledge.

Although our understanding of categorization is far from complete, there does seem to be some consensus for having both specific and more general representations. 
As we encounter and encode new instances, their representations may sometimes influence later classification and category use. At the same time, our use of earlier 
instances allows us to recognize and abstract more general information, which may also be used in subsequent category judgments. Category representations are then 
built up from this interaction between the selective use of the most similar representations and the codification of regularities among the representations. This continual 
interplay between specific and general representations, as characterized by exemplar and prototype theories, may prove to be an

  
Page 236

integral part of category knowledge, performing a critical role in both categorization and other cognitive processes.

Acknowledgments

We thank Gordon Logan and Gregory Murphy for comments on an earlier version of this chapter. Preparation of this chapter was partially supported by NSF Grant 
SBR 97­20304.

References

Allen, S. W., & Brooks, L. R. (1991). Specializing the operation of an explicit rule. Journal of Experimental Psychology: General, 120, 3–19.

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1990). The adaptive nature of human categorization. Psychological Review, 98, 409–429.

Anderson, J. R., & Fincham, J. M. (1996). Categorization and sensitivity to correlation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 
22, 259–277.

Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11, 211–227.

Barsalou, L. W. (1990). On the indistinguishability of exemplar memory and abstraction in category representation. In T. K. Srull & R. S. Wyer Jr. (Eds.), Advances 
in social cognition: Vol. 3. Content and process specificity in the effects of prior experiences (pp. 61–88). Hillsdale, NJ: Erlbaum.

Barsalou, L. W. (1991). Deriving categories to achieve goals. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 27, pp. 1–64). San Diego, 
CA: Academic Press.

Blessing, S. B., & Ross, B. H. (1996). Content effects in problem categorization and problem solving. Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 22, 792–810.

Bower, G. H., Black, J. B., & Turner, T. J. (1979). Scripts in memory for text. Cognitive Psychology, 11, 177–220.

Brooks, L. (1978). Nonanalytic concept formation and memory for instances. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 169–211). 
Hillsdale, NJ: Erlbaum.

Brooks, L. (1987). Decentralized control of categorization: The role of prior processing episodes. In U. Neisser (Ed.), Concepts and conceptual development: 
Ecological and intellectual factors in categorization (pp. 141–174). Cambridge, England: Cambridge University Press.

  
Page 237

Brooks, L. R., Norman, G. R., & Allen, S. W, (1991). Role of specific similarity in a medical diagnostic task. Journal of Experimental Psychology: General, 120, 
278–287.

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study thinking. New York: John Wiley & Sons.

Elio, R., & Anderson, J. R. (1981). The effects of category generalizations and instance similarity on schema abstraction. Journal of Experimental Psychology: 
Human Learning and Memory, 7, 397–417.

Estes, W. K. (1986). Array models for category learning. Cognitive Psychology, 18, 500–549.

Galton, F. (1883). Inquiries into human faculty and its development. London: Macmillan.

Gelman, S. A., & Markman, E. M. (1986). Categories and induction in children. Cognition, 23, 183–209.

Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology: General, 117, 
227–247.

Goldstone, R. L. (1994). The role of similarity in categorization: Providing a groundwork. Cognition, 52, 125–157.

Hampton, J. A. (1993). Prototype models of concept representation. In I. Van Mechelen, J. A. Hampton, R. S. Michalski, & P. Theuns (Eds.), Categories and 
concepts: Theoretical views and inductive data analysis (pp. 67–95). London: Academic Press.

Hampton, J. A. (1995). Testing the prototype theory of concepts. Journal of Memory and Language, 34, 686–708.

Heit, E. (1992). Categorization using chains of examples. Cognitive Psychology, 24, 341–380.

Hinsley, D. A., Hayes, J. R., & Simon, H. A. (1977). From words to equations: Meaning and representation in word problems. In M. A. Just & P. A. Carpenter 
(Eds.), Cognitive processes in comprehension (pp. 89–106). Hillsdale, NJ: Erlbaum.

Hintzman, D. L. (1986). ''Schema abstraction" in a multiple­trace model. Psychological Review, 93, 411–428.

Hintzman, D. L., & Ludlam, G. (1980). Differential forgetting of prototypes and old instances: Simulation by an exemplar­based classification model. Memory & 
Cognition, 8, 378–382.

Homa, D. (1984). On the nature of categories. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 18, pp. 49–94). Orlando, FL: Academic 
Press.

Jacoby, L. L., & Brooks, L. R. (1984). Nonanalytic cognition: Memory, perception, and concept learning. In G. H. Bower (Ed.), The psychology of learning and 
motivation (Vol. 18, pp. 1–47). Orlando, FL: Academic Press.

  
Page 238

Knapp, A. G., & Anderson, J. A. (1984). Theory of categorization based on distributed memory storage. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 10, 616–637.

Kolodner, J. L. (1993). Case­based reasoning. San Mateo, CA: Morgan Kaufmann.

Kruschke, J. K. (1992). ALCOVE: An exemplar­based connectionist model of category learning. Psychological Review, 99, 22–44.

Lamberts, K. (1994). Flexible tuning of similarity in exemplar­based categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 
1003–1021.

Lassaline, M. E., Wisniewski, E. J., & Medin, D. L. (1992). Basic levels in artificial and natural categories: Are all basic levels created equal? In B. Burns (Ed.), 
Percepts, concepts, and categories: The representation and processing of information (pp. 327–378). Amsterdam: North­Holland.

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.

Logan, G. D. (1992). Shapes of reaction time distributions and shapes of learning curves: A test of the instance theory of automaticity. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 18, 883–914.

Malt, B. C. (1989). An on­line investigation of prototype and exemplar strategies in classification. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 15, 539–555.

Malt, B. C., & Smith, E. E. (1984). Correlated properties in natural categories. Journal of Verbal Learning and Verbal Behavior, 23, 250–269.

McClelland, J. L., & Rumelhart, D. E. (1986). A distributed model of human learning and memory. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel 
distributed processing: Explorations in the microstructures of cognition: Vol 2. Psychological and biological models (pp. 170–215). Cambridge, MA: MIT 
Press.

McCloskey, M. E., & Glucksberg, S. (1978). Natural categories: Well­defined or fuzzy sets? Memory & Cognition, 6, 462–472.

Medin, D. L. (1986). Comment on "Memory storage and retrieval processes in category learning." Journal of Experimental Psychology: General, 115, 373–381.

Medin, D. L., Dewey, G. I., & Murphy, T. D. (1983). Relationships between items and category learning: Evidence that abstraction is not automatic. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 9, 607–625.

Medin, D. L., & Edelson, S. M. (1988). Problem structure and the use of base­rate information from experience. Journal of Experimental Psychology: General, 
117, 68–85.

Medin, D. L., & Florian, J. E. (1992). Abstraction and selective coding in exemplar­based models of categorization. In A. F. Healy, S. M. Kosslyn, & R. M. Shiffrin 
(Eds.), From learning processes to cognitive processes: Essays in honor of William K. Estes (Vol. 2, pp. 207–234). Hillsdale, NJ: Erlbaum.

  
Page 239

Medin, D. L., & Ross, B. H. (1989). The specific character of abstract thought: Categorization, problem­solving, and induction. In R. J. Sternberg (Ed.), Advances 
in the psychology of human intelligence (Vol. 5, pp. 189–223). Hillsdale, NJ: Erlbaum.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238.

Medin, D. L., & Smith, E. E. (1984). Concepts and concept formation. Annual Review of Psychology, 35, 113–138.

Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1987). Family resemblance, conceptual cohesiveness, and category construction. Cognitive, Psychology, 
19, 242–279.

Murphy, G. L. (1993). Theories and concept formation. In I. Van Mechelen, J. A. Hampton, R. S. Michalski, & P. Theuns (Eds.), Categories and concepts: 
Theoretical views and inductive data analysis (pp. 173–200). London: Academic Press.

Murphy, G. L., & Brownell, H. H. (1985). Category differentiation in object recognition: Typicality constraints on the basic category advantage. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 11, 70–84.

Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92, 289–316.

Murphy, G. L., & Ross, B. H. (1994). Predictions from uncertain categorizations. Cognitive Psychology, 27, 148–193.

Murphy, G. L., & Smith, E. E. (1982). Basic­level superiority in picture categorization. Journal of Verbal Learning and Verbal Behavior, 21, 1–20.

Newport, E. L., & Bellugi, U. (1978). Linguistic expression of category levels in a visual­gestural language: A flower is a flower is a flower. In E. Rosch & B. Lloyd 
(Eds.), Cognition and categorization (pp. 49–71). Hillsdale, NJ: Erlbaum.

Nosofsky, R. M. (1986). Attention, similarity, and the identification­categorization relationship. Journal of Experimental Psychology: General, 115, 39–57.

Nosofsky, R. M. (1991). Relation between the rational model and the context model of categorization. Psychological Science, 2, 416–421.

Nosofsky, R. M. (1992). Exemplars, prototypes, and similarity rules. In A. F. Healy, S. M. Kosslyn, & R. M. Shiffrin (Eds.), From learning theory to 
connectionist theory: Essays in honor of William K. Estes (Vol. 1, pp. 149–167). Hillsdale, NJ: Erlbaum.

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992). Combining exemplar­based category representations and connectionist learning rules. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 18, 211–233.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule­plus­exception model of classification learning. Psychological Review, 101, 53–79.

  
Page 240

Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category­based induction. Psychological Review, 97, 185–200.

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353–363.

Posner, M. I., & Keele, S. W. (1970). Retention of abstract ideas. Journal of Experimental Psychology, 83, 304–308.

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 382–407.

Rips, L. J. (1989). Similarity, typicality, and categorization. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 21–59). Cambridge, 
England: Cambridge University Press.

Rips, L. J., Shoben, E. J., & Smith, E. E. (1973). Semantic distance and the verification of semantic relations. Journal of Verbal Learning and Verbal Behavior, 
12, 1–20.

Rosch, E. (1973). On the internal structure of perceptual and semantic categories. In T. E. Moore (Ed.), Cognitive development and the acquisition of language 
(pp. 111–144). New York: Academic Press.

Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104, 192–233.

Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.

Rosch, E., Mervis, C. B., Gray, W., Johnson, D., & Boyes­Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.

Ross, B. H. (1984). Remindings and their effects in learning a cognitive skill. Cognitive Psychology, 16, 371–416.

Ross, B. H., & Kennedy, P. T. (1990). Generalizing from the use of earlier examples in problem solving. Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 16, 42–55.

Ross, B. H., & Murphy, G. L. (1996). Category­based predictions: Influence of uncertainty and feature associations. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 22, 736–753.

Ross, B. H., Perkins, S. J., & Tenpenny, P. L. (1990). Reminding­based category learning. Cognitive Psychology, 22, 460–492.

Ross, B. H., & Spalding, T. L. (1994). Concepts and categories. In R. J. Sternberg (Ed.), Handbook of perception and cognition: Vol. 12. Thinking and 
problem solving (pp. 119–148). San Diego, CA: Academic Press.

Rothkopf, E. Z., & Dashen, M. L. (1995). Particularization: Inductive speeding of rule­governed decisions by narrow application experience. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 21, 469–482.

Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in computers and people. Cambridge, England: Cambridge University Press.

  
Page 241

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals, and understanding: An inquiry into human knowledge structures. Hillsdale, NJ: Erlbaum.

Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University Press.

Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: A featural model for semantic decisions. Psychological Review, 81, 
214–241.

Spalding, T. L., & Ross, B. H. (1994). Comparison­based learning: Effects of comparing instances during category learning. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 20, 1251–1263.

Tanaka, J. W., & Taylor, M. E. (1991). Object categories and expertise: Is the basic level in the eye of the beholder? Cognitive Psychology, 23, 457–482.

Wattenmaker, W. D. (1995). Knowledge structures and linear separability: Integrating information in object and social categorization. Cognitive Psychology, 28, 
274–328.

Whittlesea, B. W. A. (1987). Preservation of specific experiences in the representation of general knowledge. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 13, 3–17.

  
Page 243

III
METHODOLOGY IN COGNITION

  
Page 245

8
Computational Modeling of High­Level Cognition versus Hypothesis Testing
Patricia A. Carpenter and Marcel Adam Just

Computational modeling in cognitive science and artificial intelligence has profoundly affected how the human mind is viewed and how it is studied. This chapter 
examines some recent contributions of computational modeling to the analysis of high­level human cognition, particularly language, problem solving, reasoning, and 
learning. We will situate computational modeling within the broader framework of cognitive science by discussing four topics:

AI's approach. This section describes how computational approaches contribute to the understanding 
1. of theoretical issues in cognitive science. We will illustrate the point by describing how the computer 
chess programs, including Deep Blue, compare and contrast with human chess expertise.
2. Cognitive architectures. We will argue that computational modeling has shaped the concept of 
cognitive architecture. We will briefly describe three types of architectures: symbolic, connectionist, and 
hybrid, and we will consider how the concept of cognitive architecture frames the issue of modularity.
3. Computational models. We will describe some computational models and architectures that address 
high­level cognition, including sentence and text comprehension and intelligent tutoring in mathematics, 
and the use of modeling in the analysis of neuropsychological impairments and individual variation.
4. Evaluating models and modeling. We will describe some of the issues that arise in evaluating the 
adequacy of computational models in comparison to evaluating verbal models. We will also discuss 
some of the strengths and weaknesses of the modeling approach to understanding human cognition.

  
Page 246

Before we describe specific models, it is useful to consider modeling as a scientific approach and how it relates to other approaches. We will argue that computational 
modeling as an approach reflects a shared assumption about scientific goals and methods. The assumption is that it is useful to specify cognitive mechanisms in 
detail by using computational systems and to test the sufficiency of those mechanisms for performing some task in ways that are analogous (at some level) 
to human performance. The goal of providing a detailed mechanistic account (using computational formalisms) distinguishes modeling from some other approaches, 
such as verbal models, mathematical formalisms, or flowchart models, that may indicate the general sequence and type of processes without specifying their 
representation or processing characteristics. Specifically, the modeling approach contrasts with the hypothesis­testing approach to scientific inquiry. The hypothesis­
testing approach poses either­or questions, such as Does some factor have a significant effect or not? or Is some characteristic present or not? Such questions and the 
associated approach are ultimately compatible with modeling because modeling builds on such empirical findings. But the modeling doesn't start with the yes­no 
question or stop with the single piece of information. Rather, a model begins by focusing on the mechanisms that might underlie a particular process. Also, the 
computational format enables more precision and more complexity in specifying such mechanisms than does a verbal description. Perhaps more subtly, the 
computational approach promotes a different view of the theoretical issues and goals of cognitive science than those views promoted by the hypothesis­testing 
approach.

AI's Approach: An Example from Chess

The primary focus of the chapter is on computational models that have taken account of human cognitive constraints, rather than the broader domain of artificial 
intelligence (AI), the study of the principles by which computers achieve complex goals. Nevertheless, it is useful to consider AI's approach more abstractly. Our 
argument is that such models can provide insights into human cognition that are analogous to the insights that come from the comparative study of different species in 
perception.

  
Page 247

Different computational models may be contrasted with each other and with what is known about the human system to provide a more abstract view of what 
mechanisms are sufficient for complex problem solving, their strengths and weaknesses, and their relations to the overall constellation of computer and human abilities.

Human Chess Experts

A timely illustration of this point comes from the research on chess. Human chess experts use relatively shallow searches, averaging only three or four moves deep, and 
even that search is highly guided by their recognition of the larger patterns associated with good moves (Charness, 1991; Chase & Simon, 1973). This characterization 
of chess expertise arose from research showing that experts (but not novices) could rapidly encode and reproduce chess board configurations, as long as the 
configurations were legal and meaningful; their advantage over the novice evaporated if the configurations were not legal (Chase & Simon, 1973; de Groot, 1965). 
The interpretation of such data was that experts acquire tens of thousands of patterns through their experience in playing chess, much as a reader learns to rapidly 
recognize words. The board's configurations evoke a small set of appropriate possible moves that are then evaluated. By contrast, searching through all of the possible 
outcomes of a variety of legal moves would run into the cognitive bottleneck of working memory limitations, as well as whatever time limitations were imposed by the 
playing conditions. Although recognition, search, and evaluation are all components of chess expertise (and of problem solving more generally), this research indicates 
that recognition has a much larger role than search in the human expert's performance.

How Chess Programs Work

In contrast to the human expert, some of the most successful chess­playing programs rely on extensive searches of possible moves and possible countermoves; move 
time can be minimized by optimizing search speed and organization. Beginning with the earliest chess­playing programs in the 1950s, brute force methods have been 
relatively successful in chess, although they do not work as well for games such as Go or Backgammon, which involve higher branching factors (more choices at

  
Page 248

each decision point). Most successful chess programs rely on both deep searches (following the consequences of a particular path) and wide searches (considering 
many different possible paths), searching all alternatives at a node except those that can be mathematically eliminated as having nothing to do with the solution. Such 
searches require keeping track of several pieces of information, including what has been tried, the best move in each position, and the depth to which a subtree of 
possible moves is searched (Berliner & Eberling, 1989). Then these alternatives must be compared and evaluated to select the best move. So, chess programs exploit 
search and evaluation more than recognition. Obviously, the storage and computation demands of this type of exhaustive search would be mentally too costly for the 
human. For the machine, search speed is highly dependent on the hardware.

These contrasting architectural features contributed to the fascination of the 1996 and 1997 chess tournaments between IBM's Deep Blue program and the world 
chess champion, Gary Kasparov. Deep Blue's 32 parallel processors evaluated millions of positions a second, allowing it in 1996 to win the first of the six matches 
and draw game three. Kasparov's victories in the last three games emerged from his metaskill, his ability to analyze Deep Blue's type of understanding, and adapt his 
own playing to his conception of Deep Blue's approach (Byrne, 1996). Kasparov and his advisor claimed that Deep Blue evidenced an understanding of the game, a 
nascent form of intelligence, although of a different character than that of the human's, concluding "Somewhere out there, mere tactics are translating into strategy. This 
is the closest thing I've seen to computer intelligence. It's a weird form of intelligence, the beginning of intelligence" (Weber, 1996). Although for Deep Blue, search 
and evaluation processes played a much bigger role than recognition, it was able to challenge the skills arising from a different architecture, the human's. In the 1997 
rematch, Deep Blue's search power was increased by a factor of two, so that it evaluated 200 million moves per second. Kasparov's first win was equalled by Deep 
Blue's win in game two. This was followed by three draws. Then Deep Blue won the sixth game after only 19 moves, and Kasparov was forced to concede to the 
machine.

The chess matches also highlight the issue of the nature of intelligence and how we will know it when we see it in computational devices. Playing

  
Page 249

expert­level chess was accepted as a benchmark of artificial intelligence at an earlier time, and the media attention paid to the Kasparov­Deep Blue matches suggests 
that chess is still a benchmark for journalists and perhaps for the general public. However, 40 years have intervened since computers first started performing complex 
problem solving, and chess' as a benchmark usefulness has been questioned by some. One reason is that chess is a computational task, albeit an incredibly complex 
one for humans. But whether Deep Blue (or its successors) shows evidence of intelligence is not the main reason for discussing the match. Rather, the point is to 
illustrate how the comparison and contrast of different computational architectures (in this case, Deep Blue's and Kasparov's) can stimulate a more abstract view of 
what mechanisms may enable complex behavior. The argument is that computational models, even pure artificial intelligence models, help crystallize the dimensions that 
underlie intelligence, including human intelligence. In this chapter, we will focus on computational models that, more directly than Deep Blue, simulate the mechanisms 
in human cognition.

Cognitive Architectures

One of the impacts of computational modeling is its influence on the broader view that is taken toward defining the goals of cognitive science. In particular, modeling 
has made the cognitive architecture of the mind a central concern (Pylyshyn, 1991). Computer architecture is an earlier metaphor that referred to the design of a 
computer system in architectural terms, by specifying the system's basic components or resources (memories, processing units, instruction sets, communication 
channels) and their organization. Cognitive architecture refers to the design of the mind in analogous terms. Like a computer architecture, a cognitive architecture 
permits many different procedures and data structures to be constructed and used within it, but the nature of the procedures and data structures is constrained by (and 
cannot be defined independently of) the architecture. In this section, we will describe three architectures—symbolic, connectionist, and hybrid—that combine features 
of both symbolic and connectionist architectures.

  
Page 250

Symbolic architectures

Modern computational modeling of cognition was initially grounded in the symbolic architectures, which trace their ancestry to digital computers in the post­World 
War II era and the 1950s research on complex problem solving, such as proving logic theorems, recognizing patterns, and game playing. It was with symbolic models 
that researchers first saw the ability of a computer model to demonstrate complex, high­level processing beyond numerical calculation, and hence, to be capable of 
revealing aspects of human thought. An abstract characterization of a computational system is the notion of a symbol system. A symbol system has patterns that 
provide access to distal symbol structures, has a memory, and has operations that transform input symbols into output symbols (Newell, Rosenbloom, & Laird, 1989).

Perhaps the most fundamental contribution of symbolic computational modeling has been the physical symbol system hypothesis, explicitly stated by Newell and 
Simon (1976, p. 118), that ''a physical symbol system has the necessary and sufficient means for general intelligent action." Problem solving, deductive reasoning, and 
language processing are examples par excellence of symbolic domains, and the ability of computer simulations to model such processes was interpreted as an 
existence proof of the broader claim that a symbol system is at the center of human intelligence. Many of the concepts at the heart of symbolic computational modeling 
are the same ones that enabled the construal of the human mind as a complex information­processing system, such as the concepts of hierarchies, variables, heuristic 
strategies, and the fundamental concept of a symbol and the associated idea of combinatorial expressive power that comes from organizing symbols, as in natural 
language (Lindsay, 1991).

Production Systems

One of the key types of symbolic architecture is the production system (Hunt, 1989; Newell & Simon, 1972). A production system has several components, but at 
the heart of it are the productions, which are if­then rules. The if part states a condition and the then part gives an action that should be taken if the condition is 
satisfied. For example, a production might be "If there is the problem 2 + 2 = ?, then say 4." The productions encode the knowledge of the domain, in this case, a 
math fact. A production system also has a database that represents the

  
Page 251

state of the external world or what is in the individual's immediate memory. The productions are described as "firing" when the condition side elements (the if side) 
match the elements in the database. So if the model encodes the problem "2 + 2 = ?" the if side of a production will be matched, and the production will fire and 
retrieve the action, namely, the sum of 4. According to this construal, if certain conditions arise in working memory, then the associated cognitive actions are 
performed.

One of the useful properties of production systems is that the productions are modular forms of knowledge, more modular than the way comparable knowledge would 
be coded in a conventional program. Consequently, new knowledge can be added without drastically changing the system's performance. For example, in the case of 
math knowledge, each new math fact (2 + 2 = 4, 2 + 3 = 5, 2 + 4 = 6, etc.) could be coded by a separate production without altering the productions that represent 
other math facts. (This is just an illustration of its potential modularity.)

In a production system, the flow of control emerges from the content of the productions interacting with the environment. The elements that are already present in 
working memory or newly created will determine which production fires next. If only one production is assumed to fire at a time (which is not true in all production 
system architectures), then there must be some conflict resolution process that selects which production will fire from among those that are potentially enabled.

A production system architecture can be viewed as a general set of principles, a theoretical and methodological toolkit, that can be used to construct models of various 
specific tasks. The development of individual models depends not only on the constraints imposed by the architecture, but also on an analysis of the task that specifies 
what processes occur and what representation would be plausible. It is the performance and characteristics of the individual models that are then related to the 
analogous human performance.

An Example

Production system architectures have been used to model many types of processes, such as language understanding, problem solving, complex spatial reasoning, and 
so on. To provide a concrete example of one, consider a "toy" model that constructs a syntactic representation

  
Page 252

of a sentence. This toy model would actually be one part of a larger system that processed language. Its goal is to take the successive words of a sentence and 
develop a phrase­structure representation that specifies which constituents represent noun phrases, which represent the verb phrases, and so on. For example, one 
production recognizes the syntactic category of words such as the and a (articles) that are followed by nouns; its action is to represent that such combinations are 
noun phrases. The production could be expressed as "Article + Noun   Noun Phrase." The noun phrase, in turn, could be part of the action side for another 
production, such as "Noun Phrase + Verb Phrase (intransitive)   Clause." (For those readers who have studied linguistics, note that each production corresponds to 
a context­independent rewrite rule: Allen, 1995.)

Table 8.1 gives a sample set of productions that has been simplified by eliminating some of the implementational details. These productions would do a syntactic­based 
parse of some simple sentences, such as "The dog bit one cat," if implemented with a lexicon that coded the syntactic

Table 8.1
Sample parsing productions

P1 ((Article) + (Noun)) (Noun Phrase)

P2 ((Number) + (Noun)) (Noun Phrase)

P3 (Noun) (Noun Phrase)

P4 (Verb (intransitive)) (Verb Phrase)

P5 ((Verb (transitive)) + (Noun Phrase)) (Verb Phrase)

P6 ((Noun Phrase) + (Verb Phrase)) (Clause)

A Trace of the Sequence of Productions in Parsing the Sample Sentence
"The dog bit one cat."

P1 ((Article) + (Noun)) (Noun Phrase)

P1 ((The) + (dog)) (The dog)

P2 ((Number) + (Noun)) (Noun Phrase)

P2 ((one) + (cat)) (one cat)

P5 ((Verb (transitive)) + (Noun Phrase)) (Verb Phrase)

P5 ((bit) + (one cat)) (bit (one cat))

P6 ((Noun Phrase) + (Verb Phrase)) (Clause)

P6 ((The dog) + (bit (one cat))) ((The dog) (bit(one cat)))

  
Page 253

and semantic properties of individual words (such as the, one, dog, bit, wild, cat, etc.). This system is still incomplete in that there is no representation of the 
feedforward expectations; for example, when a reader encounters a transitive verb, an expectation is set up for a noun­phrase object. Nevertheless, the sample model 
conveys how a production system works.

One interesting aspect of such a model is that it makes salient the step­by­step processing from the beginning state of the problem to the goal state, in this case, from 
the first word to the representation of the entire sentence. The latter part of table 8.1 shows the successive productions that would be evoked by the successive words 
in the sample sentence in the sample parsing model.

All of the possible ways to get front a starting point to a goal constitute a theoretical construct called a problem space (Newell & Simon, 1972). In the sample parsing 
model, a noun phrase can begin either with an article or a quantifier or with neither; so there are at least three possible paths to this node in the problem space. (The 
problem space is equivalent to a transition network grammar.) The sequence of operations can be thought of as a path through the problem space. The productions 
evoke the successive operations, going from one state to the next in the problem space. The trace of the successive processes of the model can sometimes be 
compared to traces of the human's successive processes (as inferred from data such as the participant's eye fixations or think­aloud comments). In fact, we will show 
that the temporal characteristics of readers' eye fixations as they go through a sentence are well captured by a model that has a production system architecture.

The productions' actions involve operations that can be interpreted symbolically, such as creating representations, modifying them, and associating one element with 
another. There are several aspects of the example production system that are not invariant characteristics of this architecture. First, the representations used in the 
example are composed of unitary symbols, but it is possible to use representations that consist of features. Second, in the example, the production only fired if the 
condition side perfectly matched the elements in working memory. However, the system might allow productions to fire if there are "partial matches" between the 
condition in the production and the elements in the database.

  
Page 254

Third, the action was described as occurring in a single cycle of processing, when the production fired. However, actions can occur gradually over successive cycles 
rather than in a single cycle, as in connectionist models. Fourth, the production system can be a serial one, as illustrated here, in which only one production fires at a 
time. Alternatively, some production system architectures allow multiple productions to perform at least some actions in parallel (Holland, Holyoak, Nisbett, & 
Thagard, 1986; Thibadeau, Just, & Carpenter, 1982).

The rule­based formalism of production systems has been extraordinarily useful in artificial intelligence, not only in theoretical models but also in AI applications, 
including expert systems. Expert systems are programs for performing practical tasks, such as prescribing antibiotics or configuring computers, that require expertise 
but not necessarily subtle insights (Charniak & McDermott, 1985). The production rules encode the various contingencies that represent the relevant features of the 
problems and actions associated with certain configurations of conditions. However, neither the representation nor the processing is necessarily intended to be 
analogous to those of a human expert. In fact, some expert systems are intended as aids to the human decision maker. We will revisit the contrast between expert 
systems and psychological models in a later section on intelligent tutoring. Here, the point is simply that this approach has had a major role in both cognitive science 
and AI applications.

Connectionist Architectures

Another type of architecture encompasses connectionist models, which are networks of parallel­computing elements in which each element (or node) has an 
associated activation value that is computed from the values of its input. These elements are often conceptualized as being subsymbolic—either features, microfeatures, 
or uninterpretable primitives. The elements are interconnected through connections that have numerical weights to indicate the strength and polarity (positive or 
negative) of the relation between the connected elements. An important property of connectionist models is that the operations are numerical ones, representing only 
increments or decrements in activation or connection weights, rather than operations that can be interpreted symbolically.

  
Page 255

A familiar example of a connectionist model is the interactive activation model (IAM) of word recognition (McClelland & Rumelhart, 1988), which was developed 
to explain why people are more accurate at detecting a letter (such as "A") in a word (e.g., "WART") than in a comparable nonword (e.g., ''RAWIT"). The model has 
representations of individual letters and words. The connection weights between the letter representations and the word representation are higher than the weights 
between letters and a representation of an arbitrary nonword. A graphic depiction of this type of model is shown in figure 8.1. The nodes represent networks that 
process information at successively more abstract levels, with feed­forward and feedback links. If a word is presented, the activation of its letters feeds forward to 
increase the activation of the word representations, which immediately feeds back activation to the letter

Figure 8.1
A schematic depiction of the various levels in a typical connectionist model, patterned after the interactive activation model (IAM)  
of word perception that proposes a mechanism that accounts for why the letters of a word are perceived faster and more accurately than the letters  
of a nonword (McClelland & Rumelhart, 1988). The nodes, representing features, letters, and words, are linked by feedforward and feedback connections.  
There are also interword inhibitory connections because the encoding of the word rat is incompatible with encoding bat or sat in the same location. 
When a word is presented, the activation from letter features and letters feeds forward to the activation of the word representation,  
which in turn feeds back activation to the letter and letter feature levels. By contrast, for nonwords there is no higher­order unit to activate, and  
so the letters constituting a nonword cannot receive activation from the word level. Thus, words and their 
constituent letters are perceived faster and more accurately than nonwords and their constituent letters.

  
Page 256

level, improving their discriminability from other letters. For example, activation from the letters "R," "A," "T'' begin to activate the word "RAT" and almost 
instantaneously, activation from "RAT" feeds back to increase the activation of the individual letters, as shown in figure 8.1. In the nonword condition there is no 
higher­level word representation to feed back activation to the letter­level representation. Indeed, the feedback from the word representations to the letter level is 
crucial to the empirical effect called "the word superiority" effect (Richman & Simon, 1989). This model has the nodes, feedforward and feedback links, and numerical 
operations that characterize this connectionist architecture.

Connectionist models trace back at least to the 1950s and Rosenblatt's research on perceptrons, which were parallel visual­recognition devices. As Minsky and 
Papert (1969) noted about the initial explorations of the approach, "The popularity of the perceptron as a model for an intelligent, general­purpose learning machine 
has roots, we think, in an image of the brain itself as a rather loosely organized, randomly interconnected network of relatively simple devices" (p. 18). In the 
meantime, researchers have found that the brain is not loosely organized in the sense that the networks are not randomly interconnected. Nevertheless, the link 
between connectionist models and this view of the brain's organization persists. Indeed, it is the emergent structure of the connectionist networks and the highly 
structured organization of the brain that now appears to provide a rationale for thinking that this type of model may help mediate between cognitive science and neural 
science.

Since the initial exploration of connectionist models, the incorporation of several powerful mechanisms has greatly extended the scope and usefulness of this 
architecture. One set of such mechanisms includes various learning algorithms that are not themselves intended to be models of human learning, but that, nevertheless, 
allow a model's links to acquire weights that reflect the contingencies among the stimuli that the model processes. For example, with one such learning algorithm, called 
back­propagation, the weights between elements that result in some "correct" output are gradually increased, and the weights between elements that are incorrect are 
decreased. Over successive cycles, the model's weights are tuned to reflect the contingencies in the stimulus set. This acquisition phase may be prior to the main 
simulation and not constitute part of

  
Page 257

what is being modeled, except indirectly. Another powerful mechanism is the inclusion of multiple levels of hidden units, levels of representations between the input 
level and the output level. The pattern of weights, the number of units, and the connectivity of the hidden units can strongly influence a model's properties and, in fact, 
can be crucial to a model's success. The so­called hidden units can be ultimately the source of the model's ability to reflect very complex contingencies in the 
environment, and they are often the source of some of the more interesting emergent properties.

There has been a tendency for some cognitive scientists to align themselves with the symbolic or connectionist approach and, in some cases, to devalue the other 
approach. Although connectionist models have already proven themselves to be useful formalisms for modeling perceptual processes, their ultimate role or sufficiency 
for modeling high­level cognitive processes, such as language and problem solving, is not clear (e.g., Smolensky, 1988; Touretzky, 1988). One major issue has been 
whether connectionist models are sufficiently powerful to capture the expressiveness and recursion inherent in language (see Bever, 1992; Fodor & Plyshyn, 1988; 
Kim, Marcus, Pinker, Hollander, et al. 1994; Pinker & Prince, 1988; and others in Cognition, 1988, and Brain and Behavioral Science, 1988). However, because 
the development of new computational formalisms is an active research area, the assessment of the ultimate contribution of the approach is a matter of conjecture. 
Moreover, there is an increasing number of hybrid models that incorporate significant features from both approaches.

Hybrid Models

An increasing number of computational models combine features of connectionist and symbolic architectures. Hybrid models may achieve the power of symbolic 
models with some of the attractive features of the connectionist systems (Bechtel & Abrahamsen, 1991). For example, in some connectionist models, featural elements 
(or subsymbolic units) are functionally bound together so that they act as a symbol, which is the equivalent of a symbolic representation. In one type of linguistic 
inference model, the units that correspond to a single referent are bound together through synchronous firing (Shastri & Ajjanagadde, 1993). Also, some

  
Page 258

symbolic architectures incorporate some of the attractive properties of the connectionist approach. In a hybrid architecture that we will discuss in more detail, the 
symbolic elements have activation levels associated with them, and productions take actions by manipulating activation levels (Thibadeau et al., 1982). Hence, there is 
not an absolute dichotomy between the two approaches. As we will show in the "Computational Models of Higher­Level Processing" section, the two architectures 
are completely compatible abstractions, which suggests that a wise scientific strategy is to figure out their interrelation, rather than to choose between them.

The concept of a cognitive architecture has made it possible to reconsider a variety of other specific issues in light of each other and in light of the larger system that 
encompasses them all. Some of these issues are new, but some have roots that long predate computational modeling (such as whether representations are discrete or 
analog and whether short­term memory is structurally separate from long­term memory). One such issue we will consider next is what constitutes a basic module in the 
architecture.

Sharpening Conceptual Issues: Cognitive Modules

The concept of cognitive architecture has sharpened the debate relevant to several issues, and one example is the issue of cognitive modularity. It has sometimes been 
proposed that the mind might consist of a set of cognitive modules, each of which is an autonomous subsystem. The processing of each module is hypothesized to be 
uninfluenced by certain classes of information that may be present elsewhere in the system (Fodor, 1983; Garfield, 1987). This lack of influence, called informational 
encapsulation, is the single most distinguishing operating characteristic of a cognitive module. One of Fodor's examples is the encapsulation of visual motion 
perception from certain types of kinesthetic information. When a person nudges her own eye with her finger, she sees the world moving. The information about the 
finger movement is apparently not available to or not used by the processes that interpret input from the retina, even though some part of the cognitive system "knows" 
the motion is not real. The rationale Fodor offers for encapsulation is that modular systems have to operate rapidly (without allocating time to consider all possible rele­

  
Page 259

vant information), somewhat like a reflex. Fodor considers the syntactic processing of language to constitute a module that is encapsulated from nonsyntactic 
information, such as the pragmatic context or background world knowledge. These other information sources are ultimately brought to bear on the interpretation of a 
sentence—not on the syntactic processing itself (according to modularity theory)—but at some later stage. Of course, an important consideration is that modularity can 
only be defined with respect to a time period (Carpenter, Miyake, & Just, 1995). A process that is encapsulated for 10 to 20 ms may be interactive when viewed 
from the vantage of a 50 to 100 ms unit. More generally, if the analysis has a 50­ms resolution, then a finer interval of encapsulation (say 10 ms) is not detectable and 
perhaps not meaningful. One of the contributions of empirical research on eye fixations during reading has been to demonstrate that readers spend more time on 
certain types of anomalous words and phrases before going on to the successive words and phrases (Carpenter & Daneman, 1981; Carpenter & Just, 1983; Just & 
Carpenter, 1980). Consequently, any encapsulation must be brief relative to the time to comprehend a whole sentence. In addition, this issue has been addressed by 
various computational models.

Fodor's encapsulation hypothesis is an example of how the perspective of cognitive architecture has influenced the framing of some important concepts. The issue of 
what constitutes a module and its relation to behavior has been illuminated by computational models in the context of cognitive neuropsychology where the problem of 
identifying cognitive modules has relied on the interpretation of behavioral dissociations. The logic of interpreting behavioral dissociations is as follows: if after a 
particular lesion, patient X shows a behavioral deficit (an inability to perform the task) whenever process x is required and no other deficits, and following some 
different lesion, patient Y shows a deficit whenever process y is required and no other deficits, then the processes of x and y can be dissociated from each other. In 
addition, x and y are typically at the "same" level of analysis and represent relatively fine descriptions (how "fine" is an issue). For example, two such candidate 
"modules" are the processes for representing the pictorial features of a visual image versus the processes for mentally rotating and manipulating an image.

  
Page 260

Although the logic sounds compelling, there are both practical and theoretical difficulties in linking behavioral deficits to cognitive modules (see Kosslyn & Van Kleeck, 
1990; Miyake, Carpenter, & Just, 1995; Shallice, 1988). Computational modeling has contributed to understanding those difficulties by demonstrating that the 
mapping between the behavioral impairment and the module need not be straightforward. Indeed, communication between two "modules" in connectionist 
architectures with feedforward and feedback mechanisms should not result in completely dissociable behavioral impairments (Farah & McClelland, 1991). The 
explorations of the model's behavior demonstrated that the mapping between behavior and the interpretation vis­à­vis potential modules requires much more 
specification than what a verbal description provides. Later, we will consider another computational perspective on the issue of cognitive modules.

Computational Models of Higher­Level Processes

In this section, we will briefly describe several architectures and models of higher­level cognition, focusing on two key characteristics: the mechanisms they propose 
and the way in which the model is mapped onto human performance. A second goal of this section is to illustrate some of the domains in which modeling has been 
pursued, from language comprehension, to intelligent tutoring, to the analysis of neuropsychological deficits and individual differences.

The Capacity­Constrained Activation Theory

One of the more interesting and important issues for psychology is to determine what internal limits account for the obvious and pervasive constraints on thinking. Even 
as simple a task as mental multiplication of multidigit numbers is effortful and errorful, because it requires that symbolic operations be executed at the same time as 
partial products are being retained in working memory. Such limits, which can be construed as capacity constraints on working memory, are the bottleneck in the 
operational throughput of thought. Part of what must emerge in cognitive research is a theory of the architectural constraints on various resources.

  
Page 261

Working memory plays a central role in all forms of complex thinking, such as reasoning, problem solving, and language comprehension. However, its function in 
language comprehension is especially evident because comprehension entails integrating the meanings of a sequence of words and phrases whose processing is 
distributed over time. Our own recent research (Just & Carpenter, 1992) examines the implications of an architecture that limits the amount of total resources available 
for processing the successive words of a sentence and maintaining the partial products as needed.

The theory of the capacity­constrained architecture is that of an activation­based production system, 3CAPS; the acronym stands for capacity­constrained concurrent 
activation­based production system. As is the case with conventional production systems, the procedural knowledge in 3CAPS consists of a set of modules called 
productions, each of which is a condition­action contingency that specifies what symbolic manipulation should be made when a given pattern of information arises in 
working memory. However, 3CAPS deviates in at least three ways from conventional production systems in that it uses mechanisms common to activation­based 
parallel models. First, each representation has an activation level that reflects the accessibility of the representation in working memory. An activation level changes 
when a production either causes it to increase or decrease in increments or when there is a global deallocation of activation, as will be described. Only if the activation 
level of an element is above some threshold is it effectively "in" working memory and, consequently, available to enable a production to fire. Second, the processing is 
graded, in that the productions do their work gradually, over several cycles of the production system's operation, each time incrementally changing the activation level 
of an element, by repeatedly propagating activation from a source element to an output element. This propagation occurs reiteratively over successive processing 
cycles, until the activation of the output element reaches some threshold or some other event stops the production from firing. Third, 3CAPS allows multiple 
productions to fire in parallel in a given cycle, as long as their conditions are met.

The 3CAPS architecture provides one tantalizing solution to the question of how symbolic and connectionist models relate to each other. At

  
Page 262
Table 8.2
Gaze durations of a typical reader (in ms)

 
Source: From Carpenter and Just (1983, p. 278).

the highest levels, 3CAPS looks like a production system, with symbolic conditions and actions; for example, one such production might relate an earlier noun phrase 
to a verb. However, successively nested within a condition are other conditions and actions. At the lowest levels, these nested condition­action relations are 
connectionist networks, such as a network for word encoding and lexical access.

This architecture can be further illustrated by considering how the model accounts for the time a reader spends on successive words of a text, as shown in table 8.2. 
Above each word is the gaze duration (the total time of successive fixations on a word) for a typical college student reading a technical article on pyramids from a 
news magazine (Carpenter & Just, 1983; Just & Carpenter, 1980). This reader (who was asked not to reread) spent 384 ms on the opening word; he then spent 
1201 ms on the initial mention of the topic word, weightarm, at the beginning of line 3, 899 ms on quarries (end of sentence 5), and 2150 ms at the end of the 
paragraph. We can analyze the word­level, phrase­level, clause­level, and sentence­and text­level factors that influence the duration of such gazes, averaged over a 
large number of texts and readers (Carpenter & Just, 1983). This analysis shows that the time readers spend on a

  
Page 263

word strongly reflects the properties of the word (its length and frequency). These measures reflect the operation of the lower levels of the hierarchy (word encoding 
and lexical access), processes initiated and largely terminated before the next word is encoded. Other processes (such as the syntactic­binding processes that identifies 
the words The dog as a noun phrase) may be initiated when the first word is encoded, but only completed when both words have been represented. Finally, at the 
highest levels, processes such as relating the whole sentence to the representation of the whole situation, may be initiated when the important thematic words are 
encoded, but may only be completed after the entire sentence is read. The principle stating that processes at multiple levels are initiated and completed as soon as 
possible is the principle of immediacy (Just & Carpenter, 1980), and it characterizes much of cognitive thought. Thus, to account for the processing at these many 
levels, one needs an architecture in which the various levels of productions (from word encoding to text­level representation) are cascaded and nested.

Figure 8.2 shows a schematic depiction of the kinds of processes generated during the left­to­right processing by a typical reader (such as the one whose fixations are 
shown in table 8.2). On line 1, the reader fixates the word Another, encodes it, and retrieves its meaning; these low­level processes are represented by short 
feedforward and feedback arrows. At the same time, some weak expectations are generated about the possible upcoming syntactic category because Another must 
modify a noun. These expectations are represented by arrows pointing to the next word or words. On line 2, the next three words are encoded and syntactically and 
semantically related to each other. The word answer is a noun and compatible with the syntactic expectations and makes sense with the semantics, so activation is fed 
back to the representation of the initial phrase, represented by a feedback arc. In addition, the words to the begin a prepositional phrase, setting up an expectation 
that at some point there will be a head noun. The expectation is represented by a large feedforward arc pointing to some future positions. In step 3, the reader 
encodes the phrase ever intriguing, represents it as a modifier in the prepositional phrase being constructed, and feeds back activation. to the developing 
representation. In line 4, the reader encodes question, which is a possible head for the prepositional phrase, and so feeds back activation to that

  
Page 264

Figure 8.2
A schematic depiction of the patterns of feedforward and feedback activation that occurs as a reader goes from left 
to right in reading a text, such as the passage in table 8.2 about pyramid construction. As an example, consider the processes underlying 
the first four gazes shown in table 8.2. Each line shows the word or words that are being encoded, whereas the surrounding words 
are represented by blanks.  The short arcs that feedforward and back to that lexical concept represent visual encoding and lexical 
access of the word being fixated. Weaker and more distant relations are represented by arcs that point farther ahead or
farther back. Each line represents a successive gaze on the sentence. The point is that as the sentence is read, there is a  
cascaded series of processes that cuts across multiple levels, from encoding, to lexical access, to constructing a representation of a phrase  
or a clause, and even to forming causal models or scientific explanations. Thus, at the lowest levels, the 3CAPS reading model resembles 
a connectionist model of word recognition; however, this level is embedded within increasingly higher levels that represent syntactic, 
semantic, text­level, and schematic processes.

  
Page 265

part of the representation and may set up the weak expectation that the entire subject phrase has been encoded. The point of illustrating these successive steps is to 
show that multiple and overlapping cascaded processes are initiated at each word and phrase.

This example also allows us to explain one way of viewing the relation between the two major proposed architectures, the connectionist and symbolic, as represented 
by a production system. As figure 8.2 shows, one might view each sequential operation as initiating a cascaded set of processes that, at the lower levels, looks 
remarkably like the word perception model described earlier. However, this word encoding only addresses one, low­level set of processes, whereas cognition 
cascades these processes, building up to larger and slower processes, such as those concerned with syntactic, semantic, and text­level processes and on up to 
referential and schematic processes. At the highest levels, reading a whole introductory sentence might set up certain expectations about how the explanation will 
proceed, and it might cause the reader to retrieve some relevant facts. Naturally, the higher levels will tend to take longer, their processes will appear to be serial, and 
their activation basis may be less apparent, though no less real. Thus, at each level, the presence of certain types of elements will initiate certain types of expectations 
(or actions), which sounds much like the mechanisms underlying symbolic production systems.

This architecture suggests that it is, in part, the abstractness, or grain size, of the analysis that appears to differentiate symbolic and connectionist formalisms. Figure 8.3 
gives a schematic depiction of how 3CAPS mediates the transition from symbolic architectures (at the top) to neural nets (at the bottom), with the cascaded hybrid 
model depicted in the middle. At the highest level, the 3CAPS architecture closely resembles the classic symbolic architecture of production systems that consist of 
condition­action rules and which Newell and Simon (1972) and others have found so useful in accounting for complex problem solving. At this level, the productions 
are condition­action rules. In complex problem­solving domains, the total time for the actions of such productions to reach threshold is relatively long, and such 
cognitive actions are very resource demanding. By contrast, at the more embedded levels of 3CAPS, the productions begin to resemble the structures in the 
connectionist

  
Page 266

Figure 8.3
A schematic depiction of the various levels in 3 CAPS, showing how its connectionist architecture spans  
between the symbolic production­system architecture and low­level neural networks. 3CAPS itself  
is a nested, activation­based formalism (which is well represented at the second level). One of the embedded levels  
can be seen to resemble the interactive activation model, described earlier. At the lowest level, we have 
represented the parallel, embedded neural circuits that are represented by symbols in 3CAPS. At higher levels, the architecture  
reveals its relation to that of production systems. The difference is that production systems typically are not activation  
based and do not operate in parallel; nor do they have resource constraints. The graphic depiction suggests 
that 3CAPS spans the levels of these formalisms, which may represent different levels of abstraction.

interactive­activation model of word recognition. The intermediate models contain productions expressing processes at many grains, for example, from letter and word 
encoding to sentence processing. The low­level productions, represented here as embedded loops, are rapid and require few resources. At the bottom of figure 8.3 
we have depicted something like the neural nets. The point of including the neural net is to indicate that the nodes and links in the higher levels are isomorphic to neural 
circuits. The spatial and temporal pattern of relations at this finer level gives rise to what is represented by the nodes and links at the higher level. Thus, 3CAPS claims 
that the cognitive architecture is a nested and cascaded unified system and that the distinctions between symbolic and connectionist architectures partly represents a 
difference in the grain size of the theoretical analysis.

  
Page 267

Capacity Constraint

A central feature of 3CAPS is its capacity constraint, the claim that all of thinking from the lowest to highest levels is limited by resource consumption. Specifically, 
3CAPS proposes that a limited pool of activation mediates both processing and storage. In language, there are resources for language processing and storage; in 
spatial reasoning, there are separable resources for spatial reasoning and storage. If on some cycle of processing, the total demand for activation for both storage and 
processing exceeds the allowable maximum, then either processing or storage can be scaled back. The scaling back on processing means that less activation is 
available during a particular cycle of processing, so processing slows down. The scaling back on storage means that less activation is available to maintain activated 
elements, allowing them to fall below threshold and effectively be forgotten. Storage in working memory is fueled by activation because the strength of each 
representational element is determined by its associated activation level. An element can represent a word, a phrase, a proposition, a grammatical structure, a thematic 
structure, an object in the external world, and so on. The use of the activation level construct here is similar to its widespread use in connectionist models in that it is 
used as a way to gradually operate on information. The activation is used for information maintenance, and it is also the commodity that underlies computation. The 
computations are performed within a production system architecture, in which productions manipulate symbols by modifying their activation levels or by constructing 
new elements. That is, the computations occur over time (cycles of computational operation) in which some action element's activation level is increased or decreased 
in increments. Thus, one measure of the model's performance is the number of cycles it takes to complete some computation. Processes that take more cycles to be 
completed can be considered more difficult, and the cycle count can be related to the processing time of the human.

A Model of Sentence Processing

An example of the application of this approach has been in accounting for the profile of processing times when people are reading sentences that vary in linguistic 
complexity (Just & Carpenter, 1992). College students take longer to read sentences that are linguistically more complex, such as ''The senator that the reporter

  
Page 268

attacked defended the expenditures in the hotel." Much of the additional time occurs at the verbs because the comprehender must figure out who is doing what to 
whom. Moreover, in this linguistic construction, the process is complicated by the fact that the nouns play different semantic roles in the two clauses. By contrast, a 
superficially similar sentence in which the nouns have the same roles is understood more quickly, such as "The senator that attacked the reporter defended the 
expenditures in the hotel." Like the human reader, the computational model processes the successive words of a sentence, developing a representation of the syntactic 
and semantic relations that can later be interrogated to answer questions, such as "Who did the attacking?" The mapping process for this model is between the cycle 
count of its computations on words and phrases and the processing time profile of human readers on successive words and phrases of a sentence. The model accounts 
for the differences between the processing times for different types of sentences, as shown in figure 8.4.

The model also provides an account of one of the dimensions of difference among individuals, proposing that it be conceptualized as different amounts of activation 
available for processing and storage. Less skilled readers can be modeled as having less activation available for computing and storing the results of those 
computations than do more skilled readers. The lower amount of activation can result in less maintenance if the shortage is borne by the storage function; this results in 
a functional loss of information during processing. Alternatively, the shortfall can be borne by the computational function, resulting in a slowdown in processing, or it 
can be borne by both functions. Although the current implementation of the capacity­constrained model uses an intermediate point in this trading relation, it is possible 
that different tasks or individuals may occupy different locations on this function. Thus, this computational approach provides an account of certain types of processes 
that take more time, whether due to the task or to the individual's skill.

Modules Revisited

This model also provides some insight into the issue we raised earlier concerning cognitive modularity. Before explaining the model's point, we will describe one issue 
that has been proposed to reflect on modularity. The issue concerns the ability to use semantic information

  
Page 269

Figure 8.4
The number of cycles expended on various parts of two kinds of sentences (called subject relative and object relative)  
when the model, CC READER, is operating with more or less working memory capacity. The bottom graph presents the 
human data for comparison with the simulation. The data is word­by­word reading time. Notice how both the  
model and humans tend to spend more cycles/time on the harder parts of the sentences, namely around the verbs of the main clause  
and the relative clause. Comparing the cycle count to the distribution of human processing times is one way to assess 
whether the model has captured the significant aspects of the processing. (From A capacity theory of comprehension: Individual differences in 
working memory, by Just & Carpenter. Copyright 1992 by the American Psychological Association. Figure 9, p. 140, reprinted with permission.)

  
Page 270

to immediately resolve a temporary syntactic ambiguity. For example, consider the ambiguity that is encountered on the third word of the sentence fragment "The 
defendant examined ..." This fragment is ambiguous between the past tense interpretation and the less frequent reduced relative clause interpretation, as in "The 
defendant [who was] examined ... " However, in a fragment such as "The evidence examined ... " the inanimacy of evidence can, in principle, rule out the active past­
tense interpretation, because evidence can't do any examining. We say "in principle'' because if syntactic processing were truly modular and informationally 
encapsulated, as Fodor's proposed architecture would have it, then the inanimacy information about evidence would in fact not penetrate into the syntactic processing.

An ingenious experiment supported Fodor's proposal by analyzing the time readers spent on fixating successive words of these different types of sentences (Ferreira & 
Clifton, 1986). The reasoning behind the study was that if readers did take the inanimacy of evidence into account during their initial syntactic analysis, then they 
should not be surprised (surprise indexed by taking additional time) if the initial sentence fragment were followed by something consistent only with the less­frequent 
reduced relative­clause interpretation (e.g., "The evidence examined by the lawyer ..."). The results showed that there was just as much "surprise" when the noun was 
a word such as evidence as when it was a word such as defendant, suggesting that readers ignore the semantic cue provided by evidence during their initial syntactic 
processing. The initial study favored a modular architecture, at least for syntactic analysis. However, an alternative architectural framework provides a different 
account of the result. The failure of the inanimacy cue to influence the syntactic processing could just as well be the result of a capacity constraint, rather than being 
caused by a structural encapsulation. It could be that the semantic cue is not taken into consideration during the first­pass syntactic analysis because there is a lack of 
resources to do so.

In a subsequent study we found that the initial "syntactic impenetrability" result holds only for subjects who are not the most skilled readers (Just & Carpenter, 1992). 
Those who have more language skills and resources treated the inanimacy information as a cue, just as they treated a syntactic marker as a cue. Each cue alone and 
the two cues together

  
Page 271

Figure 8.5
A graph of the first­pass reading time on the disambiguating phrase (e.g., by the lawyer) for both more skilled (high­span) and less skilled (low­span)  
college readers. For the low­span readers, only the explicit syntactic cue (i.e., who was) facilitates reading time on the disambiguation.  
By contrast, for the high­span readers, the explicit syntactic cue and the inanimacy cue (i.e., evidence vs. defendant) both  
facilitate first­pass gaze duration, and the effect of the two cues together is additive. The difference between the two groups suggests  
that syntactic information is not necessarily isolated from semantic influences. (Data are adapted from Just & Carpenter, 1992.)

reduced the processing time. Figure 8.5 shows the difference in the initial gaze on the disambiguation for the two groups. For the more skilled readers (the high span), 
each cue (the syntactic cue and the inanimate noun) reduces processing time and both cues together result in the shortest processing time. By contrast, for the less 
skilled readers (the low span) only the syntactic cue facilitates the processing of the disambiguation initially. The difference between the groups on this very specific 
part of the sentence suggests that syntactic processing isn't modular by virtue of

  
Page 272

some "hardwired" property of the system; otherwise there would be no individual differences in the cue use. The capacity constraint of 3CAPS provides an account 
for why a semantic cue enters into the first­pass analysis of some readers but not of others, whereas a completely modular architecture cannot accommodate the 
individual differences.

Although we have described the comprehension models in some detail, the 3CAPS architecture is not limited to language comprehension. In fact, the general 
approach applies as well to spatial problem solving (Just & Carpenter, 1985). Spatial problem solving draws on processes that show some similarities to those 
involved in language comprehension, but, at least among college students, spatial skill is fairly independent of language skill (Shah & Miyake, 1996). That is, one can 
be skilled at language and unskilled at spatial problem solving or vice versa. Moreover, this general architecture has been used to model working memory processes in 
human­machine interaction (Byrne, 1994), text memory (Goldman & Varma, 1995), and mechanical reasoning (Fallside & Just, 1994). The models differ depending 
on the domain represented, but they share the structural and processing assumptions that constitute the core of the 3CAPS architecture.

Intelligent­Tutoring Systems

Intelligent­tutoring systems illustrate how computational modeling has been integrated into large­scale domains, and consequently, how modeling has expanded the 
scope of theoretically driven research (Sleeman & Brown, 1982). The characteristics of the more successful intelligent­tutoring systems reveal cognitive science's 
concern with the human learning system, as well as computer science's concern with the representation and access of information. In this case, the information is the 
domain to be learned. The tutoring systems developed since the 1980s respond adaptively to the student's queries and mistakes by incorporating an explicit model of 
the student, and in that way, intelligent­tutoring systems differ from the educational software known as computer­assisted instruction (CAI), which typically do not 
explicitly model the student.

Intelligent Tutoring versus Expert Systems

Another way to see the psychological content in a tutoring system is to contrast a successful tutor with the structure of an expert system. An expert system might 
contain

  
Page 273

all of the information needed for problem solving, but not necessarily in a form that lends itself to understanding how a student might approach the problem, and so it 
cannot be the basis of a tutor. The contrast between the expert system and the tutor is highlighted in the case history of the development of a medical diagnosis tutor 
that was initially based on an expert system, MYCIN (Clancey, 1984). MYCIN, a successful expert system that aided in medical diagnosis, consisted of a set of rules 
that probabilistically related a list of medical symptoms with their potential diagnoses. Although it had knowledge that was useful for medical diagnosis, the knowledge 
wasn't usefully represented to serve as the basis of a medical tutor. Medical students found the rules difficult to understand and integrate. In order to move from being 
an expert system to being a tutor, the system had to be radically revised to reflect the learner's previous knowledge of the relations among diseases, symptoms, and 
tests. The new tutoring system included a plausible representation of the learner's knowledge as well as the abstract hypothesis­generation and management strategies 
to guide the learning (Clancey, 1986). This case history clarifies the distinction between an arbitrarily organized knowledge base, which may be at the heart of an 
expert system, and a psychological model. The psychologically based tutoring model must be more than a representation of the knowledge to be acquired. Although 
the tutor must have a characterization of the problem domain, it must also characterize the learner's knowledge and thought processes, and it must incorporate some 
model of the tutoring process itself, such as how to sequence the information, monitor the student's responses, and intervene with certain feedback.

ACT­R and Intelligent Tutoring

One of the more theoretically grounded tutoring systems has been developed by Anderson and his colleagues, using Anderson's ACT­R theory, which is a production 
system architecture (Anderson, Corbett, Fincham, Hoffman, & Pelletier, 1992; Anderson, Corbett, Koedinger, & Pelletier, 1995). The symbolic nature of ACT­R 
has been used in tutoring systems that span from beginning programming (LISP and Pascal) to high school math (algebra and geometry). The tutors are based on a 
thorough analysis of the domain that underlies the model, which consists of a set of productions that express the individual steps to be taken to solve particular types of 
problems. The

  
Page 274

tutor then works by trying to match its representation of a problem to the student's actions. At each point in the solution, the tutor is capable of generating a set of 
productions that constitute a correct solution path. If the student takes an action that is off this path, then the computer can provide feedback and instruction. The tutor 
is also available as a help facility if the student requests an explanation. Some of the tutoring research has focused on how soon feedback should be presented about 
an error (the consensus has been soon) and what type of information should be given to improve learning rates.

After over a decade of research with various types of tutors, Anderson et al. (1995) described several of the cognitive principles of the tutoring design that 
characterize their approach. One principle relevant to a cognitive theory expresses the commitment to a production system architecture. This is both a commitment to 
the idea that cognitive skills can be decomposed and that individual productions provide the appropriate grain size for a theoretical analysis in the tutoring domain. In 
this theory, the ability to learn, remember, and appropriately apply these productions constitutes the procedures of the cognitive skill, whether it is geometry or the 
LISP programming language. The theory claims that the learner starts with declarative instructions in a domain (such as geometry); through guided practice, this 
declarative knowledge is converted into procedural knowledge (the representations evoked in skilled problem solving). The productions that link conditions and 
actions are then strengthened, making problem solving less error prone and more rapid. The claim of Anderson and his group is that the complexity of learning results 
from the complexity of the domain but that the learning of each individual production is quite simple.

The research is interesting not only for its theoretical insights into the nature of teaching and learning, but also because of the practical issues that arise in interfacing a 
theoretical model with the realities of high school classrooms. For example, one assessment suggested that computer tutors are sometimes highly successful with high 
school students who don't typically enjoy classroom math, but for sociological reasons as much as cognitive ones. Part of the appeal of the intelligent tutor arises from 
the fact that such tutors are perceived as being high tech, and therefore, desirable. Another important point is that tutors do not replace high

  
Page 275

school teachers, and the tutor's effectiveness depends on the teacher in the high school classroom. Also, the role of the tutor varies with the students' level and the 
domain. With the more motivated and mature college students, the programming tutors have operated more as self­paced, stand­alone systems.

At first glance, it might seem that a practical measure of a tutoring system's success is how well people learn with it. However, the interpretation of such a measure is 
not simple, in part because the baseline isn't obvious. Should the tutor's performance be compared to the learner's achievements with a human teacher, and if so, what 
about the fact that the two teaching methods may take different amounts of time? Should a tutor be compared to a self­paced course? Any such comparisons in real 
life may involve additional complicating factors, such as who takes the courses. Nevertheless, in one evaluation of the LISP­programming language­tutoring system, 
college students acquired it in 30% less time and scored 43% better on a final exam than students who were learning on their own (Anderson, Boyle, & Reiser, 1985). 
The success of these computer tutors represents an interrelated set of claims concerning how a domain is mentally represented, how it should be physically conveyed, 
how learning is best accomplished in terms of the feedback and contingencies, and appropriate ways to facilitate and guide that learning. We have described the 
tutoring project in some detail because it illustrates how a family of computational models can constitute not only a theoretical contribution to cognitive science, but also 
have a large impact in a complex, practical domain.

Cognitive Lesioning

Just as certain types of animal models have permitted physiological studies that cannot be performed with humans, so computational models have permitted analogous 
cognitive­lesioning experiments. Animal­lesioning experiments involve temporary or permanent disabling of that portion of an animal's brain tissue believed to underlie 
a given mental function and then examination of the effect on the animal's performance. Computational modeling permits a theoretical counterpart, in which a particular 
resource is withdrawn to various degrees, and the ensuing performance of the model is observed. This method can be used to associate a given

  
Page 276

clinical syndrome (say, a particular language dysfunction such as an aphasia) with the disabling of a particular resource in a computational model. A disabling that 
selectively affects performance in the appropriate way (producing only those performance dysfunctions associated with the syndrome) provides a theoretical account 
of the disorder.

Agrammatic Aphasia

One example of the lesioning approach in the domain of sentence comprehension arises in accounting for the errors of aphasic patients. Haarmann and Kolk (1991) 
developed and then lesioned a computational model of language processing in order to simulate the performance of agrammatic aphasics. Patients with this syndrome 
are so named because their speech is typically dysfluent, even telegraphic and lacking in morphological markers. Their language difficulty also extends to 
comprehension; such patients have difficulty interpreting sentences purely on the basis of syntactic information, without lexical cues as to who is the actor of the 
sentence, as in, "The man who greeted the woman smiled," compared to sentences in which the lexical content cues the actor, as in, "The man who petted the dog 
smiled." Haarmann and Kolk made cognitive lesions that affected the time course of the entry and residence of various representational elements (generated by a 
sentence parsing mechanism) in working memory. The model assumed that the representations of the constituents of the phrase all had to be in an activated state in 
working memory at the same time in order for the phrasal unit to be processed as such. On the basis of the differential performance of four different computational 
models that varied in whether lesion affected the timing of either individual words or of entire phrases, they proposed that agrammatic aphasia arises from an inability to 
simultaneously retain the components of a phrasal unit (noun phrase or verb phrase) in working memory long enough to construct the representation of the phrase. 
Thus, the computational model suggested that a timing disorder in processing could be the cause of agrammatic aphasia, an attribution that was seldom previously 
made in the literature. Furthermore, by varying the severity of the temporal dysfunction in the model (which introduced an asynchrony in the parsing of the phrase 
units), the models provided an account of the differential severities of agrammatic aphasia.

  
Page 277

A related account of the comprehension errors associated with aphasia has been instantiated in the capacity­constrained architecture system described earlier. The 
model claims that there is a pathological reduction in the activation resources needed to support comprehension that underlies aphasics' impairments. This results in the 
inability to process complex information and at the same time retain the intermediate products of those computations that are activated (Haarmann, Just, & Carpenter, 
1997). In the model, various sentence constituents, such as the noun phrase and the verb phrase of a clause, must be simultaneously active in working memory in order 
to be linked in the internal representation. If they are not active, the comprehender might have only some fragmentary representation of the sentence, which could allow 
him or her to answer some types of questions but not all. However, a drastic reduction in processing resources means that often constituents that should be related are 
not simultaneously activated. Differing amounts of activation loss can be used to model differential degrees of severity (with fewer resources available for more 
severely impaired individuals). Thus, the frequency and type of errors can be mapped between the versions of the model and various neuropsychological patient 
groups.

Individual Differences

The cognitive­lesioning approach is a more general tool that is not limited to modeling neuropsychological data. This approach can be construed as the systematic 
manipulation of some computational parameters that can be used to study proposed population differences (of which clinical vs. unimpaired populations is one 
example), as well as individual differences on task performance. Consequently, the logic of the technique is applicable to the study of normal individual differences or 
to the analysis of other population effects, such as age­related changes in cognitive function in the elderly (Salthouse, 1988). It is also applicable to the analysis of 
development. For example, one computational model has used this approach to study of the acquisition of simple math computation facts, such as 7 + 4 = 11 (Siegler 
& Shipley, 1995). These facts can either be retrieved or calculated. A simulation based on. changes in the distribution of the speed, accuracy, and novelty of each 
strategy, as well as their changes with experience, provided an excellent

  
Page 278

account of how children's strategies for retrieving or calculating such numerical facts vary and develop.

This approach can also be used to study normal individual differences among adults, as illustrated by a computational model of a widely used reasoning task called the 
Raven Progressive Matrices Test (Carpenter et al., 1990). The Raven test consists of a series of 3 × 3 visual analogies. In each analogy, one cell is missing, and the 
participant's task is to choose one of eight alternatives that would complete the analogy. The 36 problems vary enormously in error rates, from negligible errors for 
earlier problems in the test to almost negligible correct solutions for later problems. A task analysis of the problems indicated that a small number of relatively familiar 
relations govern the construction of most of the analogies. For example, three common relations were series progression (e.g., 1 dot, 2 dots, 3 dots), figure addition or 
subtraction (e.g., triangle + star = triangle with superimposed star), and a constant relation (e.g., the same figure occurs in all three cells of a row or column). Figure 
8.6 presents

Figure 8.6
Two figural analogy problems illustrating the types of relations found in the Raven Advanced Matrices Test (not actual test items).  
8.6A shows a progression in number of darkened elements in each row and column. 8.6B shows figural addition (row 1 + row 2 = row 3). (From  
What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test, by Carpenter, Just, & Shell. Copyright 1990 
by the American Psychological Association. Figure 4, p. 409, reprinted with permission.)

  
Page 279

examples typical of the visual analogy problems that instantiate these rules. The most "complex" rule was one in which an element occurred in two of the three cells of a 
row or column; this rule was necessary to solve many of the problems associated with the highest error rates.

The sources of difficulty were computationally examined by constructing a set of computational models, using the CAPS architecture, that consisted of a few modules, 
as shown in figure 8.7. The perceptual encoding productions made pairwise comparisons between figures in a row in order to detect similar and different basic 
features.The rule induction productions used these features to trigger various rules relating the figures in a row, such as the ones just described. Another set of 
productions generated a desired target for the missing figure and then checked the alternatives to determine their match to it. Manipulating the parameters of the model 
indicated that its ability to solve harder problems was influenced by two main features. One was the ability to keep track of multiple relations (rules) within a row or 
column. By systematically varying the number of rules that could be maintained in working memory, the model was able to solve only the simpler problems or almost 
all of the problems. A second feature that contributed to the performance was the presence of a control structure that allowed the model to backtrack and try different 
comparisons to induce relations. The need to backtrack and keep track of one's position in a hypothesis space is a type of executive function that seemed to be 
required to solve the more difficult problems, but not the easier ones. Thus, the differences between these models provided one possible account of what was needed 
to solve most of the problems compared to what was needed to solve only the simpler problems. These examples illustrate how simulation modeling can be used to 
investigate the effects of process variation among individuals, among tasks, and between populations.

A Unified Theory of Cognition

One of the dimensions that differentiates various modeling efforts is the scope of the family of models developed within the architecture. Some models account for a 
relatively circumscribed domain, perhaps a single task. Other models (such as 3CAPS and the ACT­R math tutors) are part of a family that together account for a 
broad and complex domain. At

  
Page 280

Figure 8.7
A block diagram of the modules in the computational model that solved the difficult problems in the Raven Advanced Matrices Test.  
One module encodes the perceptual features of the figures (from a symbolic description list). Another module matches the attribute values  
among the figures in a row to induce relations and rules, such as progression, constant value, or figure addition. A third module induces  
the characteristics of the missing item and identifies the best match from among the foils associated with the problem. What  
distinguishes this model from the one that can solve the easier problems is the existence of a goal memory, a module that keeps  
track of what features have already been matched and can try different attributes as the basis for inducing regularities.  
(From What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test by Carpenter, Just, & Shell.  
Copyright 1990 by the American Psychological Association. Figure 10, p. 420, reprinted with permission).

  
Page 281

the far end of this spectrum would be a single architecture that could accommodate all cognitive domains. This ambitious goal was espoused by Allen Newell (1990), 
who also developed a candidate architecture.

Twenty Questions

To understand one of Newell's reasons for proposing this scientific goal, it is useful to consider a paper that he wrote in the early 1970s called ''You Can't Play 20 
Questions with Nature and Win" (Newell, 1973). The paper's thesis was that experimental psychologists were treating the research enterprise as a version of the 
children's "20­questions game." The 20 questions were the implicit questions that generate the dichotomies that permeate cognitive science. For example, is an internal 
representation propositional or imaginal? Is the retrieval from long­term or short­term memory? Is attention spatially based or object based? and so on. Newell argued 
that such dichotomies yield only one bit of information and, moreover, that the resulting bits of information do not cumulate to yield a unified theory of cognition. In that 
way, psychology would not "win" the 20­questions game with nature. Newell proposed the alternative strategy of beginning with a theory of the cognitive architecture, 
using what we already know about the overall characteristics of the human cognitive system, and then using this theory to guide and integrate the empirical research. 
Newell suggested making the computational architecture an integral component of the research enterprise. In his own career, Newell developed several candidate 
architectures, and his most ambitious was SOAR.

SOAR

SOAR is a production system architecture developed by Newell, Laird, and Rosenbloom, within which symbolic processing of many types can be modeled, such that 
the models exhibit performance characteristics similar to those of human beings (Newell, 1990; Waldrop, 1988a, 1988b). From the vantage of artificial intelligence, 
SOAR integrates two main thrusts of AI that received much attention in the past several decades and that we mentioned in conjunction with the chess research. One is 
the heuristic search techniques used in novel problem­solving domains, including means­ends analysis, that is, searching how to reduce the difference between some 
current state and some desired goal. The second thrust is the use of more specific but more powerful heuristics that can be evoked

  
Page 282

through recognition. The knowledge is something like what an expert might possess about a very specialized situation, knowledge that is useful but applies to a narrow 
range of circumstances. Similarly, SOAR can perform like a general problem solver, and it can function as a knowledge­laden expert system. From the psychological 
vantage point, the SOAR project uses the same set of mechanisms to account for many disparate types of cognitive performance, such as immediate, speeded 
responses to displays (comparable to deciding whether to go or stop when a stoplight changes color), solving elementary algebra equations, and learning a cognitively 
based skill, such as learning to read inverted text. A large community of researchers have adopted this architecture in which to develop their computational models, 
and so the cumulative range of the models is large and growing.

The evaluations of SOAR's performance depends upon the particular model and domain; several focus on the time course of processing, attempting to relate the 
system's temporal characteristics to human performance characteristics. One review (Lindsay, 1991) described SOAR's successes as well as such incompletenesses 
as its lack of integration with sensory or motor systems. Moreover, some of its claims have been criticized (Cooper & Shallice, 1995). One of Cooper and Shallice's 
objections is that SOAR's complexity makes it difficult to know which features are central and which are implementational details. This issue has been raised frequently 
with respect to computational models and is not itself unique to SOAR or intrinsically a problem. But Cooper and Shallice also argue that some of SOAR's successes 
are due to noncentral properties. They conclude that the architecture fits better in the problem­solving domain to which it traces its intellectual roots, rather than as a 
general architecture for all of cognition. However, the scope of a theory and its empirical support are often negatively correlated. Exactly what point in the trading 
relation is optimal for scientific progress is an interesting issue. Perhaps because of its ambition and scope, SOAR has been difficult for the field to digest. But it 
captures a number of key insights and its scope is one of the features that makes it merit more attention.

In summary, in this section we have described several architectures, some of the ways in which they have been compared to human perfor­

  
Page 283

mance, and the domains in which they have been developed. The domains were chosen, in part, to illustrate the scope of the computational modeling approach, which 
goes beyond the claims and contributions of individual computational models to include a more general claim about how cognitive theories can and should be 
expressed. In the next section, we will examine how such computational models are evaluated.

Evaluating Models and Modeling

Computational modeling has not only changed how theoretical models are constructed in psychology, but also, as a second­order impact, it has changed how models 
are evaluated. Before considering the changes in evaluation, it is useful to have some benchmark, and as our benchmark we will consider verbal models.

Models: Computational versus Verbal

Two of the major reasons that researchers use computational models are to push the predictive aspects of a theory and to determine whether the model provides a 
sufficient account of some aspect of human cognition. A computational model is most useful when the proposed mechanisms and their interaction with the environment 
are too complex to make predictions without actually testing some operational version. In other words, the computational model is most useful if the verbal description 
is insufficient to generate predictions. This claim understates a computational model's usefulness because verbal models and computational models typically yield 
different types of predictions. A verbal model often only enables predictions about the direction of the main effects or interactions. By contrast, a computational model 
may enable quantitative predictions. Thus, the evaluation of a model is hard to compare to that of its verbal counterpart because verbal models typically don't result in 
comparable predictions.

A verbal model typically yields some hypothesis that is evaluated, in part, using hypothesis­testing statistics, such as the ubiquitous ANOVA, and so forth. The stated 
goal of conventional statistical evaluation is the rejection of the null hypothesis. However, even in the context of standard

  
Page 284

verbal models, hypothesis rejection is an incomplete evaluation procedure. On one hand, if the hypothesis is not rejected, it can be due to an insensitive experiment, 
and on the other hand, if the null hypothesis is rejected, there is no intrinsic information about the directions for improving the theory.

Another issue that arises in evaluating verbal (and computational) models is the issue of scalableness: would the model scale up from a circumscribed task to a larger 
domain? Often researchers give at least an informal assessment of a verbal model's current and potential scope. Thus, the evaluation of even verbal models of any 
complexity is not entirely standardized or circumscribed, and the hypothesis­testing approach treats only the tip of the iceberg in model evaluation and construction. 
That approach may only seem satisfactory because there is an implicit but presumably richer theoretical framework, as well as additional information in the data, that 
can guide the ultimate interpretation.

Evaluating Computational Models

The picture is not simpler when evaluating computational models. The model's ability to perform a task is evidence that its mechanisms are sufficient, and sufficiency is 
a useful criterion, particularly if one considers the vagueness or absence of specification that may mask the limitations of a verbal model. Nevertheless, cognitive 
scientists are typically interested in more evidence than sheer sufficiency before accepting a claim that the model's processes resemble those of the human. Such 
supporting evidence requires mapping between some aspect of the model's performance and the human performance. In some cases, the mapping is fairly direct. For 
example, the aphasia models described earlier provide error measures that can be related to human error rates for particular sentence types. If a computational model 
takes a certain number of steps or some processing time (such as number of cycles) to perform a task, the measures can be related to the corresponding profile of 
human times (with some assumptions about scaling). Some models (and behavioral studies) provide traces of the intermediate stages of processing that can be 
compared. For example, in the analogical reasoning model of the Raven test, the computational model's simulated eye fixations were compared to the successive gazes 
of the human problem solvers. In some cases, however,

  
Page 285

the mapping between a model's performance and human behavior is considerably less direct.

There is often a trade­off between the scope of the model and its fidelity to known (or hypothesized) human mechanisms. Models of a complex domain, such as 
reading a newspaper or solving a whole array of different types of problems, employ at least some mechanisms that are not in close correspondence to those of 
humans. The lack of close correspondence may not obviate the model's usefulness at a more molar level. One advantage of modeling is that these issues are easier to 
make explicit in evaluating computational models; analogous issues may be left implicit for the verbal model counterparts.

Computational modeling, like other forms of scientific modeling, is fundamentally analogical in character, involving a comparison between some features of the natural 
phenomenon (the "scope" of the model) and some features of the model. The features of the model that are ignored at evaluation are those that are somehow deemed 
to be less central. An example of such a mapping in a noncomputational domain is a mechanical model of the way the human heart pumps blood. The evaluation of the 
model should focus on its central functional characteristics, such as the hydrodynamics of the fluid flow, and not on properties less central to the pumping function, such 
as its composition. In addition, the mapping must be explained. The theorist using the mechanical heart would explain which of its features are important, how the 
mechanical model works, and the ways in which its operation corresponds to those of the heart. Some of the difficulty in evaluating computational modeling occurs at 
this juncture, namely, figuring out how the computational model operates, what the mapping is to the human mechanism, and whether the match is compelling. Ideally, 
the computational model is supported by data that show that the model operates in important ways that resemble the target and that the claimed features are indeed 
the ones responsible for its correspondence. Thus, the evaluation has both qualitative and quantitative aspects. If the comparison is illuminating and the model is 
successful, then the evaluation moves on to other complex criteria, such as the model's completeness across the levels of explanation of a phenomenon, its generality 
across phenomena, and its generativity to as­yet­undiscovered phenomena.

  
Page 286

Sensitivity Analysis

An important step in the evaluation of a computational model is a sensitivity analysis, which identifies which aspects of the model are necessary, sufficient, or 
irrelevant for the qualitative aspects of the performance. One way to do the sensitivity analysis is to compare alternative versions of the same model (VanLehn, Brown, 
& Greeno, 1984), somewhat like the logic of the cognitive­lesioning studies we described earlier. In fact, such analyses are seldom included with the initial, journal 
presentation of a model because a sensitivity analysis is not as straightforward. There is no algorithmic prescription for doing a sensitivity analysis. For a model of any 
complexity, the sensitivity analysis requires understanding not only the initial model in great depth, but also performing informative studies. In several recent examples in 
the literature the computational model is so complex that the model itself becomes a topic of study. For example, the importance of sensitivity analysis has been 
emphasized by McCloskey (1991) with respect to the connectionist models that have both hidden layers and that use back propagation in order to learn. He suggests 
that in the absence of a sufficiently detailed explanation of how effects arise, a computational model might be likened to animal models used in physiological research. 
Researchers may find that the animal's system responds like a human's without really knowing why. The animal model is useful, but it isn't a theory. McCloskey 
suggests that the model itself must become an object of study that leads to some type of explication of its important properties. Its status as an explanation becomes 
dependent on a type of examination accessible to only certain subgroups of researchers. On the other hand, this objection to such theories may be a matter of degree, 
and the analogy to some unknown animal model is not an inevitable consequence of its complexity. A theory that accounts for a wide range of behaviors, but is 
inscrutable to all but a few, is still a potentially useful scientific contribution. One might legitimately decide that its status is not yet convincingly demonstrated, without 
rejecting it as necessarily invalid.

It is interesting to note that the complexity and understandability of computational models complicate the evaluation of models in other domains besides cognitive 
science and that analogous debates to those in

  
Page 287

cognitive science have arisen in mathematics concerning the proofs generated through AI techniques. Wagman (1991) describes the theorem­proving work on the 
four­color conjecture, which had previously eluded the best mathematical minds of this century. Its solution was dependent on the work of Appel and Haken, in 
conjunction with AI work. A difficulty in accepting this proof arose for some mathematicians because the AI component was essentially too complex and long to be 
adequately checked by mathematicians. At least one philosopher of science objected that such an AI proof inherently lacks the properties of a rigorous proof. But 
Wagman points out that the objection might be also seen as a resistance to change in the customary ways of thinking. Similarly, a complex computational model is not 
intrinsically unacceptable as a psychological theory, although it may be difficult to accept its account without an adequate understanding of the nature of its claims.

Evaluating Modeling as an Approach

In preceding sections, we have described some of the features and contributions of computational modeling to cognitive science. We argued that computational 
approaches have sharpened the theoretical issues and have helped to shape the agenda of cognitive science. In addition, computational models have served as specific 
proposals in a variety of cognitive domains, from tasks such as reading texts, through the performance of neuropsychological patients, high school math­tutoring 
systems, and human­computer interaction. In this section, we briefly propose some of the dimensions along which to evaluate the contributions and limitations of the 
modeling approach.

One obvious advantage of modeling is that it is useful to specify the mechanisms of cognition, as opposed to remaining with a less precise description of its properties. 
There are other advantages that reflect something of the computational approach. The computational model makes the task requirements clear and allows at least a 
sufficiency statement of one way in which the task can be accomplished. The requirement to specify such details can also be a rich source of ideas about many aspects 
of the system being modeled. The need to specify processes can stimulate the researcher to think about processes that hadn't been considered

  
Page 288

before the model was made to work through a set of problems, so modeling itself is a generative exercise, an ongoing cycle of theory development, enrichment, 
modification, and evaluation. Computational models invite cognitive­lesioning types of studies, in order to explore spaces represented by various parameters and 
models. In this way, they discourage thinking in terms of simple binary contrasts.

Computational models make good experimental participants, albeit in some inhuman ways. They are patient with the experimenter and don't fatigue. Considering the 
model as an experimental participant also provides some insight into some of its limitations. Computational models require specification in ways that can be overlooked 
with human participants. A computational model won't read instructions in order to understand what will be expected. This information must somehow be explicitly 
represented, even if the understanding processes aren't of major interest. Also, a computational model will never have been subjected to the same types of social 
interactions as have humans; it will never experience its physical environment through the same sensory apparatus or act on its environment through the same types of 
effector organs. Research on perceptual and effector systems in robotics indicates that such differences do not preclude the usefulness of computational approaches. 
Nevertheless, these differences do shape the applicability and the usefulness of the approach. Like most other scientific theoretical and methodological enterprises, 
computational modeling has limitations.

Although we have focused on the influence that the modeling approach has exerted on theory, it has also had some influence on empirical research methods. The 
modeling approach is particularly compatible with behavioral methods that trace a sequence of processes. Such process­tracing methods include the verbal reports of 
a participant during problem solving (see Carpenter et al., 1990; Ericsson & Simon, 1980) and the locations and durations of the sequence of eye fixations during 
problem solving and reading (Carpenter & Just, 1983; Just & Carpenter, 1985), or successive steps in problem solving, as in the tutoring system. A simulation model 
provides a way to describe the successive steps in the solution of a problem and, consequently, a way to map the model's predictions onto dynamic measures of 
performance.

  
Page 289

What may be the ultimate impact of computational models on cognitive science? Based on case studies of competing theories throughout science's history, Thagard 
(1978) argued that the assessment of the worth of competing scientific theories has been determined by three main criteria. One is the ability to unify many different 
classes of fact. Depending on the scope of the cognitive domain and how we view the scope of the modeling enterprise, computational modeling has had anywhere 
from some to a lot of success. Although no one theory has yet been accepted as a unified theory of the mind, as a group, models have articulated mechanisms 
sufficient to account for a wide range of complex cognitive abilities. So, one might conclude that by the first criterion, computational modeling is a strong contender as 
a successful set of theories.

Mitigating against extreme comprehensiveness is Thagard's second criterion—the simplicity of the theory. According to this criterion, theories with fewer special 
assumptions should be preferred over those with more. Unfortunately, most computational models of any scope are very complex, and as we argued earlier, this 
characteristic complicates their communication to the broader community as well as the evaluation of their contribution. On the other hand, it is even difficult to apply 
the same yardstick to other types of models because typically they do not have comparable scope or detail.

The third criterion that Thagard argued influenced the success of a scientific theory is the presence of an analogy, such as the analogy between atomic structure and the 
solar system. Such analogies may impact on the theory's ease of application and communicability. This property may also contribute to the impact computational 
models have had in cognitive science. Computational theories build on the inherent analogy to the computational systems that initially inspired them.

Acknowledgments

The writing of this chapter was supported by contract N00014­96­1­0322 from the Office of Naval Research, NIMH Research Scientist Awards MH­00661 and 
MH­00662, and the A. W. Mellon Foundation. We thank Henk Haarmann, Paula Koseff, and Sashank Varma for their comments on the chapter.

  
Page 290

References

Allen, J. (1995). Natural language understanding. Menlo Park, CA: Benjamin/Cummings.

Anderson, J. R., Boyle, C. R., & Reiser, B. J. (1985). Intelligent tutoring systems. Science, 228, 456–462.

Anderson, J. R., Corbett, A. T., Fincham, J., Hoffman, D., & Pelletier, R. (1992). General principles for an intelligent tutoring architecture. In V. Shute, & W. Regian 
(Eds.), Cognitive approaches to automated instruction (pp. 81–106). Hillsdale, NJ: Erlbaum.

Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier, R. (1995). Cognitive tutors: Lessions learned. The Journal of Learning Sciences, 4, 167–207.

Bechtel, W., & Abrahamsen, A. (1991). Connectionism and the mind: An introduction to parallel processing in networks. Cambridge, MA: Basil Blackwell.

Berliner, H., & Ebeling, C. (1989). Pattern knowledge and search: The SUPREM architecture. Artificial Intelligence, 38, 161–198.

Bever, T. G. (1992). The demons and the beast: Modular and nodular kinds of knowledge. In R. G. Reilly, & N. E. Sharkey (Eds.), Connectionist approaches to 
language processing (pp. 213–252). Hove, England: Erlbaum.

Byrne, M. (1994, August). Integrating, not debating, situated action and computational models: Taking the environment seriously. Paper presented at Sixteenth 
Annual Meeting of the Cognitive Science Society, Atlanta, GA.

Byrne, R. (1996, February 19). A collision of brains and brawn. New York Times, p. C8.

Carpenter, P. A., & Daneman, M. (1981). Lexical retrieval and error recovery in reading: A model based on eye fixations. Journal of Verbal Learning and Verbal 
Behavior, 20, 137–160.

Carpenter, P. A., & Just, M. A. (1983). What your eyes are doing while your mind is reading. In K. Rayner (Ed.), Eye movements in reading: Perceptual and 
language processes (pp. 275–307). New York: Academic Press.

Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices 
Test. Psychological Review, 97, 404–431.

Carpenter, P. A., Miyake, A., & Just, M. A. (1995). Language comprehension: Sentence and discourse processing. Annual Review of Psychology, 46, 91–120.

Charness, N. (1991). Expertise in chess: The balance between knowledge and search. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise. 
Cambridge: Cambridge University Press.

Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading, MA: Addison­Wesley.

  
Page 291

Chase, W. G., & Simon, H. A. (1973). The mind's eye in chess. In W. G. Chase (Ed.), Visual information processing. New York: Academic Press.

Clancey, W. J. (1984). Methodology for building an intelligent tutoring system. In W. Kintsch, J. R. Miller, & P. G. Polson (Eds.), Method and tactics in cognitive 
science (pp. 51–83). Hillsdale, NJ: Erlbaum.

Clancey, W. J. (1986). Qualitative student models. In J. F. Traub, B. J. Grosz, B. W. Lampson, & N. J. Nilsson (Eds.), Annual Reviews of Computer Science 
(Vol. 1, pp. 381–450). Palo Alto, CA: Annual Reviews.

Cooper, R., & Shallice, T. (1995). SOAR and the case for unified theories of cognition. Cognition, 55, 115–149.

de Groot, A. D. (1965). Thought and choice in chess. The Hague, Netherlands: Mouton.

Ericsson, K. A., & Simon, H. A. (1980). Verbal Reports as data. Psychological Review, 87, 215–251.

Fallside, D. C., & Just, M. A. (1994). Understanding the kinematics of a simple machine. Visual Cognition, 1, 401–432.

Farah, M. J., & McClelland, J. L. (1991). A computational model of semantic memory impairment: Modality specificity and emergent category specificity. Journal of 
Experimental Psychology: General, 120, 339–357.

Ferreira, F., & Clifton, C. (1986). The independence of syntactic processing. Journal of Memory and Language, 25, 348–368.

Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.

Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71.

Garfield, J. (Ed.). (1987). Modularity in knowledge representation and natural­language understanding. Cambridge: MIT Press.

Goldman, S. R., & Varma, S. (1995). CAPing the construction­integration model of discourse comprehension. In C. A. Weaver, S. Mannes, & C. R. Fletcher 
(Eds.), Discourse comprehension: Essays in Honor of Walter Kintsch (pp. 337–358). Hillsdale, NJ: Erlbaum.

Haarmann, H.J., Just, M. A., & Carpenter, P. A. (1997). Aphasic sentence comprehension as a resource deficit: A computational approach. Brain and Language, 
59, 76–120.

Haarmann, H. J., & Kolk, H. H. J. (1991). A computer model of the temporal course of agrammatic sentence understanding: The effects of variation in severity and 
sentence complexity. Cognitive Science, 15, 49–87.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.

Hunt, E. (1989). Cognitive science: Definition, status, and questions. Annual Review of Psychology, 40, 603–629.

Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329–354.

  
Page 292

Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 
92, 137–172.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122–149.

Kim, J. J., Marcus, G. F., Pinker, S., Hollander, M., et al. (1994). Sensitivity of children's inflection to grammatical structure. Journal of Child Language, 21, 173–
209.

Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction­integration model. Psychological Review, 95, 163–182.

Kosslyn, S. M., & Van Kleeck, M. (1990). Broken brains and normal minds: Why Humpty­Dumpty needs a skeleton. In E. L. Schwartz (Ed.), Computational 
neuroscience (pp. 390–402). Cambridge, MA: MIT Press.

Lindsay, R. K. (1991). Symbolic­processing theories and the SOAR architecture. Psychological Science, 2, 294–302.

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing: A handbook of models, programs, and exercises. Cambridge, 
MA: MIT Press.

McCloskey, M. (1991). Networks and theories: The place of connectionism in cognitive science. Psychological Science, 2, 387–395.

Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry. Cambridge, MA: MIT Press.

Miyake, A., Carpenter, P. A., & Just, M. A. (1995). Reduced resources and specific impairments in normal and aphasic sentence comprehension. Cognitive 
Neuropsychology, 12, 651–679.

Newell, A. (1973). Production system: Models of control structures. In W. G. Chase (Ed.), Visual information processing (pp. 463–526). New York: Academic 
Press.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Newell, A., Rosenbloom, P. S., & Laird, J. E. (1989). Symbolic architectures for cognition. In M. Posner (Ed.), Foundations of cognitive science. Cambridge, 
MA: MIT Press.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice­Hall.

Newell, A., & Simon, H. A. (1976). Computer Science as empirical inquiry: Symbols and search. Communications of the Associations for Computer Machinery, 
19, 113–126.

Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73–193.

  
Page 293

Pylyshyn, Z. W. (1991). Architectures for Intelligence (K. VanLehn, Ed., pp. 189–223). Hillsdale, NJ: Erlbaum.

Richman, H. B., & Simon, H. A. (1989). Context effects in letter perception: Comparison of two theories. Psychological Review, 96, 417–432.

Salthouse, T. A. (1988). Initiating the fomalization of theories of cognitive aging. Psychology and Aging, 3, 3–16.

Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. 
Journal of Experimental Psychology: General, 125, 4–27.

Shallice, T. (1988). From neuropsychology to mental structure. New York: Cambridge University Press.

Shastri, L., & Ajjanagadde, V. (1993). From simple associations to systematic reasoning: A connectionist representation of rules, variables, and dynamic bindings 
using temporal synchrony. Behavioral and Brain Sciences, 16, 417–494.

Siegler, R. S., & Shipley, C. (1995). Variation, selection, and cognitive change. In T. Simon & G. Halford (Eds.), Developing cognitive competence. New 
approaches to process modeling (pp. 31–76), Hillsdale, NJ: Erlbaum.

Sleeman, D. H., & Brown, J. S. (Eds). (1982). Intelligent tutoring systems. London: Academic Press.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11, 1–74.

Thagard, P. (1978). The best explanation: Criteria for theory choice. Journal of Philosophy, 75, 76–92.

Thibadeau, R., Just, M. A., & Carpenter, P. A. (1982). A model of the time course and content of reading. Cognitive Science, 6, 157–203.

Touretzky, D. S. (1988). On the proper treatment of thermostats. Behavioral and Brain Sciences, 11, 55–56.

VanLehn, K., Brown, J. S., & Greeno, J. (1984). Method and tactics in cognitive science (W. Kintsch, J. R. Miller, & P. G. Polson, Eds., pp. 235–262). 
Hillsdale, NJ: Erlbaum.

Wagman, M. (1991). Artificial intelligence and human cognition: A theoretical intercomparison of two realms of intellect. New York: Praeger.

Waldrop, M. M. (1988a). Toward a unified theory of cognition. Science, 241, 27–29.

Waldrop, M. M. (1988b). SOAR: A unified theory of cognition. Science, 241, 296–298.

Weber, B. (1996, February 19). A mean chess­playing computer tears at the meaning of thought. New York Times, p. A1.

  
Page 295

9
Brain versus Behavioral Studies of Cognition
Elizabeth A. Phelps

Few psychologists today would disagree with the statement that cognitive processes are related to brain function. However, if you asked psychologists whether 
studying the brain will help us understand cognition, you might get a range of opinions (e.g., Johnson­Laird, 1980; LeDoux & Hirst, 1986). In this chapter, I will 
attempt to address two related questions. First, can we learn about cognition from studying the brain? Second, is it necessary to study the brain to explain cognitive 
behavior? In order to address the first question, I will provide examples of research examining cognitive behaviors using three commonly used techniques for studying 
brain function in humans. For each technique, I will review the background and methodology and discuss some of its advantages and disadvantages. I hope to 
demonstrate that our understanding of cognition can be informed by the study of the brain.

The second question is a little more difficult. Although one can argue that a type of research is informative, to say it is necessary implies that achieving our goals as 
cognitive psychologists is intertwined with the study of the brain. At the end of the chapter, I will discuss the role of brain research in our understanding of cognition. I 
hope to convince you that brain research is a useful and necessary step in our study of cognition, but that success in understanding the brain­behavior relationship is 
dependent on the quality of the behavioral research and our ability to describe cognition on a behavioral level.

Discovering the Organization of Cognition: The Search for Dissociations

The subject matter of cognitive psychology has been the structure and organization of knowledge (Anderson, 1985). Over the years, psycholo­

  
Page 296

gists studying cognition have proposed models of how mental functions, such as language, attention, perception, memory, and intelligence, are organized. The primary 
tool available to psychology for discovering the structure of cognition has been to observe behavior in controlled environments. Through observing the cause­and­
effect relationship between stimuli and behavior (or the correlation between behaviors) cognitive psychologists are able to identify some of the components of mental 
functions, thus providing insight into their structure.

For example, several early studies demonstrated that when subjects are briefly presented a set of stimuli and are asked to report them back, they can usually recall 7   
2 items, or ''chunks," of information indicating a limited capacity short­term memory (Miller, 1956). The duration of this short­term memory was shown to be less than 
18 seconds without rehearsal (Brown, 1958; Peterson & Peterson, 1959). In a classic study, Sperling (1960) was able to show that in addition to this limited capacity 
short­term memory we also have an even shorter sensory memory whose capacity is not so limited. Sperling briefly presented subjects with an array of 12 letters 
(three rows of 4 letters) and asked them to report the letters back when the display was removed. When subjects were asked to report all of the letters (the whole­
report procedure), they could usually report about 5 or 6 items, consistent with a limited capacity short­term memory. However, when the subjects were asked to 
report only a portion of the items, such as a single row of letters (the partial­report procedure), they were very accurate even though they were not told which row to 
report until after the array was removed from the screen. Subjects could accurately report any portion of the array if cued immediately at stimulus offset, indicating 
that for a brief period of time subjects had all of the information available to them. Although Sperling could show that subjects had access to the entire array for a 
period of time, this time interval was clearly shorter than the amount of time it took to report the whole array, because subjects began to fail after about 6 items. In 
fact, if subjects were asked to report a single row of letters as little as 1/2 second following the offset of the array, they often could not accurately report the entire 
row, suggesting that the duration of this sensory memory was less than a second. Given his results with the partial report procedure, Sperling proposed

  
Page 297

that in addition to a limited capacity short­term memory, there is also a very brief sensory store (called iconic memory) whose capacity may be unlimited.

In this example, Sperling used two different procedures, the whole­report and partial­report procedures (the independent variable), and looked for differences in the 
accuracy of the subjects' reports (the dependent variable). He also examined the time from array offset to cue (a second independent variable). By manipulating these 
factors and looking for differences (or dissociations) in accuracy performance, he was able to hypothesize the structure of iconic memory. This type of study is typical 
in cognitive psychology. The goal of most studies is to manipulate an independent variable and look for a dissociation in the dependent variable. By examining the 
relation between the levels of independent variables and dissociations on dependent measures, cognitive psychologists are able to break cognition into its component 
parts, providing clues to its structure. Typical independent variable manipulations in cognition include stimulus characteristics, stimulus presentation, and instructions. 
Typical dependent variables include speed (reaction time) and accuracy. Although there are certainly exceptions, most cognitive research has relied on dissociations in 
performance on dependent measures to discover the organization of cognitive functions.

The strategy behind brain studies examining cognition is not that different. The primary difference between brain and behavioral studies is that a different type of 
independent or dependent variable is used, depending on the technique. For example, in a drug study, a researcher might use the same dependent measure as a typical 
cognitive study (e.g., reaction time), but the independent variable would differ (e.g., the presence or absence of the drug). With other techniques, such as 
neuroimaging, the independent variables are the same as those used in typical cognitive studies (e.g., stimulus type), but the researcher is looking for dissociations on a 
different type of dependent measure (i.e., brain activation). In all studies examining brain­behavior correlates of cognitive functions, either the dependent or the 
independent variable is one that would also be used in traditional behavioral studies. Just like more typical cognitive studies, the dissociations we see in these brain 
studies can help

  
Page 298

us break cognition into its component parts and provide insight into its organization.

Techniques in Human Brain Research: Three Examples of Brain Research Informing Cognitive Psychology

Lesion Studies

Background and Technique

The oldest and most widely used technique to study brain function in humans is the lesion (brain injury) study. Lesion studies have been of interest to psychologists 
almost since the beginning of cognitive psychology. In the late 1800s, at about the same time Wilhelm Wundt was setting up his psychology laboratory in Germany, 
Paul Broca of France and Carl Wernicke of Germany were describing components of language processing based on language dysfunctions suffered by individuals with 
brain injuries to the left frontal and temporal lobes (see Benson, 1993, for a review). Specifically, Broca described impaired speech production with normal 
comprehension following damage to the left posterior frontal lobe in an area now called Broca's area, and Wernicke described a separate deficit in language 
comprehension with normal production following damage to the left anterior temporal lobe. In the United States around the mid­1800s, Harlow described the famous 
patient Phineas Gage, who showed a marked change in personality and reasoning ability following an accident with a railroad spike in which he suffered frontal lobe 
damage (see Damasio & Anderson, 1993, for a review). Based on the study of Gage, Harlow suggested that personality and reasoning may be independent of 
traditional measures of intelligence, because Gage performed normally on tasks considered to be related to intelligence. Although Broca, Wernicke, and Harlow are 
not usually thought of as early researchers in the field of cognitive psychology, they were studying cognitive behaviors (language, intelligence, and reasoning) and 
providing insight into their organization.

One reason Broca, Wernicke, and Harlow may not have received credit as early cognitive psychologists is the technique they employed. Lesion studies in humans do 
not use the experimental method in the strict sense, in that the researcher cannot manipulate the independent variable. The

  
Page 299

independent variable used in these studies is the naturally occurring lesion to an individual's brain. The dependent variables are the same type of behaviors assessed in 
more traditional cognitive studies. After an individual is identified as having a lesion, the researcher can compare his or her behavior to that of normal control subjects, 
but the assignment of subjects to conditions is not random. For this reason, the lesion method in humans is sometimes called "quasi­experimental," in that the 
researcher can relate behaviors to lesions, but cannot manipulate the lesions themselves (Snodgrass, Levy­Berger, & Haydon, M. 1985). In a typical study, a 
researcher identifies a group of patients with similar lesions and a control group, who are usually normal subjects matched with the patients on some relevant 
characteristics such as age and level of education. The two subject groups are the levels of the independent variable. The researcher then presents both groups of 
subjects with the same stimuli and instructions and looks for differences between patients and controls on behavioral measures, such as accuracy or reaction time (the 
dependent variable). Like the more traditional behavioral studies, the dissociations in performance between patients and controls can give clues to the organization of 
cognitive function.

Example: Identifying Memory Systems

One area of cognitive research where lesion studies have had an impact in recent years is memory. When the layperson thinks about memory, what comes to mind is 
the ability to recollect events from the past at will. Most early memory research studied this ability to consciously recollect events (usually words), and it described 
phenomena such as forgetting curves, memory capacity, and the effect of stimulus type on performance. Although these topics are still studied today, memory research 
has expanded considerably and some of the new research topics in memory were inspired by the study of a patient referred to as H.M.

H.M. was a young man with severe epilepsy who underwent surgical removal of his medial­temporal lobe (including the hippocampus) in an effort to control his 
epilepsy (Scoville, 1954). The surgery was successful in curbing the epilepsy but unfortunately left H.M. with a more serious problem: an apparent inability to acquire 
new long­term memories (he was able to remember events prior to his surgery and had normal short­

  
Page 300

term memory). At first it was thought that the part of the brain removed from H.M. must have contained the neuronal seat of all memory acquisition. However, two 
psychologists, Milner and Corkin, started to study H.M. and discovered that although he couldn't tell you he remembered anything, there were things he did seem to 
remember (Milner, Corkin, & Teuber, 1968). He could learn to do simple tasks, such as rotary pursuit (tracking a moving object) and mirror drawing (tracing the 
mirror image of an object). H.M. could learn these simple skills in spite of fact that he could not recollect ever having practiced them. This dissociation in H.M.'s 
performance between memory for events and retention of skills led researchers to begin breaking down memory into types, such as declarative (for events) and 
procedural (for skills). Like behavioral studies of memory, the research with H.M. helped dissociate components of a cognitive function. These studies with H.M. 
encouraged memory researchers to study other memory­impaired patients with naturally occurring lesions (due to a number of etiologies, including encephalitis, anoxia, 
and Korsakoff's syndrome) in an effort to further break down the components of memory.

Additional dissociations in memory performance between amnesics and controls were discovered in the 1970s, when Warrington and Weiskrantz (1970, 1974) 
demonstrated that amnesics have other intact memory abilities. They showed amnesic and normal control subjects lists of words. As expected, amnesics were 
impaired in recognizing the previously presented words. However, if the subjects were not asked to recognize the words, but were simply asked to generate the first 
words that come to mind when given the first three letters, the amnesic subjects showed the same advantage for previously presented words as did normal controls. In 
other words, amnesics performed normally when memory for the words was assessed without conscious effort, or implicitly, but were impaired when asked explicitly 
to recognize the previously presented words. This research suggested yet another type of memory, called implicit memory, that could be separated from our ability to 
recollect events at will, which is now called explicit memory. This dissociation of implicit and explicit memory led researchers to study the different characteristics 
of these memory types. It was discovered that manipulations that benefit one type of memory did not necessarily affect performance based on another memory type 
(Graf, Mandler, & Haden, 1982).

  
Page 301

The studies with amnesic patients have led to a large body of research on implicit memory in both amnesics and normal subjects, which has changed the direction of 
memory research in general. Although the distinctions among skill memory, explicit memory, and implicit memory found in amnesics were not completely new to 
psychologists—William James had discussed all of these components a century ago (see Burkhardt & Bowers, 1981)—the compelling evidence for dissociations seen 
in H.M. and other amnesic patients propelled memory researchers once again to examine different types of memory. This has led researchers to propose that there are 
several interacting memory systems that are part of normal memory (e.g., Schacter & Tulving, 1994). The goal of memory research in recent years has been to 
understand the characteristics of these different systems. This is an example where the interaction between brain and behavioral studies has significantly influenced our 
approach in the study of a cognitive behavior.

Advantages and Disadvantages of Lesion Studies in Humans

The primary advantage of lesion studies in humans is that the evidence for dissociations is compelling. If one of the goals of cognitive psychology is to discover the 
components and organization of cognitive abilities, then showing that certain individuals can lack some cognitive abilities, but not others, is very strong evidence that 
these must be dissociable processes. In other words, observing how the system breaks down can provide clues as to how it must be put together. Another advantage 
of lesion studies in humans is that the dependent variables in these studies are the same as those used in traditional cognitive studies, that is, behavioral data. For this 
reason, it is relatively easy for psychologists to evaluate the results.

However, there are many disadvantages to lesion studies in humans, which should be taken into consideration when interpreting results with brain­damaged patients. 
First, the assignment of subjects to conditions is not random. Lesion studies are dependent on accidents of nature to occur. There is no control over who will be in 
your brain­damaged group. It may be the case that individuals who suffer brain damage may not be normal in other ways, aside from the primary behavioral deficit. 
This is true for H.M., who in addition to his surgery, had a lifetime of epilepsy, which may have affected his cognition in other ways. It is not appropriate to assume that 
brain­damaged individuals are similar to unimpaired con­

  
Page 302

trols except that they lack a single cognitive ability, because there are many other uncontrolled variables.

A second disadvantage is sample size. Often lesion studies rely on a single patient, or a case study, as evidence for a dissociation. Although case studies can be useful, 
it is hard to know how to generalize from an N of 1. It is especially hard to generalize from an N of 1 when the behavior in question varies a lot between individuals. 
Even when a group of subjects with similar lesions and behavioral deficits can be identified, the sample size tends to be smaller than normal behavioral studies.

A third disadvantage is the difficulty in identifying groups of patients with similar lesions and behavioral symptoms. Because the experimenter has no control over the 
lesion, the brain injuries, even for individuals with the same etiology and symptoms, may vary extensively. For this reason, it is difficult to know if variability in the 
patient group is due to variability in the behavior or the variability in the location or extent of injury.

Finally, a whole set of additional problems is encountered if a researcher tries to make behavioral links with specific brain areas. When a brain lesion leads to a 
behavioral deficit, it is difficult to know the precise role of the brain area. Imagine if you knew radios played music, but did not know anything about how radios 
worked. If you one day removed the battery and discovered that music was no longer played, would you assume the battery makes music? Just because a lesion in a 
brain area leads to a behavioral deficit, this does not mean the brain area "does" that behavior. When trying to discover brain­behavior relations, you must use caution 
and converging evidence from other techniques when describing the precise function of specific brain regions.

In spite of all the disadvantages of lesion studies, it is clear from their history that they provide a useful tool in the study of cognition. Discovering dissociations in 
behaviors is the primary tool in discovering the organization of cognition, and lesion studies show us behavioral dissociations. Although the interpretation of lesion 
studies can be problematic at times, at the very least they provide hints for cognitive components that can be explored further with behavioral studies in normal 
subjects.

  
Page 303

Event­Related Potentials

Background and Technique

Event­related potentials (ERP) provide noninvasive measurements of electrical activity on the scalp that are linked to the presentation of stimuli (or events) (see Allison 
et al., 1986, for a detailed description). Although it may seem curious to study the outside of the head to learn about what goes on inside, the notion that studying the 
scalp can inform us about brain­behavior correlates is actually a very old one. In the late 1800s, Franz Joseph Gall, a skilled neuroanatomist, proposed that the mind 
consists of an interacting set of distinct mental functions (or faculties) and that each faculty is mediated by a specific, localized region of the brain. The idea that 
localized brain regions underlie different behaviors may seem intuitive at the present time, but in Gall's day this was actually a somewhat radical proposal. 
Unfortunately, Gall's theorizing went further when he proposed that the shape of the skull is related to the shape of the underlying brain and that by studying the shape 
of the skull (through feeling the scalp) one can learn about an individual's mental faculties (this study was later called phrenology). Although Gall's early idea that the 
localized regions of the brain may be related to different behaviors has been borne out by extensive research, there does not appear to be a close link between brain 
morphology and skull shape. Studying the shape of the skull has taught us little about the brain­behavior relationship.

ERP researchers study another aspect of the scalp, its electrical activity, which has been shown to be related to underlying brain function. Although the topic of this 
chapter is not brain physiology, a few basics are necessary to understand ERPs. The brain consists of a large number of nerve cells or neurons (approximately 1012). 
There are several different types of neurons, the types differentiated from each other by a precise organization that varies among different structures and layers. When 
active, these neurons communicate by changes in electrical potentials across the cell membrane (postsynaptic potentials), which are generated by ionic current flow 
(see Carlson, 1986, for a review). These electrical potentials can be recorded by electrodes located in extracellular space or by electrodes located in electrically 
conductive material that is in contact with

  
Page 304

that space. Because the brain and its coverings (the skull, muscle, and scalp) are electrically conductive materials, electrical potentials measured on the scalp can 
reflect the electrical activity of the underlying neurons.

ERPs measure the changes in electrical potentials that occur in conjunction with an event, for example, seeing a word. In an ERP study, a number of electrodes are 
placed on the subject's head in a variety of locations. These electrodes measure electrical potentials. The potentials measured from the scalp are generated by the 
aggregate activity of the underlying brain tissue. The electrodes on the scalp measure potentials by comparing the difference in electrical activity between two 
electrodes. In most ERP studies, the electrical potentials are measured in relation to a single reference electrode, often placed on the subject's earlobe or chin. This 
allows the researcher to see a relative change in electrical activity and compare electrical activity across different regions of the scalp. In a typical study, a number of 
electrodes are placed on the subject's scalp in a variety of predetermined locations (usually between 8 and 32). The subject is then given a task, for example, seeing 
faces or objects and responding whenever a particular object is presented. For each stimulus presented, a wave form is generated for each electrode, which shows the 
change in electrical potential (in relation to the reference electrode), starting with stimulus onset. The measurement is the summation of electrical activity at that point on 
the scalp. In order to get a consistent signal for each stimulus type, the wave forms are averaged over several trials (usually more than 20). Most of the measurements 
of interest in ERP research occur within 500 ms of stimulus onset. The ERP signals generated are usually described by the peaks and troughs in the wave forms and 
are labeled according to their latency after stimulus onset. For example, a P300 is a positive change in potential (a peak) that occurs 300 ms after stimulus onset, and 
an N400 is a negative change in potential (a trough) that occurs 400 ms after stimulus onset. After a number of trials, the researcher can compare the averaged wave 
forms for the different stimulus types (e.g., faces vs. objects) and can look for relative differences in wave forms or potentials across the different locations on the 
scalp. This dissociation in wave forms or potentials between stimulus types can provide clues to the neural processing underlying the cognitive function. In ERP studies, 
the independent

  
Page 305

variables are the same as those in behavioral studies (e.g., stimulus characteristics), but the dependent measure is the change in electrical potentials on the scalp 
evoked by the stimuli.

Example: Selective Attention

One area of a cognitive psychology where ERP research has had an influence is attention. Research on attention in the modern era began with the information­
processing approach to cognition. Early attention research by Broadbent (1954) proposed that attention is like a limited capacity communication channel, much like an 
electromechanical device. Broadbent suggested that during the allocation of attention a small portion of the information is made available to the senses for conscious 
evaluation. Although it was clear that attended stimuli are evaluated perceptually and semantically, the fate of unattended stimuli became a topic of debate. Treisman 
(1969) and Broadbent (1971) hypothesized that although unattended stimuli may be partially processed, the extent of this processing was attenuated (relative to 
attended stimuli) and limited to gross physical characteristics and highly meaningful semantic information (such as your own name). An opposing view was expressed 
by Deutsch and Deutsch (1963) and Norman (1968). They proposed that all stimuli that fall on the senses are fully processed for perceptual qualities and meaning and 
that the role of attention is to select the stimuli relevant to the appropriate response for the task at hand. In contrast to the Treisman­Broadbent approach, the Deutsch­
Norman model suggested that processing of unattended stimuli is not attenuated on the sensory or semantic level but that all stimuli are processed equally until the 
subject must choose a response.

Although the two opposing views both had behavioral data to support the respective models, it was still difficult to resolve this debate because the behavioral data 
could often be explained by both models (see Lachman, Lachman, & Butterfield, 1979, for a review).

Using ERPs to examine the processing of unattended stimuli was a novel way to address this debate. In an early study, Hillyard, Hink, Schwert, & Picton (1973) 
looked at the ERP responses to tones presented to both ears. Previous research had shown that abrupt auditory information (such as a tone) will elicit a negative 
potential at about 100 ms (an N1OO). In the Hillyard et al. study, subjects were told to attend to the tones in one ear and count the number of tones at a particular 
pitch.

  
Page 306

They were told to ignore the tones in the unattended ear. Hillyard et al. compared the N100 responses to tones presented in the attended and unattended ears and 
found that the N100 response was 20% to 70% smaller for the unattended tones. Later research demonstrated that the scalp location that showed the maximal N100 
response, as well as the maximal change in this response with attention, was near the auditory cortex, suggesting that the attenuation is occurring at the early stages of 
auditory processing (Woldoroff & Hillyard, 1991). These results provided support for the idea that there is attenuated perceptual processing for unattended stimuli.

In a later study, McCarthy and Nobre (1993) examined the extent of semantic processing for unattended stimuli using ERPs. It had been documented that the ERP 
response to a word includes an N400 response occurring at frontal or central electrode sites. It is thought that the N400 response has something to do with semantic 
processing of the word, because it becomes significantly smaller when a word is preceded by a prime that is identical or related in meaning (i.e., either the same word 
or a highly related word, such as doctor preceding nurse). McCarthy and Nobre (1993) used a visual divided attention task where subjects were presented words in 
the right and left visual fields and were instructed to attend to one of the fields (while focusing on a central fixation point). The task was to respond whenever a member 
of a target category appeared in the attended visual field. Unbeknownst to the subjects, some of the nontarget words presented to both visual fields (attended and 
unattended) were words that were preceded by a prime. McCarthy & Nobre found an N400 response for words in the attended field that is smaller for those words 
that were preceded by a prime, consistent with previous research. However, they did not show any N400 response for words in the unattended field or differences in 
ERPs between those words in the unattended field that were preceded by and not preceded by a prime, suggesting limited semantic processing for words in the 
unattended field.

The results of the Hillyard et al., (1973) and McCarthy and Nobre (1993) studies, as well as the results of several other studies (see Hillyard, Mangun, Wolderoff, & 
Luck, 1995, for a review), suggest that unattended stimuli are not processed to the same extent as attended stimuli,

  
Page 307

perceptually or semantically. These neuronal responses to attended and unattended stimuli, as measured by ERPs, support the Treisman­Broadbent model, which 
proposes that the allocation of attention attenuates the processing of information, with the result that attended stimuli are processed more extensively than are 
unattended stimuli. This is an example in which studies examining brain function helped resolve a theoretical debate in cognitive psychology.

Advantages and Disadvantages of ERP Studies

ERP studies allow a relatively simple, noninvasive peek into the neural mechanisms underlying normal cognition. By studying the scalp, one can learn something about 
the function of the underlying brain tissue. The biggest advantage to ERPs is that they provide a glimpse into the brain during normal cognitive processing. As the 
preceding example illustrates, there are times when different models of a cognitive function may be consistent with the behavioral data. In these cases, different 
neuronal responses, as measured by ERPs, can provide additional data to help choose between the models.

A second advantage to ERPs is that they are informative about very short latency responses. In traditional cognitive studies, reaction time is examined to learn about a 
behavior, but it is clear that there are several stages of processing that must occur prior to the reaction time response. With ERPs, one can examine the characteristics 
of different stages of neuronal responses to stimuli, all of which occur prior to the reaction time response. This mental ''reaction time" yields several measurements at all 
stages of processing.

A final advantage of ERPs is that they allow the experimenter to collect both behavioral data and neurophysiological data at the same time. Given this combination, it is 
possible to correlate behavioral performance to changes in ERP wave forms, providing additional insight into the mechanisms underlying the behavior.

Although ERPs can be informative for some problems, there are several disadvantages that limit their applicability when studying cognition. First, as was mentioned, 
ERPs measure short latency responses timed to stimulus onset. The potentials measured on the scalp are the summation of responses from a population of neurons to 
a discrete stimulus. Although the responses of this neuronal population may be uniform at first,

  
Page 308

over time the responses generally become more diverse. The summation of these later, diverse responses is less likely to yield consistent patterns. For this reason, 
ERPs can only measure immediate responses to discrete stimuli. This is an advantage when studying a behavior such as attention, but this technique would not be as 
useful when studying higher cognitive functions, such as reasoning, which take more time and may not be tied to a discrete stimulus.

A second disadvantage is that a large number of trials is needed for each stimulus type in order to get a consistent averaged wave form. Any time a large number of 
trials is used, there are problems with practice effects, fatigue, and motivation. Once again, for some types of behavioral studies, these factors may be more important 
than for others, but any study where previous exposure to a stimulus (or stimulus type) could bias future processing would not be appropriate for ERP research.

A third disadvantage of ERPs is that only gross localization of the source of the neuronal signal is possible. It is often assumed that the neural generator of the scalp 
recording is the neural tissue closest to the electrode, but this is not necessarily the case (see Allison, Wood, & McCarthy, 1986). The potential measured on the scalp 
is the summation of all electrical activity at the electrode site. Several factors can influence the electrical signal that summates on a given electrode, including the 
orientation of the nerve cells, the shape of the tissue, the shape of the tissue between the source of the electrical activity and the electrode, and other neuronal activity 
occurring prior to or simultaneously with stimulus onset. It is possible, depending on the orientation of neurons, that a large neuronal response may occur that does not 
yield any change in scalp potentials. For these reasons, it is best to think of wave forms as clues to changes in neuronal processing, but to avoid trying to draw 
conclusions about the precise functioning and location of the underlying neural tissue.

Finally, a big disadvantage to ERP studies, for researchers interested in cognition, is that the type of data (wave forms or maps of differences in potentials across the 
scalp) is unfamiliar to most cognitive psychologists. Most cognitive researchers are not used to looking at wave forms, and it takes some education and practice to 
know what to look for when evaluating ERP studies. For this reason, it has been difficult for ERP stud­

  
Page 309

ies to integrate with traditional cognitive psychology to the same extent as have lesion studies.

There are several limitations in studying cognitive processing with ERPs, but these are similar to limitations that occur when reaction time is used as a dependent 
measure. In both cases, multiple trials are needed for a reliable response, the response must be tied to the onset of a discrete stimulus, and the pattern of responses 
doesn't necessarily say anything in particular about the cognitive process but must be interpreted in light of the stimulus manipulations and previous research. 
Nevertheless, there are times when reaction times are uniquely informative about cognitive processes, and this is also true for ERPs.

Functional Neuroimaging

Background and Technique

One of the most exciting advances in brain research in recent history is functional neuroimaging. Functional neuroimaging refers to a recently developed set of 
techniques for studying the brain­behavior correlates of cognition. There are two main techniques used in functional neuroimaging: positron­emission tomography 
(PET) and functional magnetic resonance imaging (fMRI). Both of these techniques have been around for only a short time (in fact the first fMRI study, Belliveau 
et al., was not published until 1991), but they have had rapid growth and acceptance in cognitive psychology. Before explaining the methodology used in these 
techniques, I will very briefly review the physiology behind the measurements for these two techniques.

Both PET and fMRI measure indices of blood flow in the human brain. The idea that blood flow in the brain is related to neuronal activity has been around since the 
1890s, but no one is certain as to the nature of this response. Nevertheless, there is considerable evidence that blood flow to an area of the brain is an indication of 
neuronal activity (see Raichle, 1994, for more details). The method used to measure blood flow differs between the two techniques. In PET, blood flow is measured 
by injecting the subject with a radioactive isotope, oxygen 15 (15O), immediately prior to the behavioral task. In the minute following the injection, the radioactive agent 
accumulates in the brain in direct proportion to local blood

  
Page 310

flow. The PET camera (a doughnut­shaped set of radiation detectors that circle the subject's head) can image the blood flow by counting the radiation, providing a 
map of blood flow during the behavioral task. The half­life for 15O is very short (2 minutes) and the entire sample is decayed within 10 minutes, at which point another 
image can be acquired (see Posner & Raichle, 1994, and Raichle, 1994, for more details).

FMRI uses a less direct measure of blood flow, but it is naturally occurring so there are no injections or radiation. In MRI studies, the subject's head is placed in a 
large, doughnut­shaped magnet, which assures that a large number of protons in the brain are in a similar resting state (e.g., upright). The subject is then given a brief 
energy pulse, which temporally perturbs these protons. A scanning device outside the head records the energy that is released as these protons return to their resting 
state. Protons belonging to different types of molecules emit different patterns of energy as they return to their resting state. FMRI takes advantage of the natural 
magnetic properties of oxygenated and deoxygenated hemoglobin. The oxygenation of hemoglobin varies with local blood flow. FMRI produces a map of local blood 
flow in the brain by measuring the differences in magnetic susceptibility of protons in oxygenated and deoxygenated hemoglobin. Because the measure of blood flow is 
less direct in fMRI, the signal is often referred to as activation, instead of blood flow (see Cohen, Noll, & Schneider, 1993, for more details). Although the 
differences between PET and fMRI imaging techniques are significant and can influence experimental design and interpretation of results, there are similarities in the 
logic behind the techniques and there is evidence that they lead to similar patterns of brain activation in behavioral studies (McCarthy, Blamire, Rothman, Grnetter, & 
Shulman, 1993). For this reason, I will refer to them as a single technique, functional neuroimaging, for the remainder of the chapter.

The logic behind functional neuroimaging studies of cognition relies on the subtraction method initially introduced by Donders in the mid­1800s and reintroduced and 
extended by Sternberg (1969; see Posner & Raichle, 1994, for more details). Using this technique, Donders tried to learn about the timing of mental processes by 
measuring the reaction time of components of a task and subtracting this from the overall reaction time for the task. For example, Donders was interested in the 
amount of

  
Page 311

time it takes to discriminate between two lights. He first asked subjects to press a key whenever they saw a light. The time required to perform this task was used as a 
baseline simple reaction time without discrimination. He then asked subjects to respond whenever they saw one of two lights. Donders hypothesized that the time 
required to perform this second task would include the time required to make a simple response to a light, as well as the time required to discriminate between the two 
lights. By subtracting the time required for the simple reaction time task, from the time required for the discrimination task, Donders found that the additional time 
required for the discrimination was 50 ms. Using an extension of this logic, called the additive factors method, Sternberg (1969) was able to hypothesize about the 
nature of mental searches of active (short­term) memory. Although the subtraction method is not without its critics, it has been used extensively in cognitive 
psychology.

Functional neuroimaging borrows the idea that one can isolate mental functions by subtracting out component processes. However, in functional neuroimaging the goal 
is not to isolate the time required for mental processes, but rather the neuronal tissue active during these processes. An example of a typical neuroimaging study is an 
early PET study by Petersen, Fox, Posner, Mintun, & Raichle, (1988). In this study, subjects were given two tasks. In the repeat condition, the subjects were 
presented a word and were asked to repeat it (e.g., chair­chair). In the generate condition, the subjects were presented a word and were asked to generate another 
word that represented a use for the presented word (e.g., cake­eat). Repeating a word requires the subjects to see a word, read a word, and speak a word. 
Generating a use for a word requires all of these components, as well as forming semantic associations and selecting an action. In the Petersen et al. study, functional 
images were acquired while subjects performed both tasks. In order to acquire reliable measurements, each task needed to be performed several times during image 
acquisition. The average signal acquired during repeating words was then subtracted from the average signal acquired during generating words. The remaining 
significant differences in signal (i.e., areas of activation) were plotted on a mean image of the subjects' brains. These areas of activation were displayed as colored 
regions on brain images and were localized in specific brain regions. The activated regions are

  
Page 312

the areas that were relatively more active during the generate condition than the repeat condition. These brain regions are thought to be involved in the additional 
cognitive processing required when generating a use for a word.

Although the subtraction method has some difficulties, it is the primary method used to assess activation in the brain in functional neuroimaging studies. In these studies, 
the independent variables manipulated are similar to those used in traditional cognitive studies, but the dependent variable is the activation observed in different areas of 
the brain. By examining the relative differences in activation between tasks, it is possible to gain insight into the neural basis of cognitive processes.

Example: Mental Imagery

Functional neuroimaging is a relatively new tool for studying brain­behavior correlates in cognition, but it has already had an influence in the debate about the nature of 
mental imagery. It is well known that subjects can easily form an image of an object, such as a chair or the letter f, when instructed to do so. Researchers can then ask 
questions about this imagined object, and the subject can give specific answers based on the image. But what is the nature of the information the subject is using to 
perform these tasks? Is it similar to an actual visual image that the subject can scan in order to make the appropriate response? Or is it a set of principles or rules 
about the imagined object that the subject must search in order to make the appropriate response? These two opposing views have been debated by psychologists 
Pylyshyn and Kosslyn for a number of years. Pylyshyn (1981) argues that people have tacit knowledge (i.e., learned without effort and unavailable to conscious 
evaluation) of the structure of objects that can be used when performing mental imagery tasks. This has been called the propositional view of mental imagery because 
it assumes this knowledge is in the form of a list of properties about objects, as opposed to an internal visual image. The opposing view, called the analogue 
approach, was proposed by Shepard (1978) and Kosslyn (1981), who argue that when performing imagery tasks the mind constructs an internal analogue of the 
actual object that is visual in nature. In support of his view, Kosslyn cites data showing that reaction time on mental imagery tasks, such as scanning and rotation, 
corresponds to the actual spatial characteristics of the object, suggesting

  
Page 313

the subjects are mentally manipulating images with spatial qualities. Pylyshyn argues that although there are situations where reaction time on imagery tasks seems to 
correspond to spatial variables of the actual objects, this correspondence does not hold up in all circumstances. He suggests that when the time required for imagery 
tasks does correspond to the spatial characteristics of the objects, it is likely the result of the subjects' tacit or propositional knowledge of the objects that allows them 
to simulate the use of visual­spatial representations. Like the example with selective attention presented earlier, this is a situation in which both views can explain the 
behavioral data and additional evidence is needed to help resolve the debate.

In an effort to find evidence of visual processing during an imagery task, Kosslyn et al. (1993) conducted a PET study. It is well known, through lesion studies with 
humans and animal models, that certain areas of the brain are specialized for the processing of visual information, particularly the visual cortex. In this study, Kosslyn 
attempted to demonstrate that some areas of the visual cortex that are active in perception are also active during imagery (Kosslyn et al., 1993, experiment 2). 
Subjects were shown letters constructed in a grid. After subjects became familiar with these letters, they were asked to perform three different tasks. In the imagery 
condition, subjects were shown a grid and were asked to image a specific letter (e.g., F). An X was then flashed in the grid, and subjects were asked to indicate if the 
X fell within the image of the letter. In the perception condition, subjects were shown a degraded version of the letter on the grid. An X was flashed on the grid, and 
subjects were asked to indicate if the X fell within the letter. In the baseline condition, subjects saw a grid. An X was flashed on the grid, and subjects were asked to 
indicate when the X appeared. PET images were acquired during all three tasks, and three subtractions were conducted: imagery­perception, imagery­baseline, and 
perception­baseline. Although there were activations in all of these subtractions that are meaningful to the interpretation of the results, the finding of primary interest is 
that there were common areas of activation observed in the visual cortex in both the imagery­baseline and the perception­baseline subtractions. The imagery­
perception subtraction did not show this activation because presumably this area was active in both tasks.

  
Page 314

The activation of the visual cortex during visual imagery is a strong indication that subjects are constructing internal visual images during imagery tasks. These data 
support the analogue approach to visual imagery. Although there are also lesion data to support the analogue view of imagery (see Farah, 1995.), this is an example in 
which functional neuroimaging has informed cognitive theory.

Advantages and Disadvantages of Functional Neuroimaging

The primary advantage of functional neuroimaging studies, and the reason for its rapid growth into a significant tool in the field, is the type of data collected. Although 
ERPs provide a glimpse into brain processing through wave forms, functional neuroimaging provides colored maps of precisely where in the brain the processing 
occurs. These colored maps have been popular with the media and are appealing in an intuitive sense. One can imagine that parts of the brain "light up" during 
cognitive processing, and the data from functional neuroimaging studies provide a picture of this occurring. Functional neuroimaging is a safe, noninvasive technique to 
measure localized brain functioning in normal subjects.

A second advantage of functional neuroimaging studies is that they provide a great deal of data about the cognitive processes being measured. Usually when 
conducting a functional neuroimaging study, the researcher has a hypothesis, based on previous research with this or other techniques, about a specific area of the 
brain that might be activated. Although the researcher may or may not see the hypothesized area of activation in the subtraction, there are almost always several 
additional areas of activation that appear. The additional areas may be due to uncontrolled variables in the two subtracted tasks or may reflect unanticipated aspects of 
the cognitive function being examined. In some cases, these additional areas of activation can provide new insight into the cognitive behavior.

A third advantage of functional neuroimaging studies is that behavioral data can also be collected along with activation data (although speaking during imaging studies is 
often difficult due to movement of the head). These behavioral data can be compared to changes in activation to provide additional evidence for brain­behavior 
correlates of cognition.

  
Page 315

There are several disadvantages of functional neuroimaging studies that need to be considered when drawing conclusions from this type of data. First, these techniques 
are very new and there are still several unresolved issues. For instance, the precise relation between activation and brain function is unclear. There are situations where, 
based on studies with other techniques, one might expect to see activation in a particular brain region, but activation does not appear. On the other hand, it is often the 
case that activation does appear in unexpected brain regions. These results may be informing us about fallacies in our previous theories of brain function or may be due 
to artifacts of activation studies. In addition, there are still significant debates about the proper method for analyzing data (see McCarthy, Puce, Luby, Belgar, & 
Allison, 1996). Although the resulting pictures of activation are very clean and appealing, there are several stages of data analysis that go into generating these pictures. 
There is still no general agreement on which techniques for analyzing data are the best and most reliable.

A second disadvantage to functional neuroimaging studies is the reliance on the subtraction methodology. Blood flow in the brain varies considerably across regions. 
Without a baseline condition to subtract from cognitive tasks, the images generated may not reflect task­specific activation. However, choosing the right baseline 
subtraction task requires knowledge about the mental operations involved in different tasks. This is a situation where a good understanding of the task and the 
cognitive behavior is necessary. If an inappropriate baseline task is chosen, then the activation data may reflect something other than the cognitive operations of 
interest. Some researchers are beginning to have more than one baseline condition in order to control for different, unintended variables. Such concern is essential 
because the quality of activation data, and the conclusions that can be drawn from them, are completely dependent on choosing the appropriate baseline task.

A final disadvantage of functional neuroimaging studies is also listed earlier as an advantage: the amount of data that is generated. Cognitive psychologists are used to 
seeing discrete differences in behavioral­dependent measures. With activation data, a large number of colored areas are plotted on the brain, and the researcher is 
supposed to conclude some­thing about the neural basis of cognition from these data. Not only is

  
Page 316

the type of data unfamiliar, but there are usually several areas of activation, even though only a few proposed cognitive operations are being measured. It is sometimes 
difficult for cognitive psychologists to know what to make of these data. Even if the activation observed is expected and consistent with previous results, it is not 
always clear how showing that a particular area of the brain is active informs us about cognitive processing. In order to make sense of these data, a good 
understanding of the cognitive behavior is necessary.

Functional neuroimaging is a technique that actually allows the researcher to look inside the brain of individuals during cognitive behaviors. Given its short history, it is 
clear that functional neuroimaging is in its infancy as a technique for assessing brain function. It is likely that within the next few years, some of the difficulties mentioned 
here may be resolved. Still, functional neuroimaging, more than any technique discussed thus far, requires a good understanding of cognition in order to be informative. 
At its current rate of progression it is likely that we will have more activation data than cognitive explanations for these data. If this is the case, we may end up listing 
activations with no real understanding of their significance or end up choosing inappropriate baseline tasks. Hopefully, the growth of functional neuroimaging will be 
intertwined with the study of cognition so that this powerful technique can be used to enhance our understanding of brain function, as well as the structure of cognition.

Conclusions about Brain and Behavioral Studies of Cognition

In the beginning of this chapter, I set out to address two questions. The first was whether we can learn about cognition from studying the brain. I hope the examples I 
provided of the different techniques convinced you that studying the brain can inform our understanding of cognition. Although it is impossible to know if the issues 
presented in the examples would have eventually been resolved with behavioral studies, brain studies were able to address these questions first. The goal cognitive 
psychologists are attempting to achieve—an understanding of the mind—is extremely difficult to reach. There is no reason not to use every available technique to help 
achieve this goal.

  
Page 317

I also hope that the review of the techniques gave you a better understanding of how brain research in cognition is conducted. Although I could not cover all the 
relevant techniques (e.g., drug studies, magneto­encephalography, and models derived from nonhuman animals), I tried to cover the three most commonly used to 
study cognitive behaviors. With the background information presented in the review of the techniques, you should at least have the necessary tools to be an ''educated 
consumer" when evaluating studies you may encounter.

The second question I set out to address was whether it is necessary to study the brain to explain cognitive behavior. In my opinion the answer is yes, but let me 
present some of the history of this debate before trying to persuade you that my opinion is correct.

The relationship between the mind and the body (or the brain) has been debated since the days of the early philosophers (see Churchland, 1986, for a review). 
Although in earlier times, the debate concerned the question of whether the body has anything to do with the mind, in more recent times it has been generally accepted 
that the mind is somehow related to the brain. However, even with the acceptance of the relationship between the two entities, it is still a matter of debate whether or 
not studying the brain can tell us anything about the mind. The primary argument against studying the brain to learn about the mind relies heavily on the computer 
analog), for cognitive processing, which became popular about the same time computers were first starting to be widely used (see Miller, Galante, & Pribram, 1960). 
This analogy suggests that the brain can be thought of as the hardware of a powerful computer (such as the hypothesized Turing machine; Miller et al., 1960). 
Presumably this hardware, if given the correct instructions, or software, could perform any task. In this analogy, the performance of the task, or the behavior, is 
thought to result solely from the instructions in the software, independent of the architecture of the hardware (which, presumably, with the right software, could perform 
other tasks). The software in this case outlines the structure and organization of cognition, and, it is argued, the hardware is irrelevant when trying to understand the 
organization of the software. This argument is expressed succinctly by Johnson­Laird in his 1980 book Mental Models, where he states that

  
Page 318

Psychology (the study of programs) can be pursued independently from neurophysiology (the study of the machine and machine code). The neurophysiological substrate must 
provide a physical basis for the processes of the mind, but granted that the substrate offers the computational power of recursive functions, its physical nature places no 
constraints on the patterns of thought. (p. 9)

This argument suggests that studying the brain to help understand cognition is misguided.

In my opinion, there is one major flaw with the computer analogy. It assumes that the brain is a computational machine with the power of recursive functions, or in 
other words, a relatively simple machine with the theoretical ability to perform any task. If this is the case, why has the brain never performed certain tasks, despite 
good efforts by several people to reprogram it? For instance, no matter how hard I try, I will never be able to have perfect memory or read this entire book in less 
than a minute, and neither will anybody else. The software presumably should be malleable, but the brain will not allow it. The brain is an extremely complex structure 
that shows a remarkable degree of similarity across individuals and, in some respects, across species. Furthermore, the organization of the brain is orders of magnitude 
more complex than that of the hypothesized computers described by Miller et al. (1960) and Johnson­Laird (1980). Although in theory, computers, with the right 
software, should be able perform operations thought of as cognitive, this does not mean that the brain works in a similar manner. Rather, humans have evolved with a 
detailed brain structure and a pattern of processing information that is consistent across individuals. To suggest that this regularity in brain structure is irrelevant to the 
characteristics of behavior not only goes against evolutionary theory, but is also inconsistent with data we all are familiar with showing that there are predictable 
changes in information processing when the brain state is altered through drugs or damage. If the brain were a simple computational machine, one would not expect 
behavior to break down in such predictable and precise ways when the brain is altered.

It is my opinion that a true understanding of cognition requires at least some explanation of the origin of cognitive behaviors, which lies in brain function. Understanding 
the brain­behavior correlates of cognition not only will inform our efforts to understand cognition at a behavioral level, but will also allow us to have a more complete 
description of cognitive

  
Page 319

processing. The structure and organization of knowledge are intimately tied to the structure and organization of the brain, and it would be extremely difficult to have a 
good understanding of cognition on one level of analysis (i.e., behavior) without some insight into other levels of analysis (i.e., brain function).

However, I believe success in understanding brain correlates of cognition is dependent on the quality of behavioral research. Without at least a rudimentary 
understanding of cognitive behaviors, it is difficult to know what questions to ask with even the most sophisticated techniques for studying brain function. Although our 
understanding of cognition on the behavioral level may be altered by data from brain studies, without some understanding of the behavioral components of cognition, it 
is impossible to ask meaningful questions in brain studies or to make sense of the results. Studies of brain function rely on cognitive theory to help guide the research. 
For this reason, I think it is a mistake to study the brain without close attention to the behavioral data. With the growing interest in the field of cognitive neuroscience 
(the study of brain­behavior correlates of cognition), I believe an increased emphasis needs to be placed on the growth and quality of behavioral research. Without a 
good understanding of cognitive behaviors, the study of brain function underlying the behaviors would be extremely difficult. It is my hope that progress in the 
behavioral study of cognition will proceed as rapidly as our ability to study the cognitive correlates of brain function.

References

Allison, T., Wood, C. C., & McCarthy, G. (1986). The central nervous system. In M. G. H. Coles, E. Donchin, & S. W. Porges (Eds.), Handbook of physiology 
(pp. 5–25). New York: Guilford Press.

Anderson, J. R. (1985). Cognitive psychology and its implications (2nd ed.). New York: W. H. Freeman.

Belliveau, J. W., Kennedy, D. N., McKinstry, R. C., Buchbinder, B. R., Weisskoff, R. M., Cohen, M. S., Vevea, J. M., Brady, T. J., & Rosen, B. R. (1991). 
Functional mapping of the human visual striate cortex by magnetic resonance imaging. Science, 254, 716–719.

Benson, D. F. (1993). Aphasia. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (3rd ed., pp. 17–36). New York: Oxford University Press.

Broadbent, D. E. (1954). The role of auditory localization in attention and memory span. Journal of Experimental Psychology, 47, 191–196.

  
Page 320

Broadbent, D. E. (1971). Decision and stress. New York: Academic Press.

Brown, J. (1958). Some tests of decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21.

Burkhardt, F., & Bowers, F. (Eds.). (1981). The works of William James (Vols. 1–3). Cambridge, MA: Harvard University Press.

Carlson, N. R. (1986). Physiology of behavior (3rd ed.). Boston: Allyn & Bacon.Churchland, P. S. (1986). Neurophilosophy: Towards a unified science of the 
mind/brain. Cambridge, MA: MIT Press.

Cohen, J. D., Noll, D. C., & Schneider, W. (1993). Functional magnetic resonance imaging: Overview and methods for psychological research. Behavior Research 
Methods, Instruments and Computers, 25, 101n. 113.

Damasio, A. R., & Anderson, S. W. (1993). The Frontal Lobes. In K. M. Heilman & E. Valenstein (Eds.), Clinical Neuropsychology (3rd ed., pp. 409–460). 
New York: Oxford University Press.

Deutsch, J. A., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70, 80–90.

Farah, M. J. (1995). The neural bases of mental imagery. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 963–975). Cambridge, MA: MIT Press.

Graf, P., Mandler, G., & Haden, P. E. (1982). Simulating amnesic symptoms in normal subjects. Science, 218, 1243–1244.

Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.

Hillyard, S. A., Mangun, G. R., Woldoroff, M. G., & Luck, S. J. (1995). Neural systems mediating selective attention. In M. S. Gazzaniga (Ed.), The cognitive 
neurosciences (pp. 665–681). Cambridge, MA: MIT Press.

Kosslyn, S. M. (1981). The medium and the message in mental imagery: A theory. Psychological Review, 88, 46–66.

Kosslyn, S. M., Albert, N. M., Thompson, W. L., Malkovic, V., Weise, S., Chabris, C. F., Hamilton, S. E., Rauch, S. L., & Buananno, F. S. (1993). Visual mental 
imagery activates topographically organized visual cortex: PET investigations. Journal of Cognitive Neuroscience, 5, 263–287.

Johnson­Laird, P. N. (1980). Mental models. Cambridge, MA: Harvard University Press.

Lachman, R., Lachman, J. L., & Butterfield, E. C. (1979). Cognitive Psychology and information processing: An introduction. Hillsdale, NJ: Earlbaum.

LeDoux, J. E., & Hirst W. (Eds.). (1986). Mind and brain: Dialogues in cognitive neuroscience. New York: Cambridge University Press.

McCarthy, G., Blamire, A. M., Rothman, D. L., Gruetter, R., & Shulman, R. G. (1993). Echo­planar MRI studies of frontal cortex activation during word genera­
tion in humans. Proceedings of the National Academy of Sciences, 90, 4952–4956.

  
Page 321

McCarthy G., & Nobre A. C. (1993). Modulation of semantic processing by spatial selective attention. Electroencephalograhy and Clinical Neurophysiology, 88, 
210–219.

McCarthy, G., Puce, A., Luby, M, Belgar, A., & Allison, T. (1996). Magnetic resonance imaging studies of functional brain activation: Analysis and interpretation. In 
I. Hashimoto, Y. C. Okada, & S. Ogawa (Eds.), Visualization of informa­tion processing in the human brain: Recent advances in MEG and functional MRI 
(pp. 15–31). New York: Elsevier.

Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Adams, Bannister, & Cox.

Milner, B., Corkin, S., Teuber, H.­L. (1968). Further analysis of the hipocampal amnesic syndrome: 14 year follow­up of study H. M. Neuropsychologia, 6, 215–
234.

Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review, 75, 522–536.

Peterson L. R., & Peterson, M. (1959). Short term retention of individual items. Journal of Experimental Psychology, 58, 193–198.

Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of cortical anatomy of single­word 
processing. Nature, 331, 585–589.

Posner, M. I., & Raichle, M. E. (1994). Images of mind. New York: Scientific American Library.

Pylyshyn, Z. W. (1981). The imagery debate: Analogue media vs. tacit knowledge. Psychological Review, 88, 16–45.

Raichle, M. E. (1994). Visualizing the mind. Scientific American, 270, 58–64.

Schacter, D. L., & Tulving, E. (Eds.). (1994). Memory systems 1994. Cambridge, MA: MIT Press.

Scoville, W. B. (1954).The limbic lobe in man. Journal of Neurosurgery, 11, 64–66.

Shepard, R. N. (1978). The mental image, American Psychologist, 33, 125–137.

Sperling, G. A. (1960). The information available in brief visual presentation. Psychological Monographs, 74 (Whole No. 498).

Snodgrass, J. G., Levy­Berger, G., & Haydon, M. (1985). Human experimental psychology. New York: Oxford University Press.

Sternberg, S. (1969). The discovery of processing stages. Acta Psychologia, 30, 276–315.

Treisman, A. M. (1969). Strategies and models of selective attention. Psychological Review, 76, 282–292.

  
Page 322

Warrington, E. K., & Weiskrantz, L. (1970). Amnesia: Consolidation or retrieval? Nature, 228, 972–974.

Warrington, E. K., & Weiskrantz, L. (1974). The effect of prior learning on subsequent retention in amnesic patients. Neuropsycbologia, 12, 419–428.

Woldoroff, M., & Hillyard, S. A. (1991). Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalo­grahy and 
Clinical Neurophysiology, 79, 170–191.

  
Page 323

10
Response Time versus Accuracy in Human Memory
Michael Kahana and Geoffrey Loftus

One of the first decisions confronting a behavioral scientist is the choice of a measurement instrument that appropriately captures some relevant aspect of human 
behavior. Consider a typical memory experiment. A subject is presented with a list of words to remember. Immediately after studying the list, a word is presented, and 
the subject's task is to judge, as quickly and accurately as possible, whether the word was shown in the studied list. Data in this experiment consist of both the 
subject's response "yes" or "no") and the time it took the subject to make the given response (called response latency, response time, or reaction time; hereafter, 
RT). Many scientists seem to religiously adhere to the study of either response accuracy or response time; rarely are both investigated simultaneously in a given 
experimental design. Is this a mistake, or are accuracy and response time perhaps just two sides of the same coin—two measures that can be used interchangeably, 
depending on which is more convenient in a given experimental design? The goal of this chapter is to attempt to answer this question through a selected review and 
analysis of some of the basic experimental results and theoretical issues in the area of human memory.

Although interest in RTs has been around for a long time (e.g., Donders, 1868/1969; Helmholtz, 1850), until recently research in human memory has been almost 
exclusively concerned with measures of response accuracy. In a survey of memory texts published during the 1970s (Baddeley, 1976; Crowder, 1976; Hall, 1971; 
Kausler, 1974; Murdock, 1974), fewer than 4% of the experiments cited reported data on RTs. Beginning in the late 1960s, however, a whole host of new problems

  
Page 324

emerged that required the use of RT as the measure of interest: semantic­priming effects (e.g., Meyer & Schvaneveldt, 1971); perceptual priming (Neely, 1981); 
implicit serial, or sequence, learning (Jiménez, Méndez, & Cleeremans, 1996; Reber, 1967); and short­term memory (Sternberg, 1966)—each of which will be 
addressed in this chapter. However, it was not until the mid­1970s, when real­time personal computers became standard tools in the psychological laboratory, that the 
study of RTs became standard in the field. A recent text on human memory (Anderson, 1995) contains a healthy mix of accuracy and RT data.

Not only is there now a heightened interest in RT within cognitive research, but new experimental techniques that combine measurement of processing time and 
response accuracy have emerged. 1  Later in this chapter, we examine some of these techniques in detail. In discussing the rela­tion between RT and accuracy in 
human cognition, we will focus primarily on data and theory within the domain of human memory.

Accuracy and Interresponse Times in Free Recall

A first analysis of memory tasks reveals that making a task harder increases error rates and RTs. As a case study, consider the correlation between measures of 
accuracy and measures of RT in one of the classic verbal memory tasks—free recall. In free recall, subjects are presented, one by one, with a set of to­be­
remembered items and are then asked to recall as many items as they can remember in any order. The task is "free" because unlike most other memory tasks, the 
experimenter exerts minimal control over the retrieval process; all cues other than the general cue to recall the list items are internally generated by the subject.

The free recall task is deceptively simple. The experimenter asks the subject a very simple question, but the subject is free to do a great many things. Consider first the 
nature of the responses. How many list items did the subject recall? In what order were the items recalled? Were any nonlist items recalled? What was the relation 
between these items and the items in the studied list? How much time elapsed between successive responses? Do these interresponse times vary as a function of the 
number of items recalled or the length of the list? These questions just begin to point out the wealth of data obtained using this task.

  
Page 325

An initial examination of recall accuracy reveals several regularities. Early and late list items are remembered better than items from the middle of the list. The 
advantage for the first and last few items are referred to as a primacy effect and a recency effect, respectively. The curve that describes the relation between the 
position of the items in the list and the probability of recall is termed a serial position curve. These results are remarkably stable across subjects, stimulus materials, 
and many incidental characteristics of the experimental design (Greene, 1992; Murdock, 1962). 2

It is not sufficient to merely describe these data; the goal of cognitive science is to characterize the memory processes that produce the observed results. Much 
research has been devoted to understanding the process of free recall, and one successful model of this task is the Search of Associa­tive Memory (SAM) model 
(Raaijmakers & Shiffrin, 1980, 1981; Shiffrin & Raaijmakers, 1992). A central notion in memory research, which is captured in SAM, is that items, processed 
sequentially or in a common temporal context, become associated or linked with one another. In terms of the data, an association between two items, A and B, simply 
means that the likelihood of recalling B is increased in the presence of A (either as an externally or internally provided cue). Is this true in our free recall task? Kahana 
(1996) reanalyzed data from a number of free recall studies and found that after recall of a given list item, the probability of recalling one of its neighbors (in terms of its 
position in the studied list) is greatly enhanced. A conditional response probability (CRP) function relates the probability of recalling a given item to its distance (in 
the study list) from the last item recalled. Figure 10.1 (left panel) shows the CRP function for data obtained by Murdock and Okada (1970).

Two aspects of the CRP functions are consistently obtained in studies of free recall: contiguity and asymmetry. Contiguity refers to the finding that items tend to be 
recalled after other items that were studied in adjacent list positions. For example, item 6 is more likely to be recalled immediately after item 5 than immediately after 
item 3. Asymmetry refers to the finding that among successively recalled items that were adjacent in the study list, forward transitions (tem 5 then item 6) are about 
twice as likely as backward transitions (item 6 then item 5).

So far, we have just considered accuracy. What can be said of the interresponse times (IRTs) between successively recalled items? Like CRP

  
Page 326

Figure 10.1
Conditional response probability curve (left panel) and conditional response latency curve (right panel)  
for Murdock & Okada's (1970) study of free recall. Log interresponse time (IRT) is computed as In (1 + IRT). 
Error bars reflect 95% confidence intervals around each mean. Confidence intervals were calculated using 
the Loftus & Masson (1994, appendix B) procedure for within­subject designs.

curves, conditional response latency (CRL) functions relate IRTs between successively recalled items to their proximity in the original study list. CRL data from 
Murdock and Okada (1970) are shown in figure 10.1 (right panel). IRTs are short when neighboring list items are recalled successively. IRTs increase as the 
separation between the items' positions in the study list increases.

The IRT functions mimic the basic result portrayed in the CRP functions—namely, the more likely the transition, the faster the transition. It is tempting to say that both 
CRP and CRL functions reflect the operation of a single latent construct—associative strength. 3  Nearby items are more strongly associated with each other than are 
distant items. The stronger the association, the higher the probability and the shorter the IRT between successively recalled items. This is one version of a strength 
theory of memory—accuracy and IRTs are just two measures of the strength of information stored in memory.

When average accuracy and RT data show similar patterns, we are tempted to hypothesize that these commonalities are indicative of a single

  
Page 327

underlying process. However, this is not necessarily the case. To take a common example, height and weight show highly similar patterns and yet it is unlikely that they 
reflect a single underlying variable. Different eating behaviors can affect weight without having any effect on height.

Semantic Clustering

Preexperimental semantic relations among list items also exert a powerful influence on recall order and on recall accuracy. 4  This is often investigated using a 
categorized free­recall task. Subjects study a list of words drawn from a number of different categories (e.g., airplane, ruby, dog, celery, diamond, car, truck, 
elephant, tomato, mule, cabbage, boat). These words are presented in a random order, and subjects are asked to recall the items in any order they like (standard 
free­recall instructions). The relevant data are the order of recall and the IRTs between successively recalled items. When subjects recall a categorized word list, items 
belonging to the same category are usually recalled successively and in rapid succession (short within­category IRTs). These categorically related word clusters are 
separated by long between­category IRTs (Patterson, Meltzer, & Mandler, 1970; Pollio, Kasschau, & DeNise, 1968; Pollio, Richards & Lucas, 1969; Wingfield, 
Lindfield, & Kahana, 1998).

Although there is substantial data on free recall of categorized lists, there is a paucity of data on the effects of interitem similarity on free recall of random word lists. 
Unfortunately, studies that have carefully measured interitem similarity and output order in free recall (e.g., Cooke, Durso, & Schvaneveldt, 1986; Romney, Brewer, & 
Batchelder, 1993) have not simultaneously collected data on IRTs.

Like the data on conditional response probability and latency, semantic cluster effects can be interpreted as reflecting differences in associative strength. Items that are 
similar in meaning, or members of a common category, are more strongly associated. These items will tend to be recalled together, and the IRTs will be very short. To 
get from recalling items within a given category to recalling the items in the next category requires subjects to rely on the weaker associations that link all of the 
experimental items together—associations that stem from the common experimental context in which the items were studied.

  
Page 328

Exponential Increase in IRTs

Another feature of the categorized recall is that within­category and between­category IRTs start out fast and slow down with each transition. This finding mirrors a 
basic result observed in free recall of random word lists: IRTs increase exponentially with output position. Figure 10.2 shows the increase in IRTs with output 
position reported by Murdock and Okada (1970). Rohrer and Wixted (1994) have shown that this finding holds up under variations in list length, presentation rate (of 
the list items), and a number of other variables.

What causes this increase in IRTs? According to strength theory, items with the strongest representations are recalled first and fastest. The remaining items, being 
necessarily weaker, take longer to recall, thus producing the accelerating interresponse times with output position. Note

Figure 10.2
This figure shows data from Murdock & Okada (1970) illustrating the exponential increase in IRTs with output position. 
Subjects in this experiment studied lists of 20 common words presented visually. Vocal responses were tape recorded and IRTs were measured.  
Each of the six curves in this graph represents a different total number of words recalled (4–9).

  
Page 329

that this view does not assume that recalling some items has an effect on recall of subsequent items.

A more cognitively oriented model might propose that another process causes the IRTs to increase. One such model, the random search­with­replacement model, 
has been advocated by Rohrer and Wixted (1994; see also Wixted & Rohrer, 1994). In its simplest form, this is a pure retrieval model. According to this account, 
recall involves two stages. First, subjects search through recently activated items in memory (termed the search set) and sample an item for possible recall. If the item 
has already been recalled, it is rejected. If it has not already been recalled, the item is recalled. Assuming that it takes time to sample each item, as the ratio of recalled 
to non­recalled items increases in the search set, the time to recall the remaining items will increase as a consequence of the resampling and rejection of items already 
recalled. The process of random search with replacement mathematically predicts exponential growth of IRTs (McGill, 1963).

Wixted and Rohrer's (1996) random search with replacement account of IRTs in free recall can be seen as a specific instantiation of the general notion of output 
interference: that the act of recalling list items impairs access to other list items (cf. Tulving & Arbuckle, 1963). Such interference could be due to the resampling of the 
recalled items, or to a direct effect of the recalled list items on the accessibility of the not­yet­recalled memories.

Rohrer and Wixted take the generality of the exponential growth of IRTs in free recall as support for the notion of random search with replacement. Although they 
acknowledge that retrieval in free recall is influenced by many factors not captured in the oversimplistic random search model, they believe that a process akin to 
resampling is the likely cause of the rapid growth in IRTs with output position. This view is very different from strength theory in that random search with replacement 
argues that changes in accuracy and RT may be caused by primarily different, though interdependent, memory processes. Nevertheless, without independent evidence 
for the role of resampling in free recall, it is hard to reject the position that accuracy and RT in free recall are simply two sides of the same memory­strength coin.

  
Page 330

Analysis of Memory under Conditions of High Accuracy

We began this chapter by raising the question of whether RT and accuracy are two sides of the same coin. If they are, why not let those who study accuracy live on in 
blissful ignorance of those who study RT, and vice versa? One reason not to do this revolves around the investigation of well­learned tasks such as reading, speech, 
naming objects, or performing a practiced motor sequence. In these tasks, people rarely make errors, yet speed may be of the essence. Therefore, to study tasks that 
are performed essentially without errors, we must consider RTs.

It is probably fair to say that almost all RT research is concerned with tasks where error rates are negligible. Entire areas of cognitive science rely on RTs as their 
exclusive source of data. For example, one major area of memory research is concerned with the structure of preexperimental semantic representations. These 
researchers use a variety of techniques including lexical decision tasks (LDT; i.e., deciding whether a letter string, such as VOLVAP, is a word) and sentence 
verification tasks (answering yes or no to questions such as ''Is a canary a bird?"). RT data from these tasks provide insights into mental processes without making 
reference to response accuracy.

Even in the case of memory for newly acquired information, there are situations in which performance is relatively error free. Consider the learning of words in a 
foreign language. Initially subjects will make many errors, but after sufficient repetition, errors will be negligible. Considerable research has shown that RTs speed up 
dramatically even after accuracy reaches 100%. The reduction in RT with practice is characterized by what is called a power law (Newell & Rosenbloom, 1981). In 
almost any cognitive task, RT varies with practice according to an equation of the form

RT = aP­b (10.1)

where P is the number of practice trials, and a and b are positive constants that depend on the details of the material, the kind of practice, and the type of learning 
task. Such regularity summarizes a great deal of data across a variety of domains of cognition and serves as a benchmark that theories must meet.

  
Page 331

A nice illustration of the power law can be found in a study by Woltz, Bell, Kyllonen, and Gardner (1996, experiment 3). Woltz et al. examined the contributions of 
instance memory and rule memory to the acquisition of a cognitive task. Subjects were given four­digit strings that could be transformed into a single digit by the 
sequential application of some combination of different rules. Each rule transforms two adjacent digits to a single digit (for example, if two adjacent digits are 
successive they are transformed into the next item in the sequence: 56 becomes 7; 65 becomes 4). Figure 10.3 shows RT and accuracy as a function of training. Over 
the two training blocks, RT decreased dramatically and in accord with the power law. Accuracy, on the other hand, remained essentially constant.

Figure 10.3
Accuracy and latency data in a digit­recoding task (Woltz, Bell, Kyllonen, & Gardner, 1996,  
experiment 3). The smooth line through the latency data represents the best­fitting power function.  
These data illustrate what is often called the power law of learning.

  
Page 332

With practice, subjects got faster at transforming the four­digit strings into single digits. Is this because they were better at using the rules or because they had memory 
for instances of digit pairs, triples, or quads that they could simply recall? In a final phase of the experiment, subjects were given three types of multidigit strings to 
recode: strings that were identical with those recoded (i.e., transformed into a single digit) in the earlier training phases (old strings/old rules), new strings based on 
previously practiced recoding steps (new strings/old rules), and new strings that required new sequences of recoding operations (new strings/new rules). Woltz et al. 
(1996) found the most improvement for old strings/old rules, an intermediate amount for new strings/old rules, and the least transfer to new strings/new rules. These 
results were interpreted as evidence for both instance­based learning (i.e., learning of particular examples) and rule­based learning.

RT and Accuracy in Implicit Sequence Learning and Explicit Sequence Prediction

Sometimes RT (or accuracy) can reveal memory in the absence of intention to retrieve information from a learned episode. This type of memory is referred to as 
implicit memory and distinguished from intentional retrieval, which is termed explicit memory (Tulving & Schacter, 1991). Implicit memory has been examined for 
single items (Jacoby & Dallas, 1981; Tulving, Schacter & Stark, 1982), associations between items (Goshen­Gottstein & Moscovitch, 1995a, 1995b; Graf & 
Schacter, 1995), and sequences (Reber, 1967).

In studying implicit sequence learning, strings of letters or digits are generated through the use of a finite state grammar (Cleeremans & McClelland, 1991; Reber, 
1967). To create the sequence of stimuli, one starts at a given node (figure 10.4) and probabilistically chooses a path to another node. Note that the first node is 
identical to the last node, so this generative process may be repeated indefinitely. The label of the chosen path is the current stimulus. To introduce some additional 
noise into the task, on some proportion of trials the stimuli are chosen randomly (i.e., without using the finite state grammar).

In one version of this approach (Jiménez et al., 1996), a simple RT task was employed; letters were shown one by one on the screen, and

  
Page 333

Figure 10.4
Depiction of the artificial grammar used by Jiménez, Méndez, & Cleeremans (1996). An artificial grammar  
is used to create a sequence of stimuli based on probabilistic rules. To create a sequence, begin 
with node zero and choose a random path. For simplicity, let us suppose that each path is chosen with an 
equal probability. If the path from 0 to 1 is chosen, the sequence begins with A. From node 1 there are two possible transitions. 
If node 5 is chosen, the second element in the sequence is E. This process may repeat indefinitely. 
Note that the sequence AEFBFDBC is generated by traversing the nodes 015034612. Not all sequences are valid. For 
example, there is no way to generate the sequence ABCD from this artificial grammar.

subjects pressed the key corresponding to the displayed letter. Unbeknownst to the subjects, there was a probabilistic pattern to the sequence of stimuli (letters). The 
basic result was that RTs consistently improved over trials. If a new grammar was switched to, RTs slowed down—this shows that the facilitation in performance was 
not simply due to a learning­to­learn effect. As is generally the case, the facilitation in RTs followed a power law. This improvement has typically been taken as 
evidence for implicit sequence learning.

Jiménez et al. (1996) introduced a second task in which subjects were instructed to press the key of the letter they thought would follow the probe letter. In this task, 
accuracy was the primary variable of interest

  
Page 334

and retrieval was explicit. Interestingly, subjects were able to predict the next letter at a rate substantially better than chance.

Because of the introduction of random letters every so often in the sequence, Jiménez et al. (1996) were able to assess the degree to which prior items in the sequence 
facilitated subsequent performance. They found that in both the explicit prediction task and the implicit reaction time task, two prior items added significantly to a single 
prior item, but a third prior item did not significantly improve performance. Contrary to expectations, implicit memory showed the same general pattern as explicit 
memory. Also, accuracy measures exhibited the same basic pattern of results as RT measures.

Accuracy and RT analysis of the Ranschburg Effect

Sequences of items that contain a repeated element are harder to reproduce than sequences consisting of all unique elements. For example, the sequence of digits 
723856391 is harder to recall in order than the sequence 723856491. This finding is known as the Ranschburg effect. 5  At first glance, one would expect repetition 
of a list item to improve rather than worsen memory for ordered lists. A list with a repeated element has fewer different elements to be learned. This is especially 
evident in the case of words where the pool of possible elements is very large. In addition, we might expect processing the first of the repeated elements to facilitate, or 
prime, the processing of its repetition.

Rather than just considering subjects' overall ability to reproduce the list, Crowder (1968) and Jahnke (1969, 1970, 1972) examined error rates for individual list 
elements. They found that repeating elements at separated list positions resulted in impaired memory only for the second instance of the repeated element. In a 
sequence such as 723856391, subjects made more errors on the second of the repeated 3s than on an item from the same position in a control list (containing all 
unique elements). If, however, an element was repeated successively, subjects were better at recalling both repeated elements, but showed no facilitation or 
impairment in recalling the rest of the list. In a sequence such as 723385691, subjects performed better on the repeated 3s than on items from the same positions in a 
control list.

  
Page 335

Greene (1991) suggested that a guessing strategy might account for the Ranschburg effect. Most studies of the Ranschburg effect employ lists of between 8 and 10 
digits with only a single repeated element. When the set of elements is determined (i.e., the digits 0–9), the task only requires that subjects remember which elements 
belong in which positions. Even with lists of 8 or 9 digits, subjects have most of the information about the list elements, and the task depends primarily on remembering 
the order. At the end of the list, where performance is generally poor, 6  subjects are most likely to guess. Because only a single element is repeated, it makes sense to 
guess from among the elements (digits) that they have not already recalled. This will boost performance for all but the repeated items. Because the second repeated 
item is usually near the end of the list, where poor memory encourages guessing, recall of that element will show greatest impairment relative to the control list. Greene 
(1991) tested this guessing hypothesis by either encouraging subjects to guess liberally or telling subjects not to guess at all. When encouraged to guess liberally, the 
Ranschburg effect was enhanced. When guessing was strongly discouraged, the Ranschburg effect was eliminated.

Kahana and Jacobs (1998) wondered if a Ranschburg effect would be obtained using latency (IRTs) rather than accuracy as the variable of interest. Subjects studied 
lists of nine consonants with or without a single repeated element. The process of studying and recalling elements was repeated until each sequence was reproduced 
perfectly on three successive trials. On these final three perfect trials, the computer recorded the subjects' IRTs between successive recalls. Relative to a control list 
with no repeated elements, subjects had longer IRTs to the second repeated element if the repeated elements were spaced apart in the list. In contrast, subjects had 
shorter IRTs to the second repeated element if the repetitions were in nearby list positions. IRTs to the first of the repeated elements were unaffected by the repetition 
(as compared with control lists of nonrepeated elements). These results are shown in figure 10.5.

This study demonstrates that the Ranschburg effect, previously only known from accuracy data, can also be revealed using latency data (IRTs). But the latency data 
make Greene's (1991) guessing account far less appealing. Because the latency data are examined only after accuracy

  
Page 336

Figure 10.5
Data illustrating the effects of within­list item repetition on reaction times in a sequence recall task  
(Kahana & Jacobs, 1998). Error bars denote 95% confidence intervals. See text for details.

has reached 100%, it is unlikely that these data are contaminated by guesses. In addition, using lists of nine consonants as stimuli makes guessing relatively ineffective. 
As subjects pass the halfway point in the list, there are 16 possible items for only four remaining positions—guessing is not very helpful under these circumstances. 
Based on the Kahana & Jacobs study, it seems that the Ranschburg effect is a reliable memory phenomenon that can be revealed using both accuracy and latency 
measures. Although the parallel finding of Ranschburg interference in both accuracy and RT data may suggest that accuracy and RT are "two sides

  
Page 337

of the same coin," these two measures provide crucially different kinds of information with respect to the theories of the task.

The Subspan Item­Recognition Task

For a sufficiently easy task, one needn't engage in extensive practice to achieve near perfect accuracy. For example, if you ask someone to remember a five­digit 
number over a period of time during which there is no distracting information presented, error rates will be negligible. Memory span is a term used to denote the 
number of items that a person can reproduce in the correct order without errors. Lists of items that are shorter than an average person's memory span (about seven 
digits, six letters, or five words; Crannell & Parish, 1957) are called subspan lists, and lists that exceed memory span are termed supraspan lists.

Sternberg (1966) examined recognition memory for subspan lists. In the subspan item­recognition task (also called the Sternberg task or the memory­scanning task), 
subjects are presented with a short list of items (digits, words, letters, etc.). Following a brief delay (typically 1–2 seconds), a probe item is shown, and subjects 
indicate whether the item was one of the elements of the original list. In Sternberg's original experiments, subjects were well practiced at this task.

Because the list is subspan, there are few errors (less than 5%) and consequently the dependent variable of interest is RT. The effects of numerous experimental 
manipulations on RT have been investigated. These include variations in list length, probe type (list items versus nonlist items), serial position of the probe item (if it is in 
the list), or recency of the probe item (if it is not in the list), and the kind of materials used (e.g., letters, digits, words, random polygons, etc.). When a probe item is 
one of the list items, it is called a positive probe (because it warrants a positive, yes response). Similarly, nonlist items are called negative probes. 7

In Sternberg's 1966 paper, two procedures were introduced. In the varied list procedure, lists are randomly chosen for each trial and list length varies from trial to 
trial. In the fixed list procedure, a given list of items is prememorized and then repeatedly tested. This process is repeated for prememorized lists of various lengths. 
Sternberg's results are shown in figure 10.6. Panel A presents data obtained using the varied list procedure, and panel B presents data obtained using the fixed list 
procedure.

  
Page 338

Figure 10.6
Reaction time as a function of list length for Sternberg's (1966) subspan item­recognition experiments. Panel A shows data  
obtained using a varied list procedure; panel B shows data obtained with a fixed list procedure. In the 
varied list procedure, items (typically digit, letters, or words) change from trial to trial. In the fixed list procedure the  
items are the same for each trial; only the test cue changes. The equations given in each figure characterize 
the best­fitting line through the average data for positive and negative probes.

  
Page 339

In both cases, Sternberg found that mean RT increases linearly with list length. Two features of these data are particularly striking. First, the slopes of positive and 
negative probes are indistinguishable. Second, the slopes of the linear list­length functions are equivalent for both the fixed list and the varied list procedures.

Sternberg (1966) proposed a simple model to account for these data. He assumed that the probe item is serially compared with each member of the set of items that 
are activated in memory (the search set). In a serial comparison process, a new comparison does not begin until the previous comparison has been completed. This 
explains why RTs increase linearly with list length (each additional item requires one additional comparison), but why are the slopes identical for positive and negative 
probes?

Consider what happens if the memory comparison process is self­terminating. The probe item is compared with each list item until a match is detected or the list is 
exhausted. This is called a self­terminating search because the comparison process terminates as soon as a match is detected. Consider a list of three items. If given a 
positive probe (randomly chosen from among the three list items), there is an equal probability of finding a match after one, two, or three comparisons. On average, 
two comparisons are required. If a negative probe is given, three comparisons are always required (all three list items must be rejected). What happens if the list length 
is increased from three to four? A positive probe now requires either one, two, three, or four comparisons, resulting in an average of 2.5 comparisons. A negative 
probe requires all four comparisons to be made. Consequently, increasing the list length by one item results in an increase of 1 comparison for negative items, but only 
0.5 comparisons (on average) for positive items. Thus, the slope for negative probes should be twice as great as the slope for positive probes. This is clearly not the 
case (see figure 10.6).

To explain the equivalence of slopes for positive and negative probes, Sternberg suggested that the serial comparison process is exhaustive. Exhaustive search means 
that the probe item is compared with every item in the search set, and a decision is not made until all comparisons have been made. This idea may seem unrealistic, but 
if the comparison process is extremely fast and the decision process is noisy and slow, it makes sense to do all of the comparisons prior to making a decision rather

  
Page 340

than making a separate decision after each comparison (Sternberg, 1969b).

Sternberg (1969a) presented a more complete description of the basic scanning model. The model has four stages: stimulus encoding, memory comparison, 
decision, and response. The following claim is critical to the analysis of this model: a given process or stage is not initiated until the previous stage is completed. This 
claim is reasonable if a stage acts on information produced by a preceding stage that must be available in a fairly complete form (Sternberg, 1998a). Much debate has 
centered on the validity of this claim (e.g., Hockley & Murdock, 1987; McClelland, 1979). We will return to this issue later in this chapter. A final important detail of 
the model is that scanning times needn't be fixed. It is often assumed that the time to scan a given item comes from a distribution of possible values. The shape of the 
distribution (e.g., normal vs. exponential) and its mean and variance are important in generating model predictions (e.g., Luce, 1986, chapter 11).

As discussed previously, recall performance depends crucially on the recency of the items being tested (see ''Accuracy and Interresponse Times in Free Recall," p. 
324). One may ask how the RT to recognize an item depends on the item's position in the study list. In particular, are subjects faster at recognizing recently presented 
items? In Sternberg's short­term item­recognition task significant recency effects are often, but not always, obtained (see McElree & Dosher, 1989, and Sternberg, 
1975, for reviews). In the clearest case, Monsell (1978) found dramatic recency (i.e., facilitation of positive responses to recent list items) using either letters 
(experiment 1) or words (experiment 2) as stimuli (figure 10.7). In Monsell's study, the test probe followed the last list item either immediately (right panel) or after a 
brief delay (left panel). The delay condition required subjects to name a vowel presented immediately after the last list item (this took an average of 500 ms). This step 
was performed to prevent subjects from rehearsing the list items during the delay period. In an earlier study, Forrin & Cunningham (1973) showed that increasing the 
length of an unfilled delay between study and test eliminates the recency effect in short­term item recognition. In general, experimental conditions that reduce or 
eliminate rehearsal tend to produce large recency effects, and those that allow for rehearsal (e.g., Sternberg, 1966) typically have flat serial­position curves.

  
Page 341

Figure 10.7
Serial position data from Monsell (1978, experiment 1). A fast presentation rate (500 ms/item) was designed to minimize rehearsal.  
In the immediate test, the probe item immediately followed the presentation of the last list item; in the delayed 
test a vowel had to be named after the offset of the last list item. As soon as a response was detected, the probe item was presented.

According to Sternberg's serial exhaustive­scanning (SES) model, a response cannot be made until every comparison has been performed. Consequently, the time 
required to perform the memory scan should be independent of serial position. In light of this, the marked serial position effects obtained by Monsell (1978) and others 
present a challenge to the Sternberg model. In fact, some authors have rejected the Sternberg model because of this evidence alone. In response, two points need to 
be made. First, the Sternberg model was designed to explain data obtained under conditions where subjects could freely rehearse highly familiar items (e.g., Sternberg, 
1966). Under these conditions, significant serial position effects are consistently absent (Ferrin & Cunningham, 1973). Second, facilitation in performance may be 
occurring in other stages of the model (Sternberg, 1975). For example, recent items may speed, the encoding of the probe item or the execution of the response—
thereby resulting in faster RTs (for a similar argument in the literature on same­different com­

  
Page 342

parisons, see Proctor, 1981). This priming account of the recency effect is difficult to reconcile with the problem of recent negatives. If a probe that was not on the 
current list was presented as a target on a recent prior list, RTs to respond "no" to the negative probe are significantly increased (e.g., McElree & Dosher, 1989, 
experiment 2) this finding has proven difficult to reconcile with Sternberg's SES model.

Another challenge to Sternberg's SES model comes from studies that examine list length effects beyond the span of immediate memory. As mentioned earlier, near 
perfect accuracy is attained either when lists are short (subspan) or through practice (for longer, supraspan, lists). Burrows and Okada (1975) used a prememorized 
list technique to study RTs in an item recognition task with list lengths far beyond the limits of immediate memory. Their results are shown in figure 10.8. For subspan 
list lengths (two—six), the slope of the best­fitting line is 37 ms—replicating the classic Sternberg effect. However, a separate line fit to the supraspan lists (lengths 
greater than eight) yielded a much shallower slope of 13 ms/item. Burrows and Okada also fit a single logarithmic function to their subspan and supraspan data. They 
found that this function fit all of the data points as well as both the bilinear subspan and supraspan functions, but with fewer parameters. According to the serial 
exhaustive scanning model, each additional item in the memory set should result in a constant increase in mean RT for both positive and negative probes. These data 
indicate that the increase in mean RT is not a constant, but varies with list length. This finding is not easily reconciled with the SES model.

So far we have discussed serial position effects (e.g., Monsell, 1978) and list length effects (e.g., Burrows & Okada, 1975) in the context of RT studies of short­term 
memory. Another major variable that is studied in human memory is repetition. Baddeley and Ecob (1973) wondered what would happen if a single list element in a 
Sternberg task were repeated. Under these conditions, mean RT is significantly faster for responding to the repeated element than to nonrepeated elements. Like the 
serial position effects reported by Monsell (1978), these data seem inconsistent with the SES model. If each element must be scanned before a response can be made, 
it should not matter how many times an element is presented. This critique of the Sternberg SES model assumes that other

  
Page 343

Figure 10.8
Data illustrating the effect of a large range of list lengths on mean reaction time in a probe recognition task  
(Burrows & Okada, 1975, experiment 2). To achieve nearly errorless performance, lists were "prememorized"; 
that is, before testing a given list length, the list was already well learned. In the figure, a bilinear 
function is fit to the data. For short list lengths, the slope of the RT­list length function is  
similar to results obtained by Sternberg (1966). For longer list lengths, mean RT rises slowly as 
list length increases (the slope of the best­fitting line is only about 13 ms). As noted by Burrows and Okada (1975),  
a simple log function fits the data as well as the two linear functions shown here. This raises questions about 
the linearity of the list length—RT functions reported for short lists.

stages are not influenced by repetition. It is not unreasonable to suppose that the decision stage is executed more quickly when two matches have been registered than 
when only a single match has been registered.

In the years since the publication of Sternberg's original paper, Sternberg's basic experimental findings have been replicated and extended hundreds of times in studies 
that manipulated dozens of different experimental variables (see Sternberg, 1975, for a review). Although the data are solid, there has been a long debate about the 
meaning and interpretation of these findings. Many models have been proposed to account for the basic data, yet none of these models has succeeded in capturing 
most of the benchmark effects (Sternberg, 1975). Although the simplest version of any model can easily be rejected, the model's creators can often patch things up to 
correct for the most serious problems. By the 1970s it was

  
Page 344

already becoming clear that many different types of models can produce identical predictions for data on mean RTs (e.g., Anderson, 1973, Townsend, 1976, 1984).

More recently, attention has shifted from looking at mean RTs to examining the actual shape of the RT distribution. It turns out that although very different types of 
models can explain the same pattern in the mean RTs, explaining the exact shape of the distribution and how it changes with manipulation of experimental variables is 
more difficult. Memory theorists have begun to tackle this issue with promising results (Ashby, Tein, & Balakrishnan, 1993; Hockley & Murdock, 1987; Ratcliff, 
1978).

The three findings just reviewed, list length, serial position, and repetition effects, all show parallel effects on accuracy and latency. Longer lists are harder to remember 
than shorter lists. Recently presented items are easier to remember than items presented earlier in the list. Repeated items are easier to remember than nonrepeated 
items. It may be argued that both the time it takes to recognize an item and the likelihood of successful recognition are reflections of a single construct—the strength of 
the memory trace. 8  Appealing as this idea may seem, we will later see that the precise nature of the relationship between accuracy and latency may provide important 
information for testing models of memory.

Task Analysis Using Accuracy and RT Data

If the goal of information­processing research is to break down a complex task into logically distinguishable mental operations and then characterize and model those 
operations, how do we go about breaking down the complexity of real­world tasks? Among researchers who are concerned with accuracy, the standard method of 
task analysis is to look for experimental factors (e.g., word frequency or the spacing of repeated elements) that have different effects on different memory tasks or on 
different aspects of subjects' performance in a given task. Consider the serial position curve in free recall. Presenting the list auditorally results in a larger re­cency 
effect (better memory for the last few list items) than does presenting the list visually (this phenomenon is referred to as a modality effect). However, the mode of 
presentation (auditory vs. visual) has no effect on the rest of the serial position curve.9  This finding is called a functional

  
Page 345

dissociation between the recency and the prerecency part of the serial position curve. Another experimental variable, list length, has no effect on the recency part of 
the serial position curve but has a substantial effect on the prerecency items. With this second, complementary dissociation, the tasks are said to be doubly 
dissociated. Such double­dissociations are sometimes taken to support the view that recency and prerecency items represent the operation of distinct short­term and 
long­term memory systems. 10

If we are willing to make the assumption that some sets of mental operations are arranged (at least approximately) in nonoverlapping stages (i.e., one stage begins only 
after the prior stage is done with its processing), we can perform a more sophisticated task analysis using mean RT data. This approach is called the additive factors 
method (Sternberg, 1969a; Sternberg, 1998a). The key to this approach is the factorial experimental design. Two or more factors that are known to affect overall RT 
are manipulated factorially. If each of the factors selectively affects a different processing stage, then total RT should be given by the sum of the separate effects of 
each factor on RT. If however, the two factors influence a common stage, total RT will deviate from the sum of the separate effects, and the factors can be said to 
interact, in a statistical sense.

As an example of the additive factors approach, consider an experiment in which the RT­list length relationship is examined as a function of some other variable: in this 
case the variable of whether or not the test probe is degraded (made to look blurry) via reduction of contrast or randomizing pixels. Sternberg (1967b) conducted this 
experiment and his results are shown in figure 10.9. The nearly identical slopes of the two functions indicate a lack of interaction between list length and whether the 
probe item is degraded: that is, the RT difference between the clean and degraded conditions is approximately the same for each value of list length. In this experiment 
two factors are varied: list length and probe degradation. Probe degradation simply lowers the RT­list length function by a fixed amount. Statistically, it is said that 
these factors do not interact (see figure 10.9). Such additivity is predicted by a discrete stage model in which stimulus degradation affects one stage (perhaps 
encoding) and set size affects another stage (perhaps comparison). If two factors affected the same stage, one would expect to find a statistical interaction (i.e., the

  
Page 346

Figure 10.9
Data from Sternberg (1967), illustrating the effect of visually degrading the probe on the RT—list length relation. 
For both degraded and clean probes, RT is linearly related to list length. There is no interaction, 
as indicated by the nearly parallel lines for the two conditions. The left panel shows data for the first session 
of doing the task, and the right panel shows data for the second session. Degree of practice (session 2 versus session 1)  
does not seem to affect either the slopes of the function or the difference between degraded and intact performance. 
Rather, practice just speeds everything up (as indicated by the lower intercepts for session 2).

slope of the list length­RT function would be different for degraded and nondegraded stimuli). Sanders (1980) and Sternberg (1998a) reviewed a great deal of 
evidence from a broad range of factorial RT studies. They found that many variables that would logically be expected to influence different processing stages do have 
additive effects on RT.

The additive factors method is not without its detractors. An early criticism of the method is that it relies entirely on RT measurements. These measurements may not 
be comparable across experimental conditions that differ even slightly in accuracy. Pachella (1974) presented a cogent review and critique of the research on RTs 
during the prior 10 years. As will be described in detail, Pachella pointed out that when you correct for the differences in error rates across conditions, some of the 
additive effects observed in RT data disappear. This type of error rate correction assumes something called a speed­accuracy trade­off, which will be discussed in the 
next section.

  
Page 347

A subsequent challenge to the additive factors approach came from demonstrations that models that assume continuous transmission of information (i.e., the products 
of a given stage are constantly available to the next processing stage) can often produce additive effects on mean RT (Ashby, 1982; McClelland, 1979). Roberts and 
Sternberg (1993) performed a detailed analysis of the McClellan­Ashby model. They found that although the model could predict additive effects on mean RT for 
some parameter values, the model did not provide a reasonable fit to additivity at the level of the entire RT distribution. Roberts and Sternberg's work exemplifies the 
recent trend toward fitting RT distributions rather than simply mean RT. Distributional tests provide investigators with significantly greater resolution in distinguishing 
theories.

In an interesting development in this area, Schweikert (1985) and Roberts (1987) have each expanded the additive factors approach to deal with accuracy and 
response rate data respectively. Consider a model in which a correct response relies on the completion of two independent processes, A and B. Further, assume that 
process B must act on the completed output of process A. If processes A and B provide adequate information for a correct response with probabilities p(A) and p(B) 
respectively, then the probability of a correct response is given by p(A) × p(B). Converting to logarithms, we can write

log p(A and B) = log p(A) + log p(B). (10.2)

If each of two factors selectively influence each of the two hypothetical processes, one would expect additive effects of the factors on the logarithm of recall 
probability. This finding has been observed by a number of investigators in a number of different experimental paradigms (see Schweikert, 1985, for a review).

Complications Introduced by the Possibility of Speed­Accuracy Trade­offs

As we have noted, several individuals, most notably Wickelgren and Pachella, wrote of serious difficulties that are entailed when RT studies do not consider variation 
in error rates across experimental conditions (e.g., Corbett & Wickelgren, 1978; Pachella, 1974; Wickelgren, 1977).

  
Page 348

Consider the curves shown in figure 10.10A. This figure introduces the concept of a speed­accuracy trade­off. The general idea is simple: the more time you allot to 
some task, the better you will do at that task. For instance, if you are typing, you could type slowly and make relatively few errors or, alternatively, you could type 
more quickly and make more errors. In this example, you, the typist, decide what you will do in terms of trading off additional speed for less accuracy.

In figure 10.10A, condition 1 and condition 2 refer to two conditions in some RT experiment. Condition 2 is assumed to be more difficult than condition 1; thus 
conditions 1 and 2 could, for example, be three­and five­item lists in our familiar item­recognition task. For each condition, probability correct is plotted as a function 
of what is termed processing time. For the moment, processing time, which is measured from the beginning of stimulus onset, is an unobservable construct. The idea 
here is that the onset of the to­be­processed stimulus (e.g., the probe word in the recognition test) triggers appropriate perceptual and cognitive processing. The more 
such processing occurs, the more information about the stimulus is obtained. At any given processing time, some specific amount of information has been obtained. 
Probability correct corresponding to that particular processing time is the probability that with only the information obtained thus far, a correct response would be 
made.

The curves that relate probability correct to processing time are called speed­accuracy trade­off (SAT) curves. The greater difficulty of condition 2 compared to 
condition 1 is embodied in the observation that in order to obtain some fixed level of response probability, more processing time is required for condition 2 than for 
condition 1. Notice that SAT curves are like typical RT curves (e.g., as in a Sternberg paradigm) rotated by 90°. Whereas in a typical RT function, processing time is 
plotted as a function of amount of required processing (e.g., of memory list length), in an SAT curve amount of processing (measured in terms of probability correct) is 
plotted as a function of allotted processing time.

Implications of Only Observing RTs

In a typical RT task, SAT curves are not directly measured. Rather, in a given experimental condition, subjects adopt (implicitly or explicitly) some criterion point on 
the SAT curve (just as when you are typing you

  
Page 349

Figure 10.10
Hypothetical speed­accuracy tradeoff (SAT) curves for two conditions. In (A), X and Y indicate where the speed­accuracy  
criteria are placed. In (B), X, Y, and Z indicate where the speed­accuracy criteria are placed. In both panels,  
RT1 and RT2 are the RTs for conditions 1 and 2.; Err 1 and Err 2 are error rates for conditions 1 and 2. In 
panel B, RT 2a shows the RT for condition 2, assuming an error rate equal to the error rate of condition 1.

  
Page 350

must decide how fast you are going to type, which, in turn, will produce some corresponding degree of accuracy). The processing time corresponding to this criterion 
is the observed RT in the experiment, and the probability correct corresponding to this criterion is 1.00 minus the observed error probability in the experiment. 11

To illustrate the complexities of doing standard RT experiments, consider the curves in figure 10.10A. In condition 1, the criterion point is labeled X. This corresponds 
to an observed RT of 170 ms, and an observed error rate of .01 (1.00 – .99 probability correct value). In condition 2, the observed RT is 150 ms, and the observed 
error rate is .13. Clearly, something is amiss. The presumably more difficult condition 2 has a shorter observed RT (150 ms) than does the presumably less difficult 
condition 1 (170 ms). Thus with RT information only, the experimenter would, incorrectly, conclude that condition 2 is less difficult than condition 1.

Fortunately, experimenters would not be quite so naive. Rather, the experimenter would quickly note that the observed error rate in condition 2 (.13) is greater than 
the observed error rate in condition 1 (.01) and would become suspicious that the shorter observed RT in condition 2 may be due to a speed­accuracy trade­off—
that is, in condition 2, observers are (for whatever reason) sacrificing accuracy for increased speed—and it is for this reason that RT is shorter in condition 2 than in 
condition 1. This would lead the experimenter to suspend judgment about the relative difficulty of the two conditions and rerun the experiment, changing the subjects 
instructions so as to eliminate this speed­accuracy confounding.

Necessary Conditions for Safe Ordinal Conclusions

Let us imagine that this rerunning produces the data of figure 10.10B. Again, the two speed­accuracy criterion points are labeled X and Y for condition 1 and 2 (ignore 
point Z for the moment). Now the observed RTs are 115 ms and 150 ms for condition 1 and 2 respectively. Thus, these observed RTs now correctly reflect the 
greater difficulty of condition 2 compared to condition 1. In addition, the observed error rates are .07 and .12 for conditions 1 and 2, respectively. In short, condition 
2 now has both a longer observed RT and a higher observed error rate than

  
Page 351

does condition 1. Thus, the experimenter could correctly conclude that condition 2 is more difficult than condition 1. In addition, because of the higher observed error 
rate in condition 2 compared to condition 1, the experimenter would be confident that the longer RT of condition 1 could not have come about because of a speed­
accuracy trade­off. To summarize: when one condition (condition 2) produces both longer RTs and higher errors than another condition (condition 1), the 
experimenter can safely conclude that condition 2 is intrinsically harder than condition 1.

Quantitative Interpretational Difficulties

However, the speed­accuracy trade­off problem has not been completely solved even when the data emerge as in figure 10.10B. Suppose the experimenter were 
interested in the magnitude by which the condition­2 processing time exceeded the condition­1 processing time. The best estimate from the figure 10.10B data would 
be that this value is the difference of the observed RTs, that is, 150 ms ­ 115 ms = 35 ms. But would this be accurate? No, it wouldn't, because the two conditions 
differ in terms of error rate as well as in terms of RT.

Suppose the experimenter had been lucky enough that the error rates were identical—say, .07—in both conditions. Now the two speed­accuracy criterion points 
would be X and Z on figure 10.10B. Note that the RTs corresponding to condition 1 and 2 would be 115 and 175 ms (the latter is labeled as RT 2a in the figure). 
Therefore, the real difference between the two conditions—that is, the RT difference with error rates held constant at .07—would be 175 ms ­ 115 ms = 60 ms. 
Quantitatively, this is quite a different conclusion from the 35­ms figure that we would have arrived at from the actual data that entailed the different error rates. This 
means that many patterns of RT data are difficult to interpret when error rates differ among the conditions.

Consider Sternberg's (1966) finding that RT increases linearly with list length in a subspan item recognition paradigm (see figure 10.6). It was this result that led 
Sternberg to postulate a serial comparison process (i.e., when the probe item is compared with each element of the memory set, one comparison does not begin until 
the prior comparison has been completed). But, if error rates vary systematically as a function of list length, it is unlikely that the observed linear RT functions would be 
obtained

  
Page 352

under conditions in which error rates did not vary with list length (see Pachella, 1974).

Equalizing Error Rates Is Still Not Enough

Suppose one could carefully control error rates so that they were identical in the various conditions. Going back to figure 10.10B, suppose that the speed­accuracy 
criteria for conditions 1 and 2 were at points X and Z. Note there that the associated RTs of 115 and 175 ms are those associated with a particular error rate—
specifically, .07. However, this error rate is arbitrary; that is, there is no reason why we should be interested in the RTs associated with this error rate as opposed to 
any other error rate. It is easy to see that if we observed RTs associated with some other error rate—say .50—then both the RTs associated with the individual 
conditions and the difference between the two RTs would be different. It is for this reason that more and more investigators have adopted the somewhat time­
consuming but more informative strategy of mapping out entire SAT curves for various conditions. The means by which this mapping is done are described in the next 
section.

An Important Caveat

The foregoing analysis indicates potential problems with the RT approach. Suppose, however, that every mental process is characterized by two independent 
variables: the time it takes (resulting in measured RT) and the information it provides (resulting in measured accuracy). Forcing subjects to respond quickly may still 
increase errors because a response may be required before the process completes. Yet, left to their own devices, subjects may respond as soon as the necessary 
processing is complete, and the measured RT may then be directly interpreted as reflecting the time required to perform a given task. There is still considerable debate 
as to how serious the problems are with the RT approach (see Sternberg, 1998b, appendix A, for a detailed discussion of this point).

SAT Curves in the Study of Human Memory

Schouten and Bekker (1967) introduced an experimental technique to study the SAT function. In this technique, called the response signal pro­

  
Page 353

cedure, (RSP) subjects are trained to make their response as soon as a signal is given. An SAT curve is constructed by varying the onset time of the response signal. 
At the very shortest delays, the subjects response is essentially a ''guess"; the information processing needed to make a correct response has not begun to become 
available. As the signal delay increases, the subject has more time, and presumably more information becomes available. Performance increases with the time of the 
response signal until it reaches some asymptotic value.

As you might imagine, subjects find this task to be quite difficult. To ensure that subjects respond almost immediately after the onset of the response signal requires 
considerable practice. One of the hardest aspects of this task is withholding a correct response until the signal appears. Some subjects simply cannot do this, and 
consequently they are excluded from participating.

Before describing the mathematical form of the SAT curve, it is necessary to introduce a special index of performance that is often used in studying detection, 
discrimination, and recognition. Consider our familiar recognition memory task. This task can be seen as a discrimination task between two sets of items—studied 
items and nonstudied items. Performance is then characterized in terms of subjects' ability to discriminate studied from nonstudied items. One way of measuring 
discriminability is by taking the probability of a correct yes response (called a hit) and correcting for the probability of an incorrect yes response (called a false alarm). 
The way this is done is by first transforming hit rate and false alarm rate to z scores (i.e., convert the raw scores into standard scores). The difference between the z­
transformed hit rate and the z­transformed false alarm rate is termed d prime (written as d').

Using d prime as our measure of performance, it has been shown that SAT curves for individual subjects are well fit by an exponential growth to a limit, given by the 
equation

d' =  (1 ­ e­b(t ­  d)), t >>  (10.3)

The three parameters in equation 10.3,   (lambda),   (beta), and   (delta), characterize three phases of information processing. In phase one, t <  , no information is 


available. After t =  , the information rises with rate   (phase 2) until it reaches an asymptotic level of performance (phase 3).

  
Page 354

Figure 10.11
Hypothetical speed­accuracy tradeoff (SAT) curve generated by an exponential rise to an asymptote (see equation 9.3).  
In this figure, all of the curves assume an intercept,  , set to 1. For the lowest curve (long dash), the rate  
parameter,  , and the asymptote,  , are also set to 1. Above this curve, the dark solid curve has a rate parameter of 2.  
The uppermost curve is defined by a rate parameter of 1 and an asymptote of 2.

Note that we must choose a certain point on the SAT curve to characterize the asymptotic phase. The form of equation 10.3 for different parameter values is shown in 
figure 10.11.

Reed (1973, 1976) applied this response signal procedure to studying short­term item recognition. McElree and Dosher (1989), following up on Reed's (1976) work, 
examined SAT curves in the Sternberg task. They conducted two experiments that replicated the standard effects in the literature: asymptotic accuracy varied linearly 
with list length, and pronounced serial position effects were observed. SAT curves for lists of four and six items are shown in figure 10.12. Analyzing these curves 
separately for different serial positions and list lengths revealed a surprising result: neither the rate nor the intercept of the SAT curves varied with list length.

According to the classic Sternberg (serial exhaustive­scanning) model, what predictions can one make about the shape of the SAT curves? If each comparison has an 
equal duration, increasing list length should require more comparisons. Consequently, each added item should cause

  
Page 355

Figure 10.12
Observed average performance (as measured by d­prime) as a function of total processing time for list  
lengths of four and six. Smooth functions are based on the fits of an exponential rise to an asymptotic 
function (equation 9.3).

the minimum processing time to increase by the comparison time. This would produce a difference only in the intercept of the SAT curve. Reed's (1976) data ruled out 
this hypothesis.

Consider a more sophisticated version of the Sternberg model in which the comparison durations vary from trial to trial and from item to item. Because a response 
cannot be made until all comparisons are complete, longer list lengths will still require more processing time. For the case of a single list, the comparison will be 
completed very fast for some items and very slowly for other items (with a range of comparison times in between); this variability will result in a gradually increasing 
SAT curve (assume that subjects guess if they haven't completed all memory comparisons). If there are more items in the list, the likelihood of all of the items having 
fast comparison rates is quite low, so the SAT curve should rise more gradually as list length increases. As illustrated in McElree and Dosher's (1989) study (see figure 
10.42), the rate of increase in the SAT curve does not vary with list length. This finding cannot be reconciled

  
Page 356

with any known variant of the serial exhaustive­scanning model. However, Ratcliff's (1978) diffusion model, a parallel model of RTs, does provide a reasonable 
account for the basic SAT data (McElree & Dosher, 1989; Ratcliff, 1978). The diffusion model will be discussed in more detail later in this chapter.

Criticisms of the SAT Approach and the Response Signal Procedure

In our earlier discussion, we pointed out some of the potential dangers involved in comparing RTs for conditions in which accuracy varies. It was assumed that 
variation in accuracy could result from a speed­accuracy trade­off that would disguise true RT differences. As Pachella (1974) pointed out, conditions that yield short 
RTs often result in lower error rates than conditions that yield long RTs. But the correlation is not 100%. In some cases, error rates vary independently of RT even 
when subjects are under considerable time pressure to respond (e.g., Sternberg, 1969b).

Given the availability of the response signal procedure as a means of mapping out the effect of experimental variables on the complete SAT curve, it may seem 
surprising that the field has not completely adopted this approach. Aside from the added complexity of this experimental technique, there have been several potentially 
serious problems with the RSP that should be pointed out.

The first and most serious problem is that the response signal may alter the way in which information is processed in a given task. Essentially the response signal 
procedure turns a single task into a dual task. While subjects are busy trying to derive the information needed to make a response, they must be constantly attentive to 
the response signal. Then, even if they are ready to respond, they must wait until the response signal arrives. This turns a fairly simple task into a relatively complex 
one, making the task of interest much more difficult to model.

Another important criticism of the response signal procedure is that it cannot distinguish all­or­none processing from continuous accrual of information. If all of the 
relevant information for a cognitive judgment becomes available at some variable instant in time, SAT curves will still appear to increase smoothly. How, then, can one 
distinguish between

  
Page 357

these fundamentally different views of cognition—all­or­none versus continuous processing? Meyer, Irwin, Osman, & Kounios (1988) proposed a variant of the 
response signal technique, called speed­accuracy decomposition (SAD), as a means of resolving this ambiguity. In the SAD technique, subjects are given regular (no 
signal) trials randomly interspersed with signal trials. Because subjects don't know if a trial is going to have a signal until the signal arrives, subjects are free to respond 
as soon as they are ready. On response signal trials, subjects may be responding on the basis of complete information (prior to the onset of the signal) or on the basis 
of partial information (after the signal is given). By obtaining RT distributions for both response signal trials and regular (no signal) trials, it is possible to determine the 
separate contributions of complete and partial information to the RTs obtained on the response signal trials. To do this, one must be willing to make certain 
assumptions about the relationship between responses based on complete and partial information (see Meyer et al., 1988, for details). Although there has been some 
debate as to the validity of these underlying assumptions (De Jong, 1991, but see Smith, Kounios, & Osterhout, 1997), in the worst case these assumptions leave the 
investigator with no less information than would be available using the more traditional SAT technique. Evidence obtained using the SAD procedure has shown that 
under many conditions information is accumulated continuously (e.g., Kounios, 1993; Kounios, Montgomery, & Smith, 1994; Meyer et. al., 1988). However, a 
recent study of problem solving revealed evidence for all­or­none processing using a SAD procedure (Smith & Kounios, 1996).

Performance Curves to Investigate Visual Information Acquisition

Speed­accuracy trade­off curves, of the sort described in the previous section, can also be used to study relatively low­level processes such as attention and visual 
information acquisition. When low­level processes are under investigation a simple paradigm can be used in which, on each of a series of trials, the following sequence 
of events occurs:

1. Usually a trial begins with a warning tone and a fixation point.

2. A stimulus (e.g., a picture) is presented for a variable but short duration (e.g., a duration ranging from 20 to 250 ms).

  
Page 358

3. The stimulus is followed by a visual mask that prevents information acquisition from the iconic image that typically follows the visual stimulus. Thus, the time the 
observer has available to process the stimulus is carefully controlled.

4. Eventually, memory for the presented stimulus is tested. For instance, if pictures were shown as stimuli, memory for the pictures might be tested in a later recognition 
test.

In this paradigm, memory performance can be plotted as a function of stimulus duration. This form of a speed­accuracy curve is known as a performance curve. 
Performance curves have been generated by numerous researchers to investigate a variety of issues. 12

An Example: Using Performance Curves to Investigate Effects of Priming

To illustrate how generation of such curves can be instrumental in formulating precise conclusions about the mechanisms by which some variable exerts its effect, 
consider the phenomenon of priming. In general, priming refers to the effect of some priming stimulus on the perceptual and cognitive processing of some related 
target stimulus that occurs near in time to the priming stimulus. A classic example is that of a lexical decision task (e.g., Meyer & Schvaneveldt, 1971). In an LDT, an 
observer is presented with a target letter string that is either a word or a nonword (e.g., NURSE or NIRSE) and must decide, as quickly as possible, whether the 
letter string is a word or a nonword.

To see the effect of priming in this paradigm, consider the letter string NURSE, to which, of course, the response "word" should be given. A universally reported result 
is that the RT for correctly responding "word" to the target NURSE is faster when NURSE is preceded by a related word (such as DOCTOR) than by an unrelated 
word (such as LION). Thus the word DOCTOR is said to prime the related word, NURSE. One way or another it shortens the time to correctly respond.

How does priming work? Consider two possibilities:

Possibility 1. The prime acts as if the observer has been given a brief "advance peek" (e.g., a 50­ms advance peek) at the target word. In this case, of course, RT 
should be 50 ms faster in the primed than in the unprimed condition.

  
Page 359

Possibility 2. The prime acts to speed up processing of the target word. In this case, RT should still be faster in the primed compared to the unprimed condition, but 
by how much is not clear.

In a typical RT experiment, these two possibilities cannot be distinguished, because simply observing a shorter RT to the primed compared to the unprimed condition 
is consistent with either one. However, Reinitz et al. (1989) investigated priming by observing performance curves. Briefly, their experiment was as follows. On each 
of a series of trials, a target picture of an object was presented for varying durations and was followed by a visual mask. For instance, the target on one trial might be a 
guitar. In a primed condition the target was preceded by a related word (the word guitar in this example), whereas in an unprimed condition the target was 
preceded by an unrelated stimulus (which was either an unrelated word, such as lamp, or just a row of Xs; these two unprimed conditions produced identical 
performances, so we will lump them together and just call them both the unprimed condition. Later, memory for the target stimuli was tested in a recognition test.

The results of this experiment took the form of two performance curves: performance as a function of original target stimulus duration for both the primed and the 
unprimed conditions. Now the two possibilities just sketched make different predictions, which are shown in figures 10.13 A, B.

Possibility­1 Prediction: Horizontally Parallel Curves

Figure 10.13A shows the quite straightforward prediction corresponding to possibility 1: If having a prime is like having an "advanced peek" of, say, X ms at the target 
stimulus, then the two performance curves corresponding to primed and unprimed conditions should be horizontally parallel; that is, the horizontal difference 
between them should be some constant. The magnitude of the horizontal difference corresponds to the duration that the "advanced peek" is worth. If the data in figure 
10.13A were obtained, the experimenter would conclude that possibility 1 is correct and that having a prime is like having an advance peek at the target picture of 
duration 50 ms (the magnitude of the horizontal difference between the curves). For any performance level achieved in the unprimed condition,

  
Page 360

Figure 10.13
Panel (A) illustrates the predictions for possibility 1 (the "advanced peek" possibility). Note that the curves are horizontally parallel,  
separated by 50 ms. Panel (B) illustrates the predictions for possibility 2 (the "speedup" possibility). Note that the 
curves are horizontally diverging at a ratio of 1:2. Panel (C) illustrates possibility 2, with duration plotted on a log axis.  
In this case, the curves are once again horizontally parallel.

  
Page 361

Figure 10.13
continued

the subject needs 50 ms less in the primed condition because of the 50­ms advanced peek provided by the prime.

Possibility­2 Prediction: Constant­Ratio Diverging Curves

The prediction for possibility 2 is a bit more complicated, and it is illustrated in figure 10.13B. The idea here is that if the prime speeds up processing of the target, by 
some ratio, r, then it should take r times as long to achieve any given performance level for unprimed compared to primed, targets. In the illustration of figure 10.13B, 
r = 2; that is, the prime speeds up target processing by a factor of 2. Thus, for instance, to achieve a performance of about .23 requires 50 ms for the primed targets 
but 100 ms for the unprimed targets. To achieve a performance level of about .40 requires 100 ms for the primed targets, but 200 ms for the unprimed targets, and so 
on.

One methodological note is of some interest here. Suppose you have a data set corresponding to the primed and unprimed performance curves, and you wish to see 
whether the data correspond to the prediction of possibility 1 (figure 10.13A) or to the prediction of possibility 2 (figure

  
Page 362

10.13B). Testing the possibility­1 prediction is relatively straightforward: you just "slide" the two curves horizontally relative to one another (either physically, using 
transparencies, or electronically) and see if you can get them to exactly overlap.

Testing the possibility­2 prediction shown in figure 10.13B is not so straightforward. However, there is a trick that allows one to test the possibility­2 prediction in a 
similarly simple way. This is to plot the curves on a log duration axis rather than on a linear duration axis (a linear duration axis, as in figure 10.13B, is the normal way 
of plotting). Because equal linear ratios correspond to equal log distances, the possibility­2 prediction is that when plotted on a log duration axis, the performance 
curves should again be horizontally parallel. This possibility is illustrated in figure 10.13C. How did the data actually come out? The answer to this question is a bit 
complicated, and we will not describe it in detail here. Suffice it to say that initially possibility 2 was confirmed: that is, at least during the very early stages of 
perception, priming has the effect of speeding up the rate at which processing takes place.

Models of RT Data in Human Memory

Earlier we asked the following question; Are accuracy and RT two sides of the same coin? We then went on to show that under some circumstances, error rates are 
negligible and an analysis of RT reveals many interesting features of human behavior. As an example of one particularly well­explored domain, we considered RT data 
in the Sternberg subspan item­recognition task. Three basic empirical findings emerged from these studies. First, longer lists are associated with longer RTs—we 
called this a list length effect. Second, in conditions designed to eliminate rehearsal, recent items are recognized more quickly than earlier list items—we called this a 
recency effect. Finally, repeated items are remembered better than once presented items. Not surprisingly, all of these effects have perfect analogues in the literature 
on accuracy in recognition memory tasks involving longer lists. The list length effect (in recognition memory) has been known since Strong's 1912 study. Although 
there is still much debate as to the cause of this effect (See Murdock & Kahana, 1993a, 1993b; Shiffrin et al. 1993), it is found in every type of memory test 
regardless

  
Page 363

of whether accuracy or RT is the dependent variable. The beneficial effects of recency are equally ubiquitous in the memory literature. Rubin and Wenzel (1996) and 
Wixted and Ebbesen (1991) have shown that across a wide range of tasks and materials response accuracy declines as a power function of time, or the number of 
items intervening between study and test (termed study­test lag). In short­term item recognition, Monsell (1978) found a similar type of recency effect in RT data (see 
figure 10.7). In a continuous recognition task, Hockley (1982) also found dramatic recency effects in RT data. 13 Clearly, recency, repetition, and list length effects 
are fundamental properties of human memory. It is with this in mind, that we can entertain the possibility that memories vary in the strength of the cue­target match. The 
amount of information is then a single dimension that has a single SAT function. More information results in faster and more accurate responses.

Unidimensional Strength Theory of Recognition (or Signal Detection Theory)

Consider the familiar item­recognition task (e.g., Sternberg, 1966) as a discrimination between two categories: items that were shown in the list and those that were 
not. According to strength theory (Norman & Wickelgren, 1969) items vary along the dimension of information that distinguishes these two categories (this 
dimension is sometimes called memory strength). A crucial assumption of the theory is the idea of a noisy system: items within each category may vary greatly in their 
values along the ''strength" dimension. This results in two strength distributions: a distribution for list items and a distribution for nonlist items. Responses are made 
based on the value of an item along this informational dimension. If an item's strength exceeds some criterion value, a positive response is made; otherwise a negative 
response is made. This theory is considered because it can provide a simple, unified account for both RT and accuracy data in a broad range of recognition memory 
tasks (Murdock, 1985). Although the model is overly simplistic, the basic ideas it encompasses have become part of almost every current model of human memory 
(e.g., Hintzman, 1986; Metcalfe, 1982; Murdock, 1982). Strength theory is the term used for the application of signal detection theory (SDT) to recognition 
memory tasks (Egan, 1958). In order to see how this theoretical

  
Page 364

framework can provide an account for both accuracy and RT data, the basic elements of signal detection theory will be briefly introduced (for a more thorough 
treatment, the reader is encouraged to consult Murdock, 1985).

In a categorization or recognition task, there may be different payoffs associated with incorrectly classifying a nonlist item as a list item (a false alarm) and for correctly 
classifying a list item as such (a hit). Such differential payoffs are easily modeled by assuming that the criterion can be adjusted to meet the task demands. In a case 
where we want to avoid false alarms at all costs, we set a high criterion. In a case where we want to maximize hits, but where false alarms aren't too bad, we set a low 
criterion. Moving the criterion should not affect the discriminability of the two distributions; only the relative numbers of hits and false alarms will change.

A graph that plots hit rate against false alarm rate for different criteria is called a receiver operating characteristic (ROC) curve. According to strength theory, plotting 
the z­transformed hit rate versus the z­transformed false alarm rate should result in a linear function. If the two distributions have equal variance, the slope of the z­
ROC curve should be 1. In the recognition memory task we can vary the criterion by collecting data on judgements of confidence. In this technique subjects are 
asked, "how confident are you that X was on the list?" A typical scale used for confidence judgements is as follows:

We can now mimic a subject with high criterion by grouping confidence judgments that are less than 3 into the "no" category, leaving only confidence judgements of 3 
in the "yes" category. Based on this grouping, our imaginary conservative subject only responds "yes" when our real subject responds "yes" with high confidence. 
Similarly, we can mimic a subject who is slightly less conservative by grouping confidence judgments that are less than 2 into the ''no" category, leaving confidence 
judgments of 2 and 3 in the "yes" category. Moving the criterion further down, we reach the criterion of our real subject, with positive confidence

  
Page 365

judgments reflecting "yes" responses and negative confidence judgments reflecting "no" responses. Finally, we can move our criterion yet further down, all the way to 
the point were only a confidence judgement of ­3 is in the ''no" category, and all other confidence judgments are grouped in the "yes" category. This hypothetical liberal 
subject will only withhold a "yes" response when he/she is certain the item was not on the list. If we plot hits against false alarms for each of these hypothetical subjects, 
we can construct an ROC curve. At the most conservative end of the spectrum, both the hit rate and the false alarm rate will be low because the subject rarely makes 
"yes" responses. At the most liberal end of the spectrum, both the hit and false alarm rates will be high because the subject almost always makes "yes" responses. The 
points representing hit rate and false alarm rate for each criteria level (liberal to conservative) traces out the bow­shaped ROC curve (See Swets, 1998 for 
background information on ROC curves and their applications to some real world problems). Studies of recognition memory (Koppell, 1977; Ratcliff, McKoon, & 
Tindall, 1994; Yonelinas, 1997) have found that the z­ROC curves are nearly linear but have slopes that are consistently less than 1 (around 0.8 in most studies). The 
linearity of the z­ROC functions is consistent with the view that strengths of list and nonlist items are distributed normally. The finding that the slope of the z­ROC curve 
is less than 1 'indicates that the variability in the strength of items' representations in memory is greater for list items than for non nonlist items (see Ratcliff, McKoon, & 
Tindall, 1994)

Strength theory may be extended to deal with RT data in a fairly straightforward manner. If we plot RT as a function of confidence judgment values (which maps 
directly onto the distance from our yes­no criterion), we find that as we approach the criterion from either direction, RTs increase quite dramatically. According to the 
RT­distance hypothesis, RT increases monotonically as the criterion is approached from either direction (Koppell, 1977; Murdock & Anderson, 1975). Murdock 
(1985) proposed an extension of strength theory to handle RT data. This model has been shown to fit data on list length effects and recency effects, as well as RT 
distributions, in both the Sternberg (1966) subspan item­recognition task and in the supraspan study­test recognition paradigm. The power of the RT­distance 
hypothesis is that it can be applied to any

  
Page 366

domain of signal detection theory. Maddox and Ashby (1996) incorporated the RT­distance hypothesis into the generalized recognition theory of multidimensional 
categorization tasks (Ashby & Perrin, 1988). In this manner they were able to simultaneously fit both accuracy and RT data in a variety of categorization tasks.

The Diffusion Model

The diffusion model (Ratcliff, 1978; Ratcliff & Van­Zandt, submitted) is an abstract mathematical model of any cognitive task that involves choosing from among a 
number of sources of information. These tasks include recognition memory as well as multidimensional perceptual discrimination tasks. Consider an application of this 
model to the basic Sternberg item recognition paradigm. A probe is compared in parallel with a defined (but potentially large) set of items in memory (see figure 
10.14). Each memory trace begins with a base level of activation. As time progresses, the activation drifts, or diffuses, with a variable rate toward either a lower or 
upper boundary. The model is self­terminating on a match (i.e., if an item reaches its upper bound, the model produces a positive response) and exhaustive on 
nonmatches (i.e., all items must reach the lower bound before a negative response can be made). For appropriately chosen parameter values, this model can produce 
many of the major findings in the Sternberg paradigm—including both asymptotic accuracy and RT distributions. In addition, it provides a reasonable account of SAT 
functions (McElree & Dosher, 1991). The diffusion model has also been successfully applied to data on multielement comparisons (Ratcliff, 1981) and choice reaction 
time 14 (Ratcliff & Van­Zandt, submitted). One criticism of the diffusion model is that it does not explain the basis of the processes it postulates. The model does not 
explain how items are represented, how they are compared, what causes the variability in drift rates, or even how the upper and lower boundaries are instantiated.

Nonetheless, a diffusion­type mechanism may be incorporated into models that do make explicit assumptions about item comparison and representation. Nosofsky 
and Palmeri (1997) extended Nosofsky's (1986) exemplar­based model of categorization to account for RTs in speeded categorization tasks. In their model, 
exemplars of items and their associated categories are stored as separate memory traces. A to­be­

  
Page 367

Figure 10.14
An illustration of the diffusion model applied to an item recognition task. The process begins at the top of this figure with the  
encoding of the probe item. The probe item is then compared, in parallel (i.e., all comparisons begin at the same time), with  
each of the items in the memory set. Each comparison results in a matching strength value that begins at a baseline level 
and then continuously increases or decreases at a variable rate. A positive yes, response is made if any of the comparisons 
reaches a match boundary; a negative, no, response is made if all of the comparisons reach a nonmatch boundary. 
Model parameters include the values of the match and nonmatch boundaries and the mean and variance of the 
matching strength for each item in the memory set. (Adapted from figure 3, Ratcliff, 1978.)

  
Page 368

classified probe item is simultaneously compared with each stored exemplar. The likelihood of successful retrieval is determined jointly by the strength of the exemplar 
in memory and its similarity to the probe item. Each retrieved exemplar adds evidence in favor of the category with which it has been associated. When a criterion of 
evidence is reached in favor of a particular category, a response is made. Nosofsky and Palmeri (1997) obtained good fits to both mean RT and to RT distributions.

Connectionist Models

During the last 15 years there has been a surge of interest in connectionist models of memory. These models typically assume that a unit of memory is represented by a 
pattern of activation across a large number of processing units. The set of activation values across these units defines a vector in a multidimensional space. Given a 
sufficiently large number of units, the same population of units can be used to store a multitude of items. Interactions among processing units determine the storage of 
new memories and the dynamics by which the model can reconstruct an entire pattern given a partial input.

Connectionist models of memory and cognition can be subdivided into three major classes: multiple­layer, feedforward models of recognition and categorization (e.g., 
McClelland, 1979; Usher & McClelland, 1996); autoassociative models of recognition and pattern completion (e.g., Chappell & Humphreys, 1994; Masson, 1995; 
Metcalfe, 1990); and recurrent, heteroassociative models of sequence memory (e.g., Cleeremans & McClelland, 1991). (See also chapter 8, this volume.)

These models provide mechanisms that give rise to the constructs that are characterized abstractly within models such as the diffusion model or strength theory. In one 
of the earliest applications of a connectionist model to accuracy and RT data in human memory, Anderson (1973) showed how a simple distributed memory model 
could account for the basic linear RT functions obtained by Sternberg (1966). Further efforts to model the Sternberg task employed nonlinear models with multiple 
layers (e.g., McClelland, 1979).

Usher and McClelland (1996) propose a two­layer network model for choice reaction time tasks. The first layer represents the stimulus as a pattern of activation 
across a set of units. These units send their activation

  
Page 369

through weighted paths to a second, decision, layer with N units (one for each possible choice). The Usher and McClelland model proposes both recurrent excitatory 
connections and mutual inhibitory connections between the units in the decision layer. The interplay between the excitatory and inhibitory mechanisms results in a 
generalized diffusion toward one of two decision bounds. This model encompasses the diffusion model as a special case while providing an even better account of 
SAT data.

Although the Usher and McClelland model is appropriate for choice reaction time tasks, it cannot do pattern reconstruction or serial recall tasks. To do these tasks, a 
class of connectionist models known as recurrent, or autoassociative, neural networks have been developed. These models allow for associations between an item and 
itself (autoassociation) as well as associations among different items (heteroassociations). They follow a simple learning principle called the Hebb rule (after Hebb's, 
1949, hypothesis about synaptic plasticity). When two units are coactive the connection between them is strengthened, and when two units have uncorrelated activities 
the connection between them is weakened. These principles are related to the biological mechanisms of long­term potentiation and long­term depression (Brown & 
Chattarji, 1995; McNaughton & Morris, 1987; Treves & Rolls, 1994). The network evolves dynamically according to a simple model of neural function (usually a 
derivative of the classic McCulloch & Pitts, 1943, model). Typically, the activity of a unit is a monotonic function of the weighted sum of the input to that unit.

The Hopfield (1982) model is an example of a simple attractor neural network capable of mimicking human RT and accuracy data in priming experiments (Masson, 
1995). Chappell and Humphreys (1994) expanded this approach to explain a number of phenomena in recognition and recall memory tasks. Although there has been 
some criticism of neural network models of RTs (Ratcliff & Van­Zandt, 1996), these models provide a natural account of both accuracy and RT data across a broad 
range of cognitive tasks.

Models of accuracy and RT data often assume that a common dimension of information underlies both accuracy and RT judgments. Few models have tackled the 
difficult problem of fitting SAT functions in a wide range of tasks. The two models that have been largely successful

  
Page 370

in accounting for SAT data assume variability in the rate with which information continuously accrues (e.g., Ratcliff, 1978; Usher & McClelland, 1996). 15

Conclusions: Are Accuracy and RT Data Two Sides of the Same Coin?

Superficially, it appears that our review of theory and data concerning accuracy and RT in human memory supports the view that these two measures may reflect a 
single underlying dimension of information. However, this conclusion leaves us somewhat uneasy. To further examine this question, we have set out to find a few 
examples of cases in the literature where accuracy and RT have not provided comparable answers.

Sometimes variables that have significant effects on accuracy do not affect RTs (MacLeod Nelson, 1984). Sternberg (1969b) reported an experiment in which 
subjects studied a list of items presented either once, twice, or three times. After the list presentation, a single item was presented as a cue to recall the next item in the 
list. As with the standard item­recognition task, RTs in this task increased linearly with list length, but interestingly, RT was not affected by the number of times the list 
was presented. In contrast, error rates for the longest list (six items) were quite high (23%) when the list was only presented once, but less than 5% when the list was 
presented three times. In this study, accuracy differences were not reflected in RT data.

There are fewer cases in the literature where a variable has a significant effect on RT data but no discernible effect on response accuracy (when accuracy is far from 
ceiling). Sanders, Whitaker, & Cofer (1974) found that in a recognition task, subjects did not suffer from associative interference when measured using accuracy but 
showed substantial interference when RT was examined. Subjects took as many trials to learn C­D word pairs after learning A­B pairs as they did after learning A­D 
pairs. In contrast, RTs were significantly slower when tested on the A­D list, presumably because of interference from the A­B pairs learned in the first list.

Santee & Egeth (1982; see also Mordkoff & Egeth, 1993) found that accuracy and latency were affected quite differently from each other in a letter recognition task. 
Perceptual interference caused by displaying targets very briefly affected accuracy at detection but not latency. In con­

  
Page 371

trast, response competition caused by having to respond to a given target in the face of competing information from another target affected latency of responses but 
not accuracy.

In a recent study examining accuracy and RT in various types of associative recall tasks, Kahana (1998) found that the order in which a pair of items was studied has 
no significant effect on accuracy, yet forward recall was significantly faster than backward recall (ART >> 400 ms). Accuracy for forward recall was 87.7%, and for 
backward recall it was 85.1% (p >> .10). This result makes sense if one assumes that an association is a single integrated unit of information that is unpacked in the 
order in which it was encoded.

Perhaps the most striking example comes from a judgment of recency (JOR) task. In this task, subjects are presented with a short list of items (usually words or 
letters). Immediately after list presentation, two items are presented and the subject must select the more recent list item. For example, suppose the list consists of 
items XTLVDGBNW and the probe items are V and N. In this case, the subject might correctly select N as the more recent list item. Muter (1979) and Hacker 
(1980) independently discovered that RTs in this task are dependent only on the position of the more recent item and not on the relative recency of the two items. 
From a strength­type theory, we would expect that the difference in the recency of the two items would affect both accuracy and RT data. Data from Hacker's study 
are shown in figure 10.15. The peculiar finding that the position of the less recent item does not affect RT led. Hacker (1980) to propose a self­terminating, backward 
serial­scanning model of this task. If we scan backward from the end of the list, it will take the same time to find the more recent item regardless of the position of the 
less recent item (cf. Murdock's, 1974, conveyer belt model of recognition memory).

McElree and Dosher (1993) performed a SAT analysis of the Muter­Hacker JOR task. They succeeded in replicating the Muter­Hacker finding that mean RTs are 
only affected by the recency of the more recent probe (and not the distance between the two items). The SAT study of the same task showed that there is an effect of 
the relative recency of the two probe items. Specifically, the rate of approach to asymptote was more rapid as the less recent probe was more distant. In contrast, the 
more recent probe had the expected effects on both the intercept and the

  
Page 372

Figure 10.15
Response accuracy and latency in a judgment of recency task (Hacker, 1980). Mean correct RT is strongly influenced by the recency  
of the more recent probe item, but is unaffected by the recency of the less recent probe item. These data 
conflict with the reasonable prediction that the relative recency of the two items influences mean RT. The same basic 
pattern of data has also been obtained by Muter (1979), Hockley (1984), and McElree & Dosher (1993).

asymptote of the SAT functions. This SAT approach clearly demonstrated that the relative lag of the first list item, which did not affect mean RTs, did have a significant 
effect on processing rate.

Additional studies using SAT techniques have begun to provide convergent evidence against the idea that memories vary along a single dimension. Rather, SAT studies 
of human memory have lent support to the view that different types of information are represented in memory (e.g., Murdock, 1974; Underwood, 1983). Gronlund 
and Ratcliff (1989) compared single­item recognition with associative recognition (recognition that two items were paired together in a list). They found that item 
information became available before associative information. Ratcliff and McKoon (1989) and Dosher (1984) found that preexperimental relations among items 
influenced recognition of word pairs or sentences early in

  
Page 373

processing and that the necessary contextual information did not become available until later stages of processing. Hintzman and Curran (1994) found evidence that 
item recognition judgments are influenced by a fast­acting familiarity mechanism followed by a slower recall­like retrieval process (c.f., Atkinson & Juola, 1973).

All of these results support the cognitive idea that multiple kinds of information provide us with our "memory strength." In particular, the range of studies reported 
converge on the need to distinguish between information on item familiarity (the closest idea to the traditional notion of strength), experimentally formed associations 
between items, and contextual information that binds items and associations to a particular time and place. These different kinds of information are often characterized 
by different SAT functions. If several different types of information, or memory processes, mediate performance in a task, the accuracy­RT relation would have to be 
identical for each process in order for accuracy and RT to be measuring the same thing. If each process has a different accuracy­RT relation, it is good cause for 
studying the effects of experimental variables on both. accuracy and RT data.

In recent years the evidence for the involvement multiple processes and types of information in memory tasks has been accumulating. More information implies better 
accuracy and shorter RT, making accuracy and RT measures highly correlated. But the results of SAT studies have shown that the precise pattern of accuracy­RT 
effects may teach us a great deal about memory processes. In addressing the question posed in the beginning of this chapter, accuracy and RT cannot be two sides of 
the same coin unless the cognitive process of interest is a single operation acting on a single type of information. Consequently, consideration of both accuracy and RT 
data is often critical in distinguishing theories of cognition, and the use of only one of these measures may provide a skewed interpretation of the phenomena of interest.

Notes

1. See, for example, Gronlund & Ratcliff (1989); Hintzman & Curran (1994); Kounios, Osman, & Meyer (1987); McElree (1996); McElree & Dosher (1989, 
1993); Meyer, Irwin, Osman & Kounios (1988); Ratcliff & McKoon (1989); Ratcliff & Van Zandt (1996); and Rohrer & Wixted (1994).

  
Page 374

2. In these experiments lists are usually made up of between 15 and 40 randomly chosen words. The advantage in recall is for the first 3 to 4 words and the last 6 to 8 
words. The size of the recency effect does not depend on the length of the list, the presentation rate, or other variables that generally effect overall memory (Murdock, 
1962).

3. Latent constructs are variables (often representing mental processes) that are not directly observed but whose existence is inferred from the data. The idea of 
association is a latent construct, as is intelligence or morale.

4. See, for example, Brown, Conover, Flores, & Goodman (1991); Cooke, Durso, & Shvaneveldt (1986); and Romney, Brewer, & Batchelder (1993). See Shuell 
(1969) for a review of the earlier literature.

5. In rapid serial visual presentation (RSVP) of sentences, subjects are impaired at recalling the second presentation of a repeated element. This is known as 
repetition blindness (Kanwisher, 1987). There is some debate as to how repetition blindness is related to the Ranschburg effect: Kanwisher (1987) maintains that the 
two are distinct phenomena; however, Fagot and Pashler (1995) suggest that the two phenomena may be closely related (see also Whittlesea, et al., 1996).

6. The reader may note that in free recall, performance is best at the end of the list. However, in serial or ordered recall, performance is best at the beginning of the 
list. This makes sense because subjects must start recalling at the beginning in serial recall but are free to recall from the end in free recall.

7. In the recognition memory literature, investigators often call positive probes old items and negative probes new items.

8. see Murdock (1985) for an attempt to fit such a model to data from the Sternberg task.

9. See Murdock & Walker (1969).

10. For opposing views see Baddeley & Hitch (1974, 1977); Crowder (1982) and Greene (1986, 1992).

11. For an interesting alternative view see Sternberg (1998b).

12. See, for example, Loftus (1985); Loftus & Bell (1975); Loftus, Busey, & Senders (1993); Loftus, Duncan, & Gehrig (1992); Loftus, Johnson, & Shimamura 
(1985); Reinitz (1990); Reinitz, Wright, & Loftus (1989); Rumelhart (1970); Shibuya & Bundeson (1988); and Townsend (1981).

13. In a continuous recognition task, there is no differentiation between the study and test phases. Stimuli are presented one by one, and as each stimulus appears, 
subjects respond yes if they think they have seen it before and no if they think it is a new word.

14. In a choice reaction time task a stimulus is presented (e.g., a row of asterisks on a computer screen) and subjects are supposed to make one of several discrete 
responses according to the qualities of the stimulus (e.g., many or few asterisks). Although a recognition memory task is a kind of two­choice RT task (was the 
presented word on the list, yes or no?), the term choice reaction time is used to

  
Page 375

refer to judgments concerning a stimulus that is present rather than judgments concerning one's memory for a stimulus.

15. Hanes and Schall (1996) have found an interesting parallel to the variable rate assumption in single­cell studies of the rhesus monkey.

References

Anderson, J. A. (1973). A theory for the recognition of items from short memorized lists. Psychological Review, 80, 417–438.

Anderson, J. R. (1995). Learning and memory: An integrated approach. New York: Wiley.

Ashby, F. G. (1982). Deriving exact predictions from the cascade model. Psychological Review, 89, 599–607.

Ashby, F. G., & Perrin, N. A. (1988). Toward a unified theory of similarity and recognition. Psychological Review, 95, 124–150.

Ashby, F. G., Tein, J. Y., & Balakrishan, J. D. (1993). Response time distributions in memory scanning. Journal of Mathematical Psychology, 37, 526–555.

Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition memory. In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), 
Contemporary developments in mathematical psychology (Vol. 1, pp. 242–293) San Francisco: Freeman.

Baddeley, A. D. (1976). The psychology of memory. New York: Basic Books.

Baddeley, A. D., & Ecob, J. R. (1973). Reaction time and short­term memory: Implications of repetition effects for the high­speed exhaustive scan hypothesis. 
Quarterly Journal of Experimental Psychology, 25, 229–240.

Baddeley, A. D., & Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory 
(Vol. 8, pp. 47–90). New York: Academic Press.

Baddeley, A. D., & Hitch, G. (1977). Recency Re­examined. In S. Dornic (Ed.), Attention and Performance (Vol. 6, pp. 647–667). Hillsdale, NJ: Erlbaum.

Brown, S. C., Conover, J. N., Flores, L. M., & Goodman, K. M. (1991). Clustering and recall: Do high clusterers recall more than low clusterers because of 
clustering? Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 710–721.

Brown, T. H., & Chattarji, S. (1995). Hebbian synaptic plasticity. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 454–459). 
Cambridge, MA: MIT Press.

Burrows, D., & Okada, R. (1975). Memory retrieval from long and short lists. Science, 188, 1031–1033.

Chappell M., & Humphreys, M. S. (1994). An autoassociative neural network for sparse representations: Analysis and application to models of recognition and cued 
recall. Psychological Review, 101, 103–128.

  
Page 376

Cleeremans, A., & McClelland, J. L. (1991). Learning the structure of event sequences. Journal of Experimental Psychology: General, 120, 235–253.

Cooke, N. M., Durso, F. T., & Schvaneveldt, R. W. (1986). Recall and measures of memory organization. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 12, 538–549.

Corbett, A., & Wickelgren, W. (1978). Semantic memory retrieval: Analysis by speed­accuracy tradeoff functions. Quarterly Journal of Experimental 
Psychology, 30, 1–15.

Crannell, C. W., & Parish, J. M. (1957). A comparison of immediate memory span for digits, letters and words. Journal of Psychology, 44, 319–327.

Crowder, R. G. (1968). Intraserial repetition effects in immediate memory. Journal of Verbal Learning and Verbal Behavior, 7, 446–451, 1968.

Crowder, R. G. (1976). Principles of learning and memory. Hillsdale, NJ: Erlbaum.

Crowder, R. G. (1982). The demise of short­term memory. Acta Psychologica, 50, 291–323.

De Jong, R. (1991). Partial information or facilitation? Different interpretations of results from speed­accuracy decomposition. Perception & Psychophysics, 50, 
333–350.

Donders, F. C. (1969). On the speed of mental processes. In W. G. Koster (Ed. & Trans.), Attention and performance (Vol. 2, pp. 412–431). Amsterdam: North 
Holland. (Original work published 1868.)

Dosher, B. A. (1984). Discriminating preexperimental (semantic) from learned (episodic) associations: A speed­accuracy study. Cognitive Psychology, 16, 519–
555.

Egan, J. P. (1958). Recognition memory and the operating characteristic. Technical Note AFCRC­TN­58­51. Indiana University, Hearing and communication 
laboratory. See Green, D. M., and Swets, J. A. Signal detection theory and psychophysics. New York: Wiley.

Fagot, C. & Pashler, H. (1995), Repetition blindness: perception or memory failure? Journal of Experimental Psychology: Human Perception & Performance, 
21, 275–92.

Forrin, B., & Cunningham, K. (1973). Recognition time and serial position of probed item in short­term memory. Journal of Experimental Psychology, 99, 272–
279.

Goshen­Gottstein, Y., & Moscovitch, M. (1995a). Repetition priming for newly formed and preexisting associations: Perceptual and conceptual influences. Journal 
of Experimental Psychology: Learning, Memory, and Cognition, 21, 1229–1248.

Goshen­Gottstein, Y., & Moscovitch, M. (1995b). Repetition priming effects for newly formed associations are perceptually based: Evidence from shallow encod­

  
Page 377

ing and format specificity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 1249–1262.

Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 11, 501–518.

Greene, R. L. (1986). Sources of recency effects in free recall. Psychological Bulletin, 99, 221–228.

Greene, R. L,. (1991). The Ranschburg effect: The role of guessing strategies. Memory and Cognition, 19, 313–317.

Greene, R. L. (1992). Human memory: Paradigms and paradoxes, Hillsdale, NJ: Erlbaum.

Gronlund, S. D., & Ratcliff, R. (1989). Time course of item and associative information: Implications for global memory models. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 15, 846–858.

Hacker, M. J. (1980). Speed and accuracy of recency judgments for events in short­term memory. Journal of Experimental Psychology: Human Learning and 
Memory, 6, 651–675.

Hall, J. F. (1971). Verbal learning and retention. Philadelphia: Lippincott.

Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274, 427–430.

Hebb, D. O. (1949). Organization of behavior. New York: Wiley.

Helmholtz, H. von (1853), Philosophical Magazine, 4, 313–325. (Original work published 1850.)

Hintzman, D. L. (1986). ''Schema abstraction" in a multiple­trace memory model. Psychological Review, 93, 411–428.

Hintzman, D. L., & Curran, T. (1994). Retrieval dynamics of recognition and frequency judgments: Evidence for separate processes of familiarity and recall. Journal 
of Memory and, Language, 33, 1–18.

Hockley, W. E. (1982). Retrieval processes in continuous recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, 497–512.

Hockley, W. E. (1984). The analysis of reaction time distributions in the study of cognitive processes. Journal of Experimental Psychology: Learning, Memory, & 
Cognition, 10, 598–615.

Hockley, W. E., & Murdock, B. B. (1987). A decision model for accuracy and response latency in recognition memory. Psychological Review, 94, 341–358.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 
U.S.A., 84, 8429–8433.

Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 
110, 306–340.

  
Page 378

Jahnke, J. C. (1969). The Ranschburg effect. Psychological Review, 76, 592–605.

Jahnke, J. C. (1970). Probed recall of strings that contain repeated elements. Journal of Verbal Learning and Verbal Behavior, 9, 450–455.

Jahnke, J. C. (1972). The effects of intraserial and interserial repetition on recall. Journal of Verbal Learning and Verbal Behavior, 11, 706–716.

Jahnke, J. C. (1974). Restrictions on the Ranschburg effect. Journal of Experimental Psychology, 103, 183–185.

Jiménez, L., Méndez, C., & Cleeremans, A. (1996). Comparing direct and indirect measures of sequence learning. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 22, 948–969.

Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory & Cognition, 24, 103–109.

Kahana, M. J. (1998). An analysis of distributed memory models of ordered recall: Effects of compound cueing, target ambiguity, and recall direction. 
Manuscript submitted for publication.

Kahana, M. J., & Jacobs, J. (1998). A response time analysis of the Ranschburg effect: Implications for distributed memory models of serial recall. 
Manuscript in preparation.

Kanwisher, N. G. (1987). Repetition blindness: type recognition without token individuation. Cognition, 27, 117–43.

Kausler, D. H. (1974). Psychology of verbal learning and memory. New York: Academic Press.

Koppell, S. (1977). Decision latencies in recognition memory: A signal detection theory analysis. Journal of Experimental Psychology, 3, 445–457.

Kounios, J. (1993). Process complexity in semantic memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 338–351.

Kounios, J. (1996). On the continuity of thought and the representation of knowledge: Electrophysiological and behavioral time­course measures reveal levels of 
structure in human memory. Psychonomic Bulletin & Review, 3, 265–286.

Kounios, J., Montgomery, E. C., & Smith R. W. (1994). Semantic memory and the granularity of semantic relations: Evidence from speed­accuracy decomposition. 
Memory & Cognition, 22, 729–741.

Kounios, J., Osman, A. M., & Meyer, D. E. (1987). Structure and process in semantic memory: New evidence based on speed­accuracy decomposition. Journal of 
Experimental Psychology: General, 116, 3–25.

Loftus, G. R. (1985). Picture perception: Effects of luminance level on available information and information­extraction rate. Journal of Experimental Psychology: 
General, 114, 342–356.

Loftus, G. R., & Bell, S. M. (1975). Two types of information in picture memory. Journal of Experimental Psychology: Human Learning and Memory, 104, 
103–113.

  
Page 379

Loftus, G. R., Busey, T. A., & Senders, J. W. (1993). Providing a sensory basis for models of visual information acquisition. Perception & Psychophysics, 54, 535–
554.

Loftus, G. R., Duncan, J., & Gehrig, P. (1992). On the time course of perceptual information that results from a brief visual presentation. Journal of Experimental 
Psychology: Human Perception and Performance, 18, 530–549.

Loftus, G. R., Johnson, C. A., & Shimamura, A. P. (1985). How much is an icon worth? Journal of Experimental Psychology: Human Perception and 
Performance, 11, 1–13.

Luce, R. D. (1986). Response times. New York: Oxford University Press.

MacLeod, C. M., & Nelson, T. O. (1984). Response latency and response accuracy as measures of memory. Acta Psychologica, 57, 215–235.

Maddox, W. T., & Ashby, F. G. (1996). Perceptual separability, decisional separability, and the identification­speeded classification relationship. Journal of 
Experimental Psychology: Human Perception & Performance, 22, 795–817.

Masson, M. E. J. (1995). A distributed memory model of semantic priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 3–23.

McClelland, J. L. (1979). On the time relations of mental processes: An examination of systems of processes in cascade. Psychological Review, 86, 287–330.

McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

McElree, B. (1996). Accessing short­term memory with semantic and phonological information: A time­course analysis. Memory & Cognition, 24, 173–187.

McElree, B., & Dosher, B. A. (1989). Serial position and set size in short­term memory: The time course of recognition. Journal of Experimental Psychology: 
General, 118, 346–373.

McElree, B., & Dosher, B. A. (1993). Serial retrieval processes in the recovery of order information. Journal of Experimental Psychology: General, 122, 291–
315.

McNaughton, B. L., & Morris, R. G. M. (1987). Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in 
Neuroscience, 10, 408–415.

Metcalfe, J. (1990). Composite holographic associative recall model (CHARM) and blended memories in eyewitness testimony. Journal of Experimental 
Psychology: General, 119, 145–160.

Metcalfe­Eich, J. (1982). A composite holographic associative recall model. Psychological Review, 89, 627–661.

Meyer, D. E., Irwin, D. E., Osman, A. M., & Kounios, J. (1988). The dynamics of cognition and action: Mental processes inferred from speed­accuracy 
decomposition. Psychological Review, 95, 183–237.

  
Page 380

Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of 
Experimental Psychology, 90, 227–234.

Miller, J. (1993). A queue­series model for reaction time, with discrete­stage and continuous­flow models as special cases. Psychological Review, 100, 702–715.

Monsell, S. (1978). Recency, immediate recognition memory, and reaction time. Cognitive Psychology, 10, 465–501.

Mordkoff, J. T., & Egeth, H. E. (1993). Response time and accuracy revisited: Converging support for the interactive race model. Journal of Experimental 
Psychology: Human Perception & Performance, 19, 981–991.

Murdock, B. B. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64, 482–488.

Murdock, B. B. (1974). Human memory: Theory and data. Potomac, MD: Erlbaum.

Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89, 609–626.

Murdock, B. B. (1985). An analysis of the strength­latency relationship. Memory and Cognition, 13, 511–521.

Murdock, B. B., & Anderson, R. E. (1975). In R. L. Solso (Ed.), Information processing and cognition: The Loyola symposium. (pp. 145–194) Hillsdale, NJ: 
Erlbaum.

Murdock, B. B., & Kahana, M. J. (1993a). Analysis of the list­strength effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 
689–697.

Murdock, B. B. & Kahana, M. J. (1993b). List­strength and list­length effects: Reply to Shiffrin, Ratcliff, Murnane, and Nobel (1993). Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 19, 1450–1453.

Murdock, B. B., & Okada, R. (1970). Interresponse times in single­trial free recall. Journal of Verbal Learning and Verbal Behavior, 86, 263–267.

Murdock, B. B., & Walker, K. D. (1969). Modality effects in free recall. Journal of Verbal Learning and Verbal Behavior, 8, 665–676.

Muter, P. (1979). Response latencies in discriminations of recency. Journal of Experimental Psychology: Human Learning and Memory, 5, 160–169.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition. 
Hillsdale, NJ: Erlbaum.

Norman, D. A., & Wickelgren, W. A. (1969). Strength theory of decision rules and latency in short­term memory. Journal of Mathematical Psychology, 6, 192–
208.

Nosofsky, R. M. (1986). Attention, similarity, and the identification­categorization relationship. Journal of Experimental psychology: General, 115, 39–57.

  
Page 381

Nosofsky, R. M., & Palmeri, T. J. (in 1997). An exemplar­based random walk model of speeded classification. Psychological Review, 104, 266–300.

Pachella, R. G. (1974). The interpretation of reaction time in information processing research. In B. Kantowitz (Ed.) Human information processing: Tutorials in 
performance and cognition. New York: Halstead Press.

Pachella, R. G., & Fisher, D. F. (1969). Effect of stimulus degradation and similarity on the trade­off between speed and accuracy in absolute judgments. Journal of 
Experimental Psychology, 81, 7–9.

Patterson, K. E., Meltzer, R. H., & Mandler, G. (1971). Inter­response times in categorized free recall. Journal of Verbal Learning and Verbal Behavior, 10, 
417–426.

Pollio, H. R., Kasschau, R. A., & DeNise, H. E. (1968). Associative structure and the temporal characteristics of free recall. Journal of Experimental Psychology, 
76, 190–197.

Pollio, H. R., Richards, S., & Lucas, R. (1969). Temporal properties of category recall. Journal of Verbal Learning and Verbal Behavior, 8, 529–536.

Proctor, R. W. (1981). A unified theory for matching­task phenomena. Psychological Review, 88, 291–326.

Raaijmakers, J. G. W., & Shiffrin, R.M. (1980). SAM: A theory of probabilistic search of associative memory. In G. H. Bower (Ed.), The psychology of learning 
and motivation: Advances in research and theory, (Vol. 14, pp. 207–262). New York: Academic Press.

Raaijmakers, J. G. W., & Shiffrin, R. (1981). Search of associative memory. Psychological Review, 88, 93–134.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.

Ratcliff, R. (1981). A theory of order relations in perceptual matching. Psychological Review, 88, 552–572.

Ratcliff, R., & McKoon, G. (1989). Similarity information versus relational information: Differences in the time course of retrieval. Cognitive Psychology, 21, 139–
155.

Ratcliff, R., McKoon, G., & Tindall, M. H. (1994). Empirical generality of data from recognition memory receiver­operating characteristic functions and implications 
for the global memory models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 763–785.

Ratcliff, R., & Van­Zandt, T. (1996). Connectionist and diffusion models of reaction time. Manuscript submitted for publication.

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855–863.

Reed, A. V. (1973). Speed­accuracy trade­off in recognition memory. Science, 181, 574–576.

  
Page 382

Reed, A. V. (1976). List length and the time­course of recognition in immediate memory. Memory & Cognition, 4, 16–30.

Reinitz, M. T. (1990). Effects of spatially directed attention on visual encoding. Perception and Psychophysics, 47, 497–505.

Reinitz, M. T., Wright, E., & Loftus, G. R. (1989). The effects of semantic priming on visual encoding of pictures. Journal of Experimental Psychology: General, 
118, 280–297.

Roberts, S. (1987). Evidence for distinct serial processes in animals: The multiplicative­factors method. Animal learning & Behavior, 15, 135–173.

Roberts, S., & Sternberg, S. (1993). The meaning of additive reaction­time effects: Tests of three alternatives. In D. E. Meyer & S. Kornblum (Eds.) Attention and 
performance XIV. Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience, pp. 611–653. Cambridge, MA: MIT Press.

Rohrer, D., & Wixted, J. T. (1994). An analysis of latency and interresponse time in free recall. Memory and Cognition, 22, 511–524.

Romney, A. K., Brewer, D. D., & Batchelder, W. H. (1993). Predicting clustering from semantic structure. Psychological Science, 4, 28–34.

Rubin, D., & Wenzel, A. E. (1996). One hundred years of forgetting: A quantitative description of retention. Psychological Review, 4, 734–760.

Rumelhart, D. E. (1970). A multicomponent theory of the perception of briefly exposed visual displays. Journal of Mathematical Psychology, 7, 191–218.

Sanders, A. F. (1980). Stage analysis of reaction processes. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 331–354). Amsterdam: 
North­Holland.

Sanders, A. F., Whitaker, L., & Cofer, C. N. (1974). Evidence for retroactive interference in recognition from reaction time. Journal of Experimental Psychology, 
102, 1126–1129.

Santee, J. L., & Egeth, H. E. (1982). Do reaction time and accuracy measure the same aspects of letter recognition? Journal of Experimental Psychology: Human 
Perception & Performance, 8, 489–501.

Schouten, J. F. & Bekker, J. A. M. (1967) Reaction time and accuracy. Acta Psychologica, 27, 143–153.

Schweickert, R. (1985). Separable effects of factors on speed and accuracy: Memory scanning, lexical decision, and choice tasks. Psychological Bulletin, 97, 530–
546.

Shibuya, H., & Bundsen, C. (1988). Visual selection from multielement displays: Measuring and modeling effects of exposure duration. Journal of Experimental 
Psychology: Human Perception and Performance, 14, 591–600.

Shiffrin, R. M., & Raaijmakers, J. (1992). The SAM retrieval model: A retrospective and prospective. In A. F. Healy, S. M. Kosslyn, and R. M. Shiffrin (Eds.). 
From learning processes to cognitive processes: Essays in honor of William K. Estes (Vol. 1), Potomac, MD: Erlbaum.

  
Page 383

Shiffrin, R. M., Ratcliff, R., Murnane, K., & Nobel, P. (1993). TODAM and the list­strength and list­length effects: A reply to Murdock and Kahana. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 19, 1445–1449.

Shuell, T. J. (1969). Clustering and organization in free recall. Psychological Bulletin, 72, 353–374.

Smith, R. W., & Kounios, J. (1996). Sudden insight: All­or­none processing revealed by speed­accuracy decomposition. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 22, 1443–1462.

Smith, R. W., Kounious, J., & Osterhout, L. (1997). The robustness and applicability of speed and accuracy decomposition: A technique for measuring partial 
information. Psychological Methods, 2, 95–120.

Sternberg, S. (1966). High­speed scanning in human memory. Science, 153, 652–654.

Sternberg, S. (1967a). Retrieval of contextual information from memory. Psychonomic Science, 8, 55–56.

Sternberg, S. (1967b). Two operations in character­recognition: Some evidence from reaction­time measurements. Perception & Psychophysics, 2, 45–53.

Sternberg, S. (1969a). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30, 276–315.

Sternberg, S. (1969b). Memory­scanning: Mental processes revealed by reaction­time experiments. American Scientist, 57, 421–457.

Sternberg, S. (1975). Memory Scanning: New findings and current controversies. Quarterly Journal of Experimental Psychology, 27, 1–32.

Sternberg, S. (1998a). Discovering mental processing stages: The method of additive factors. In D. Osherson (Series Ed.), D. Scarborough & S. Sternberg (Vol. 
Eds.), An invitation to cognitive science. Vol. 4: Methods, models, and conceptual issues (2nd ed., pp. 703–861). Cambridge, MA: MIT Press.

Sternberg, S. (1998b). Inferring mental operations from reaction­time data: How we compare objects. In D. Osherson (Series Ed.), D. Scarborough, & S. Sternberg, 
(Vol. Eds.), An invitation to cognitive science. Vol. 4: Methods, models, and conceptual issues (2nd ed., pp. 365–454). Cambridge, MA: MIT Press.

Strong, E. K., Jr. (1912). The effect of length of series upon recognition memory. Psychological Review, 19, 447–462.

Swets, J. A. (1998). Separating discrimination and decision in detection, recognition, and matters of life and death. In D. Osherson (Series Ed.), D. Scarborough, & 
S. Sternberg, (Vol. Eds.), An invitation to cognitive science. Vol. 4: Methods, models, and conceptual issues (2nd ed., pp. 635–702). Cambridge, MA: MIT 
Press.

Townsend, J. T. (1976). Serial and within­stage independent parallel model equivalence on the minimum completion time. Journal of Mathematical Psychology, 14, 
219–238

  
Page 384

Townsend, J. T. (1981). Some characteristics of visual­whole report behavior. Acta Psychologica, 47, 149–173.

Townsend, J. T. (1984). Uncovering mental processes with factorial experiments. Journal of Mathematical Psychology, 28, 363–400.

Treves, A., & Rolls, E. T. (1994). Computational analysis of the role of the hippo­campus in memory. Hippocampus, 4, 374–391.

Tulving, E., & Schacter, D. L. (1991). Priming and human memory systems. Science, 247, 301–305.

Tulving, E., Schacter, D. L., & Stark, H. A. (1982). Priming effects in word­fragment completion are independent of recognition memory. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 8, 336–342.

Underwood, B. J. (1983). Attributes of memory. Glenview, IL: Scott, Foresman.

Usher, M. & McClelland, J. L. (1996). On the time course of perceptual choice: A model based on principles of neural computation. Manuscript submitted for 
publication.

Whittlesea, B. W. A., & Podrouzek, K. W. (1995). Repeated events in rapid lists: part 2. Remembering repetitions. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 21, 1689–1697.

Whittlesea, B. W. A., Dorken, M. D., & Podrouzek, K. W. (1995). Repeated events in rapid lists: part 1. Encoding and representation. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 21, 1670–1688.

Wickelgren, W. (1977). Speed­accuracy tradeoff and information­processing dynamics. Acta Psychologica, 41, 67–85.

Wingfield, A., Lindfield, K., & Kahana, M. J. (1998). Adult age differences in temporal characteristics of category free recall. Psychology & Aging, 13, 256–266.

Wixted, J. T. & Ebbesen (1991). On the form of forgetting. Psychological Science, 2, 409–415.

Wixted, J. T., & Rohrer, D. (1994). Analyzing the dynamics of free recall: An integrative review of the empirical literature. Psychonomic Bulletin & Review, 1, 89–
106.

Woltz, D. J., Bell, B. G., Kyllonen, P. C., & Gardner, M. K. (1996). Memory for order of operations in the acquisition and transfer of sequential cognitive skills. 
Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 438–457.

Yonelinas, A. P. (1997). Recognition memory ROCs for item and associative information: the contribution of recollection and familiarity. Memory & Cognition, 25, 
747–63.

  
Page 385

11
Laboratory versus Field Approaches to Cognition
Stephen J. Ceci, Tina B. Rosenblum, and Eduardus DeBruyn

Imagine the following variation on the well­known game three­card monte. You are presented with three boxes and told that one of them has a $100 bill hidden inside 
and if you guess which one it is, you get to keep the money. So, you make your selection but are told not to open the box you selected. Then one of the two 
nonselected boxes is opened, but it is always one that does not contain the $100. Thus, you are left with two unopened boxes, the one you selected and the other one. 
Now if you are asked whether you want to stick with your original selection before these last two boxes are opened, or whether you want to switch to the remaining 
unopened box, what should you do? It turns out that the decision is more complex than even some scientists appreciate. (We will return to this problem later.)

Now let's imagine a more dire scenario. Suppose that you are told that you have tested positive for some very rare virus, one that infects only 1% of the population. 
And further suppose that the test that diagnosed you with this virus is 90% accurate. Therefore, if 100 individuals are tested, half of whom actually do have the virus, 
the test will correctly detect 45 of the 50 who are infected but it will falsely claim to have detected the virus in 10%, or 5 persons, who are not actually infected. 
Armed with this knowledge, what are the odds that you actually have this virus considering that you have tested positive (Ceci, Baker­Sennett, & Bronfenbrenner, 
1994)?

The statistical solutions to these problems are not exceptionally difficult. The three­box problem requires only a basic knowledge of algebra, and the virus scenario can 
be solved with knowledge of elementary Bayesian statistics. Yet, these problems often baffle some of the world's best

  
Page 386

thinkers. According to Platteli­Palmarini (1991), even Nobel prize physicists do not recognize that with the three­box problem it is always better to switch boxes after 
being shown the empty box. 1  In fact, when this is explained, some scholars are reportedly enraged, protesting that it should not matter whether or not one switches 
boxes—the odds associated with any box will always remain 1:3. (If you need to be convinced that by switching boxes you increase the odds from 1:3 to 2:3, do 100 
test trials of each strategy and you will discover that switching does indeed double the odds over sticking to your original choice.)

As for the virus problem, graduate students who have studied Bayes's theorem often fail to recognize that this problem requires a consideration of base rate (i.e., the 
virus only affects 1% of the population). In essence, they focus on the sensitivity of the test (90%), neglecting to appreciate that if a virus were totally nonexistent in a 
given population (i.e., 0% base rate), a test would always yield a false positive result when it indicated the presence of the virus, even if the test's sensitivity were 
99.9%. If the virus doesn't exist, then the test must always be wrong when it indicates that an individual has it.2

Despite the fact that world­renowned physicists have trouble solving the three­box problem, research with adult gamblers in the United States and Brazil reveals that 
many of them—most of whom received little formal schooling beyond the fourth grade—accurately perceive the solution to the three­box problem as a variant of a 
form of gambling they engage in. Does this suggest that these gamblers are smarter than Nobel laureates? Of course not. People are often better at solving problems 
that reflect important and familiar ecological challenges than they are at solving identical problems that are disconnected from their everyday experiences. It is in the 
former contexts that they may have acquired the problem­solving skill in question, and often it cannot be spontaneously deployed outside these contexts (Ceci, Baker­
Sennett, et al., 1994). The livelihood of a gambler depends upon being able to calculate the option that offers the best odds. Such calculations are not only common in 
their daily life but essential to it.

Similarly, university students and professionals fail to accurately calculate the odds of being infected with the rare virus, as presented in the second problem­solving 
scenario. Again, these students and professionals

  
Page 387

both possess the necessary knowledge of statistics to calculate the odds accurately, yet they fail to do so. Why? As with the Nobel physicists, the students and 
professionals are not sufficiently familiar with the context in which the problem is presented, and as a result they do not notice important aspects or transfer relevant 
skills. However, if the same problem is given to engineers who deal with quality control issues, but stated in quality control terms (e.g., ''Certain equipment can detect a 
flaw in a product coming off the production line with an accuracy of 90%; but only 1% of items are actually flawed. So, how often will the equipment be correct when 
*it claims to have detected a flaw?"), most of them quickly produce an approximation to the correct answer (Ceci, Baker­Sennett, et at., 1994). The context in which 
a problem is presented can be the determining factor in predicting who will generate a correct response.

A corollary of this assertion is that an individual's cognitive potential cannot be accurately assessed without consideration of the context in which the problems have 
been posed; for example, does the problem's context match the problem solver's representation of knowledge? Perhaps some of what are called learning disabilities 
are in actuality not neurologically based constraints on cognition but constrained contextual knowledge that inhibits the learner from applying skills already grasped in 
one context to a different context. And even when neurology is involved in the disability, the route through which it exacts its price on learning may be through 
constraints on applying what is known in one context to a similar problem in a different context, that is, the inability to transfer. We will have more to say about this 
topic later. But first we will ask what is meant by context.

Context

The history of twentieth­century cognitive psychology is, in many respects, the history of two paradigms: "pure" cognition, in the absence of context, versus cognition 
that occurs within some defined context. Representatives of the former paradigm can trace the origin of their work to the earliest psychological research on memory 
and perception, originating with the first psychological laboratories in Germany run by Wilhelm

  
Page 388

Wundt (1866), Gustav Fechner (1878), and Hermann Ebbinghaus (1885). These early explorers, with only a few exceptions, viewed the study of human cognition as 
a form of pure science, rooted in the same kind of universal principles as classical physics. Their pursuit of universal laws of learning resulted in research on thinking 
and reasoning that was disembedded from the everyday contexts in which people lived. Such an approach proved valuable in two ways. First, it generated information 
applicable to and valued in the Zeitgeist in which the research was conducted, namely, theory development and testing. Second, it provided the foundation for the 
development of a contrasting theoretical approach that examined the contextual differentiation of what many assumed were universal or general laws of learning.

The adherents of the second paradigm studied cognition embedded in the context of prior knowledge and experience. This tradition, originating around the turn of this 
century (see Ceci, Baker­Sennett, et al., 1994), did not come to wide attention until the early 1930s in the person of Bartlett (1932). Bartlett emphasized the 
importance of studying cognition in its substantive and social context. For almost two decades Bartlett's theoretical contribution remained unrecognized by his own 
students, and its scientific power was largely overlooked. It was not until the late 1960s that it experienced a rebirth in the work of Neisser (1976). Since that time, the 
key role of context in cognitive development has received increasing attention in both theory and empirical work.

Investigators have used the term context in two different senses. It was first applied to the mental framework persons bring to a task. Each individual, it is argued, 
perceives and understands phenomena by means of structured representations of their relevant knowledge. That is, a phenomenon is assimilated into a preexisting 
knowledge framework (sometimes referred to as schema or representations), or else a framework must be created or altered to accommodate what is being 
experienced. The more one knows about a specific domain and the more integrated one's knowledge in this domain is, then the more elaborate one's mental 
representation will be. For example, knowledge of chess is a type of mental context. As will be seen, the manner in which individuals represent knowledge in a domain 
such as chess exerts a powerful influence on their problem­solving ability in that domain.

  
Page 389

Context has also been used to refer to an aspect of the physical or social environment that is external to the organism (Bronfenbrenner, 1979). Just like the mental 
context example, aspects of th7e physical or social context can influence cognition. Later, examples will be described. At this point, however, we call attention to what 
the two senses of context have in common; namely, both involve, and take into account, the framework, mental and environmental, in which cognition takes place. It is 
through interaction with persons and objects that individuals develop representations of mental and environmental contexts that either invite or dissuade interaction (i.e., 
a motivational dynamic). Moreover, through experience mental representations become increasingly elaborated and integrated so that the individual makes more 
distinctions and classifications that aid cognition. Later, we shall give some concrete examples of the process through which this occurs.

Cognition in and out of Context

As an example of the approach taken by researchers who studied cognition out of context, we can draw on Ebbinghaus's seminal work (1885/1913). He created 
2300 meaningless syllables that possessed no semantic relationship with the adjacent syllables in the list (e.g., nin. dalt). These became known as nonsense syllables. 
Ebbinghaus served as his own subject, as he attempted to memorize these syllables repeatedly. He then plotted his personal retention and forgetting curves. In so 
doing, he was able to provide general laws regarding how quickly learning occurred, how slowly it was lost, and how well it could be relearned at a later time. Thus 
began what was to become a systematic study of human memory out of context.

Ebbinghaus argued that if one were to study everyday memory tasks, such as recalling shopping lists or addresses, there might be some individuals who have greater 
familiarity with such materials than have others, and this would obscure the assessment of their "true" memory ability. He rightly appreciated that the mental context one 
brings to a task could influence memory and that individuals' varying in their mental contexts introduces "noise" in the search for universal laws. Instead of using 
materials that may have been represented differently by individuals whose

  
Page 390

knowledge or mental context differed, Ebbinghaus opted to purge the study of memory of all contextual variation in the hope that doing so would permit him to 
discover basic or universal laws that governed the underlying memory system. In the preface to his classic volume, Ebbinghaus wrote that the study of memory would 
eventually need to move outside of the laboratory, and to use meaningful contexts, but his words seem not to have been heard by those who succeeded him, at least 
not until much later.

Around the turn of this century, a group of investigators began to challenge the view that cognition could be adequately studied out of context (e.g. Henderson, 1903; 
Whipple, 1915). As already mentioned, this view was most fully and systematically set forth by Bartlett (1932). Today, a large number of researchers are following the 
Bartlettian tradition of studying memory in various mental and physical contexts (e.g. see edited volumes by Doris 1991; Fivush & Hudson, 1990; Gruneberg Morris, 
& Sykes, 1989; Light & Butterworth, 1994; Rogoff & Lave, 1984; Winograd & Neisser, 1992). A typical example of this genre is Baddeley's (1988) demonstration 
that skin divers' recall of words they learned underwater is superior when they are tested in that same context (underwater) than when they are tested on dry land. 
Apparently, aspects of the physical context that were present at the time of encoding can be replicated at the time of retrieval to serve as implicit cues.

What are the hallmarks of Bartlett's approach? First, he departed from the mechanical view of human memory. In its place, he proposed that memory was a dynamic 
process in which one's prior beliefs, values, experience, and knowledge were used to make sense of incoming stimuli. He referred to this process as "effort after 
meaning," by which he meant that human beings attempt to make sense of what they confront in a memory task, deploying their beliefs and knowledge (i.e., mental 
context) of the world in the process. Bartlett showed that even when verbatim recall is poor, the gist of what was studied may be easily retained, particularly if the 
subjects tried to "make sense" of it by drawing on their mental context.

For example, Bartlett's subjects were given stories about anomalous events and later asked to recall them. The most famous of them, "The War of the Ghosts," 
describes two young Indians who, while canoeing,

  
Page 391

encounter a war party of other Indians, who invite them to join in a raid. One of the young Indians in the canoe declines, but his companion joins and is injured in an 
ensuing battle. He is taken back to his home, where, after surviving the night, he dies at sunrise. In the course of the story a number of unusual things occur that had 
little meaning for Bartlett's British subjects. Indeed, these events were completely incomprehensible to Western minds because they hinted at ghosts and unfamiliar 
symbolism.

Bartlett discovered that when his subjects attempted to recall "The War of the Ghosts," they reconstructed the plot to make it fit with their own beliefs. Through such 
findings, Bartlett challenged the entire tradition of Ebbinghaus by asserting that memory is not a mechanical input­output (encoding­retrieval) system but a highly 
dynamic process that often distorts what is presented to make it fit with one's preexisting beliefs and representation of knowledge. Thus, memory cannot be separated 
from the rest of cognitive and social experience that influence the relevant contexts.

As already mentioned, Bartlett's call to insert context into cognition was not very influential in his time, even among his own students. The reason for traditionally giving 
context short shrift is not difficult to find. Taking physics as their theoretical model, early psychologists generally preferred universal explanations of cognition, as 
opposed to those that were situationally bound (Weisz, 1978). They hoped to show that a process operated unchanged across the idiosyncrasies and vicissitudes of 
context. Consistent with this long­held view, Weisz (1978) asserted that the ultimate goal of science is to find universal principles that "can be shown to hold across 
physical and cultural setting, time, or cohort" (p. 2). Many others have similarly argued that scientific methods can only succeed if the "operations of invariant 
mechanisms can be shown" (Banaji & Crowder, 1989, p. 1188).

But in their search for universal cognitive mechanisms, laboratory researchers have misconstrued an important function of all developmental sciences. A distinctive 
property of the species Homo sapiens is its ability to adapt to its environment, to respond differentially to different contexts. This insight led Bronfenbrenner to decry 
the search for context­invariant mechanisms as illusory:
One can question whether establishing transcontextual validity is ... the ultimate goal of science.... Given the ecologically interactive character of behavior and

  
Page 392

development in humans, processes that are invariant across contexts are likely to be few in number and fairly close to the physiological level. What behavioral scientists should be 
seeking, therefore, are not primarily these universals but rather the laws of invariance at the next higher level—principles that describe how processes are mediated by the general 
properties of settings and of more remote aspects of the ecological environment. (Bronfenbrenner; 1979, p. 128)

Cognitive anthropologists have extended Bronfenbrenner's view by arguing that assessment of cognition in ecologically artificial environments, such as in so­called 
noise­free psychological laboratories, often obfuscates human intellectual potentials (Lave, Murtaugh, & de la Rocha, 1984; Rogoff, 1984). Indeed, laboratories are 
not regarded as noise free but are viewed as a different type of context in which cognitive activities take place. For instance, Rogoff (1984) stated that "thinking is 
intricately interwoven with the context of the problem to be solved. The context includes the problem's physical and the social milieu in which it is embedded ... 
including the laboratory context, which is not context­free as researchers frequently assume" (pp. 2–3).

One team of cognitive anthropologists (Lave et al, 1984) examined people's problem­solving capabilities in a meaningful context, that is, grocery shopping. Shopping 
for groceries is characterized by fairly complex decision processes governed by taste, nutritional value, dietary implications, and aesthetics of particular groceries. In 
addition, size, brand, price, and quantity are also taken into account when buying comestibles. Lave et al. examined the arithmetic of 25 shoppers with their 
performance on an extensive paper­and­pencil arithmetic test based on the Torque Project at MIT. Whereas the average score on paper­and­pencil tests reached a 
modest 59%, shoppers' average arithmetic proficiency in the supermarket reached ceiling level (98%)! The number of years of schooling correlated highly with the 
paper­and­pencil arithmetic test (r = .47), but not with frequency of calculation in the supermarket. Similarly, years since completion of schooling correlated 
significantly and negatively with test performance but not with frequency of accurate grocery­shopping arithmetic.

To these highly interesting demonstrations by anthropologists we can add a systematic body of psychological research that has examined the influences of various 
types of physical, mental, social, and emotional contexts. We turn to this literature next.

  
Page 393

Physical Context

Ceci and Bronfenbrenner (1985) conducted a study designed to exhibit the effects of environment on cognitive complexity. They asked 10­ and 14­year­old children 
to either charge a motorcycle battery or bake a cupcake for exactly 30 minutes. While the children were waiting to remove the battery cables from the battery or the 
cupcakes from the oven, they were allowed to play a video game. The video game was located such that whenever the children checked a clock to see if 30 minutes 
had passed, the experimenter could record this. About half of the children were allowed to charge batteries or bake cupcakes at home; the other half performed their 
tasks in a laboratory. The children who performed the tasks at home exhibited a U­shaped pattern of clock checking during the 30­minute period. This pattern 
reflected a high incidence of clock checking for the first 10 minutes, then their hardly looking at all until the last few minutes, when they looked at the clock ceaselessly.

In contrast, children who performed the tasks in the laboratory exhibited a completely different pattern of clock checking, one that was linearly ascending over the 30­
minute period. It appeared as if the children who performed in the home setting calibrated their internal clocks. They checked the clock repeatedly the first few minutes 
to confirm their subjective assessment of time passage, after which they immersed themselves in the video game, free from worrying about the clock. Support for the 
"setting" of the internal clock enabling the children to run on "autopilot" was obtained in a follow­up study in which clocks were programmed to run faster or slower 
than real time, and children were still able to recover their U­shaped patterns (Ceci, Baker, Sennett, & Bronfenbrenner, 1994).

Adopting a U­shaped strategy gave the home­tested children two advantages. First, it resulted in the same punctuality as the laboratory­tested children but with 30% 
less clock checking, a more economical strategy in terms of energy expenditure. Second, once the clocks were calibrated, the home­tested children were able to 
immerse themselves more deeply in the video game than were the laboratory­tested children. Indeed, a coefficient representing the U­shaped quadratic was 
associated with superior video game performance.

  
Page 394

Familiarity of Task

Ceci et al. (1987) conducted a study highlighting the importance of context on children's cognitive performance, as well as showing the difficulty (and often lack 
thereof) of transfer from one cognitively isomorphic task (an isomorph is an analogue of the same problem but couched in different terminology or a different context) 
to another. They instructed children to predict where, on a computer screen, a moving geometrical object would terminate by placing a cross on the screen at that 
location (by means of a joystick). The object was one of three shapes (square, triangle, or circle), two sizes, and two colors, yielding twelve combinations of features. 
An additive algorithm (i.e., no interactions) was devised to "drive" the movement of these geometrical figures, such that shape determined vertical movement (squares 
would go up, circles would go down, and triangles stay horizontal). Dark­colored objects would move right, and light­colored objects would move left. Large objects 
would move on a lower­left to upper­right diagonal, while small objects would move along the opposite diagonal. Children were given 15 sessions of 50 random trials 
each to provide probability feedback. Even after 750 feedback trials, however, their prediction accuracy was only 22%.

Next, the same algorithm was used to drive a video game. The geometrical shapes were replaced by butterflies, bumblebees, and birds (same colors and sizes were 
used). Instead of placing a cross on the screen to predict toward where the shape would migrate, children were asked to place a butterfly net to "capture the prey" by 
moving a joystick. Children were given points for each capture, and sound effects were added to increase the "reality" of the video game. Children reached ceiling­
level performance after 750 trials. In addition, replacing the simple additive algorithm to drive certain figures with a complex curvilinear algorithm did not deter children 
in a game context from reaching ceiling performance. Children in a disembedded condition (i.e., the geometric shape activity), as predicted, performed extremely 
poorly. The children were then given the video game context, and after successfully solving it, they were transferred back to the more abstract geometric shape 
context. An increase in problem­solving efficiency was seen only if the laboratory context was presented within a few hours after the video game context, and

  
Page 395

if the physical context remained unchanged (i.e., same room, computer, and mouse). This lack of transfer between cognitive isomorphs has also been found among 
college­aged students (Klayman, 1984), and boundaries of transfer have been demonstrated by, for instance, Nisbett, Fong, Lehman, & Cheng (1988; see also, 
Detterman, 1992).

In summary, the familiar contexts in these two studies allowed children to exhibit a specific cognitive energy­saving pattern and multicausal reasoning pattern, which 
would not have been discovered had children been tested exclusively in a different physical context, such as in a laboratory environment.

The context­specific reasoning examples that we have been describing are special instances of what are called problem isomorphs. For example, the famous problem 
about missionaries and cannibals, wherein a single missionary cannot be left alone with more than one cannibal, can be converted into an analogous problem about 
wives and jealous husbands, in which a wife cannot be left alone with more than one man unless her own husband is present (Gholson et al., 1988). The general finding 
in the cognitive literature is that cross­task generalization between a problem and its isomorph is usually low: knowing how well individuals can solve one problem is of 
little help in predicting how well they will solve the same problem in another context even when the two problems are isomorphic.

Perhaps the best­known case of a failure to transfer in isomorphic reasoning is that of Johnson­Laird and Wason's card task that we mentioned earlier (Johnson­Laird, 
1983). In this task subjects are asked to decide whether a rule is true. For example, the proposed rule might be "If a card has a vowel on one side, it will have an even 
number on its other side." The subjects, who are university students, are shown the following four cards—

A, B, 2, 5

—and are asked to turn over only those cards that are critical to verifying the rule. In this example, the best decision is to turn over the 5 and A, as these allow one to 
disconfirm the rule with the minimum number of card turns. Although university students have great difficulty with this problem, they do much better when the isomorph 
is framed in the context

  
Page 396

of a travel game in which one must decide whether to turn over cards that have a picture of a type of transportation or the name of a town on them or whether a 
traveler can disembark from a plane that lands in a country that has cholera or diphtheria (Kunda & Nisbett, 1986). From a cognitive perspective, there is nothing in 
these latter two travel isomorphs to make them easier than the number­letter task. Their underlying structure is identical to the one involving the numbers and letters. 
And yet performance on them is vastly different from performance on the task in its more abstract and less familiar form (Johnson­Laird, 1983; Nisbett et al., 1988).

Knowledge as a Context

In addition to the influence that the physical context exerts on cognition, the amount and type of knowledge people possess about a particular domain (e.g., sports, 
cooking, chess, and science) also influences how well they solve problems in a given domain. For example, it has been shown that if a house tour is presented in a 
house­buying context ("note the large entry­level bathroom off the garage"), it will activate different knowledge structures among professional burglars than it will 
among prospective home buyers, and significantly different memory performance in these two groups will result (Logie & Wright, 1988). Similarly, depending on 
whether the identical material is presented in the context of a baseball game, a bird­watching exercise, or a Star Wars game, it can have dramatically different 
consequences because it will activate different bodies of knowledge that can be used to draw different inferences and create different expectations (Walker, 1987; 
Coltheart & Walsh, 1988; Means & Voss, 1985).

These kinds of knowledge effects (mental contexts) have been the grist for a decade of research on adult expertise. The bottom line of this research is that if a 
problem­solving task requires the use of a well­structured domain of knowledge, then performance is enhanced. Thus, 10­year­old chess experts can recall chess 
board positions of chess games better than can graduate students who are not chess experts (Chi, 1978), even though their memory for nonchess material is inferior to 
that of the graduate students. Ten­year­old experts have far greater knowledge of

  
Page 397

chess strategies than graduate students, and they employ this to code arrays (''I remember the board looked like there had been a Knight's Tour move with a twist"). 
Interestingly, if the 10­year­old chess experts are shown chess boards that have been randomly formed as opposed to actual games, they do very poorly. The reason 
is that the random board positions do not allow them to draw on their great knowledge of chess, because the chess pieces in this condition are arranged in such a way 
that they can not be coded as reflecting some strategy used by chess players.

When considering the role of context in cognition, one must address not only the mental context (i.e., knowledge representation), and the physical context, but also the 
social and emotional contexts, such as the presence of others with whom one may be working and our implicit theories of self­competence. Is the individual learning or 
performing the task individually or in the presence of other people? Is the person working competitively against other people in performing a task, or is he or she 
working collaboratively to perform the task? Is the task one for which an individual's group membership is stereotypically good or poor at solving? Next, we describe 
research on the effect of social and emotional contexts.

Social Context

The social context in which a problem is tackled relates directly to the question of whether transfer will be easy, difficult, or nonexistent: "Probably the most critical 
issue in any type of learning is how well the learning transfers from one situation to another" (Reder & Klatzky, 1994, p. 25). It is not known exactly what aspects of 
context critically affect transfer, but there is some suggestion that working in a social context may foster transfer. One of the few studies to even address this issue was 
conducted by Gabbert, Johnson, & Johnson (1986). Their study evaluated the differential performance of first graders randomly assigned to a cooperative or 
individual group. The tasks completed during the training sessions were performed either in cooperative groups or individually. During the two testing days, following 
the training sessions, all tasks were completed as individuals. The results indicated that for all six of the tasks that were evaluated, the cooperative groups 
outperformed the individuals. In addition, during the two days of individual testing, the subjects that trained

  
Page 398

in cooperative groups demonstrated significantly superior transfer on three of the six tasks (Gabbert, et al., 1986).

A more recent study also evaluated how an individual's collaborative work environment can influence the individual's subsequent ability to transfer (Rosenblum, 1995). 
The subjects in this study were students in two third­grade classes with comparable educational aptitude. Students completed four tasks designed to measure 
creativity, memory, problem solving, and moral reasoning; these tasks were completed working alone or collaboratively. The results indicated that the students 
working collaboratively performed as well as or better than the children working individually. The most interesting finding was that performing tasks collaboratively 
during the first week increased the likelihood that the children would be able to transfer what was learned on the first week's tasks to the second week's isomorphic 
tasks, which were completed as individuals. Specifically, the students who worked collaboratively demonstrated a significantly better ability to transfer what they 
learned from the collaborative tasks to the tasks completed alone in the moral­reasoning and problem­solving domains but not in the tasks completed alone in the 
other two domains.

Socioemotional Context

Claude Steele recently has demonstrated that context can also include the instantiation of stereotypes that a learner harbors during testing. Steele's basic assertion is 
that when an individual perceives a stereotype threat, i.e., the sense that one is being judged based on stereotype, cognitions and behaviors will be directly affected: 
"the existence of a [negative] stereotype means that anything one does or any of one's features that conform to it make the stereotype more plausible as a self­
characterization in the eyes of others, and perhaps even in one's own eyes" (Steele & Aronson, 1995, p. 797). Steele uses this concept as a foundation for the 
argument that the performance of African American students on intellectual or academic tasks is highly context dependent; i.e., performance on such tasks may suffer 
under conditions that elicit stereotype threat.

In order to test this hypothesis, Steele & Aronson (1995) conducted a series of experiments with Stanford University students. All students were

  
Page 399

instructed to complete very challenging and possibly frustrating items from the verbal Graduate Record Examination. It was deemed necessary that the task be 
sufficiently challenging in order to elicit the stereotype threat as a possible explanation for an impending failure on the task. The researchers systematically varied 
whether they led the subjects to believe that the tests were diagnostic of their intellectual ability or not, but in reality the tasks in both conditions were identical. The 
hypothesis was that black students who believed they were taking a diagnostic test would perform less well on the task than the white students completing the 
diagnostic test and less well than the black students who completed a test that was not believed to be diagnostic. In other words, the belief that the test was diagnostic 
of intellectual ability was hypothesized to be sufficient to induce stereotype threat in the black students, which in turn depressed their performance.

The results supported this hypothesis. Black and white students performed equally well on the nondiagnostic test, as did the white students on the diagnostic test. But, 
as predicted, the black students did demonstrate markedly lower scores on the diagnostic test than the other three groups. It is important to note that all of the results 
held even after scores on the SATs were controlled for statistically. Therefore, the significant difference in scores that was observed on the experimental task was 
considered to be a direct result of the testing context, namely, the belief that one's intellectual abilities would be judged based on one's performance on a particular 
task. "Clearly the diagnostic instructions caused these participants to experience a strong apprehension, a distinct sense of stereotype threat" (Steele & Aronson, 
1995, p. 805).

Considerations Regarding IQ and Transfer

The majority of studies that have examined the correlation between IQ and the ability to transfer indicates that the higher the IQ, the more likely the individual is to 
transfer (Day & Hall, 1988; Ferrara, Brown, & Campione, 1986; Ferretti & Butterfield 1992; Klaczynski & Laipple, 1993). But, when the subjects are experts in the 
training domain, there appear to be no sizable correlations between IQ and the ability to transfer

  
Page 400

(Ceci & Liker, 1986; Ceci & Ruiz, 1992). Below we briefly present several representative studies in this genre.

Klaczynski and Laipple (1993) investigated the relationship in college students between IQ and the ability to transfer. The tasks consisted of causal (i.e. logically 
required) problems or permission (i.e., allowed but not required) problems (based on the Johnson­Laird [1983] card sort tasks we described earlier). Therefore, 
there were four possible combinations of source and target problems: causal­causal, causal­permission, permission­permission, and permission­causal. The subjects 
were told to solve the problems by deciding which cards would help them to prove whether the rule was presented was true or false. After each of the four source 
problems, all of the subjects were read descriptions for which answers were correct or for which answers were incorrect, and they were given explanations. This 
activity provided the training for the subjects. After the subject completed each of the four source problems, with training occurring after each problem, they attempted 
to solve three target problems. During the second session, the subjects completed a short form of the Wechsler Adult Intelligence Scale­Revised (WAIS­R).

The findings indicate that the correlations between problem solving and IQ were highly significant. In general, higher IQ subjects were better able to solve the 
problems than were lower IQ subjects. But, it was also noted that the domain or context of the source and target problem was significantly related to the subjects' 
transfer (i.e., to their ability to transfer what was learned from the source problem to the target problem). Correlations between permission source problems and 
permission transfer problems were highly correlated with IQ, but this did not hold for causal source problems or causal transfer problems. Therefore, as in the Ferrara 
et al. (1986) study, it appears that the ability to transfer is largely context or domain specific.

Ceci and Liker (1986) have also pursued the connection between IQ, cognitive complexity, and transfer in adults by researching racetrack handicappers. Expert and 
nonexpert racetrack handicappers were evaluated for their performance in handicapping and predicting probable odds for 10 actual races as well as 50 hypothetical 
two­horse comparisons (their expertise was determined after they performed the predictions).

  
Page 401

Predicting odds and winners was discovered to be a complex cognitive task requiring the use of a nonlinear, multiple­interactions model—essentially the men were 
calculating regression equations in their heads. It was found that IQ did not correlate with one's ability to predict winners and odds; i.e., expertise was independent of 
IQ.

The researchers selected 30 men to participate in the study. Each demonstrated a long­term involvement in racing: a minimum of two times/week for at least 8 years. 
All 30 men were very similar on "background" variables: years of experience at the track, level of education, professional prestige, etc. Each subject was administered 
a short version of the WAIS to measure their IQ. Both groups, experts and nonexperts had a range of IQ scores representative of the general public: 14 experts (81–
128) and 16 nonexperts (80–130). The mean of all IQ scores was 100.0, with a standard deviation of 15.3, which is almost identical to the general population.

The 30 handicappers were to predict which horse would be the "top horse" (i.e., according to odds) at race time and the order of the top three horses' odds at race time for 10 
actual races listed in the early form. Two groups emerged, one with 14 experts who correctly picked the top horse for at least nine of ten races and the top three horses at least five 
out of ten races (i.e., on average were equivalent to paid track experts). The best non expert, on the other hand, picked the top horse only five out of ten races and the top three 
horses for two out of ten races (Ceci & Liker, 1986, p. 257). The 30 handicappers were then asked to handicap 50 hypothetical races that matched two horses against one another.

The results demonstrated that there was no significant correlation between IQ score and the ability to predict the top horse or the top three horses. Similarly, there was 
no correlation between IQ and cognitive complexity. In fact, low­IQ experts used more cognitively complex models, including the interactive model variable (IMV), 
than did the high­IQ experts. The IMV was a variable that consisted of a complex interaction of up to seven factors—this variable was a better predictor of odds for 
the experts than the nonexperts, when it was placed in a regression equation. The experts were more proficient at using this cognitively complex variable (IMV) than 
the nonexperts, yet within the expert group there was no difference between high­and low­IQ experts in their frequency of use of the IMV (Ceci & Liker, 1986). 
Surprisingly, there was also no

  
Page 402

correlation between performance on any of the WAIS subtest measures and use of cognitive complexity; not even the arithmetic portion, despite the fact that their 
algorithms required extensive mental arithmetic. Finally, there was also no correlation between IQ and expertise. Therefore, among adult racetrack handicappers, IQ is 
an insignificant factor in predicting who will be an expert or nonexpert handicapper, who will reason most complexly, and who will be successful at picking the 
winners.

These findings are highly suggestive of the argument that IQ does not predict or measure cognitive complexity or the ability to solve problems. If it did, one would 
expect that IQ would then correlate with the ability to use complex cognitive models. This was not the case. More important, this study offers further support for the 
hypothesis that intelligences can be highly context specific and therefore not demonstrated under certain conditions, whereas the same kind of intelligence is at its peak 
in other contextual domains: i.e., individuals that scored high on an IQ test were not necessarily any better at predicting odds based on complex cognitive models.

Ceci and Ruiz (1992) further investigated the role of IQ in problem­solving ability by selecting two men, both experts at racetrack handicapping, and asking them to 
solve a stock market prediction problem based on the computer simulation "Millionaire." One man had a high IQ (WAIS = 121) and was a businessman with an M.A. 
in mathematics education; the other man had a low IQ (WAIS = 81) and was a retired dockworker with a fifth­grade education. Neither man had previous experience 
or knowledge about the stock market. This was confirmed with a multiple­choice test designed to test understanding of stock market mechanisms. Both men scored 
below chance on this test. This was essential, for if one man possessed greater knowledge about the stock market than the other, the results would be confounded by 
this different level of background experience at the outset of the experiment.

The experimental task was isomorphic to the racetrack handicapping, for which the men had already displayed remarkable expertise. The stock market task employed 
the same seven­variable interaction term (or "seven­factor equation, with multiple interaction effects [p. 180]") as the racetrack handicapping (IMV). The men were 
told to predict the prob­

  
Page 403

ability that one stock would have a higher earning­to­price ratio (P/E ratio) than the other stock. Essentially, this is the same as determining the odds of one horse 
beating another, as they did in the 50 paired comparisons in the racetrack task. The men were given over 600 trials and only began to perform better than chance after 
200 trials. They still had not reached ceiling performance by trial 600. There was also no difference in the ability to transfer from the racetrack to the stock market task 
based on IQ. Both the high­and low­IQ men displayed virtually identical performance—relatively poor performance. The experimenters then pointed out the similarity 
between the two tasks, and the men almost immediately attained ceiling performance on the task. In order to test that the men were in fact using the same algorithm as 
in the racetrack handicapping, the experimenters changed the algorithm in the stock market task without informing the subjects. The men's predictions immediately 
plummeted to well below chance, indicating that they were in fact using the racetrack algorithm, which was now incorrect.

Transfer did not occur as fully in the stock market simulation as one might have expected, especially if one believes that IQ drives cognitive ability. The men did 
perform better than chance, but never fully grasped the isomorphism between the two tasks until the experimenters clued them in. Most interestingly, though, there was 
no difference in performance based on IQ, which indicated that in this context and for these subjects intelligence did not influence their ability to transfer. The men had 
clearly demonstrated a remarkable ability to handicap horse races, yet they were unable to transfer this cognitive ability to a new domain or context. The specific 
contextual demands of the stock market task precluded the men from demonstrating their cognitive abilities to design a successful algorithm.

Thus far we have presented evidence for individuals' apparent inability to transfer information to novel domains or contexts. These results could leave one feeling very 
discouraged about the cognitive capacity of children, college students, and Nobel laureates alike. Is there any evidence to suggest that people are capable of applying 
knowledge to novel contexts? The answer is unequivocally yes, but only if the context is appropriate in the sense of recruiting relevant training skills.

  
Page 404

We can find evidence for transfer across contexts in several of the aforementioned studies, but the victories are small ones. In general, the transfer of skills or 
knowledge is minimal, but nevertheless present. Individuals can transfer what is learned in a collaborative setting to a task performed individually; children can 
generalize from a video game with birds, bumblebees, and butterflies to a prediction task with only geometric shapes; and when clued in, racetrack handicappers can 
apply their multiple­interactions model, used to predict horse­racing results, to an isomorphic stock market task. This research is not demonstrating an inability to 
reason successfully; rather, it is capturing a "short" in the circuitry for reasoning across domains.

Perhaps our goal as researchers should be to begin to identify the mechanisms responsible for allowing successful across­task transfer. What components contribute to 
an individual's successful transfer? Are people failing to encode knowledge fully or failing to recognize the similarity between isomorphic tasks? The system is breaking 
down at some point in the chain, and identifying where that occurs would be the first step toward shoring up the strength of our cognitive links.

Conclusion

To conclude, increasingly researchers agree that conceptualizing intelligence and cognition as context­free resources is too narrow a view (but for a recent defense of 
the immutability and domain­generality of intelligence argument, see Herrnstein and Murray, 1994). For instance, Shantz (1983) argued for the investigation of a 
competency­by­task interaction, instead of focusing singularly on either competency or task. She stated that "without any indication as to the relative importance [of 
task properties] as determiners or their meaning in relation to social­adaptation problems ... we have little theory of the task (situation) or theory of the task × 
competency" (p. 525).

Notes

1. The solution to the three­box problem is as follows. The box you chose initially will always have a 1/3 probability of containing the $100 bill. The other two boxes, 
considered together, have a 2/3 probability of containing the bill. If

  
Page 405

the researcher removes an empty box, the remaining box now has a 2/3 probability of containing the bill. Therefore, you should always switch, as you will be 
switching from your initial choice (1/3 probability) to the new box (2/3 probability). Retaining the initial box will only reveal the $100 one out of every three times 
you play the game, whereas switching boxes will prove successful two out of every three times (Piatelli­Palmarini, 1991).

2. By the way, the odds that one who has tested positive actually is infected with the virus in our hypothetical example in which the test is 90% accurate and the base 
rate of the virus in the sample tested is only 1% is not 90% but 8.3%: (.90 × .01)/(.90 × .01 + .10 × .99) = .083. This is an extension of Bayes's theorem:

Similarly,

Equating the right sides of the two above equations results in

References

Baddeley, A. (1988). Working Memory. Oxford Psychology Series, No. 11. Clarendon Press. Oxford, U.K.

Banaji, M., & Crowder, R. (1989). The bankruptcy of everyday memory. American Psychologist, 44, 1185–1193.

Bartlett, F. C. (1932) Remembering. Cambridge, England: Cambridge University Press.

Binet, A., & Simon, T. (1916). The development of intelligence in children (E. S. Kite, Trans.). Baltimore: Williams & Wilkins.

Bronfenbrenner, U. (1979). The ecology of human development. Cambridge; MA: Harvard University Press.

Ceci, S. J., Baker­Sennett, G., & Bronfenbrenner, U. (1994). Psychometric and everyday intelligence: Synonyms, antonyms and anonyms. In M. Rutter & D. Hay 
(Eds.), Development through life: A handbook for clinicians (pp. 260–283). Oxford, England: Blackwell Scientific Publications.

Ceci, S. J., Bronfenbrenner, U. (1985). "Don't forget to take the cupcakes out of the oven:" Strategic time­monitoring, prospective memory, and context. Child 
Development, 56, 175–190.

Ceci, S. J., Bronfenbrenner, U., & Baker­Sennett, G. (1994). A tale of two paradigms. In M. Rutter & D. Hay (Eds.), Development through life: A handbook for 
clinicians (pp. 260–283). Oxford; England: Blackwell Scientific Publications.

  
Page 406

Ceci, S. J., & Liker, J. K. (1986). A day at the races: A study of IQ, expertise and cognitive complexity. Journal of Experimental Psychology: General, 115, 
255–266.

Ceci, S. J., & Ruiz, A. (1992). Transfer, abstractness, and intelligence. In D. K. Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and 
instruction. (pp. 168–191). Norwood, NJ: Ablex.

Chi, M. T. H. (1978). Knowledge structures and memory development. In R. Siegler (Ed.), Children's thinking: What develops? Hillsdale, NJ: Erlbaum.

Coltheart, V., & Walsh, P. (1988). Expert knowledge and semantic memory. In M. Gruneberg, P. Morris, & P. Sykes (Eds.), Practical aspects of memory (pp. 
241–277). London: Wiley.

Day, J. D., & Hall, L. K. (1988). Intelligence­related differences in learning and transfer and enhancement of transfer among mentally retarded persons. American 
Journal on Mental Retardation, 93, 125–137.

Detterman, D. (1992). The case for the prosecution: Transfer as an epiphenomenon. In D. Detterman & R. Sternberg (Eds.), Transfer on trial: Intelligence, 
cognition, and instruction (pp. 3–36). Ablex: NJ: Norwood.

Doris, J. L. (Ed.). (1991). The suggestibility of children's recollections: Implications for their testimony. Washington, DC: American Psychological Association.

Dorner, D., Kreuzig, H., Reither, F., & Staudel, T. (1983). Lohhausen: Vom Umgang mit unbestimmtheit und Komplexitat. Bern: Huber.

Ebbinghaus, H. (1913). Memory H. A. Ruger & C. E. Bussenius, Trans. New York: Teacher's College Press. (Original work published in German as Uber das 
Gedachtnis [on thinking] 1885.).

Eysenck, H. J. (1988). The biological basis of intelligence. In S. H. Irvine & J. W. Berry (Eds.), Human abilities in cultural context (pp. 87–104). New York: 
Cambridge University Press.

Ferrara, R. A., Brown, A. L., & Campione, J. C. (1986). Children's learning and transfer of inductive reasoning rules: Studies of proximal development. Child 
Development, 57, 1087–1099.

Ferretti, Ralph P., & Butterfield, Earl C. (1992). Intelligence­related differences in the learning, maintenance, and transfer of problem­solving strategies. Intelligence, 
16, 207–223.

Fivush, R., & Hudson, J. (Eds.). (1990). Knowing and remembering in young children. New York: Cambridge University Press.

Gabbert, B., Johnson, D. W., & Johnson, R. T. (1986). Cooperative learning, group­to­individual transfer, process gain, and the acquisition of cognitive reasoning 
strategies. The Journal of Psychology, 120, 265–278.

Gholson, B., Eymard, L., Long, D., Morgan, D., Leeming. F. (1988). Problem solving, recall, and transfer. Cognitive Development, 3, 37–53.

  
Page 407

Gruneberg, M. M., Morris, P., & Sykes, P. (Eds.). (1989). Practical aspects of memory. London: Academic Press.

Henderson, C. R., & Ceci, S. J. (1992). Is it better to be born rich or smart? A bioecological analysis. In K. R. Billingsley, H. U. Brown, & E. Derohanes, (Eds.), 
Scientific excellence in supercomputing: The 1990 IBM Supercomputing Competition winners (pp. 705–751). Athens, GA: University of Georgia Press.

Henderson, E. N. (1903). Psychological monographs, 5, (23).

Herrnstein, R. & Murray, C. (1994). The Bell Curve. NY: Free Press.

Johnson­Laird, P. N. (1983). Mental Models. Cambridge, MA: Harvard University Press.

Klayman, J. (1984). Learning from feedback in probabilistic environments. Unpublished manuscript, University of Chicago Graduate School of Management.

Kunda, Z., Nisbett, R. (1986). The psychometrics of everyday life. Cognitive Psychology, 18, 195–224.

Lave, J., Murtaugh, M., & de la Roche, D. (1984). The dialectic of arithmetic in grocery shopping. I, B. Rogoff and J. Lave (Eds.), Everyday Cognition. 
Cambridge, MA: Harvard University Press. pp. 227–242.

Light, P., & Butterworth, G. (Eds.). (1994). Context and cognition: Ways of learning and knowing. Hemel Hempstead: Harvester­Wheatsheaf. U.K.

Logie, R., & Wright, R. (1988). Specialized knowledge and recognition memory performance in residential burglars. In M. M. Gruneberg, P. Morris, & P. Sykes 
(Eds.), Practical aspects of memory (Vol. 2). London: Wiley.

Means, M., & Voss, J. (1985). Star Wars: A developmental study of expert novice knowledge structures. Memory and Language, 24, 746–757.

Neisser, U. (1976). Cognition and reality. San Francisco: Freeman.

Nisbett, R. E., Fong, G., Lehman, D., & Cheng, P. (1988) Teaching reasoning. Unpublished manuscript, University of Michigan, Ann Arbor.

Piatelli­Palmarini, M. (1991, March/April) Probability: Neither rational nor capricious. Bostonia, pp. 28–35.

Raven, J. C., J. Court, & J. Raven (1975). Manual for Raven's Progressive Matrices and Vocabulary Scales. London: Lewis.

Reder, L., & Klatzky, R. (1994). Transfer: Training for performance. In D. Druckman & R. A. Bjork (Eds.), Learning, remembering, believing: Enhancing 
human performance (pp. 25–56). Washington, DC: National Academy Press.

Rogoff, B. & Lave, J. (Eds.). (1984). Cognition in a social context. Cambridge, MA: Harvard University Press.

Rosenblum, T. B. (1995). Collaborative learning: Myth or miracle? Unpublished master's thesis, Cornell University, Ithaca, NY.

Shantz, C. (1983). Social cognition. In J. H. Flavell & E. M. Markman (Eds.), Handbook of Child Psychology, Vol. 3. Cognitive Development, pp. 501–566, NY: 
Wiley.

  
Page 408

Walker, C. H. (1987). Relative importance of domain knowledge and overall aptitude or acquisition of domain related information. Cognition and Instruction 4, 
25–42.

Weisz, J. (1978). Transcontextual validity in developmental research. Child Development, 49, 1–12.

Whipple, G. M. (1915). Manual of mental and physical tests (Vol. 2). Baltimore: Warwick & York.

Winograd, E., & Neisser, U. (1992). Affect and accuracy in recall: The problems of flashbulb memories. New York: Cambridge University Press.

  
Page 409

12
Basic versus Applied Research
Raymond S. Nickerson

I do not know the origin of the distinction between basic and applied research; my guess is that it is a relatively recent invention and would not have been recognized 
by, say, Johanes Kepler, Galileo, or Sir Isaac Newton, or by the founders of experimental psychology. Whatever its origin, the distinction is now a well­known one 
and not unique to psychology; it is made in all fields in which research is done. It has been the subject of endless debate and not a little contention.

Much of what has been said on the topic can be characterized as a running dispute about the relative merits of each type of research. In many ways the dispute is a 
tiresome one, with more than a little self­serving rhetoric and intellectual pretentiousness. And like most disputes, this one is won or lost only in the eyes of the 
disputants, each of whom appreciates the weight of his or her own position and the folly of that of his or her opponents. I do not want to contribute to the dispute here; 
I want, rather, to make a number of comments that relate to the distinction and some observations that I believe pertain to all research, however one categorizes it in 
this regard.

That some people work on problems because of what they see as the practical implications of solving them, whereas others do so for other reasons—aesthetics, 
intellectual challenge—is taken as a given. Moreover, this seems to have been true for a very long time, as a brief detour into the history of mathematics will remind us.

Intellectual versus Practical Motivation in Mathematics

No one knows the extent to which the earliest attempts to count, measure, and compute were motivated by practical as opposed to intellectual

  
Page 410

or aesthetic interests. It appears to be the case that both types of interest have energized mathematical thinking for a long time, just as they do today; but one can find 
different opinions among experts regarding the importance of the one type relative to that of the other. The belief that much of the most creative thinking in mathematics 
has been motivated by an interest in mathematics per se and not by any relationship it may bear to the physical world is held by many mathematicians (Davis & Hersh, 
1981; King, 1992). Ulam (1976) expresses the idea this way: ''The aesthetic side of mathematics has been of overwhelming importance throughout its growth. It is not 
so much whether a theorem is useful that matters, but how elegant it is" (p. 274). There is also the view, however, that many areas of mathematics have been 
developed primarily by people keenly interested in questions about physical reality and that even subjects usually considered pure mathematics often were created in 
the study of real physical problems (Bell, 1946/1991; Kline, 1980).

It seems that cultures have differed somewhat with respect to how mathematics has been viewed within them. Aesthetics, mysticism, and a general interest in 
philosophical questions appear to have motivated much of the mathematical thinking of the ancient Greeks. Pythagoras and Euclid treated mathematics as an abstract 
discipline that existed independently of the material world. The Pythagoreans considered mathematics to be more real, and more nearly perfect, than the world of the 
senses. Euclid's contempt for the idea that the reason for pursuing mathematics is its practical value is seen in the often­told story of his response to a question from a 
student regarding what advantage he would gain by learning geometry: Euclid is said to have instructed his slave to give the student three pence, since he must make 
profit out of what he learns. Boyer and Merzbach (1991) have argued that the Greeks put so much emphasis on deduction and abstraction, and had so little interest in 
practical applications of mathematics, that they tended to be rather poor observers of the physical world.

A noteworthy exception to this rule was the great mathematician Archimedes, who applied his mathematics to the physical world and especially to practical problems 
of engineering. His solution of the problem of determining whether a crown recently received from the goldsmith by his king was made of pure gold or a mixture of 
gold and silver is too

  
Page 411

well known to warrant retelling. He is reputed to have stalled the Romans' siege of Syracuse for 2 or 3 years by his inventions of various devices and instruments by 
means of which their efforts to take the city were thwarted. It has been argued that Archimedes' work in physics was unrivaled until the time of Galileo.

Egyptian mathematicians were motivated primarily by the practical demands of land measurement and pyramid building. Trigonometry was created by the 
Alexandrians, notably Hipparchus and Ptolemy, as a tool for enabling more precise predictions of the movements of the planets and other heavenly bodies. The study 
of algebra in Arabia may have been stimulated to some degree by the complicated nature of Arabian laws governing inheritance (Boyer & Merzbach, 1991). At least 
a thousand years before Pythagoras, the Babylonians were considering questions involving the time required for money to double if invested at a specified annual rate 
of interest (Eves, 1964/1983).

In more recent times, the view that mathematics should be pursued for its own sake is epitomized in a comment made by Hardy (1940/1989) in his Apology, which is 
often quoted as representative of the disdain that (some) pure mathematicians show for the idea that practical utility is an appropriate measure of the merit of their 
work.

I have never done anything "useful." No discovery of mine has made, or is likely to make, directly or indirectly, for good or ill, the least difference to the amenity of the world. I 
have helped to train other mathematicians, but mathematicians of the same kind as myself, and their work has been, so far at any rate as I have helped them to do it, as useless as 
my own. Judged by all practical standards, the value of my mathematical life is nil. (p. 150)

In an even more sweeping statement, Hardy gave essentially the same verdict with respect to higher mathematics generally: "If useful knowledge is, as we agreed 
provisionally to say, knowledge which is likely, now or in the comparatively near future, to contribute to the material comfort of mankind, so that mere intellectual 
satisfaction is irrelevant, then the great bulk of higher mathematics is useless" (p. 135).

Others have emphasized the importance of observation of real­world phenomena as a source of mathematical ideas. Sylvester (1869/1956), for example, believed 
that "[m]ost, if not all, of the great ideas of modern mathematics have had their origin in observation" (p. 1761). Ekeland

  
Page 412

(1993), who sees the development of mathematics as part of the general development of science and technology, attributes the growth of analysis to the interest of its 
developers in celestial mechanics and notes that the book in which Gauss established the foundations of geometry was also a treatise on geodesy.
Had historical circumstances been different, had there been different needs to satisfy, wouldn't mathematics have been different? If the Earth were the only planet around the Sun 
and if it had no satellite, we wouldn't have spent so many centuries accumulating observations and building systems to explain the strange movements of the planets among the 
stars, celestial mechanics wouldn't exist, and mathematics would be unrecognizable. (p. 55)

For present purposes, the most important thing to note relative to the distinction between pure and applied mathematics is the synergistic relationship that has existed 
between theoretical and practical interests over the history of the discipline. One finds numerous examples of mathematical developments that have come out of work 
that appears to have been motivated totally by intellectual—what some might call "idle"—curiosity and that has then, surprisingly, turned out to be usefully applied to 
practical problems. Among the more striking illustrations of this fact are the centuries of work on conic sections that eventually found applications in mechanics, 
astronomy, and numerous other areas of science.

One also finds many examples of the development of theoretical mathematics getting a push from the desire of people to work on real­world problems for which the 
then current mathematics did not provide adequate tools. The desire to work on problems of instantaneous change and continuity, which led to the development of the 
infinitesimal calculus is one well­known case in point; an interest in solving wagering problems that began the development of probability theory is another. Because 
science has become so dependent on mathematics, the recognition of a need for mathematical tools that do not exist can serve as a powerful motivation for the 
development of those tools. And the mathematical research done to fill the identified need can lead to developments that not only meet the need but have other 
unanticipated consequences as well. Even some of the most esoteric developments in mathematics are traceable to practical interests. Bell (1946/1991) puts it this 
way: "even a rudimentary knowledge of the history of mathematics suffices to teach anyone capable

  
Page 413

of learning anything that much of the most beautiful and least useful pure mathematics has developed directly from problems in applied mathematics" (p. 130).

In short, theoretical and applied interests appear to have coexisted throughout the history of mathematics. Work that has led to new developments has been motivated 
sometimes by the one and sometimes by the other. Applied interests have often led to theoretical developments, just as theoretical interests have led to new 
applications. It has been very much a two­way street. Whether either type of interest has been more important—more productive of new knowledge—than the other, 
is probably not possible, perhaps not even desirable to try, to say.

The Interdependence of Science and Engineering

Science, like mathematics, has been driven by both theoretical and practical concerns. Moreover, the relationship between science and engineering, or science and 
technology, has also been a mutually beneficial one. The fact that technology benefits from and builds upon scientific advances—that the knowledge that science 
produces enables technological developments of many types—is widely recognized. That science benefits greatly from technological advances is perhaps less widely 
acknowledged but no less true; often technology has led the way.

There are many examples from the past of technology developing relatively independently of science and also many instances of technology motivating scientific 
investigations and discoveries. Countless instruments and mechanisms of considerable complexity have been built over the centuries in the absence of any deep 
understanding of the scientific principles involved; often it has been the contemplation of operating devices that has led to scientific inquiry (Chevedden, Eigenbrod, 
Foley, & Soedel, 1995; McKelvey, 1985). Especially important to science have been advances in the technology of measurement (of both space and time) that have 
been motivated by such practical concerns as land measurement, the production of calendars, and navigation of the seas.

If we consider such activities as the making of tools, the smelting of metals, and the design of devices to utilize wind and water power as technological activities, then 
we must see technology as predating science by

  
Page 414

many millennia. Moreover, we find examples of technological developments that have occurred relatively independently of science even in quite recent times. The 
steam engine, for example, was built and used­before the theory of its operation got much attention from scientists. This development was in sharp contrast to that of 
the electrical industry; electricity and magnetism were investigated scientifically for 30 years before they were used much for practical purposes (Schroeer, 1972).

As scientific inquiry has become increasingly sophisticated in many fields, it has also become increasingly dependent on intricate instrumentation. Some types of 
experimentation in high­energy physics could not occur apart from use of its technologically sophisticated supercolliders. Astronomy has its optical and radio 
telescopes and space­probing satellites and vehicles. Biology has an array of microscopes capable of providing images of structures too small to be resolved by visible 
light. All the sciences, even the softest of them, make extensive use of computer technology. The building of such instrumentation requires the kind of understanding of 
the material world and the principles that govern it that science itself has produced. In short, today the relationship between science and technology is one of 
dependence that works in both directions. At least since Galileo began looking at the heavens through his first handmade telescopes, science has both helped 
technology advance and has waited on technological advances that were essential to its own progress.

The Fuzzy Line between Basic and Applied Research

Like many, perhaps most, dichotomous distinctions, the distinction between basic and applied research lends itself to an oversimplified view of reality. Research 
projects differ with respect to many attributes or dimensions, and they are not all readily sorted into two mutually exclusive bins, one marked basic and the other 
applied. Was the effort to determine the structure of the DNA molecule basic research or applied? What about the current attempt to map the human genome? Or the 
search for a theory to explain superconductivity and predict what compounds will produce it?

The distinction between basic and applied research often appears to be based on the question of why the research is done—what motivates

  
Page 415

it. Basic research is said to need no motivation but intellectual curiosity. What one hopes to gain by it is a better understanding of some aspect of the universe. In 
contrast, applied research typically connotes research undertaken for the express purpose of solving, or helping to solve, some specific practical problem. A well­
known example of a research effort that is usually considered applied was the Manhattan Project, which eventuated in the development of the atomic bomb. Another 
example is the work of Salk and his colleagues that resulted in the development of an effective vaccine for poliomyelitis.

But the motivational basis for the distinction between basic and applied research is problematic. It is not the case that scientists who do basic research have no interest 
in applications. Perhaps some lack this interest, but many who conduct research classified as basic do so with the firm conviction that the knowledge they are 
developing will be applied eventually to practical problems even if they are unable to say exactly how. And this conviction may be as important a motivation as 
intellectual curiosity or any of the other reasons why people do research. Some will argue that conducting basic research aimed at developing a more extensive and 
precise theoretical understanding of the world and how it works is the most effective way of ensuring a practical impact in the long run. Most of us are probably willing 
to make the assumption that knowledge is power and that the more we know about the world in general, the greater becomes our ability to influence events in a 
variety of (desirable and undesirable) ways.

Neither is it the case that scientists who do applied research have no interest in advancing scientific theory or contributing to our knowledge of the world in a 
fundamental way. Again, perhaps some who do applied work have no interest in making a contribution beyond solving the immediate practical problem on which they 
are focused, but many see applied research as a way to address specific practical problems and to contribute to theory development in the process of doing so. As a 
matter of historical fact, much of our "basic" knowledge about the universe has been obtained as a result of the work of scientists who were attempting to solve 
specific practical problems.

In view of all this, one might question whether the distinction between basic and applied research is a legitimate, or useful, one. Perhaps, as Press

  
Page 416

(1995) has suggested, the complex relationship that has evolved between basic and applied science and technology is such that they are more appropriately treated as 
one enterprise. But even if one believed this to be so, the distinction between basic and applied research is not likely to be discarded anytime soon. I believe the 
distinction is a legitimate and useful one but that it should be thought of as a matter of emphasis rather than as a true dichotomy. I believe, too, that a case could be 
made for considering basic and applied as orthogonal dimensions, thus recognizing the possibility that research can be more or less basic (in the sense of addressing 
fundamental questions) and, independently, more or less applied (in the sense of having identifiable practical implications). As the terms are typically used, however, 
basic and applied mark opposite ends of a single continuum—the more basic, the less applied, and conversely—and, for the sake of discussion, that is, more or less, 
the connotation used in this essay.

With respect to the relative importance of basic and applied research, one can find a range of perspectives among researchers. One is that theory­motivated research 
that is not also problem motivated is a luxury that, as a society, we cannot afford, because of the pressing nature of the practical problems we face. Another is that 
theory­motivated research is the most likely to add to the cumulative knowledge base and therefore prove to be the most useful in the long term. Still another is that 
intellectual curiosity is the only legitimate reason for doing research and that the question of "importance," at least in the practical sense, should not enter the picture; but 
I think this is probably not a widely held view.

There can be no doubt that many of the most important applications of scientific discoveries have been unanticipated; they have been serendipitous consequences of 
research that was addressed to questions far removed from those applications. This fact has sometimes been used as an argument in support of a preference for basic 
over applied research. But the argument fails on two counts. First, serendipity can occur when one is working on applied problems as well as when one is doing 
research on questions that have no obvious practical import; it is surely true that research motivated purely by curiosity can lead to surprising consequences, but it is 
just as surely not true that only research motivated purely by curiosity can lead to such consequences. Second, although some

  
Page 417

basic research yields important unanticipated practical applications, much of it does not, and whether basic research has been more productive than applied research 
in this regard is not clear. Indeed, it is not entirely clear that research motivated solely by theoretical interests has contributed more to the development of theory than 
has research driven by practical interests as well.

My own view is that to the extent that the distinction between basic and applied research is a meaningful one, the two types must be considered mutually 
interdependent. Typically, applied research projects draw heavily on the results of earlier basic research; without the knowledge that basic research has produced, 
neither the harnessing of atomic energy nor the development of the Salk vaccine would have been possible. On the other hand, without applied research many of the 
results of basic research would have no greater impact than that of satisfying our curiosity somewhat about how the world works in certain respects, if that.

Practical and Theoretical Roots of Experimental Psychology

Unhappily, there are within psychology today attitudes not unlike those that represent the chasm between some pure and some applied mathematicians. On the one 
hand are those who consider basic research to be more respectable, of higher quality, more noble, and "purer" than applied research and who balk at the notion that 
they should be expected to justify what they do in practical terms. On the other are those who consider research aimed purely at theoretical questions that do not 
connect in any apparent way with real­world problems to be useless—the modern­day analogue to the medieval pastime of debating how many angels can dance on 
the head of a pin.

Fortunately, there are also many psychologists whose attitudes are not represented by these extremes. The work of many of the founders and early molders of 
psychology as a science was motivated by both theoretical and practical concerns. Alfred Binet, Francis Galton, Edward Thorndike, Raymond Catell, William James, 
and John Dewey come readily to mind in this regard. I note, too, that many of the leading experimental psychologists during the middle of the current century made 
both theoretical and practical contributions, the latter, in many cases, in support of

  
Page 418

the World War II effort. One thinks of Frederic Bartlett, Kenneth Craik, Arthur Melton, Ross McFarland, Leonard Carmichael, and S. S. Stevens, among others, in 
this context.

Work on effects of stress (e.g., oxygen deprivation, fatigue, and danger) on performance produced both practical knowledge and theoretical advances, as did studies 
of depth perception, dark adaptation, color coding, camouflage, instrument panel design, map reading, manual tracking, vigilance, and a host of other topics. The 
tradition of research that addressed both theoretical and practical concerns was continued after the war by numerous outstanding contributors; Donald Broadbent and 
Paul Fitts were representative of this strong dual interest on either side of the Atlantic.

The question of whether either theoretical or practical interests have been more important than the other in establishing psychology as a science is not answerable, in 
my view, and debates on the issue are likely to end in standoffs with the strengthening of self­serving opinions on both sides. Each type of interest has motivated 
psychological research from the beginning, still does, and presumably will continue to do so. It seems to me that research motivated by both types of concern has 
been, and is likely to continue to be, the most exciting and useful work in the field.

How Research is Supported

It was once the case that in order to be a full­time scientist, one had either to be independently wealthy or to have a patron; otherwise one had to fit one's science in 
the cracks, as it were, while devoting most of one's time to earning a living. Recognition of scientific research as something worthy of support by society at large is a 
relatively recent development.

Most research funding today comes from one of three sources: the federal government (tax dollars), foundations, or private industry. Some government agencies 
support only research deemed likely to further specific practical objectives for which those agencies have mandates. In the United States, the various military and 
Department of Defense agencies support research that has implications for military systems. The several institutes within the National Institutes of Health fund research 
that relates to health issues within their specific areas of responsibility. The Na­

  
Page 419

tional Highway Traffic Safety Agency is especially interested in research that can be expected to help decrease the frequency and severity of motor vehicle accidents. 
NASA supports research relating to space exploration. And so on.

Some agencies have a mandate to support research not directed at immediate practical applications but at the development of theoretical knowledge in specific areas. 
The National Science Foundation is perhaps the most notable case in point in the United States. Some agencies support a broad spectrum of activities, ranging from 
theoretically oriented research on one end to the development and deployment of specific systems on the other. The Department of Defense represents this diversity 
and has a system of research classification that distinguishes several levels of immediacy or specificity of applicability.

A practical difference between basic and applied research that relates to funding policies and mechanisms is that basic research typically is funded by research grants 
whereas applied research is more likely to be funded by contracts. Generally speaking, a grant is a vehicle for supporting theoretically oriented field­initiated research. 
Grants are awarded by the National Science Foundation and the National Institutes of Health, among other federal institutions, and sometimes by private foundations; 
they typically are awarded to researchers in the academic world who compete for them by writing unsolicited proposals in accordance with general guidelines 
provided by the granting agencies. The selection process usually involves proposal evaluations by panels of other researchers in the field.

Contracts are the more common vehicle for mission­oriented government organizations—the military services, NASA, the Environmental Protection Agency, for 
example—and for private industry. In this case, interested prospective researchers, or research organizations, usually submit a proposal in response to a request for 
proposal, the issuance of which is announced in a widely disseminated publication, such as the Commerce Business Daily. The request for proposal typically lays out 
in some detail what the "purchaser" of the research wishes to get from the research project; it may also specify conditions prospective bidders must meet in order to be 
considered eligible to bid. Proposals are evaluated, and winners selected, by the purchaser; typically the selection is made on the basis

  
Page 420

of several factors, including the approach that is proposed, the estimated duration and cost of the project, and the ability of the bidder to carry out the research plan on 
time and within budget (as evidenced by the bidder's qualifications and perhaps past performance).

Grants typically provide the researcher with considerably more latitude than do contracts. The awarding of a grant is, in a sense, a vote of confidence in the 
researcher's ability to do high­quality research on the problem addressed by the proposal. Once the grant has been awarded, the researcher is given relatively free rein 
to carry on the research in the way he or she deems best, modifying the plan to take advantage of what is learned as the research proceeds. Technical reports of the 
research activities and results are expected, usually of the type that can be published in the archival literature of the discipline; progress reports may have to be 
submitted to the funding agency at specified intervals over the life of the project, but they often are quite informal and need be no more detailed than necessary to keep 
the funding agency informed of how the project is going.

Contracts tend to be more explicit than grants regarding what the researcher is expected to do. They are likely to contain a statement of work, which includes 
milestones expected to be met on a specified schedule. A contract will probably also specify a list of scheduled deliverables, which may include reports, computer 
programs, and other products. Progress usually is monitored closely—detailed formal progress reports may be required at scheduled intervals, and failures to meet 
deadlines for milestones or deliverables must be explained; in some cases monetary incentives are provided for performing ahead of schedule or under cost, and 
penalties are imposed for exceeding time or cost estimates.

This is an oversimplification, but generally speaking there are two types of research organizations in private industry: those that do research on behalf of the 
corporations themselves (perhaps aimed at product development) and those that do research for hire. The former type is represented by the laboratories within major 
corporations in automotive, oil, aerospace, chemical, pharmaceutical, computer, and communications industries, among others. The latter type includes research and 
development organizations—think tanks—that do research under contract for government agencies, foundations, and other industries. Generally, research and

  
Page 421

development companies specialize by maintaining a staff of professionals in certain areas and taking contracts to do work only in those areas. Not surprisingly, most of 
the research done in private industry—in either type of industry research organization—is applied work in the sense that it is intended to yield knowledge that will be 
useful immediately or in the near future in some practical setting.

Applied psychological research is done in both types of industry settings. Many large corporations maintain research groups that work on problems of applied 
psychology under a variety of rubrics, including human factors, ergonomics, biomechanics, and design. And among research and development companies are many 
that contain applied psychology groups as well as a few that work exclusively in that area.

Personal Motivations for and Assessments of Research

Why do people choose a career in research? How do those who make this choice decide what field to enter? Having entered a field, how do researchers select 
specific problems on which to work? All of these questions are themselves legitimate topics for research. Perhaps research has been done on all of them, but I am not 
familiar with it so will limit my comments here to personal opinion.

Why Do People Do Research?

One thing psychologists know about human motivation is that it usually is complex; seldom can behavior be explained adequately in terms of a single motive. One must 
assume that this is as true of research as of other forms of behavior. People do research for many reasons; even the individual researcher may be motivated by a 
number of factors. I believe that at least the following factors are operative, not, of course, all to the same degree in every case.

• Curiosity. Researchers, especially the more effective ones, are curious in the extreme. They have a strong desire to know the answers to questions they believe are 
answerable by research methods at their disposal.

• The joy of discovery. The joy of discovery is more than the satisfaction of curiosity. Obtaining an answer to a question by consulting a book, or by asking another 
person, is not satisfying in the same sense as

  
Page 422

discovering a fact for oneself; this can be true even, I believe, if what one discovers for oneself turns out to have been discovered already by someone else.

• The aesthetic appeal of science. Many of the most influential scientists have been motivated by a commitment to the idea that the laws by which nature functions are 
simple and elegant in a deep sense, and they find the attempt to understand this simplicity and elegance gratifying at a very fundamental level. Sullivan (1933/1957) put 
the matter this way: ''science is valued for its practical advantages, it is valued because it gratifies disinterested curiousity, and it is valued because it provides the 
contemplative imagination with objects of great aesthetic charm. This last consideration is of the least importance, so far as the layman is concerned, although it is 
probably the most important consideration of all to scientific men [and women.]." (p. 7)

• The thrill of the chase. The process of doing research—generating hypotheses, designing experiments, teasing information from data, and interpreting results—is 
enjoyable to many people because of the intellectual challenge it represents, independently of any consequences the activity produces.

• The possibility of recognition. Researchers are exhibitionists of a sort; which makes us no different, I suspect, from people in other walks of life in this regard. 
Recognition, especially by peers, for accomplishments has been a major motivation for scientists in all fields over the history of science.

• The possibility of accomplishing something useful or good. The prospect of making a positive contribution to society, of accomplishing something that will improve 
the quality of life of some people (and not at the expense of others) is, I believe, a powerful motivational factor for many people engaged in research.

• Professional advancement. It must be acknowledged that research can be motivated too by no more lofty motive than that of beefing up one's resume in the interest 
of improving one's job situation (by means of a raise, promotion, tenure, etc.). I do not mean to disparage this factor—researchers have to make a living like everyone 
else—but I do believe that, especially in view of the emphasis on publications as the main indicator of accomplishment in the academic world, it can, when it is the 
predominant motivation, sometimes lead to poorly conceived and executed research.

I suspect that most researchers are driven by some mix of these, and perhaps other, considerations. How well any of us understands why we do research is a 
question, because another thing that psychologists know

  
Page 423

about motivation is that we are quite good at deceiving ourselves about our own.

How Do Researchers Decide What Research to Do?

How much time and effort do scientists devote to considering their options for research and deciding what specific problems to tackle? What criteria do they apply to 
decide that some questions are worth asking and others are not, or in deciding that some are more important than others?

Problem finding—as distinct from problem solving—has been promoted as an important aspect of creativity (Mackworth, 1965; Runco, 1994). As it applies to 
research, this is sometimes translated as the ability to identify the right kind of problem on which to work. The right kind of problem is one that is tractable but not too 
easy; working on problems that are likely to prove to be unsolvable is risky, and solving easy problems is not considered an accomplishment.

The ideal problem is at the leading edge of some area but not too far ahead of the field. If it is not at the leading edge, it is not likely to be of interest to other scientists; 
if it is too far ahead of the edge, it will be ignored because no one will understand it. As Cromer (1993) puts it, "A revolutionary insight disconnected from the current 
consensus is unlikely to be published" (p. 148). If one is to have an impact on a field, one's work must be close enough to current thinking to be of interest to and 
understandable by other researchers in the area. Apparently, successful scientists have typically sought out, or at least gravitated toward, what are generally seen by 
their peers as the problems that constitute major challenges to the field at the time (Mansfield & Busse, 1981; Roe, 1952).

Certain specific questions provide a focus for many investigators in a given field. Examples include the search by biologists for the structure of specific (e.g., the DNA) 
molecules, the search by particle physicists for specific particles (e.g., the Higgs boson) that theory says should exist, and the search by astronomers for the dark 
matter that is hypothesized to pervade the universe. Sometimes this focus is provided by very practical objectives, such as that of finding an efficient way to use 
electricity to provide lighting (Conot, 1979) or that of finding materials that will superconduct at relatively high temperatures (Cava, 1990). Sometimes it is provided by 
strictly theoretical interests.

  
Page 424

How Should Researchers Decide What Research To Do?

Nature divulges her secrets grudgingly and generally only if one has asked a precise and well­formed question. In psychology, we do not usually formulate questions 
very well the first time we try; indeed, we sometimes seem to spend much time fussing about the edges of a problem, convinced there is a problem there but never 
quite finding our way to the heart of it. We ask questions and proceed to collect data as though we really believed the questions made sense. I suspect we realize, 
though, that many of the questions we ask are in fact unanswerable—at least until they are formulated with considerably more precision than we have been able to 
manage heretofore. One could make a case that the real challenge is not to discover the answers, but to find out what the questions should be.

This is not a criticism of psychology as a science. It is rather a reflection of the fact that as a science, psychology is relatively young and its subject matter is complex. 
One of the indications of the maturity of a science is the precision of the questions it evokes. Of course, all sciences deal with complex subjects in one sense, but there 
is often a simplicity in the sense that when the question to a complex question is found, everyone in the field will recognize it as the correct answer. Discovering the 
structure of the DNA molecule was a remarkable feat, the culmination of years of work of great complexity; but once it was found, everyone in the field recognized the 
correctness of the answer. The finding of a new subatomic particle, of a compound that will superconduct at a higher temperature than any other known compound, or 
of a gene implicated in a specific disease—these are noteworthy accomplishments, not easily achieved, but when done clearly recognizable by everyone in the 
associated field as answers to the specific questions asked.

Seldom in psychology is there an event comparable to the determination of the structure of a molecule or the discovery of a new particle. What one attempts to do in 
psychology is to discover relationships between or among variables and to express these relationships as principles or laws of thought and behavior. The variables 
involved are referred to as variables for good reason and the principles or laws are, at best, approximations, reflecting what can be expected "on average," when all 
the other factors that can affect thought or behavior are adequately controlled or discounted.

  
Page 425

Most answers to questions in psychology are recognized to be the correct answers only by some fraction of the researchers working in the field; or to make the point 
in other words, most questions of theoretical interest have more answers than one at any given time, each supported by some subset of the people working on the 
question—and usually only tentatively by them. Again, I want to claim that the situation is not an indication that the research being done is of poorer quality than that 
done in some more mature fields, but rather that it is a reflection of the elusiveness of the subject matter and of the fact that psychology is still young, as sciences go.

How should a research psychologist—say one who wishes to do research on cognition—decide what is worth doing? Clearly, all questions are not equally worth 
asking. But how should the importance of possible research be judged? On what basis should choices among the possibilities be made? What should the criteria be? 
Should the social significance of the problem to which research might be addressed be a consideration? And, if so, should this concern apply to basic as well as to 
explicitly applied research? The last question, we can be quite sure, is one that will evoke answers based on strongly held opinions.

Some will argue that potential applications should be considered in any case. This argument may be motivated by the assumption that when the survival of a society is 
threatened by identifiable problems that research might help solve, it does well to spend most of its limited resources on these problems (Cellarius & Platt, 1972; Platt, 
1969; Sperry, 1995). It may be motivated too by the conviction that research that could lead to certain types of undesirable applications should not be done, or at 
least should not be done without the establishment of safeguards against the feared applications.

Others will say that consideration of probable or possible applications should play no role in decisions about the funding of basic research. Basic research, they will 
argue, should be judged solely on the basis of its prospects for leading to new knowledge regarding questions deemed, by experts in the discipline, to be important to 
the advancement of the field. Moreover, they will claim—and with good justification, I believe—that it can be difficult to identify the practical effects of specific results 
of basic research, even after the fact, because the route from the research to the

  
Page 426

effects can be a long and convoluted one. Effective basic research contributes to the knowledge base in some area. In time, the knowledge base, which is the 
aggregate result of countless individual research efforts, becomes taken for granted and the critical role that research played in producing it may be forgotten—or the 
contributions of the many specific research projects may be impossible to trace. There can be little question of the fact that much of the engineering and technological 
development that goes on today would be impossible apart from the knowledge that past research—basic and applied—has produced. This is true even though it is 
not always possible to say exactly how important specific research efforts have been in the building of that knowledge base.

I confess to being impressed with the seriousness of some of the problems that contemporary society faces—overpopulation, environmental degradation, resource 
depletion, violence and crime, massively destructive weaponry, international terrorism, the enormous disparity between living conditions in different parts of the 
world.... And I believe that unless these problems are addressed more effectively in the future than they are being addressed at the present time, research that does not 
connect in any obvious way to practical matters could become perceived as a luxury that a threatened society can ill afford.

I confess too, though, to deriving considerable personal satisfaction from working on problems for the pure intellectual challenge they represent. I enjoy crossword 
puzzles, brain teasers, riddles, and conundrums, as well as more substantive intellectual problems for no better reason, that I can discern, than the fact that they are 
great fun to work on and—occasionally—to solve. And I find many research questions intrinsically interesting even though I would be hard pressed to say how 
answers to them would find practical applications. Given these predilections, I am more than a little reluctant to support the idea that only research with obvious 
practical implications is worth doing. The satisfaction of our curiosity about how the world works is not, in my view, an unworthy goal.

Nevertheless, if the ultimate goal of research—or at least that of most research—is not to better the human condition in one or another way, I think people who are 
asked to pay for it have a strong case for being reluctant to do so. I suspect that many researchers who profess no interest

  
Page 427

in applied problems believe that basic research is justifiable in practical terms on the assumption that research that contributes to the advancement of theory will prove 
to be useful, in some way, sooner or later. But this is an assumption and should be recognized as such; it does not, I want to argue, absolve the individual scientist from 
the responsibility of giving some thought to what practical use could conceivably be made of the results of the research he or she is doing, even when that research is 
explicitly classified as basic. Inasmuch as I believe that research addressed to practical problems can advance theory and contribute to the knowledge base of a 
discipline, and that theoretically motivated research can yield results useful in applied contexts, I find it easy especially to like research that is explicitly aimed at 
producing results with both theoretical and practical implications.

In any case, I want to argue that whether the research one proposes to do is basic or applied, one should be able to give compelling reasons for wanting to do it. I do 
not know how common it is for psychology departments to make the question of how to decide what research to do a priority focus of graduate training. If I were the 
czar of curriculum, I would make it a requirement that every school that offers a Ph.D. in psychology give a course, mandatory for all Ph.D. candidates, on deciding 
what research is worth doing or something to that effect. The objective would be to decrease the chances of producing researchers who spend years working on 
problems for other than critically considered reasons, only to wonder, at some point, why they have devoted their lives to re­searching that.

Such a course would include the study of research that has made a difference, theoretically or practically. It would explore the reasons people do research, the criteria 
by which research is judged from different perspectives, the various types of rewards and satisfaction researchers can derive from their work, and the importance of 
being able to explain—to oneself and to others—why the research one is doing is worth the time and effort of doing it, assuming it is. It would cover what various 
researchers have said about their motivations, about how they have decided what research to do, and about how they have judged their work in retrospect. It would 
include a fair amount of discussion and debate regarding the pros and cons of proposed research projects.

  
Page 428

I would expect that having finished such a course, a student would be able to say what factors he or she would want to consider and weigh in choosing a research 
direction and specific research projects—to be able to articulate what he or she sees as the defining characteristics of worthwhile research. I would not expect that all 
students would derive exactly the same set of criteria for deciding what they want to do as researchers; the goal would be that each would have thought deeply about 
the issue, arrived at least at some tentative conclusions about what makes a research question worth asking that are consistent with their own sets of values, and been 
convinced that the matter deserves continuing thought.

Societal Motivations for and Assessments of Research

Just as individuals have reasons for doing research, society, presumably, has reasons for supporting it. But why does society—why should society—support research? 
How does it determine—how should it determine—what research to support? And how does it tell, if it does, whether the research it has supported has been worth 
the cost?

I do not propose to try to answer these questions here, but I want to call attention to them because I think the individual researcher does well to reflect on them even if 
the answers to them are not clear. Today re­search is a highly organized enterprise and it is supported, to a large degree, by public funds. Why the public should be 
expected to underwrite research and why it should be expected to pay for specific research projects are questions researchers can ill afford to ignore.

Justifying Research

Inasmuch as most researchers are dependent for financial support on a government agency, foundation, or corporation that is in the business of buying or sponsoring 
research, they must, as a practical matter, convince someone that the research they wish to do is worth doing from the point of view of the sponsoring entity. 
Moreover, one generally has to convince someone not just that the proposed research is worth doing but that it is more worthy of support than other possible projects 
competing for the same limited funds.

  
Page 429

Sometimes the justification may be in terms of expected return on in­vestment, as when a corporation is asked to commit limited research dollars to an effort intended 
to lead to a marketable product. When the potential sponsor is a government agency or a foundation, the justification must be consistent with the entity's purposes or 
mandate. What constitutes a persuasive argument is likely to differ for basic and applied research, but in either case because there is not enough funding to support all 
the projects researchers would like to undertake, arguments must be put forth so that the decision makers will have some basis on which to allocate available funds.

Should researchers be expected also to justify their research to anyone else, say to the general public, at least when they are asked to do so? I believe they should, for 
several reasons. First, the general public is the underwriter of research that is supported by tax dollars and has a right to know what its money is buying. Second, 
whether or not one's research is paid for with public funds, it is being conducted within a cultural con­text and could have implications for the future of that culture. 
Third, many writers, beginning perhaps with C. P. Snow, have warned of the risks of an increasing rift between scientifically literate and scientifically illiterate 
subcultures.

As Hunt (1995) has pointed out, funding decisions are made at more than one level. Although basic research proposals are likely to be evaluated strictly in terms of 
their scientific merit at the level of a proposal review panel or granting agency, decisions at higher levels regarding the allocation of funds among agencies are likely to 
favor those perceived to be most responsive to societal needs. "[T]his means that, given equal intellectual preparation, those branches of a science that are seen as 
responding to a societal need are more likely to be developed than branches that are seen as an intellectual ornament" (p. 266). And how sciences are viewed by high­
level policymakers, most of whom are not trained as scientists themselves, must depend, to no small degree, on how effective scientists have been at explaining the 
societal importance of their work.

It can be argued that the need for explanations of research objectives and rationales becomes more and more acute as the pressures on researchers to specialize 
narrowly become increasingly strong. Holton (1973) has

  
Page 430

expressed concern about the divisive and factious effect that increasing specialization can have on society generally. It can lead, as he puts it, to
increasing atomization of loyalties within the intelligentsia. The writer, the scholar, the scientist, the engineer, the teacher, the lawyer, the politician, the physician—each now 
regards himself first of all as a member of a separate, special group of fellow professionals to which he gives almost all of his allegiance and energy; only very rarely does the 
professional feel a sense of responsibility toward, or of belonging to, a larger intellectual community. This loss of cohesion is perhaps the most relevant symptom of the disease of 
our culture, for it points directly to one of its specific causes. (p. 448)

Similarly, Kline (1980) has decried what he sees as a widening schism between mathematics and science, and even within mathematics, that has resulted from the 
increasing need for specialization that appears to be a natural consequence of advances in the field.
In Bacon's time the concern of mathematicians with physical studies needed no prompting. But today the break from science is factual. In the last one hundred years, a schism has 
developed between those who would cleave to the ancient and honorable motivations for mathematical activity, the motivations which have thus far supplied the substance and 
fruitful themes, and those who sailing with the wind investigate what strikes their fancy. Today mathematicians and physical scientists go their separate ways. The newer 
mathematical creations have little application. Moreover, mathematicians and scientists no longer understand each other, and it is little comfort that, because of the intense 
specialization, mathematicians do not even understand other mathematicians. (p. 286)

It does not require extraordinary perceptiveness to see a similar increasing specialization within psychology, even within cognitive psychology. And in psychology, as in 
other fields, specialization has its advantages, but it also has its risks. Among the latter is that of losing the ability to see one's speciality within a broader frame of 
reference and to communicate the value of one's work to people who do not have the same narrow focus.

If the divide between the scientific community and the general public is allowed to continue to increase, the consequences could be unpleasant for all, but the blame for 
it would rest with the former group—only the scientifically literate have the capability to close this gap. For these reasons, whether one does basic research or applied, 
one should, I think, be able to say why his or her research is worth doing and in such a way that the reasons will be understood both by colleagues and by an intelligent

  
Page 431

layperson. This is not necessarily an easy task. Especially it is not likely to be easy to explain the importance of one's research to others, if one does not have a clear 
idea of it oneself. At the very least, we should ask ourselves why we are doing the research we are doing. If the answer is satisfactory, we should keep doing it; if not, 
perhaps we should do some­thing else.

Much can be said for the apprenticeship type of training that graduate students typically get by working with an advisor or other senior investigators, but a risk 
associated with this system is that students may select research problems for no better reason than the fact that someone else has been working on them and 
consequently fail to learn to think critically about what makes a question worth asking. Mentors should challenge students, I believe, to think hard about what they 
should do for research and to be able to say clearly why a question they wish to ask by way of research is worth the time and effort that is expected to be required to 
answer it. (The fact that no one has yet done an experiment that one is considering is a singularly uncompelling reason for doing it oneself.) This is not the same as 
convincing a student of the importance of a question the professor wants to ask. I am not suggesting that working toward answering the professor's research question 
is an unworthy goal, but only arguing the importance of encouraging students to think for themselves and helping them develop the ability to do so.

But even if one has a clear and well­conceived opinion regarding why a research problem is important, it may not be easy to convince others, especially those who do 
not have a lot of relevant background knowledge, of its merits. And one does well to bear in mind that we seem to have a natural tendency to overestimate how 
intrinsically interesting or important other people will find our own work to be.

Some scientists apparently believe that attempting to communicate effectively about science with people who are not trained in their disciplines is unimportant—
perhaps even a waste of their time. This strikes me as an indefensibly elitist attitude and not very wise. Scientists and the general public alike owe an enormous debt to 
those individuals who understand science, or some aspect of it, at a nonsuperficial level and who have been willing to attempt to communicate what they know to 
people not trained in their disciplines. This involves not only explaining what science has

  
Page 432

done and discovered but why research that is currently going on or is planned should be done.

A noteworthy effort to explain the goals and findings of psychological research, basic and applied, to policymakers has been organized by the Federation of 
Behavioral, Psychological and Cognitive Sciences, a consortium of professional organizations to which many research psychologists belong. The federation sponsors a 
series of science and public policy seminars presented in Washington, D.C. and attended primarily by congressional staffers and federal government employees. Since 
1982, leading researchers have given talks on specific topics, explaining the relevance of psychological research in specific areas to problems of national interest.

About 85 such talks had been given by the end of 1995. Many of the talks are published and distributed by the federation. The following topics are a sample of those 
addressed in these seminars: psychology and law (Loftus, 1984), television and human behavior (Huston, 1985), cognitive psychology and education (McKeachie, 
1986), what we know about teaching reasoning (Glaser, 1989), family violence (Emery, 1989), human factors in flight crew performance (Chidester, 1990), high­
stakes decision making in an uncertain world (Swets, 1991), behavioral science and public policy (Horowitz, 1992), and emotion and social judgments (Bower, 
1995).

Judging the Value of Research Results

The main way in which we differ cognitively from our prehistoric fore­bears is probably not with respect to our ability to observe, to reason, to wonder, and to 
experiment, but with respect to the treasure trove of knowledge and theory that many generations of observing, reasoning, wondering, experimenting individuals have 
produced. The difference lies in the accumulated knowledge of the species. I know of no convincing evidence that we differ from our ancient forebears in any other 
significant way.

Some of this accumulated knowledge has resulted from informal observation and reflection. Much of it also has been gained as the result of carefully controlled 
experimentation. The revolution in approach to the acquisition of knowledge usually associated with Galileo led to the accu­

  
Page 433

mulation of more knowledge in the few hundred years between his time and ours than had been gained in all preceding human history. But if the development and 
continuing use of what we generally refer to as the scientific method has been responsible for this explosion of knowledge, it does not follow that all scientific activity 
has contributed to this result.

Is there such a thing as dead­end science? Is a certain amount of it unavoidable? If there is such a thing, can the amount of it be decreased without also impeding the 
progress of useful, productive science? I believe that there is such a thing as dead­end research, some of which is probably avoidable and some probably not. Many 
problems in psychology are never resolved, and many hypotheses are neither confirmed nor falsified; in time the research community simply loses interest in them and 
moves on to other questions.

Murdock (1995) suggests that the life span of most topics in the psychology of memory is on the order of ten years. He notes too that many of the results of memory 
research do not contribute to the cumulative knowledge of the field. ''If a study is not a classic, or if it does not get integrated into the current Zeitgeist, then in about 
ten years it will vanish from the scene only to be rediscovered in some young investigator's doctoral thesis" (p. 117).

What can be said of research on memory may be claimed with equal plausibility of other areas of psychological research. Nor does psychology stand alone in this 
regard. I have already mentioned Hardy's negative assessment of the practicality of higher mathematics, as a whole. Davis and Hersh (1981) speculate that most of the 
millions of theorems contained in the mathematical literature are useless dead ends. And King (1992) makes the startling claim that "an ordinary mathematics research 
paper is read by almost no one except the author and the journal 'referee' who reviewed it prior to publication" (p. 38). (On the other hand, to demonstrate that we 
are in the realm of opinion here, I note that, in his classic History of Mathematics, Cajori [1893/198.5] says that the mathematician "takes pride in the fact that his 
science, more than any other, is an exact science, and that hardly anything ever done in mathematics has proved to be useless" [p. 1].)

Supposing, for the sake of discussion, that there is such a thing as dead­end research. Is such research a waste of time and other resources? Does

  
Page 434

it contribute to the advancement of the science, even if in unintended and unexpected ways? Does it do so invariably? Usually? Only occasionally? I think one would 
be hard pressed to find incontrovertible answers to these questions. One can find opinions, often strongly expressed, and one can probably build a case for whatever 
conclusion one wants to draw, but I doubt that one can present evidence that is compelling one way or the other.

Should this be a matter of concern? For scientists? For society? From a societal point of view, how should the value of research results be measured? By the degree 
to which they contribute to the accumulated knowledge base and thus to our understanding of the world? By the practical utility of the new knowledge that is 
obtained? By the degree to which research results lead to new questions and thus to further research?

One can make a case for each of these answers, and one can note too that each has its limitations. Knowledge is generally seen as a desirable goal, but there are 
differences of opinion as to whether we are better off, as a species, with the knowledge of how to build weapons of unimaginably destructive power than we would be 
without it; not everyone is convinced that the ability to do the kind of genetic engineering that appears to be on the horizon will be an unmitigated blessing. It would be 
easy to identify other directions that some thoughtful people would question whether research should be allowed to take.

Scientists are given various sorts of recognition. The Nobel prize is undoubtedly the most prestigious recognition to which scientists in many disciplines can aspire, but 
there are numerous other awards given in recognition of outstanding achievements of researchers in specific fields. One could argue that inasmuch as the criteria for 
these awards are usually established by scientists and the recipients are typically chosen by them as well, this type of recognition should be considered more reflective 
of what the scientific community values by way of research results than of the values of society more generally. And one need not be a complete cynic to see that the 
opportunity periodically to laud individuals for their scientific achievements serves the interests of the scientific community well. Of course, science is not unique in this 
respect: journalism has its Pulitzer, mathematics its Fields medal, the motion picture industry its Oscar, and so on.

  
Page 435

All of these awards are evidence of outstanding achievement, but each represents recognition by a highly specialized subset of society and it serves the purposes, first 
and foremost, of the subset. This is not to suggest that such recognition is necessarily inconsistent with general societal values but only that it is not constrained to 
reflect them. It can play a role in shaping them, and it may be that the publicity and ceremonial proceedings that go with the awarding of prizes like the Nobel have 
done as much as anything else to influence the attitudes of the general public regarding the nature and worth of scientific research. Are there some more objective 
indicators that could be used to assess the value of research?

One possibility is the effect on other researchers, as indicated, say, by citations of research reports in the scientific literature. (We should note in passing that if citation 
counts are used, most published reports of psychological research would have to be considered essentially worthless, because the vast majority—like the majority of 
mathematics papers, if King is right—are cited very few times if at all.) But should large citation numbers be considered evidence of especially worthwhile research? 
Clearly they are evidence that the cited research has had an influence on other researchers. But what, if any, further conclusions do they permit one to draw regarding 
the value of the research? Might it not be that, at least in some cases, dead­end research is simply leading to more dead­end research?

The history of science provides numerous examples of poor research that has been widely cited (approvingly) for a time. The "discoveries" of N rays by Blondlot in 
1903, of mitogenetic radiation—supposedly given off by growing plants—in the Soviet Union in the 1920s, and of poly­water by a Russian chemist in 1961 are well­
known cases in point (Cohen, 1985; Franks, 1981; Nye, 1980; Rostand, 1960). Such discoveries have sometimes been hailed by eminent scientists as major 
scientific advances before being discredited by the weight of accumulating counter­indicative evidence. According to Price (1961), the excitement caused among 
scientists by Blondlot's N rays was quite remarkable:
Nearly one hundred papers on N rays were published in the official French journal Comptes Rendues during 1904, representing not only the product of Blondlot and his pupils and 
assistants but also of other teams of workers growing up in Paris and elsewhere in France. Something like 15 percent of all physical papers in the journal in this period were on this 
subject. (p. 86)

  
Page 436

The French Academy awarded Blondlot the Leconte Prize of 20,000 francs and a gold medal for his N­ray work.

The moral of this story is that the fact that a particular bit of research is widely cited in the literature of a field is no guarantee that it is high­quality research or that it is 
contributing positively either to the knowledge base of that field or to the solutions of any practical problems. Poor research can be influential in a negative way by 
leading other researchers down a blind alley. It should be borne in mind too that if a nontrivial number of researchers become focused on a particular theoretical 
question, their citations of each other can sustain a relatively high citation count for a time, even if they are the only people in the world who find the question of 
interest. I believe that citation statistics do constitute useful clues to the quality and importance of research, generally speaking, but that they should be interpreted 
cautiously and in the light of other evidence that the research involved is addressing reasonable questions.

Judging the value of specific research efforts is difficult, especially so when the research we are attempting to judge is our own. There is much evidence from 
psychological experimentation on egocentric biases that we tend to misjudge our selves in relation to others in ways that show us to advantage. There is little basis for 
assuming that our assessments of the importance of our own research are immune to such biases. And any tendency to overrate the importance that society in general 
may attach to a particular research problem can be compounded by the mutual reinforcement that the members of a group of people who are working on it can 
provide each other.

But we must make such judgments as objectively as we can, doing so with criteria that seem reasonable to us. This is another argument for putting a great deal of 
emphasis, during training, on the question of how to decide what research is worth doing. The individual who has selected a research project because it satisfies 
criteria that are the result of a critical thought process has a firmer basis for believing in the value of the results it yields than one who has selected the problem for less 
carefully considered reasons.

One thing about which we can be fairly certain is that categorizing research as basic or applied does not tell us anything about either the

  
Page 437

quality or the long­term impact of the research so categorized. To the extent that the distinction between basic and applied research is valid, we can safely say that 
there are many examples of good and poor research, and of consequential and inconsequential research, of both types. To make the point slightly differently, 
acceptance of the distinction between basic and applied research as a meaningful one does not require that one consider either type to be better or more effective than 
the other.

Applied Experimental Psychology

It has been my privilege to edit the Journal of Experimental Psychology: Applied during its fledgling years. One of the things that makes this task interesting is the 
broad range of subjects with which incoming manuscripts deal. To be eligible for consideration for publication in JEP: Applied, a manuscript must report a study that 
was based on experimentation and that produced results with clear practical implications. Of special interest are manuscripts reporting experimental work that 
contributes both to the furtherance of psychological theory and to the solution of a practical problem. There are no limitations with respect to subject matter; no topic 
that is within the purview of experimental psychology is excluded, so the mailbag is always an adventure.

The following are a few of the subjects addressed by manuscripts received during the first year of the journal's existence: earwitness identification, brainstorming 
effectiveness, vibrotactile encoding of speech, acquisition of mnemonic skill, negotiation, effectiveness of instructions, ethnicity effects in personnel decisions, conflict 
management, writer's block, forensic interviewing of children, reading braille, effects of stress on performance, math anxiety, noise and health, aeronautical decision 
making, AIDS education, memory for advertisements, aircraft navigation displays, and the effects of sleep deprivation. on suggestibility. These and countless other 
topics represent opportunities for psychological experimentation that has both theoretical and practical implications. The tables of contents of other journals that 
publish primarily applied research, such as the Journal of Applied Psychology and Human Factors and Ergonomics, also bear witness to the great range of 
applied problems addressed by research psychologists with an interest in applications.

  
Page 438

One of the things that has struck me in the processing of manuscripts for JEP: Applied is the fact that many researchers find it difficult to make clear the practical 
implications of their findings. JEP: Applied accepts only manuscripts that report experimental studies that have such implications, and the burden is on the author(s) to 
be explicit regarding what those implications are. The name of the journal is intended to convey this idea, and the editorial in the inaugural issue stresses this 
requirement. Still, one of the most common criticisms that submitted manuscripts evoke from reviewers is that the reader is not told what practical significance, if any, 
the findings have. Many investigators among those who consider their research to be applied do not find it easy to say explicitly who, apart from other researchers, 
should find their findings useful and how they should be able to apply them.

Usually it is not the case that the results have no practical implications, but just that the researcher either considers it unnecessary to articulate them or finds it difficult to 
do so. I have to wonder to what extent this difficulty reflects a weakness of graduate­training programs. As should be evident by this point, I believe strongly that 
graduate training should place a great deal of emphasis on the importance of being able to explain why any research, basic or applied, is important enough to justify the 
time, effort, and other costs of doing it. It is especially important, I want to argue, that investigators motivated to conduct research that is addressed to real­world 
problems be able to say what (at least some of) the practical implications of their findings are—in terms that can be understood by potential users of those findings. But 
people who do basic research need to know, too, how to explain why the research they wish to do is worthy of the support the general public, or someone, is 
expected to provide for it.

Opportunities for Cognitive Research with Both Theoretical and Practical Implications

Several efforts have been made in recent years to identify major research challenges to psychology. Some of the resulting discussions have related primarily to the 
resolution of theoretical questions; others have focused more on the solution of practical problems. I have been impressed, how­

  
Page 439

ever, with how much attention has been given in each of the resulting documents to practical problems of the day and to the question of the relevance of psychological 
research to those problems. I will mention three such efforts.

On the basis of a poll of some 2000 behavioral and social scientists, the Committee on Behavioral and Social Sciences of the National Research Council "delineated 
30 topical areas that appear to occupy the leading edges of behavioral and social science research in the United States" (Luce, Smelser, & Gerstein, 1989, p. vii). In 
the present context, a particularly interesting aspect of the areas identified is the fact that many of them have a practical ring to them: health and behavior, crime and 
violence, jobs and inequality, macroeconomic policy, international security, and crisis management, to name a few.

Even the chapters with titles that would probably be considered clearly in the basic research camp contain many references to opportunities for applications. The 
chapter on sensory and perceptual processes, for example, deals with such subtopics as evaluation of design (of visual displays), hearing aids, and tactile aids for 
people who are deaf. The chapter on the psychobiology of learning and memory mentions education, normal aging, and memory disorders as areas of application. The 
introduction to the chapter on information and cognitive sciences begins with the identification of several practical reasons for doing research in this area: the problem 
of adult illiteracy; the challenge posed by the new possibilities for information representation provided by the rapidly moving information technology; and the difficulties 
experienced by individuals, organizations, and nations that stem from ineffective reasoning. And so on.

A second major effort to identify future research challenges for psychology—to develop a "national research agenda"—was initiated by the convening by the American 
Psychological Society of a Behavioral Science Summit in 1990 that was attended by representatives from about 70 psychological organizations. As a consequence of 
this summit and ensuing activities, six major areas were identified as priority areas for research: productivity in the workplace, schooling and literacy, the aging society, 
drug and alcohol abuse, health, and violence in America (APS Observer, 1992). The effort became known as the Human Capital Initiative,

  
Page 440

reflecting its focus on people as the country's greatest resource. In addition to the initial research agenda, three reports have resulted from the initiative to date: "The 
Changing Nature of Work," "Vitality for Life" (Aging), and "Reducing Mental Disorders"; each was produced by a committee composed of participants in the initiative 
with special interest or expertise in the subject area (APS Observer, 1993a, 1993b, 1996).

A third effort was undertaken by the Committee on Human Factors of the National Research Council (NRC) and resulted in a 1995 report titled "Emerging Needs 
and Opportunities for Human Factors Research" (Nickerson, 1995). This effort differed from the other NRC effort already mentioned in being much smaller and 
focused on needs and opportunities for human factors research, human factors being interpreted broadly, but not so broadly as to include all of psychology, or, in 
particular, research not motivated by practical concerns. This effort emphasized areas of need and opportunity that the committee felt are increasing in practical import 
because of recent and anticipated changes in technology. The areas identified were productivity in organizations, training and education, employment and disabilities, 
health care, environmental change, communication technology and telenetworking, information access and usability, emerging technologies in work design, 
transportation, cognitive performance under stress, and aiding intellectual work.

The work that eventuated in the Human Capital Initiative and the work of the National Research Council's Committee on Human Factors were parallel efforts with 
little coupling between them; moreover, the two groups involved differed in composition and purpose. Nevertheless there is considerable similarity in the areas of 
research opportunities they identified. Other attempts to identify major challenges and opportunities for psychological research, basic and applied, in the near­term 
future include Moray (1995), Nickerson (1992), Smith & Torrey (1996), and Solso & Massaro (1995).

The main point I want to make in calling attention to these efforts is that many (perhaps most) of the problems identified represent opportunities to do research with 
both theoretical and practical import. In psychology we are a long way from a "theory of everything," there is no dearth of

  
Page 441

pressing practical problems on which to work, and the overlap between problems that offer a theoretical challenge and those that represent practical needs is great.

Recap

The debate regarding the relative merits of basic and applied research has gone on for a long time and is not likely to end soon. The issue is the kind that sustains 
debate, I suspect, precisely because it has no resolution. The foregoing comments, which relate to the debate, may be summarized by the following observations.

• People have been motivated to do research for both intellectual and practical reasons for a very long time.

• In both mathematics and science, basic and applied work have been interdependent and mutually reinforcing.

• The line between basic and applied research is a fuzzy one; the same research project can be both basic (in the sense that it addresses fundamental questions) and 
applied (in the sense that it has identifiable practical implications).

• Psychological research has been motivated by both theoretical and practical concerns from the earliest days of psychology as a science.

• Individuals do research for many reasons, intellectual curiosity and the desire to do some good being only two of them.

• The distinction between basic and applied research is not synonymous with the distinction between good and poor research. it is possible to have good and poor 
research of both types.

• The distinction between basic and applied research is not synonymous with the distinction between important and unimportant research. It is possible to have 
important and trivial research of both types.

• The fact that a particular research effort is aimed at advancing theory does not mean that it cannot contribute to the solution of practical problems.

• The fact that a particular research effort is aimed at solving a specific practical problem does not mean that it cannot contribute to our general understanding of the 
world.

• There are many opportunities for research in psychology, and in cognition in particular, that can contribute to psychological theory while addressing important 
practical problems.

  
Page 442

• Researchers have an obligation to think about their research and to be able to give reasons for why they have chosen to do the research they are doing.

References

APS Observer. (1992, February). Human capital initiative: Report of the National Behavioral Science Research Agenda Committee. [Special issue] APS Observer.

APS Observer. (1993a, October). Human capital initiative: The changing nature of work. [Special issue] APS Observer.

APS Observer. (1993b, December). Human capital initiative: Vitality for life. [Special issue] APS Observer.

APS Observer. (1996, February). Human capital initiative: Reducing mental disorders. [Special issue] APS Observer.

Bell, E. T. (1991). The magic of numbers. New York: Dover. (Original work published 1946.).

Bower, G. (1995). Emotion and social judgment. Washington, DC: Federation of Behavioral, Psychological and Cognitive Sciences.

Boyer, C. B., & Merzbach, U. C. (1991). A history of mathematics (2nd Ed.). New York: Wiley.

Cajori, F. (1985). The history of mathematics (4th Ed.). New York: Chelsea. (Original work published in 1893.)

Cava, R. J. (1990). Superconductors beyond 1­2­3. Scientific American, 263(2), 42–49.

Cellarius, R. A., & Platt, J. (1972). Councils of urgent studies. Science, 177, 670–676.

Chevedden, P. E., Eigenbrod, L., Foley, V., & Soedel, W. (1995). The trebuchet. Scientific American, 273(1), 66–71.

Chidester, T. R. (1990). Human factors research: Narrowing the extremes of flight crew performance. Washington, DC: Federation of Behavioral, 
Psychological and Cognitive Sciences.

Cohen, I. B. (1985). Revolution in science. Cambridge, MA: Harvard University Press.

Conot, R. (1979). A streak of luck. New York: Seaview.

Cromer, A. (1993). Uncommon sense: The heretical nature of science. New York: Oxford University Press.

Davis, P. J., & Hersh, R. (1981). The mathematical experience. Boston, MA: Houghton Mifflin.

Ekeland, I. (1993). The broken dice. Chicago: University of Chicago Press. (Original work published in French in 1991.).

  
Page 443

Emery, R. E. (1989). Family violence: Has science met its match? Washington, DC: Federation of Behavioral, Psychological and Cognitive Sciences.

Eves, H. (1983). An introduction to the history of mathematics. Philadelphia: Saunders College Publishing. (Original work published 1964.).

Franks, F. (1981). Polywater. Cambridge, MA: MIT Press.

Glaser, R. (1989). The fourth R: The ability to reason. Washington, DC: Federation of Behavioral, Psychological and Cognitive Sciences.

Hardy, G. H. (1989). A mathematicians apology. Cambridge, England: Cambridge University Press. (Original work published 1940.)

Holton, G. (1973). Thematic origins of scientific thought. Cambridge, MA: Harvard University Press.

Horowitz, F. D. (1992). From Pandora to panacea with stops between: Travels with behavioral science in the land of public policy. Washington, DC: 
Federation of Behavioral, Psychological and Cognitive Sciences.

Hunt, E. (1995). Pulls and pushes on cognitive psychology: The view toward 2001. In R. L. Solso & D. W. Massaro (Eds.), The science of the mind: 2001 and 
beyond (pp. 258–273). New York: Oxford University Press.

Huston, A. C. (1985). Television and human behavior. Washington, DC: Federation of Behavioral, Psychological and Cognitive Sciences.

King, J. P. (1992). The art of mathematics. New York: Fawcett Columbine.

Kline, M. (1980). Mathematics: The loss of certainty. New York: Oxford University University Press.

Loftus, E. (1984). Psychology and law. Washington, DC: Federation of Behavioral, Psychological and Cognitive Sciences.

Luce, R. D., Smelser, N. J., & Gerstein, D. R. (1989). Leading edges in social and behavioral science. New York: Sage.

Mackworth, N. H. (1965). Originality. American Psychologist. 20, 51–66.

Mansfield, R. S., & Busse, T. V. (1981). The psychology of creativity and discovery. Chicago: Nelson­Hall.

McKeachie, W. (1986). Cognitive psychology and education. Washington, DC: Federation of Behavioral, Psychological and Cognitive Sciences.

McKelvey, J. P. (1985). Science and technology: The driven and the driver. Technology Review, 88(1), 88–47.

Moray, N. (1995). Ergonomics and the global problems of the twenty­first century. Ergonomics, 38, 1691–1707.

Murdock, B. B. (1995). Human memory in the twenty­first century. In R. L. Solso & D. W. Massaro (Eds.), The science of the mind: 2001 and beyond (pp. 109–
122). New York: Oxford University Press.

Nickerson, R. S. (1992). Looking ahead: Human factors challenging in a changing world. Hillsdale, NJ: Erlbaum.

  
Page 444

Nickerson, R. S. (Ed.). (1995). Emerging needs and opportunities for human factors research. Washington, DC: National Academy Press.

Nye, M. J. (1980). N­rays: An episode in the history and psychology of science. Historical studies in the physical sciences, 11, 125–156.

Platt, J. (1969). What we must do. Science, 166, 1115–1121.

Press, F. (1995). Needed: Coherent budgeting for science and technology. Science, 270,1448–1449.

Price, D. J. de S. (1961). Science since Babylon. New Haven: Yale University Press.

Roe, A. (1952). A psychologist examines 64 eminent scientists. Scientific American, 187(5), 21–25.

Rostand, J. (1960). Error and deception in science. New York: Basic Books.

Runco, M. A. (Ed.). (1994). Problem finding, problem solving, and creativity. Norwood, NJ: Ablex.

Schroeer, D. (1972). Physics and its fifth dimension: Society. Reading, MA: Addison­Wesley.

Smith, P. M., & Torrey, B. B. (1996). The future of the behavioral and social sciences. Science 271, 611–612.

Solso, R. L., & Massaro, D. W. (1995). The science of the mind: 2001 and beyond. New York: Oxford University Press.

Sperry, R. W. (1995). The impact and promise of the cognitive revolution. In R. L. Solso & D. W. Massaro (Eds.), The science of the mind: 2001 and beyond 
(pp. 35–49). New York: Oxford University Press.

Sullivan, J. W. N. (1957). The limitations of science. New York: Viking Press. Mentor Books. (Originally published 1933.)

Swets, J. A. (1991). The science of high stakes decision making in an uncertain world. Washington, DC: Federation of Behavioral, Psychological and Cognitive 
Sciences.

Sylvester, J. J. (1956). The study that knows nothing of observation. In J. R. Newman (Ed.) The world of mathematics (Vol. 3, pp. 1758–1766). New York: 
Simon and Schuster. (Excerpt of address to British Association, 1869.)

Ulam, S. M. (1976). Adventures of a mathematician. New York: Charles Scribner Sons.

  
Page 445

IV
KINDS OF COGNITION

  
Page 447

13
Inferential versus Ecological Approaches to Perception
Dennis R. Proffitt

Perception is the most transparent of all human faculties. Perception is effortless. It just happens. Unlike perception, acts of thinking, remembering, speaking, and 
reasoning often require some effort and planning. Large individual differences in abilities are found for the other faculties, but not for perception. People become 
famous for being great thinkers, but there are no great perceivers in history. Because of the ease and automaticity of perception, its dazzling complexity is often 
overlooked. It is only when attempting to explain how perception happens that the incredible difficulty of the feat becomes apparent.

What is the problem? What is perception, and why is it difficult? These questions have typically been answered by representing the problem of perception as is 
depicted in figure 13.1. Here and throughout this chapter, only visual perception will be discussed; however, this problem representation generalizes to the other sense 
modalities as well.

In the world there is some object that is perceived. This physical object is called the distal stimulus, and to be seen it must be illuminated. Some of the light that 
strikes it is absorbed and some is reflected, and of the light that is reflected some gets into the observer's eyes. The projected image formed on the back of the eye 
consists of an array of light having at each point some intensity value and wavelength. This projected image is called the proximal stimulus. The proximal stimulus 
causes receptor cells in the eye to change their activity, and this, in turn, causes a change in the activity of the neurons to which they synapse. This activity flows back 
through visual tracks to various regions within the brain. As a consequence of all of this—somehow—perception occurs. The percept consists

  
Page 448

Figure 13.1
The traditional representation of the problem of perception. A physical object (distal stimulus) is illuminated, and some of this  
light is reflected into the eye causing an image of the object (proximal stimulus) to be formed on the retina. 
Photoreceptors respond to this proximal stimulus, thereby evoking perceptual processes that culminate in 
an awareness of the object (perception).

of an awareness of the object. Following Restle (1979), in figure 13.1 a cloud is drawn around the percept to indicate its mental status.

The conundrum inherent within this representation is that perceptions seem to bear a far closer resemblance to distal stimuli than to the proximal stimuli upon which 
they are based. For instance, three­dimensional objects project two­dimensional retinal images, and yet perceptions of objects are three­dimensional. Physical objects 
have constant properties, such as size, shape, and color (spectral reflectance), whereas proximal images have varying properties. The size of the image on the retina 
varies with distance, shape varies with object orientation, and color (reflected intensity and wavelength) varies with the intensity and spectral distribution of illumination. 
Proximal stimulation cannot be the sole informational basis for perception. Something must be added to sensory information to achieve the perceptions we form.

Any information that goes beyond that given in proximal stimulation must be brought to the occasion of perception by the perceiver. Most accounts of perception 
assert that the visual system infers the perceptual

  
Page 449

world on the basis of both sensory information and assumptions, biases, and knowledge inherent to the perceiver. The reason for postulating inferential processes is 
the insufficiency of proximal stimulation. There is more to perception than meets the eye.

There is, however, another point of view on the nature of perception that takes exception to everything just stated. Called the ecological approach by its creator, 
Gibson (1979), this theory claims that no inferences are required to account for perception because the effective information for perception is fully sufficient to specify 
what is perceived. To see how this can be, we need to return to the representation of the problem of perception.

What is the problem? For Gibson, figure. 13.1 completely misrepresents the problem of perception. For him, the purpose of perception is not to achieve a mental 
representation of distal objects. The purpose of perception is to control purposive actions. The information for perception is not the retinal image; rather, it is to be 
found in the flow of optical information that occurs at a moving point of observation. Gibson argued that perceptions can be based entirely on optical information if, 
and only if, the observer is allowed to move and explore the environment.

The purpose of this chapter is to describe the main characteristics of both traditional inferential theories of perception and Gibson's ecological approach. Following this 
discussion an attempt will be made to clarify why it is that both approaches continue to have their influence today, even though they seem quite incompatible. It will be 
argued that their incompatibility stems, in part, from the fact that proponents of each approach are asking quite different questions. The manner in which a problem is 
represented determines the form of its solution. It will also be argued that the differences between these positions are, at a metaphysical level, deep and irreconcilable.

Inferential Approaches to Perception

The development of the inferential approach to perception can be traced to Hermann von Helmholtz. Although many early proposals can be found in philosophy, 
Helmholtz's influence on contemporary theorizing is clear and direct. Helmholtz (1867/1925) coined the term unconscious

  
Page 450

inference to describe the processes by which the perceptual system uses inductive inference to derive perceptual interpretations from incomplete sensory information.

As one of the greatest and most versatile scientists to have ever lived, Helmholtz made important and lasting contributions to such diverse fields as medicine, anatomy, 
and physiology on the one hand, and physics and mathematics on the other. He also wrote prolifically on the philosophy of science, and in this domain he argued 
strongly for empiricism, believing that the source of all knowledge—both for the individual and for science—is rooted in empirical experimentation. Science and 
perception are both deemed to entail inferential processes but of quite different sorts. Science, he noted, is guided by deductive inferences, executed consciously and 
derived from carefully designed and controlled experiments. Perceptual inferences are unconscious inductions based upon incomplete and inexact experience. They 
are acquired through happenstance. Helmholtz (1894/1971, p. 505) wrote:
How young children first acquire an acquaintance with or knowledge of the meaning of their visual images is easily understood if we observe them while they busy themselves 
with playthings. Notice how they handle them, consider them by the hour from all sides, turn them down or try to break them. This is repeated every day. There can be no doubt 
that this is the school in which the natural relations among the objects around us are learned, along with the understanding of perspective images and the use of the hands.

Helmholtz proposed that through experiences such as these, the child comes to internalize two things: (1) a knowledge of geometrical optics and (2) implicit 
assumptions about the nature of the world.

As an example of this sort of approach, consider how one perceives the shape of a book. As represented in figure 13.2, the projected image of a book is ambiguous. 
The laws of geometrical optics place constraints on what the distal object could be, but still perception is underspecified. An indefinite number of differently shaped 
objects could project the identical image. However, in experience, the most frequently encountered objects consistent with this projected image have been rectangular 
solids. Rectangularity is a pervasive constraint in the artifacts that people create, and thus it would be reasonable for the perceptual system to acquire a bias to 
construe visual images as being rectangular objects whenever such

  
Page 451

Figure 13.2
An illuminated book projects an image into the eye, and for expository purposes, onto a projection  
plane in front of the eye. In addition to the book, there are an indefinite number of objects of different shapes 
and sizes that could project an identical image. Two of these are depicted.

perceptions are possible. This bias would reflect an implicit assumption that rectangular objects were the likely cause of visual images consistent with rectangularity.

Helmholtz's position has become the mainstream in perceptual theorizing (Proffitt & Kaiser, 1998). Within this approach, the problem of perception is grounded in the 
inherent ambiguity of optical information. Using the optical information available, an internalized geometry, and an appreciation for regularities that have been 
encountered in experience, the perceptual system is said to make unconscious inferences about the external world. Perceptions are the conclusions of these inferences. 
In the words of Gregory (1978), a contemporary proponent of this position, ''The senses do not give us a picture of the world directly; rather they provide evidence 
for the checking of hypotheses about what lies before us. Indeed, we may say that the perception of an object is an hypothesis, suggested and tested by the sensory 
data" (p. 13). The work of Adelbert Ames, Jr. (Ittelson, 1968) stands as one of the best examples of perception viewed in this manner.

  
Page 452

Ames had a magician's appreciation for the ambiguity of optical information. He knew that through careful contrivance he could evoke illusions of the most elaborate 
sort. Of these, the most famous is the distorted room demonstration. As depicted in figure 13.3, a full­size room was constructed such that with the exception of the 
front wall, all of the other walls, the ceiling, and the floor were nonrectangular shapes. In addition, the walls had windows that were similarly nonrectangular. The 
dimensions of the room and its windows were determined so that when viewed from the outside through a viewing hole in the room's front door, the optical 
information was consistent with a rectangular room. And, indeed, a rectangular room is what people saw. Ames's purpose in constructing his demonstrations was to 
convince people that what they perceived was due not only to reality, but also to what they brought to the act of perception. In the case of the distorted room 
demonstration, he argued that people bring assumptions about how rooms ought to appear given their past experience. These assumptions include a strong proclivity 
to suppose that rooms and windows are rectangular.

Kubovy (1986) provided a somewhat different twist to the rectangularity bias as it is applied to the Ames distorted room demonstration. He noted that all of the 
surfaces in an Ames distorted room meet at edges that project fork or arrow junctions such as those depicted in figure 13.4. These junctions are consistent with 
Perkins's laws. Discovered independently by Perkins (1972, 1973) and by Shepard (1981), these laws state the conditions under which people will perceive 
rectangularity when confronted with fork and arrow junctions. The first of Perkins's two laws states that a fork junction will be perceived to be the projection of the 
vertex of a rectangular solid if and only if each of the three angles forming the Y configuration is greater than 90°. The second law states that an arrow junction will be 
perceived to be the vertex of a rectangular solid if and only if each of the small interior angles is less than 90° and together they sum to more than 90°. These laws will 
correctly detect rectangularity if the object is, in fact, rectangular and is not viewed too peripherally (Kubovy, 1986). These laws do not, however, assure physical 
rectangularity as is evidenced by the distorted room demonstration. Kubovy proposed that the reason an Ames distorted room is perceived to be rectangular is 
because the presented fork and arrow junctions are consis­

  
Page 453

Figure 13.3
An Ames distorted room. Panel A shows a person viewing an Ames room through its viewing hole. Lines of sight  
are drawn to the room's vertices. Panel B depicts the rectangular room that is perceived. Panel C superimposes the 
perceived room onto the actual distorted room. Notice that the lines of sight for the perceived and actual room correspond.

  
Page 454

tent with Perkins's laws. Kubovy also provided a drawing of an unfamiliar object like that in figure 13.5. Because the junctions in this depiction conform to Perkins's 
laws, it is perceived to be rectangular. Perkins's laws are a specific instance of how a strong rectangularity bias is operative in perception. It is generally assumed that 
this bias is based upon the prevalence of rectangularity in the artificial world, and thus, that it has been internalized through experience.

That Perkins's laws are deeply internalized is further supported by a remarkable set of studies by Enns and Rensink (1991). In a visual search

Figure 13.4
Fork and arrow junctions as described by Perkins's laws. For the Y­shaped fork junction, all three  
angles are greater than 90°. For the arrow junction, the two interior angles are each less than 90°,  
and together these two angles sum to greater than 90°.

Figure 13.5
An unfamiliar object that appears rectangular in those regions that conform to Perkins's laws.

  
Page 455

Figure 13.6
A and B presenting arrays of elements in which there is one target that differs from all of the other elements  
in the array. In (A), the target and distractors conform to Perkins's laws, and the target can be found preattentively. 
In (B), the target and distractors do not conform to Perkins's laws,and the target is much more difficult to find.

task, they presented figures containing either fork or arrow junctions. As depicted in figure 13.6, target and distractors were identical except that the target was 
oriented at a 180° angle relative to the array of distractors. When the junctions obeyed Perkins's laws (figure 13.6A), search occurred preattentively, meaning that the 
time to find the target was unaffected by the number of distractors present, whereas configurations that violated Perkins's laws (figure 13.6B) required slower, more 
effortful search.

The most comprehensive account of perception viewed as an inferential process is found in Rock's (1983) book, The Logic of Perception. In this book, Rock 
surveyed much of the literature on perception, and everywhere he looked he found evidence for reasoning, problem solving, inference, and knowledge­based 
assumptions in perception. Consider, for example, lightness perception.

A surface's reflectance value is perceived as its lightness. Dark surfaces absorb more light than do light ones. Given this fact, it might seem that

  
Page 456

the perceptual system would need only to register the amount of light coming from a surface to determine its lightness. Ignoring such additional complications as surface 
orientation, the problem is that the luminance emanating from a surface depends upon two things: the amount of light illuminating it and the reflectance value of the 
surface. If, however, one is presented with two equally illuminated surfaces, then relative lightness could be perceived on the basis of the invariant ratio of luminance 
emanating from the two surfaces (Wallach, 1948). For instance, if one surface reflects 80% of the light striking it and another surface reflects 40%, then the ratio of 
their reflected luminance will be 2:1 regardless of how much they are illuminated.

The complication that arises with this ratio account is that surfaces are not always illuminated equally. For example, part of a surface may have a shadow cast upon it. 
Gilchrist, Delman, and Jacobsen (1983) showed that in perceiving lightness, the visual system must first categorize the edges in the scene. Edges fall into two classes: 
those due to differences in illumination such as shadows and those due to differences in reflectance values. Rock argued that in perceiving lightness, the perceptual 
system must go through a multiple­stage process in which inferences are first made in edge classifications, followed by inferences that make use of these edge 
classifications in determining perceived lightness. When looking at a shadow, for example, the edges of the shadow are detected and an inference is made that it is, in 
fact, a shadow. Given this inference, the differences in luminance emanating from either side of the edge are attributed to differences in illumination rather than 
reflectance. As exemplified in this example, an important aspect of Rock's account is that perceptions play a causal role in subsequent perceptions. Perceiving the 
nature of edges is a necessary precondition for perceiving lightness.

Another example of such perceptual interdependencies is found in traditional accounts of size perception. Rock, like most other theorists, assumed that in order to 
perceive size, perceived distance must be taken into account. A well­known example of this notion is a demonstration first reported by Emmert (1881). He had 
observers form an afterimage by looking at a bright light, and then he instructed them to look at near and far surfaces. The afterimage appeared to be localized on 
whatever surface was being inspected, and thus it was perceived to be located at

  
Page 457

different observer­relative distances. The visual angle of the afterimage remained constant, whereas its apparent distance varied as the observer looked about. Emmert 
observed that the apparent size of the afterimage was larger when looking at far surfaces as opposed to nearer ones. From this observation he formulated what has 
become know as Emmert's Law, which states that the perceived size of an afterimage is proportional to its apparent distance. In general, many theorists, as did Rock, 
assumed that perceived size depends upon perceived distance (c.f. Gogel, 1990, 1993). Notice that the perceptual rules that relate perceived size and distance apply 
to psychological variables, not to physical ones.

Rather than appealing to perceived variables, there is a greater tendency today to analyze a scene into optical variables that can be geometrically related to distal 
properties of the scene. This is especially true within the growing field of computational vision, where there is an effort to extract properties of physical objects from 
their projected images. Computational accounts also differ from Rock's in another way. Instead of postulating that the perceptual system follows rules of inference, 
computational models instantiate inferential rules without necessarily following them (Epstein, 1995). That is, these models perform as if they were making inferences, 
even though their algorithms do not embody the inferences themselves. Consider an example. Ullman (1979, 1983) showed how the three­dimensional structure of a 
rotating object could be derived from its transforming two­dimensional projection so long as the object was assumed to be rigid. The algorithm that he developed does 
not have within it any reference to the rigidity assumption; rather, the algorithm produces correct interpretations of three­dimensional structure if and only if the images 
that are presented to it are projections of rigid rotations.

Poggio, Torre, and Koch (1985) looked at a number of problems in vision from a computational point of view and concluded that they were all ill­posed problems. 
They defined this distinction as follows: "A problem is well­posed when its solution exists, is unique and depends continuously on the initial data. Ill­posed problems fail 
to satisfy one or more of these criteria" (p. 315). Viewing perception as an ill­posed problem motivates a search for intelligent resources capable of making educated 
guesses in interpreting inputs. Poggio, et al. wrote, "The main idea for

  
Page 458

'solving' ill­posed problems, that is for restoring 'well­posedness,' is to restrict the class of admissible solutions by introducing suitable a priori knowledge" (p 315). 
Ullman's (1979) use of a rigidity assumption in his account of extracting three­dimensional structure from motion is a good case in point. If objects can deform as they 
rotate, then extracting structure from motion is an ill­posed problem. Ullman's rigidity assumption restores well­posedness to the problem. In so doing, his algorithm 
will yield accurate descriptions of an object's configuration so long as the object is not deforming as it rotates. If the object is deforming, then the algorithm will provide 
an inaccurate description of its form. This is the hallmark of educated guesses: they are correct with a statistical probability no greater than the likelihood that their 
assumptions are correct.

Another example of an a priori constraint is Nakayama and Shimojo's (1992) principle of generic sampling. This principle states that the perceptual system assumes 
that a given object is not being viewed from an accidental vantage point. For example, when looking at a drawing of a square, one perceives it to be a two­
dimensional configuration and not one end of a three­dimensional box viewed from a unique vantage point normal to its surface. Almost all perspectives on a box will 
show more than one of its sides. Only when viewed from a small number of accidental points of view would a box project as a square. The principle of generic views 
states that the perceptual system assumes that its current vantage point is not an accidental one. Rock (1983) proposed a coincidence explanation principle that 
attributed to the perceptual system the same sort of assumption.

All of these a priori constraints are consistent with the notion that the perceptual system possesses internalized knowledge about environmental regularities that are 
usually true. Marr (1982) called such internalized regularities natural constraints, meaning that they derive from a knowledge about what sorts of conditions are most 
likely to occur in the world. This is precisely what Helmholtz had in mind. Through experience—either of the individual or the species—the perceptual system comes 
to be imbued with knowledge about what is most likely to be present in the world given the evidence extracted from optical information. Perception is an educated 
guess. It is usually correct, but it is fallible. Illusions such as those seen in the Ames demonstrations are a symptom of its fallibility.

  
Page 459

The Ecological Approach to Perception

For Gibson, the positions described in the foregoing discussion are simply muddled, their problem being that they began with a flawed representation of the problem of 
perception. If perception is represented in the manner depicted in figure 13.1, then it is, indeed, an ill­posed problem. Indeed, the problem is so ill­posed, Gibson 
argued, that no amount of inference and a priori knowledge will allow a successful restoration of well­posedness. The perceptual system cannot acquire an 
appreciation for the regularities that uphold in the world without the ability to have perceptions that seemingly require an internalization of these regularities to begin 
with. Gibson (1979. p. 253) wrote:

Knowledge of the world must come from somewhere; the debate is over whether it comes from stored knowledge, from innate knowledge, or from reason. But all three doctrines 
beg the question. Knowledge of the world cannot be explained by supposing that knowledge of the world already exists. All forms of cognitive processing imply cognition so as 
to account for cognition.

Gibson's solution to this paradox was to propose that the information available in optical information is fully sufficient to support perception. There is no need for 
inference and a priori knowledge because nothing needs to be added to what is given in visual information. Some background into the position is required in order to 
see how this argument can be made.

Gibson saw his position as having developed from two antecedents. The first was Gestalt psychology, from which he acquired an appreciation for the systems 
approach to perception and the role of relational variables in specifying perceptual constancies. In regard to the systems approach, the Gestalt psychologists believed 
that perceptions were irreducible wholes. From a systems perspective, the laws that govern a system cannot be determined from an analysis of its constituent parts. In 
Gibson's ecological approach, the organism and environment comprise an irreducible system. Relational variables are mathematical relationships that can be extracted 
from visual information and that specify some persistent property in the environment. Wallach's (1948) aforementioned luminance ratio for specifying surface lightness 
over changes in illumination is such a relational variable. In Gibson's use, these variables came to be called higher­order units of perception.

  
Page 460

The second influence was American functionalism as it developed from William James. Like Gestalt psychology, James's functionalism took a systems approach. 
Perception depended not only upon immediately given information, but also on the context of space and time in which it occurs. Time is clearly of importance for 
James, with experience being described as a stream of consciousness. Both persistence and change over time are essential properties of experience. Of particular 
relevance to Gibson's approach is the functionalist's program of understanding biological processes in terms of utility. From this perspective, the purpose of perception 
is to control actions. The veracity of perceptions is to be evaluated on the basis of whether they lead to appropriate actions, not on whether they correspond to reality 
objectively defined. The pragmatic definition of truth—truth is what works—makes sense only when embedded within a systems analysis that includes both the 
organism and the environment.

A clear statement of the functional theory of truth is found in Will's (1978, p. C7) commentary on baseball's Hall of Fame. The hall contains, "a plaque honoring the 
one American whose achievements of mind rank with those of Aristotle, Newton, Hegel and Einstein." This individual is Alexander Cartwright, and he is credited with 
setting the distances between bases at 90 feet. Will quoted the sports journalist, Red Smith:
Ninety feet between bases represents man's closest approach to absolute truth. The world's fastest man cannot run to first base ahead of a sharply hit ball that is cleanly handled 
by an infielder; he will get there only half a step too late. Let the fielder juggle the ball for one moment or delay his throw an instant and the runner will be safe. Ninety feet 
demands perfection. It accurately measures the cunning, speed, and finesse of the base stealer against the velocity of a thrown ball. It dictates the placement of infielders. That 
single dimension makes baseball a fine art—and nobody knows for sure how it came to be. (p. C7)

Setting the bases at 90 feet defines a relationship between the relevant surface layout of the baseball field and the behavioral potential and purposes of the ballplayers.

Applying functionalist notions to the content and meaning of perception, Gibson coined the term affordance to refer to the functional utility perceived in the visual 
world. More will be said about affordances, but first his account will be described, beginning with the environment to be perceived.

  
Page 461

The environment can be described at many levels depending upon size scale (atomic to light years), time scale (instants to millennia), and purpose. It is the latter 
constraint that is easy to forget. All descriptions take their form relative to some purpose. For example, a description of a baseball field will take quite different forms 
depending upon whether the intent is to convey information of geological or baseball­playing relevance. Gibson argued that traditional theories of perception describe 
the environment in physical or geometrical terms as opposed to ecologically relevant ones.

The environment, as perceived by an organism, is a habitat. A habitat cannot be described without accounting for its relationship to the organism for which it is home. 
A given environment can be a habitat for a host of different species, and what makes it a habitat differs somewhat for each. An ecological description of the 
environment implies the mutuality between the organism's way of life and those aspects of the environment that afford these behaviors.

From this perspective, the perceptual environment consists of three things: a medium, substances, and surfaces. The medium of earth is air. Light passes through air, 
and locomotion is possible through it. Substances are substantial matter through which locomotion is not possible. Media and substances interface at surfaces, and for 
perception this is where all the action is. Perception informs the organism about surface layout. It is surface layout, not abstract space or geometry, that is perceived. In 
perceiving the layout of surfaces, the organism perceives the medium and substances that define them.

In order to perceive surface layout, two things must occur. First, the environment must be illuminated, and second, the organism must be allowed to move and explore 
it. Illumination begins with essentially unstructured parallel rays of light emanating from the sun. This light is scattered somewhat by the earth's atmosphere, but until it 
strikes surfaces, it contains no structure or information. Upon contact with surfaces, some of the light is absorbed and some is reflected. Reflected light is structured by 
surfaces, and thus it contains information about them. The problem for the perceptual system is to pick up this information.

In order to perceive the information that is in light, the organism must move and explore the environment. Gibson was in complete agreement

  
Page 462

with those who argued that the information available in a retinal image is insufficient to support perception. Gibson's response to this insufficiency was not, however, to 
postulate inferential processes inherent in the perceiver, but rather to argue that the retinal image is not the informational basis for perception. He proposed that optical 
flow—the change in optical structure that occurs at a moving point of observation—is the effective informational basis for perception.

Consider again the situation of viewing a book as depicted in figure 13.2. The optical information that is present at a single vantage point is ambiguous, as the figure 
shows; however, if the observer moves his or her head so as to obtain multiple perspectives on the book, then this ambiguity is eliminated. Figure 13.7 shows three 
images of a book. Each of these images is, by itself, ambiguous. Taken together, however, the three rotated perspectives of the book are sufficient to define the unique 
three­dimensional structure of its visible surfaces (Ullman, 1979, 1983). The information specifying the book's form consists of invariants extracted from its 
transforming image. Invariants are mathematical relationships that remain constant as other aspects of optical structure change. Returning to figure 13.7, notice that one 
of the book's corners has been colored in. In the leftmost image of the book, this corner projects an angle of over 90°; in the middle panel, this angle projects an angle 
of

Figure 13.7
Three rotated images of a book. Notice how rotation causes a change in the projected 
angle for the highlighted vertex of the book.

  
Page 463

less than 90°; and in the rightmost panel the angle is again larger than 90°. As the book is observed from different vantage points, this and all other angles change in 
their projected extent. It can be shown mathematically, however, that these changes in projected structure could be caused by only one rigid three­dimensional 
structure: a rectangular solid. The mathematics needed to prove this assertion are too complicated to explain here. See Todd (1995) for a review of the literature on 
perceiving structure from motion.

Consider a second example, of the Ames distorted room depicted in figure 13.3. Ames was able to construct illusory demonstrations such as this because he was able 
to restrict the viewers' vantage point to a single perspective. Observers looked at the distorted room through a peephole. If the door to the room were opened and 
observers were permitted to walk about and observe the changing optical structure the room provided, then they would see it accurately as a distorted room. The 
distorted room projects an image consistent with rectangularity only when viewed from a unique point of observation at the peephole. From every other vantage point, 
the room projects an optical structure that is totally inconsistent with rectangularity. Figure 13.8 shows this inconsistency from a second vantage point. As is the case 
generally, three different perspective images of a scene are sufficient to extract the unique three­dimensional structure of its visible surfaces.

Whenever an observer moves, every aspect of a projected scene changes. The changing optical structure that is projected to a moving point of observation is optical 
flow. Gibson suggested that optical flow contains within it two sorts of information. Perspective structure specifies what is changing, whereas invariant structure 
specifies the properties of the scene that remain constant over the change. Perspective structure informs the perceiver about his or her locomotion and changing 
position relative to the scene. Invariant structure specifies surface layout, including the size, shape, and slant of the surfaces that compose it. Because invariant structure 
specifies what is constant over change, the extraction of invariant structure requires change. Change is brought about through locomotion or the motions of objects 
themselves. The optical flow that results is informative about both the invariants of surface layout and the

  
Page 464

Figure 13.8
An Ames room viewed from a second vantage point. Unlike Figure 3, the lines of sight to the vertices of the perceived  
and actual room no longer correspond. The second vantage point does not support the perception of a rectangular room.

  
Page 465

observer's changing position relative to it. The perception of the environment and of the self come together. One is impossible without the other.

Appreciating this mutuality between the perceiver and the environment is essential to understanding Gibson's position. The perception of the world cannot be 
separated from a perception of self. Consider the perception of size.

As was discussed in the previous section, traditional accounts of perception maintain that distance must be taken into account when perceiving size. Because visual 
angle varies inversely with distance, it is often supposed that size perception depends upon a prior perception of distance. Gibson stated that this was not so. Size, he 
argued, could be perceived directly without taking into account distance.

Figure 13.9 depicts an observer looking at an object that has a height, h, and that is some distance away, d. The altitude of the observer's eye is i. If the perceptual 
system can determine the position of the horizon, then the object's height can be determined as a fraction of the observer's eye height (Sedgwick, 1986). The horizon 
corresponds to the straight­ahead position in the visual field and is represented in the figure as a line parallel to the horizontal ground at an altitude equal to the 
observer's eye height. The visual angle from the bottom of the object to the horizon is  , and that from the top of the object to the horizon is  . The distance from the 
top of the object to the horizon is j. Referring to the figure, notice that

Figure 13.9
An observer looking at an object. The labeled dimensions of this situation are defined in the text.

  
Page 466

i/d = tan  ,

and thus,

d = i/tan  .

Similarly,

j/d = tan  ,

and thus,

j = d tan  .

Since

h = i ­ j,

then substituting for j,

h = i ­ d tan  ,

and substituting for d,

h = i ­ i (tan  /tan  ).

If the object is taller than eye height, then j is added to i, rather than being subtracted.

Critical to this formulation is determining the location of the horizon, but fortunately, its position is given quite robustly in optical information. All projected horizontal 
lines converge in depth to the horizon. Moreover, whenever the observer moves forward, there is a discontinuity in optical flow such that texture elements above and 
below the horizon move up or down, respectively. That is, as one moves forward, everything above eye height flows overhead and everything below travels beneath.

The important thing to notice about the final equation is that size can be determined entirely on the basis of optically given visual angles,   and  . Distance need not be 


taken into account. Again, perception of the environment implies a perception of self. Size is perceived relative to the size of one's body (i).

Another source of information about size is found in texture gradients, as depicted in figure 13.10. For a surface consisting of a relatively uniform texture, there is a 
compression of projected texture with distance. Even though the projected density of texture increases with distance, the amount of texture occluded at the base of an 
object is invariant over

  
Page 467

Figure 13.10
A texture gradient. Two cylinders of equal size occlude an equal amount of texture at their bases.  
The observer can scale the size of these objects to the size of his or her feet by looking down and noticing 
how much texture they occlude.

displacements on the surface. That is, objects of equal size occlude an equal amount of texture at their base. Texture gradients provide information about relative size 
but not absolute size unless there is an object of known size on the ground surface. Fortunately, all one needs to do is look down at one's feet in order to scale the 
texture to this familiar standard.

These are but a few examples of how Gibson's approach can be applied to the perception of environmental properties. In redefining the effective information for 
perception—from the retinal image to optical flow—Gibson found it to be not nearly so deficient as had been previously thought.

However, the informational basis for perception is not equivalent to the content of perception. We do not perceive information. Instead, we perceive the world and 
our relationship to it. The content of perception is the functional utility of the surfaces and objects that are encountered. These functional utilities relate the dimensions 
of objects and surfaces to the behavioral potential of the organism. Gibson coined the term affordances to describe these functional utilities.

  
Page 468

An affordance specifies what an organism can do with the objects and surfaces that are encountered in the environment. Any given object possesses an indefinite 
number of affordances; those that are perceived at any moment depend upon the intent of the perceiver. Consider the book you are reading. Its surface layout affords 
being held. This affordance relates the size and shape of the book to that of your hands. Moreover, the book could also be thrown like a frisbee, used as a club with 
which to squash a fearsome bug, or placed under the front of a slide projector to raise its projection. The number of possible uses for a book is indefinite, and they do 
not depend upon its objective conceptual meaning. Gibson (1979, p. 129) wrote: ''An affordance cuts across the dichotomy of subjective­objective and helps us to 
understand its inadequacy. It is equally a fact of the environment and a fact of behavior. It is both physical and psychical, yet neither. An affordance points both ways, 
to the environment and to the observer." Consider one final example, that being the perception of geographical slant.

The earth's surface is rarely flat, and departures from horizontal are perceived as geographical slant. The magnitude of a hill's slant can be determined from such optical 
information as texture gradients, motion parallax, and binocular disparity. Even though there is sufficient information to objectively derive slant, people grossly 
overestimate the inclination of hills in the world (Proffitt, Bhalla, Gossweiler, & Midgett, 1995). When, for example, people stand in front of a 5° hill, they will estimate 
its inclination to be about 20°, and a 30° hill will be judged to be over 50°. Be that as it may, such overestimations do not cause people to stumble as they commence 
to walk up or down a hill. Proffitt et al. found that overestimations are only evidenced in explicit judgments of hill slant and that a motoric index of perceived slant is far 
more accurate. The visual guidance of actions requires accuracy, whereas the conscious awareness of slant is modulated by a person's behavioral potential.

Perceived steepness provides information about the affordances of hills, about whether they can be ascended or descended and with what degree of difficulty. 
Summarizing the Proffitt et al. findings, a 10° hill is very difficult to ascend for a long distance, and consistent with this it looks very steep. People judge 10° hills to be 
about 30°. A grassy 30° hill is near the limit of what can be ascended and is too steep to descend

  
Page 469

due to biomechanical asymmetries in our ascending/descending walking potential. Consistent with this asymmetry, hills steeper than about 25° are judged to be steeper 
when viewed from the top than from the bottom. Finally, hills appear steeper when we are tired than when we are not. Perceived steepness is not invariant with 
respect to distal slant alone, but rather it preserves the relationship between locomotor effort and distal. slant. Thus, this basic dimension of surface layout—the earth's 
topography—is perceived as a relationship between the distal inclination of the ground and our behavioral potential.

Concluding Remarks

The differences between the inferential and ecological approaches to perception are profound. By one account, perception is an educated guess; by the other it is a 
direct pickup of information. In philosophical parlance, the inferential approach is a form of idealism, meaning that perceptions are ideas formed by the perceiving 
mind about the physical world. The ecological approach, on the other hand, is a variant of realism, in which perceptions are viewed as corresponding directly to what 
is in the world. At this level of evaluation, the differences between these two views are irreconcilable.

At another level, however, these approaches can be seen to complement one another. Gibson's approach asks the question, What is perception? This question is 
answered by asserting that perception is an ecological description of the environment based upon the information in optical flow. The inferential approach asks a 
different question: How is perception achieved? Clearly, the answer to these two questions must begin with an analysis of the available information and a search for 
algorithms that can constrain this information to allow for unique perceptual interpretations.

Answers to what­versus­how questions correspond to what Marr (1982) called computational as opposed to algorithmic theories. A computational theory addresses 
the question of what the goal of the computation is, that is, what the system is attempting to do and why. Gibson's answer seems the appropriate one: the goal of 
perception is to discover the affordances of the environment. The algorithmic theory attempts to

  
Page 470

provide a representation of the system's inputs and outputs and of the algorithms that map one into the other. Of Gibson's approach, Marr (1982, p. 29) wrote:
In perception, perhaps the nearest anyone came to the level of computational theory was Gibson (1966). However, although some aspects of his thinking were on the right lines, 
he did not understand properly what information processing was, which led him to seriously underestimate the complexity of the information­processing problems involved in 
vision and the consequent subtlety that is necessary in approaching them.

At least to me, Marr's criticism does not seem fair. Given that Gibson's goal was to provide a theory about what is perceived, problems of information processing 
were not his concern. Information processing is the province of those seeking to understand how perception is achieved at the level of algorithmic theory.

Marr introduced his distinction between the computational and algorithmic level of analysis with an example of how one might understand a cash register. The 
computational theory of the cash register would entail a description of what the device does. For example, it needs to accumulate prices in a manner unaffected by the 
order in which items are presented to it. Moreover, sorting items into groups and paying for each group separately should not affect the total. Enumerating such 
constraints on the price­totaling process results in a definition of the group­theoretic constraints on addition. Note, however, that nothing has been asserted about how 
these constraints are actually operationalized in the interior workings of the cash register. The actual device might be a computer or an abacus, because either is 
capable of performing addition. Neither device possesses internalized knowledge about the group­theoretic constraints on addition, even though both have been 
constructed in such a way that they cannot violate these constraints.

Gibson's approach does not instruct one on how to build a perceiving machine. Attempts to simulate perception require the evocation of a priori constraints such as 
those discussed earlier. Recall Ullman's rigidity constraint as applied to an algorithm designed to recover three­dimensional structure from motion information: given 
that the distal object is assumed to be rigid, then three rotated views of the object are sufficient to derive the three­dimensional form of its visible surfaces. However, 
the

  
Page 471

rigidity assumption is no more internalized by Ullman's algorithm than is the group theory of addition internalized by the cash register. In both cases, information 
processing takes a form that yields veridical outcomes if and only if the assumptions apply. Present a multiplication problem to a cash register, and it will compute a 
wrong answer. Similarly, present a deforming object to Ullman's algorithm and it will fail.

Whether perception is viewed as entailing inferential processes or not depends upon what sort of problem one is inclined to study. If one is interested in specifying the 
logic by which optical information is transformed into representations of the world, then indeed, logic will be required. If one wishes to understand what is perceived, 
then logic becomes unnecessary since we do not perceive logic; we perceive the world. At this level of analysis, the approaches seem compatible; they simply address 
different questions.

At a metaphysical level, however, the approaches make profoundly different assertions about the nature of mind and of being. By the inferential approach, the 
perceptual system must guess about the nature of the external world. For Gibson, the nature of the world reveals itself directly in experience. In both cases, what is 
known reflects upon the knower. In the first case, the knower augments optical information with inferences, assumptions, and a priori knowledge. Within the ecological 
approach, the knower and the known form an irreducible whole. Knowledge of self and of the world must necessarily come together.

References

Emmert, E. (1881). Grossenverhaltnisse der Nachbilder. Klinische Monatsblaetter fuer Augenheilkunde, 19, 443–450. (Translation: Size proportions of after 
images. Clinical Monthly Newsletter for Opthalmology.).

Enns, J. T., & Rensink, R. A. (1991). Preattentive recovery of three­dimensional orientation from line drawings. Psychological Review, 98, 335–351.

Epstein, W. (1995). The metatheoretical context. In W. Epstein & S. Rogers (Eds.), Perception of space and motion: Handbook of perception and cognition 
(2nd ed., pp. 1–22). San Diego, CA: Academic Press.

Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

  
Page 472

Gilchrist, A., Delman, S., & Jacobsen, A. (1983). The classification and integration of edges as critical to the perception of reflectance and illumination. Perception & 
Psychophysics, 33, 425–436.

Gogel, W. C. (1990). A theory of phenomenal geometry and its applications. Perception & Psychophysics, 49, 105–123.

Gogel, W. C. (1993). The analysis of perceived space. In S. C. Masin (Ed.), Foundations of perceptual theory (pp. 113–182). Amsterdam: Elsevier.

Gregory, R. L. (1978). Eye and brain: The psychology of seeing (3rd ed.). New York: McGraw­Hill.

Helmholtz, H. von (1925). Handbook of physiological optics (Vol. 3, J. P. C. Southall, Trans.). New York: Dover. (Original work published 1867.)

Helmholtz, H. von (1971). The origin and correct interpretation of our sense impressions. In R. Kahl (Ed.), Selected writings of Hermann von Helmholtz (pp. 501–
512). Middletown, CT: Wesleyan University Press. (Original work published 1894.).

Ittelson, W. H. (1968), The Ames demonstrations in perception. New York: Hafner.

Kubovy, M. (1986). The psychology of perspective and renaissance art. Cambridge, England: Cambridge University Press.

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: Freeman.

Nakayama, K., & Shimojo, S. (1992). Experiencing and perceiving visual surfaces. Science, 257, 1357–1363.

Perkins, D. N. (1972). Visual discrimination between rectangular and nonrectangular parallelepipeds. Perception & Psychophysics, 12, 396–400.

Perkins, D. N. (1973). Compensating for distortion in viewing pictures obliquely. Perception & Psychophysics, 14, 13–18.

Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. Nature, 317, 314–319.

Proffitt, D. R., Bhalla, M., Grossweiler, R., & Midgett, J. (1995). Perceiving geographical slant. Psychonomic Bulletin & Review, 2, 409–428.

Proffitt, D. R., & Kaiser, M. K. (1998). The internalization of perceptual processing constraints. In J. Hochberg (Ed.) Perception and cognition at century's end: 
Handbook of perception and cognition, 2nd edition. San Diego: Academic Press. (Will be published this year. Do not yet have page numbers.)

Restle, F. (1979). Coding theory of the perception of motion configurations. Psychological Review, 86, 1–24.

Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.

Sedgwick, H. A. (1986). Space perception. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance: Vol. 1, 
Sensory processes and perception (pp. 21.1–21.57). New York: Wiley.

  
Page 473

Shepard, R. N. (1981). Psychophysical complementarity. In M. Kubovy and J. R. Pomerantz (Eds.), Perceptual organization (pp. 279–341). Hillsdale, NJ: 
Erlbaum.

Todd, J. T. (1995). The visual perception of three­dimensional structure from motion. In W. Epstein & Rogers (Eds.), Perception of space and motion: Handbook 
of perception and cognition (2nd ed. pp. 201–226). San Diego, CA: Academic Press.

Ullman, S. (1970). The interpretation of visual motion. Cambridge, MA: MIT Press.

Ullman, S. (1979). The interpretation of visual motion. Cambridge, MA: MIT Press.

Ullman, S. (1983). Recent computational studies in the interpretation of structure from motion. In J. Beck & A. Rosenfeld (Eds.), Human and machine vision (pp. 
459–480). New York: Academic Press.

Wallach, H. (1948). Brightness constancy and the nature of achromatic colors. Journal of Experimental Psychology, 38, 6–13.

Will, G. F. (1978, April 2). The joy of baseball. Washington Post, p. C7.

  
Page 475

14
Implicit versus Explicit Learning
Arthur S. Reber, Rhianon Allen, and Paul J. Reber

It takes but a moment's reflection to realize that a good bit of our perceptual and cognitive machinery is chugging away without our awareness. Two of our most 
important accomplishments, natural language acquisition and socialization, take place during early childhood without awareness. It was on this simple premise that the 
study of implicit learning began back in the 1960s.

Of course, there is not, and never was, any dispute over the existence of unconscious functions and processes. Our digestive systems are all carrying out their roles 
quite nicely without top­down intervention or awareness. Where the arguments get interesting is in our consideration of processes such as perception, learning, and 
memory. Here, there is still a lingering sense among many cognitive scientists that consciousness is the presumptive domain, that complex cognitive processes take 
place within the spotlight of a top­down, modulating awareness. As we develop the material in this chapter, it will become clear that such a position is untenable. 
Sophisticated perceptual, acquisitional, and memorial processes operate effectively and largely independently of consciousness—although the primary focus of this 
chapter will be on the acquisitional, or what is known as implicit learning. 1  (See Kihlstrom, this volume, where a broader net is cast.)

Implicit learning is the process whereby knowledge is acquired largely independently of awareness of both the process and the products of acquisition. A variety of 
experimental procedures are in wide use, although all share particular characteristics. In the standard designs, participants are exposed to stimuli that are structured in 
some fashion and their knowledge of that structure is then assessed. These stimuli may be strings

  
Page 476

of symbols whose order is determined by a complex set of rules such as the traditional artificial grammar (AG) learning tasks (Mathews et al., 1989; A. Reber, 
1967, 1993b); sequences of events whose location and order are dictated by repeating patterns (Nissen & Bullemer, 1987; P. Reber & Squire, 1994; Reed & 
Johnson, 1994), transitional rules (Cleeremans & McClelland, 1991; Jiménez, Méndez, & Cleeremans, 1995), or stochastic principles (A. Reber & Millward, 1968); 
control systems whose underlying principles are rule governed (Berry & Broadbent, 1984, 1995; Stanley, Mathews, Buss, & Kotler­Cope, 1989); or complex event 
dependencies based on procedural rules (Lewicki, Czyzewska, & Hoffman, 1987).

Participants in these studies acquire sufficient information about the underlying nature of the displays to be able to (a) judge whether new items follow the rules (A. 
Reber, 1967, 1993b), (b) solve anagram problems within the stimulus set (A. Reber & Lewis, 1977), (c) respond faster to sequences that follow rules than those that 
do not (Nissen & Bullemer, 1987; P. Reber & Squire, 1994; Reed & Johnson, 1994), (d) control complex systems, such as a simulated industrial scenario, by 
anticipating rule­governed reactions (Berry & Broadbent, 1984, 1995), (e) anticipate the location of structured future events (Lewicki et al., 1987), and (f) predict the 
position of upcoming events (Kushner, Cleeremans, & A. Reber, 1991; Millward & A. Reber, 1972; A. Reber & Millward, 1968). Yet, in all cases, the participants 
in these studies, who perform so effectively with these complexly structured displays, are largely unaware of what they have learned and find it extremely difficult if not 
impossible to communicate to others what they so clearly know.

In recent years, the topics of the cognitive unconscious in general and implicit learning in particular have become the focus of intense research. Not surprisingly, a 
number of issues of interest and importance have emerged, including the following: How cognitively sophisticated is this implicit system? Is implicit knowledge abstract 
or concrete in nature? What is the representational form of implicit knowledge and associated memories? Does such knowledge tend to be flexible or relatively fixed in 
form? Are implicit and explicit systems mediated by entirely distinct processing systems, or is there some kind of interaction between them? Are there distinct 
neuroanatomical systems mediating the implicit and

  
Page 477

the explicit? How robust is implicitly acquired knowledge? How are implicit and explicit functions differentially affected by particular kinds of neurological or 
psychiatric disorders? What is the developmental course of implicit learning? In the course of this chapter we will touch upon these issues and survey the evidentiary 
base for the various claims made.

However, in addition to these "friendly" questions, a number of intriguing challenges to the very existence of a smart cognitive unconscious have been put forward 
(Dulany, 1991, 1997; Perruchet, 1994; Perruchet, Gallego, & Savy, 1990; Perruchet & Pacteau, 1990; Shanks & St. John, 1994). Although we will try to be fair to 
the arguments raised by these critics, some of which are quite sophisticated, we are struck by the tenacity with which they maintain that complex cognitive processes 
do not (cannot?) take place outside of consciousness. So, before we get into the material proper, we would like to take a short historical and philosophical aside and 
look at the foundations of this perspective.

Some Philosophical Meanderings

If, as we are clearly claiming, the existence of implicit learning is so obvious and the dissociation between the implicit and explicit so compelling, why are there still 
many thinkers who question the existence of a sophisticated, cognitively rich implicit domain? One possible answer, we would like to suggest, derives from our 
intellectual history. Western scientific thought is grounded in two classical philosophical traditions, the Cartesian and the Lockean. As noted elsewhere (A. Reber, 
1997), John Locke and René Descartes didn't agree on much, but there was one proposition on which they were of one mind: cognition and consciousness are 
coextensive. That which is cognitive is conscious and vice versa. We are either immediately aware or can be made aware of all of the activities of our cognitive 
systems. Speaking specifically of Locke, Dennett (1987) put it rather succinctly, "unconscious thinking or perceiving was ... dismissed as incoherent, self­contradictory 
nonsense."

By the way, recognizing the importance of this point of view helps us to understand how and why structuralism was such a powerful force in psychology around the 
turn of the century. Edward Titchener was a devoted Lockean, and so the obvious vehicle for understanding the mind

  
Page 478

was introspection. If everything mental is, in principle, available to consciousness, then it makes perfect sense to build your empirical edifice around methods rooted in 
probing awareness. Titchener would not like this chapter.

Although there are no Titchenerian introspectionists about these days, what has struck us in recent years is the likelihood that many contemporary thinkers appear to 
be operating (perhaps unconsciously) within the Lockean foundations of this tradition. Perruchet and Pacteau (1991, p. 113), in a recent critique of the representation 
issue in implicit learning, put the matter starkly: "We do not question human abstraction ability, no more than we question the existence of unconscious processes. 
What we do question is the joint possibility of unconscious abstraction." As noted earlier, there is no dispute over lower­level implicit systems; Perruchet and Pacteau 
are comfortable with a mechanical, inflexible unconscious. It is when the discussions turn to a sophisticated implicit system, particularly one that capable of abstract 
representations, that the issue becomes heated. It is worth noting that Perruchet and Pacteau make no in­principle arguments against a smart unconscious. They merely 
deny it and attempt to challenge the interpretation of the existing database.

In the final analysis, of course, it matters little whether one believes in a sophisticated unconscious. Theory and data will be the adjudicators.

On the Necessity of Both Implicit and Explicit Systems

Three lines of argument point convincingly to the necessity of having implicit learning and memory processes that operate partly or wholly independently of explicit 
processes. One deals with basic evolutionary considerations, a second with developmental issues, and the third with fundamental aspects of neuroanatomy.

Evolutionary Biology

The argument here is simple, although it has fairly far­reaching entailments (see A. Reber, 1992, 1993b). Consciousness—at least the phenomenologically poignant, 
self­reflective, top­down, modulatory consciousness that forms the core of our sense of self—is, in an evolutionary sense, something of a Johnny­come­lately, 
probably only emerging full­

  
Page 479

blown with the advent of Homo sapiens. Hence, there must be functions and processes that operate to acquire information about the world, register and represent 
such information memorially, and activate the stored knowledge for use in appropriate circumstances without awareness of either the processes or products of these 
operations. Because evolution is hierarchical and conservative, these systems must continue to exist and function effectively (and more or less insulated from top­down 
systems) in our species. Nature does not jettison forms and functions that work. Put simply, implicit or nondeclarative functions of learning and memory are a 
biological necessity.

Further, it is easy to show that by virtue of their evolutionary histories, implicit and explicit learning and memory systems ought to display particular properties that 
further emphasize the dissociations between them. Specifically, implicit and explicit systems should show differential degrees of robustness in the face of neurological 
insult, different neuroanatomical characteristics, different distributions of performance in the population, and different life­span progressions. Later, we will discuss each 
of these properties in more detail.

Developmental Considerations

Just as explicit modes of learning are likely to have emerged slowly over evolutionary history, it is likely that explicit forms of learning also emerge slowly over the 
course of individual human development. No one would deny that an infant is aware. It is likely to be aware of both internal and external stimulation, such as pain, 
hunger, and loud noises. In fact, such awareness must be common throughout the animal kingdom, at the very least in all species that possess a central nervous system 
(Griffin, 1981). However, few would argue that the infant is capable of explicit, consciously goal­directed learning of the same variety displayed by older children and 
adults. Indeed, the same point might hold for microgenetic development within a number of domains of adult learning (Karmiloff­Smith, 1992).

With the human infant, it is clear that its cognitive armamentarium is quite different from that of the older child and that the young infant's ability to execute top­down 
explicit processing is but nascent (Piaget, 1936/1977). Thus, early development and learning take place without

  
Page 480

true explicit guidance and control, although explicit learning and memory do begin to emerge by 11 months (Bauer, 1996). Although earlier learning can be considered 
limited in that it is confined to direct adaptations to and anticipations of environmental input, the infant in fact accumulates a great deal of knowledge about the world 
(e.g., Johnson, 1996; Johnson & Nañez, 1995) and about the effects of its own actions on both the physical and social world (e.g., DeCasper & Fifer, 1980; Moon 
& Fifer, 1990; Rovee­Collier, 1990).

Further, the attainment of explicit­learning mechanisms is unlikely to be a sudden, unheralded shift in development. Instead, there might well be a series of qualitative 
changes on the road to full development of explicit systems (Karmiloff­Smith, 1992; Piaget, 1974/1976). Therefore, it is necessary to conceive of varieties and levels 
of awareness in learning, rather than assume a simple explicit­implicit dichotomy. In order for explicit cognitive and executive systems to develop, there must exist 
implicit information­processing systems that can provide knowledge from which explicit cognitive systems can be constructed and refined over an extended period of 
time.

Neuroanatomical Considerations

What we currently know about the structure and functioning of the adult mammalian brain suggests that there is neuroanatomical support for different kinds of 
mnemonic processing. Conscious, explicit learning and memory seem to depend on specific brain structures, whereas implicit learning is likely subserved by different 
and rather diffuse brain structures. In a normal adult, both types of structures and pathways would generally be activated simultaneously. Hence, what we know about 
the neuroanatomical necessity of implicit learning comes primarily from studies of persons who have sustained damage to areas subserving explicit processing.

The first critical insight into the neural basis of consciousness in learning and memory came from the assessment of the famous patient H.M. This patient became 
profoundly amnesic following surgery to control otherwise intractable epilepsy that removed, bilaterally, most of the medial­temporal lobe (MTL) including the 
hippocampus, amygdala, and

  
Page 481

surrounding cortical regions (Scoville, & Milner, 1957). The striking result of this surgery was a profound anterograde amnesia, which essentially eliminated H.M.'s 
ability to acquire new explicit knowledge of everyday facts and events while leaving his general cognitive functions largely intact. For example, his memory impairment 
was such that one half­hour after eating lunch, he could not remember a single item he had eaten or, in fact, that he had eaten at all. This memory impairment was 
selective for encoding new explicit, long­term memories. His immediate memory (e.g., digit span) was normal, he was able to retrieve explicit memories for childhood, 
and his postsurgery IQ was above normal.

A number of tasks have now been identified that show specific areas of preserved learning ability in H.M. and other patients with similar neurological damage. In fact, 
Seger (1994) recently suggested that preserved learning by amnesics oil a particular task could be a defining feature of whether that task taps implicit processes. 
Studies using these tasks will be reviewed later. First, it will be useful to provide some background oil the neural structures known to selectively support explicit 
learning and memory independently of implicit learning and memory.

Patients who have anterograde amnesia, an inability to acquire new explicit, declarative facts, have damage to one or more areas of the media­temporal lobe. Broadly 
speaking, the overall structure of the MTL system (shown in figure 14.1) is linked to the rest of the brain via two circuits: a cortical circuit and a diencaphalic 
(subcortical) circuit. The cortical circuit provides the flow of information into and out of the declarative memory system. Projections from throughout the cortical mantle 
converge on the perirhinal, parahippocampal, and entorhinal cortical areas, and these in turn funnel information into the hippocampal formation. Information about an 
event or episode that is coded by other parts of the brain (e.g., cortical sensory association areas) is thus introduced into the MTL memory system. These same three 
cortical areas also project widely back to other processing areas throughout the brain to facilitate the storage and retrieval of long­term memories. The diencephalic 
circuit of the MTL memory system (comprised of the hippocampal formation, thalamic nuclei, and mamillary bodies) has not been implicated as much in the flow of 
information between the hippocampus and widespread brain regions,

  
Page 482

Figure 14.1
Schematic of the medial­temporal lobe memory stytem.

but damage to this circuit (e.g., from a thalamic stroke, tumor, or Korsakoff's syndrome, an alcoholism­related disorder that results in damage to the mamillary bodies) 
disrupts the function of declarative memory in the same manner as damage to the cortical circuit so that new, explicit long­term memories are not stored.

This neurological description is only a summary; more detailed discussions of the cytoarchetechtonic structure and connection patterns between these areas are 
available elsewhere (e.g., Amaral, 1987). Detailed descriptions of the lesion­based studies that have led to the enumeration of the cortical and subcortical elements of 
the MTL system are also available elsewhere (e.g., Squire, 1992).

Unlike explicit learning and memory, implicit learning and memory do not appear to be supported by a single brain system. Different implicit­learning and memory 
tasks have been shown to depend on disparate brain areas. Neuroimaging studies implicate the operation of cortical areas in the right occipital lobes in priming (Squire 
et al., 1992) and the basal ganglia in sequence learning (Grafton, Hazeltine, & Ivry, 1995;

  
Page 483

Rauch et al., 1995). Studies using experimental animals have indicated that some habitlike implicit­learning tasks depend on an intact caudate nucleus (Packard, 
Hirsch, & White, 1989), and classical conditioning of a skeletal­muscular reflex (which can be thought of as a primitive implicit­learning task, at least in nonhumans) 
appears to depend on the cerebellum (Thompson, 1990). There has also been research on patients with Huntington's and Parkinson's diseases, both of which involve 
progressive damage to the basal ganglia, demonstrating impairment on some implicit­learning tasks but not on others (Jackson, Jackson, Harrison, Henderson, & 
Kennard, 1995: Knopman & Nissen, 1987; Knowlton et al., 1996; Pascual­Leone et al., 1993; Willingham & Koroshetz, 1993).

One hypothesis is that implicit learning and memory occur within the cortical areas involved in processing the stimuli for which the learning is occurring, and hence will 
be found virtually throughout the brain (Ungerleider, 1995). If this proves correct, only with diffuse lesions would one expect global impairments in implicit learning. 
Focal lesions would result in impairment only on those implicit­learning tasks supported by the affected area, with other implicit­learning functions still being operative. 
As already suggested, one of the hallmarks of implicit learning is that it is less vulnerable than is explicit learning to neurological damage. If implicit processing is 
supported by widely divergent and diffuse neural structures, then this robustness is to be expected.

How Implicit Learning Is Studied

Thus, it seems that there is sound evolutionary, developmental, and neurological support for the existence of learning mechanisms that can acquire knowledge without 
full awareness. What, then, does the experimental literature say about the existence and operation of these mechanisms? As noted above, some half­dozen procedures 
have been developed for examining implicit learning. All have in common the fact that participants are presented with complex structured stimulus displays but without 
being told of this fact. Because many of the following theoretical points depend on empirical findings, it will be useful to provide a quick overview of the two studies 
most frequently used: artificial grammar (AG) learning and the serial reaction time (SRT) task.

  
Page 484

Artificial Grammar Learning

In the standard AG study, participants are presented with strings of letters such as those marked as learning stimuli in figure 14.2. These strings are all ''grammatical" 
or "well­formed" in the sense that they can be generated by the finite state device presented in the figure. To appreciate how this AG works, enter at state 1 on the left 
and follow the arrows, which

Figure 14.2
Examples of learning stimuli and testing stmuli presented to subjects in artificial grammar study. 
Asterisk indicates a nongrammatical string.

  
Page 485

denote permissible transitions from state to state, until state 6 is reached. Because each transition generates a letter, each discrete path through the grammar 
corresponds to a grammatical string. In some experiments participants memorize these strings, in others they reproduce them, and in others they simply observe them. 
After the learning phase, participants are informed about the existence but not the nature of the rules and are asked to distinguish novel well­formed or "grammatical" 
strings from those that violate the constraints of the system. Examples of these testing stimuli are given in figure 14.2. The ability to perform such discriminations in the 
relative absence of explicit knowledge of the rules is taken as evidence for implicit learning.

Serial Reaction Time

In the classic SRT study, participants sit in front of a computer screen on which a set of four or, in some cases six, locations are marked. Each location is associated 
with a specific key on the keyboard. On each trial, one location is denoted in some manner usually by having some arbitrary mark such as an "*" occur there. The 
participants' task is to press the corresponding key as rapidly and accurately as possible. Sequences tend to be of two types. In most studies a relatively simple 
sequence from 6 to 12 items long is used and is repeated over and over (e.g., 13423124). In other studies a nonrepeating sequence that has a particular rule­governed 
structure, such as that generated by an AG, is used. In either case, the data consist of participants' reaction times (RTs). Evidence of learning comes from the 
observation that RTs become shorter as the sequence is practiced but increase dramatically when the structure is changed by introducing a new sequence or shifting to 
one that is random or follows a new set of rules. As with the AG studies, the implicit element derives from the observation that participants are typically unaware of the 
nature (and often even the existence) of the structure.

The Core Issues

In the years since the first evidence for implicit learning was presented, a variety of specific issues have emerged as important in understanding the process. In this 
section, we will review the core issues—ones whose

  
Page 486

clarification is critical for an understanding of implicit learning and related phenomena.

On Awareness

At first blush, the distinction between implicit and explicit learning would seem to rest on the role of awareness or consciousness. At its simplest, explicit learning is 
learning with awareness, and implicit learning is its converse. But, alas, this just won't do. What exactly do we mean by awareness? Are there levels of awareness? Is 
the faint glimmer that something is known different from a fully explicable conscious experience—at least in a way that is phenomenologically interesting? If someone is 
aware that something was learned, is this sufficient for us to conclude that the learning was explicit? Or do we want to insist on their being aware of what was 
learned? Do participants need to be aware of knowledge when it is acquired, or can we accept as implicit knowledge that was only brought into consciousness slowly 
over time or with effort? Do we want to follow the guidance of Berry and Dienes (1993; Dienes & Berry, 1997) that we need to distinguish between subjective and 
objective thresholds of awareness? Questions like these hint at problems awaiting any attempt to hang implicit learning on the criterion of consciousness, and they have 
tantalized psychologists and philosophers alike.

At its most primitive, awareness can be defined as a subjective sense that something exists or something is happening—a simple apprehension intimately tied to basic 
attentional processes. However, from this perspective one could argue that almost all learning is explicit because it takes place when the organism is awake and that 
human neonates and virtually all animal species are capable of explicit learning. In fact, a few researchers do study learning under conditions of sleep, hypnosis, and 
anesthesia in order to improve their chances of studying learning that is not explicit (see Kihlstrom, 1990). However, most researchers believe there are important 
variations in the explicitness of learning.

The question becomes, How can we determine whether we are dealing, in a given experimental setting, with a process that is explicit or one that is implicit? One 
answer is to impose a rather stark criterion for implicit knowledge: do not conclude that implicit learning has taken place unless you can demonstrate that there is no 
evidence of awareness of what has

  
Page 487

been learned. Variations on this perspective have been put forward by Brody (1989); Dulany, Carlson, and Dewey (1984); and Shanks and St. John (1994). The 
basic argument is that conscious processing is the default mode and that only when we can be assured that no such processes are manifest can we conclude in favor of 
an unconscious process. Taking this hard line has led Dulany (1991) to conclude that there is no evidence for implicit learning at all. Indeed, he suspects that future 
psychologists will look back on "the metatheory of a cognitive unconscious as a kind of shared madness, a folie à deux milles or so" (p. 116).

There are a lot of reasons for suspecting that this perspective is, if not flat out wrong, certainly unproductive, for it depends on arguments that are suspect. First, it 
assumes there are clear­cut ways to measure implicit and explicit processes and to know, with certainty, which is which. Second, it is predicated on showing a total 
absence of explicit functioning before deciding in favor of implicit.

It is easy to show the weakness in this line of reasoning. Let's take a classic case, Kunst­Wilson and Zajonc's (1980) demonstration that the mere exposure effect can 
operate outside of awareness. In this now classic study, geometric shapes were briefly exposed and participants were then tested for awareness of those shapes using 
the generally accepted method for assessing awareness, the two­alternative forced choice (2AFC) procedure. Participants were shown pairs of one novel and one old 
geometric shape and asked to select the one that was presented earlier. Participants responded at chance, levels suggesting no conscious awareness of the original 
stimuli. They were then shown the pairs again, but this time were asked which of the two they preferred. Now participants reliably selected the ones that had been 
shown earlier, suggesting that we come to prefer the familiar, even while we are unaware of what the familiar is. However, it is not absolutely clear that this process 
occurs completely unconsciously; the two tasks may have different demand characteristics. The request for a preference may have been seen by the participants as an 
opportunity to relax their criterion for responding on the basis of a hazy but explicit knowledge base.

Hence, even the most compelling of implicit measures are possibly contaminated by explicit factors. It will do no good to try to hold implicit cognitive functions to the 
kind of criterion suggested by Brody and others.

  
Page 488

This is just as well, for we are better off treating implicit and explicit, not as wholly separable, but rather as aspects of cognitive functioning that are present to some 
extent in virtually everything interesting that human beings do. Some learning seems to have elements that are compellingly explicit, such as simple problem solving in 
which individuals generate and test hypotheses about possible solutions. Other learning reflects features that are just as clearly implicit, such as natural language 
acquisition during early childhood. But it would surely be a mistake to try to argue that even obvious examples such as these are pristine domains of acquisition and 
representation.

We would rather think of the problem this way. Assume that there is some quantity q that represents total knowledge held and some other quantity x that represents 
the proportion of knowledge that an individual is aware of. Any time that q >> x, we can conclude that implicit learning has occurred. There is no need to show that x 
= 0. That is, implicit and explicit knowledge can (and almost certainly do) co­occur in most situations. This functionalist approach to the issue seems sensible. And, as 
we shall see when we explore specific issues more closely, it is not difficult to set up appropriate laboratory conditions under which the emergence of dissociable 
implicit and explicit functions can be observed.

To take just one example, Mathews et al. (1989) used a "teach­aloud" technique in an AG­learning experiment. Participants were stopped periodically during the 
well­formedness task and asked to provide as complete information as possible for a group of yoked participants who would use their instructions to carry out the 
task but without going through the learning phase. Over the four days of the experiment the separate groups of yoked participants shadowed that of the experimental 
participants, although never achieving equal levels of performance. However, the most interesting finding was the change that occurred over days. While the 
experimental participants reached asymptotic levels of performance on day 2, their ability to communicate what they knew increased, and by day 4 the yoked 
participants were making decisions at approximately their level.

From a folk­psychology point of view, this feels right. Implicit knowledge is acquired naturally and fairly quickly, but bringing it to consciousness and putting it into a 
form that can be communicated to others takes

  
Page 489

time and effort. Any quick and dirty attempt to determine thresholds for consciousness, either subjective or objective, in such a situation would misrepresent matters. 
Intriguingly, this perspective also lies behind arguments put forward about how science itself operates (Polanyi, 1966; A. Reber, 1993a).

Representational Form, or What Is Being Learned in an Implicit­Learning Experiment

The type of consciousness involved in explicit learning entails mental representation of external objects and events. One cannot learn explicitly without the ability to 
form images or propositional representations of real­world stimuli, which can be executed, recalled, and examined in their absence. So, for example, one cannot 
explicitly learn that dogs bite without being able to form a dog image or propositional dog representation that is stable and accessible enough to be actively recalled in 
the absence of a real dog.

However, this is not true of implicit representations, as Claparède (1911/1951) noted in the first clinical report of learning without awareness in an amnesic patient. 
When first being introduced to the patient, he stuck her hand with a concealed pin. When they later met again, the patient, despite denying she had ever seen 
Claparède before, refused to shake his hand. Here the mental representation was unavailable, at least in an explicit sense, even in the presence of the individual who 
was an integral element in the initial episode.

The question of interest here concerns the representational form of implicitly acquired material. There are two broadly competing theories. One, first put forward by A. 
Reber (1969), maintains that the memorial form of implicit knowledge is abstract, that tacit knowledge is encoded in a manner that it relatively independent of the 
physical form of the input stimuli. The other, first articulated by Brooks (1978), argues that implicit knowledge is characterized by fairly rigid instantiations based on the 
physical form of the input stimulus.

The easiest way to appreciate the difference between these two perspectives is to imagine that you had to identify a novel, hairy, four­legged creature that just walked 
in the room. From the abstractionist's point of view you would call it a dog because its overall configuration

  
Page 490

corresponded with your deep, abstract representation of a category of critters known as dogs. From an instantiationist's perspective, you would call the beast a dog 
because it reminded you of some specific, memorially encoded instance, say one in which a similar animal was called a dog by your Uncle Harry. Notice that Brooks's 
version of instantiationism is holistic in nature. The memorial representation is assumed to be encoded as a entire episode and stored as such. There is a third candidate 
theory as well, one that can properly be classified as a variation on the instantiated model. This approach, championed by Perruchet (1994; Perruchet Pacteau, 1990), 
is based on the assumption that the instantiated memories are set up, not as wholes, but as fragments or smaller component parts of the input stimuli. The difference 
between the two forms of instantiationism is to be found, essentially, in the amount and type of information encoded, not in its form.

It's worth noting that the fragmentary model is, in some sense, predicated on an abstract representation in that encoding the chunks requires that information be 
integrated across the items used during training. However, it is important to distinguish between abstraction as a process based on scanning multiple inputs and logging 
information about frequency of occurrence of chunks and abstraction as a process that induces a representation of the rules underlying the stimulus inputs. The former 
is not a particularly interesting form of abstraction in that the resultant representation is still wedded to the physical form of the stimulus inputs. The latter form is more 
interesting psychologically, and it is important to determine whether implicit­learning processes are, in fact, capable of inducing such representations.

Most of the experiments designed to examine this issue have used a variation on the AG­learning experiment in which a transfer phase is introduced. In the first of 
these experiments, A. Reber (1969) had participants memorize letter strings generated by a grammar much like the one in figure 14.2. Participants showed a highly 
reliable finding: the ability to encode and recall material improved as they learned to exploit the structure in the strings. After a break, experimental participants returned 
to a task that was changed in one of several ways. In one group, the letters used to present the strings were changed; in a second, the underlying grammar itself was 
changed; and in a third, both were changed. Par­

  
Page 491

ticipants in each of these groups were compared with a control group that continued to work with strings from the original grammar and letter set. The results were 
quite clear. Changing the grammar produced a drop in performance. However, changing the letter set had little or no impact, suggesting that participants were setting 
up abstract mental representations that could be used independently of the surface form of the stimuli.

In recent years, several studies have examined this claim for abstract implicit representations. Most of these have used the procedure of having participants learn using 
strings instantiated with one letter set and then running the well­formedness phase using a different letter set. In all cases, clear evidence of transfer has been obtained. 
Mathews et al. (1989) ran participants over four separate sessions; on each session a different letter set was used. They found positive transfer in that these 
participants continued to perform as well as control participants who worked with the same letter set throughout. Similar results have been reported by Brooks and 
Vokey (1991); Gomez and Schvaneveldt (1994); Manza and A. Reber (1997); and Shanks, Johnstone, and Staggs (1997). Moreover, Knowlton and Squire (1996) 
have shown that such transfer also takes place in amnesics who have virtually no recognition memory for the original stimuli. An intriguing variety of transfer has also 
been shown by Altmann, Dienes, and Goode (1995); J. Howard and Ballas (1980); and Manza and A. Reber (1997), all of whom report cross­modality transfer 
where stimuli instantiated auditorially can be processed effectively when presented visually and vice versa.

Although these studies certainly suggest that implicit learning yields an abstract representation, this is clearly not the whole story. First, in virtually all the transfer studies, 
control participants who continue to work with strings made up using the original letters perform somewhat better than participants given novel instantiations. This 
suggests that there is more to the story than pure abstract representations, for, as Brooks and Vokey (1991) pointed out, in these studies grammaticality and physical 
similarity are confounded. That is, during testing, the well­formed strings are more physically similar to those used during learning than are those that contain violations. 
In a series of studies using stimuli that controlled for the physical similarity between the stimuli used during learning and those used during testing, Brooks and Vokey 
(1991; Vokey & Brooks,

  
Page 492

1992) showed that physical similarity is, indeed, important and accounts for roughly half the explainable variance. However, as Knowlton and Squire (1994) reported, 
it is not whole item similarity that is important here; rather, it is relatively small two­ and three­letter chunks that are critical.

This sequence of studies seems to suggest that relatively small chunks are an important aspect of AG learning, but they are not sufficient to explain the full database, 
because knowledge based on them is not sufficient to support transfer. Both Gomez and Schvaneveldt (1994) and Manza and A. Reber (1997) found that participants 
who learned an AG by memorizing all of the permissible bigrams but never seeing a complete string failed to show transfer to the well­formedness task when the test 
strings were instantiated with a novel letter set. Lastly, Knowlton and Squire (1996), in a follow­up to their earlier study, reported that amnesics who had virtually no 
explicit memory for the specific items used during learning were able to make well­formedness judgments in a standard transfer study using the changed letter set 
procedure.

Our best guess is that, at least in the AG experiments, implicit learning yields both instantiated and abstract representations. Various aspects of the context for learning 
and testing will encourage one or another (Whittlesea & Dorken, 1993) and, as A. Reber and Allen (1978) showed, the procedures most commonly in use tend to 
encourage abstractions. A more direct demonstration of this point was provided by Manza and A. Reber (1997). One group of participants learned an AG by 
memorizing strings composed with one set of letters (A) while another group learned the same "deep" strings, but half were made up with one letter set (A) and half 
with another (B). During testing, one­third of the strings were made up using letter set A, one­third used letter set B, and one­third used a letter set, C, new to both. 
Although both groups showed transfer to novel letter sets, the group that learned with two instantiations performed better on the strings made up with the new letter 
set, C, than the group that learned using the single letter set A. Clearly, the dual instantiations encouraged the establishment of abstract representations.

When it comes to drawing conclusions about methodologies other than the AG task, there isn't much to go on. In a recent overview of the literature on the SRT task, 
Hsiao and A. Reber (1997) concluded that partici­

  
Page 493

pants in SRT experiments are setting up representations based on patterns of covariation reflected in the stimulus sequences. However, it is not clear whether these 
representations are keyed to the physical form of the sequences or are more abstract. To date, there have been no SRT studies that have used a transfer procedure, 
so it is not known whether the knowledge gained in the situations tested so far can produce effective performance in a separate domain or under different task 
constraints.

Interestingly, these findings suggesting deep and partially abstract representations do not fit terribly neatly with the work on implicit memory, where transfer is typically 
not found. Implicit memory, particularly when assessed using priming, has been characterized as being rather concrete in nature (Schacter, Chiu, & Ochsner, 1993; 
Schacter & Graf, 1986; Squire et al., 1993). Dienes and Berry (1997) have even argued that instantiated and inflexible representations may be a hallmark of implicit 
systems in general. Why is it that implicit learning appears to yield at least partly abstract representations, whereas implicit memory studies typically report highly 
concrete and instantiated representations? The answer may be methodological in that procedures such as priming tend to activate specific memories, or it could be 
more basic than that. We will discuss this issue a bit more in the section on neuropsychological issues.

Individual and Developmental Differences

One of the predictions of the evolutionary stance outlined earlier is that implicit functions ought to show less individual­to­individual variation than explicit functions. The 
details for this prediction can be found in A. Reber (1992, 1993b), but the proposition depends rather straightforwardly on the recognition that forms and functions 
that emerge early in any hierarchical system (of which evolution is an example) display less variability than forms and functions that emerge later.

Because this predicted characteristic of implicit processing has only been recently recognized, the empirical evidence for or against it is meager. However, the few 
studies that have examined this hypothesis show support. A. Reber, Walkenfeld, and Hernstadt (1991) found that young adults showed less interindividual variation on 
an AG task than they did on an explicit task of equivalent complexity. Recently McGeorge, Crawford, and Kelley (1997) replicated and extended this finding.

  
Page 494

The evolutionary model also suggests that the slight interindividual differences found in implicit learning might not be influenced by the same factors that influence 
explicit learning. This proposition follows from the argument that the evolutionarily newer explicit processes are sensitive to a variety of influences and covary with a 
number of characteristics that do not influence older structures. The most obvious of these characteristics is the class of skills involved in higher mental processes, as 
measured by traditional IQ tests. We know of only three studies that looked at the dissociation between implicit learning and IQ scores, but all support the model. The 
A. Reber et al. (1991) study cited above found that implicit­learning scores were unrelated to IQ, whereas explicit­learning scores correlated .69 with IQ scores. 
Mayberry, Taylor, and O'Brien­Malone (1995) similarly found that children's IQ scores were not significantly related to number correct on an implicit­learning task, 
but correlated .37 to .56 (depending on age) with scores on an explicit­learning measure. Furthermore, as with the A. Reber et al. (1991) study, performances on the 
explicit and implicit tasks were not significantly associated with each other after correction for overall age effects. Finally, McGeorge, Crawford, and Kelly (1997) 
found the same general pattern both with respect to IQ and age. The one study that found interindividual effects (Kassin & A. Reber, 1979) examined the factor of 
locus of control and found that participants who were high on the ''internal" scale, that is, those who tend to take responsibility for their actions, tended to be better at 
implicit learning. However, it is not clear whether to attribute this result to true differences in implicit­learning ability or to differences in motivation or attention.

A few studies have examined clinical factors such as mood and anxiety on implicit learning. Abrams and A. Reber (1988) found that a group of psychotics of mixed 
etiology were markedly impaired in explicit problem­solving tasks but functioned normally on implicit tasks. Parallel findings were reported by Rathus, A. Reber, 
Manza, and Kushner (1994) in highly anxious participants. Interestingly, depression (at least the nonclinical levels examined by Rathus et al.) had no affect on either 
mode of processing. These findings generally support the principle that implicit learning displays relatively little variability; they are also coordinate with the

  
Page 495

robustness argument that implicit learning is less likely to be impaired by factors that disrupt explicit processes.

The evolutionary model also predicts that implicit learning should show fewer age differences than explicit learning. Of course, one would still expect some age 
differences in implicit learning, particularly in examining early periods of development, because attentional functions, span of apprehension, and information­chunking 
ability all increase dramatically over the course of early childhood. However, the variations observed in implicit learning are predicted to be less attributable to 
ontogenetic factors than are the variations in explicit learning. Unfortunately, there are no systematic studies of implicit learning over the entire developmental 
continuum, with a particular paucity of studies using children. A Reber (1993b) reviewed the available empirical evidence that is consistent with the notion that there 
are no substantial differences in implicit learning experienced by individuals over the first year of life. One study we are aware of (Mayberry, et al., 1995) found some 
improvement with age. However, the improvements were small compared to those observed in explicit learning and might well be constrained primarily by attentional 
factors, change over age. Further, Parkin and Streete (1988) found no differences in implicit memory measures from ages 3 years through young adulthood, whereas 
differences in explicit memory measures were obtained.

Most studies with older adults have used either the SRT, where participants are exposed to fixed repeating patterns, or implicit memory priming techniques using word 
lists, rather than using rule­based systems such as AGs. The few studies (Howard & Howard, 1989, 1992) comparing healthy older adults to young adults show no 
age differences on more implicit, indirect measures of learning (e.g., RTs), whereas older adults are less accurate on more explicit direct measures of learning (e.g., 
prediction). However, Cherry and Stadler (1995) present evidence that some low­ability older persons might be subtly impaired in implicit learning. On the whole, 
there is some intriguing evidence that there is less variation attributable to age in implicit learning than there is for explicit learning. The ability to learn implicitly 
theoretically not only precedes the emergence of explicit processes, but also shows less variation between the age groups studied than does performance on explicit 
tasks.

  
Page 496

Given the interest in both developmental psychology and the issues of aging, it appears to us that this is an area much in need of exploration. We have, at date, 
precious little understanding of the nature of acquisition of complex knowledge bases in infancy and early childhood, particularly as they function independently from 
top­down conscious systems. In parallel fashion, we are almost embarrassingly ignorant of how implicit cognitive processes not mediated by awareness are affected 
by aging.

Neuropsychological Issues

As noted earlier, patients with anterograde amnesia provide a unique opportunity to study the operation of implicit processes with little interference from explicit 
processes. Perhaps not surprisingly, there is an enormous literature on this general topic. However, most of it focuses on the issue of implicit memory (reviews may be 
found, e.g., Schacter et al., 1993; Shimamura, 1993). Here we will focus on the work that supports the proposition that implicit learning is mediated by different 
neuroanatomical structures from those that subsume explicit learning and hence that supports the notion of dissociation between implicit and explicit systems.

First, as noted earlier, amnesic patients exhibit the same artificial grammar learning ability as control participants (Knowlton, Ramus, & Squire, 1992) even when the 
test is given using a novel letter set applied to the same underlying grammar (Knowlton & Squire, 1996). These patients are unaware of the underlying rule structure 
and are impaired at recognizing the training strings compared to control participants. This pattern of results has also been observed for amnesic patients in the 
sequence­learning paradigm. Amnesic patients show normal learning of the repeating sequence but are impaired at recognizing or reporting it (Nissen & Bullemer, 
1987; P. Reber & Squire, 1994).

The impaired explicit memory for the training stimuli exhibited by amnesic patients provides valuable support for the dissociation of implicit and explicit learning. In the 
sequence­learning task, progressively more sensitive tests (e.g., sequence recognition, free generation) have indicated that with practice, most healthy participants 
acquire some explicit knowledge about a repeating sequence (Perruchet & Amorim, 1992; Willingham, Greeley, & Bardone, 1993). This finding has led some

  
Page 497

researchers to suggest that the explicit knowledge assessed by these new tests may be the same knowledge that supports the apparently implicit learning exhibited by 
these participants (Perruchet, Gallego, & Savy 1990; Shanks & St. John, 1994). However, even these more sensitive tests do not detect significant explicit knowledge 
in amnesic patients (P. Reber & Squire, 1994), suggesting that the implicit­learning performance is supported by a separate system from that which supports the 
explicit.

Amnesic patients have also been shown to exhibit normal learning on tasks for which it may be difficult to dissociate awareness from performance in control 
participants. For example, amnesic patients perform normally on the classic Posner and Keele (1968) dot categorization task (Knowlton & Squire, 1993). In this task, 
participants are shown distortions of a prototypic dot pattern during training and are later able to judge whether new patterns are drawn from the same category (i.e., 
are derived from the same prototype) as the training items. This task is similar to other implicit­learning tasks in that the participants are not told that they will be 
learning a category but do so anyway. The normal performance of amnesic patients on this task is accompanied by an impairment in their ability to recognize the items 
originally seen during training. This finding suggests that explicit recognition of studied patterns depends on the MTL memory system, whereas the intact implicit 
categorization learning depends on a different brain system that is not damaged in amnesia.

A similar result has been obtained with a probabilistic classification task (Knowlton, Squire, & Gluck, 1994; P. Reber, Knowlton, & Squire, 1996). In this task, 
participants are shown a set of cues (cards with geometric shapes) that vary in the degree to which they are associated with two possible weather outcomes. Their 
task is to try to predict whether sunny or rainy weather will follow. Amnesic patients learned the associations at the same rate as control participants, although they 
showed impaired explicit memory for the training session. In both of these cases, the normal declarative memory function of the healthy controls for the training session 
and stimuli would have obscured the fact that the categorization and classification tasks are learned implicitly had the amnesic patients not been studied.

  
Page 498

One aspect of the implicit­explicit distinction that has emerged recently concerns the extent to which the neurological structures underpinning each allow for flexible 
representations. Glisky, Schacter, and Tulving (1986) and Winter (1995) have found that with extensive training, amnesic patients could learn the complex cognitive 
skill of computer operation. The ability of patients to learn this task with extended training itself does not suggest that the skill was acquired implicitly; the explicit 
memory ability of these amnesic patients was not generally totally impaired. However, Glisky et al. also found that the quality of the patients' learning was different 
from that of controls. When the amnesic patients were questioned about their knowledge in a manner slightly different from that used in the original learning, their 
performance was impaired relative to controls. Glisky et al. suggested that implicitly learned knowledge may be "hyperspecific," in that it could not be applied as 
flexibly as explicitly acquired knowledge.

Because it is possible to measure flexible knowledge use relatively directly using transfer tests, this characteristic lends itself to studies of experimental animals with 
selective lesions of the MTL memory system. Eichenbaum and colleagues have shown in a number of experiments that rats with damage to the MTL memory system 
show impaired flexibility in applying acquired knowledge when compared with the performance of control animals (Eichenbaum, Mathews, & Cohen, 1989; 
Eichenbaum, Stewart, & Morris, 1990). In addition, P. Reber, Knowlton, and Squire (1996) found that amnesic patients who learned a probabilistic classification 
task at a normal rate showed impairments on subsequent transfer tests that required flexible knowledge use.

The apparent inflexibility of knowledge acquired implicitly should not be interpreted as implying stimulus­specific learning. In fact, as we already noted, several tasks 
such as AG learning and dot pattern categorization require classification of novel stimuli in order to demonstrate implicit learning of the underlying structure (grammar 
or prototype). The transfer paradigm within artificial grammar learning is a particularly striking example of successful transfer to novel stimuli that, as noted earlier, 
strongly suggests abstract representation of the grammar. The findings hinting at inflexibility in the use of implicitly acquired knowledge suggest that there will likely be 
some transfer tests that participants might be able

  
Page 499

to perform with explicit knowledge (and associated awareness) that will not be supported when the knowledge is solely implicit.

In addition to the issues of awareness, representational form, individual differences, and neuroanatomical dissociation, there are several other issues we expect to gain 
ascendance in future years. We will only present them briefly, not because we regard them as unimportant but simply because there has been, to date, less research on 
them.

Role of Attention

If implicit learning takes place largely outside of awareness, does this entail that it is an automatic process, in the sense that automatic processes are known to use 
relatively little attentional resources (Hasher & Zacks, 1984)? This issue has been explored intensively in recent years, although unhappily most of it uses a single 
experimental procedure: the SRT task. A full review of this literature is available elsewhere (Hsiao & A. Reber, 1997); here we merely wish to touch upon the main 
issues.

Nissen and Bullemer's (1987) initial study suggested that learning in an SRT task required full attention as the introduction of a secondary (tone­counting) task inhibited 
learning. However, the complexity of the sequence (Cohen, Ivry & Keele, 1990) and the speed of presentation (Frensch & Miner, 1994) are important factors that 
make simple conclusions unlikely. Reed and Johnson (1994) have shown that with more extensive training, even rather long, ambiguous sequences created by 
concatenating eight different 12­event sequences can be learned under dual­task conditions. Hsiao and A. Reber (1996) have found that sequences generated by an 
AG (and that hence do not repeat) can also be learned while engaging in a secondary tone­counting task. Frensch, Buchner, and Lin (1994) reported, not surprisingly, 
that structural factors are important, with more complex sequences being harder to learn under attentional distraction. Finally, Hsiao and A. Reber (1996) found that 
timing is important. When the interval between the secondary task and the upcoming target is short (e.g., 50 ms), learning is disrupted considerably more than when 
the interval is longer (e.g., 150 ms). In all of these tasks, it should be noted, imposing a secondary task compromises learning to some extent. With the exception of 
Cohen, et al.'s (1990) simple sequences, participants working under

  
Page 500

dual­task conditions virtually always show slower learning than do controls.

A few studies have examined the role of attention using a task other than the SRT. Hayes and Broadbent (1988) used the process control task in which participants 
interact with a simulated production plant and attempt to adjust factors such as wages and size of the workforce in order to achieve specific production levels. They 
reported that the more complex elements of the task, which they argued were acquired implicitly, were not disrupted by the imposition of a secondary task, whereas 
the simpler were. This result is a bit surprising given the story depicted by the SRT studies. It has also proven difficult to replicate (Green & Shanks, 1993; Sanderson, 
1989).

It is difficult to know what to conclude from these studies. It appears, generally speaking, that implicit learning, unlike more primitive processes such as logging simple 
frequency and location of events, does require attentional resources in that the secondary task invariably slows down learning. Part of the difficulty, as Hsiao and A. 
Reber (1997) have argued, comes from a lack of a clear understanding of the mechanisms(s) of attention. Is attention some kind of central processor with limited 
capacity, or do there exist separate modules that handle different tasks? In the former construct compromising attentional resources can be viewed as a bottleneck 
problem; in the latter it becomes a switching problem. It is not obvious what kinds of data could permit us to disentangle these characterizations.

Implicit Motor Learning

Although the majority of studies of implicit learning have been oriented toward the more compellingly cognitive processes, there has been some work on motor 
learning. Happily, the results tend to dovetail with those discussed. Pew (1974) first demonstrated implicit motor learning in a pursuit­tracking task. His procedure, 
which has become the standard for these studies, used a tracking task in which the middle third of each trial was repeated while the other two­thirds were changed 
randomly. Participants became increasingly more proficient with the repeated segment, although they were unaware of the repetition. Pew (1974) also showed that 
transfer occurred, in that participants were also more proficient with the

  
Page 501

repeated segment when it was presented in an inverted fashion than they were with nonrepeated segments.

Wulf and her coworkers (Wulf, Lee, & Schmidt, 1994; Wulf & Schmidt, 1997) have pointed out that motor learning involves at least two processes, one involving 
timing (the temporal relationships between the various components of the action) and one involving scaling (the magnitude and speed of the action) and have presented 
evidence that suggests that both components are learned implicitly. In a recent paper, Wulf and Schmidt (1997) reported that these components can be manipulated 
independently of each other and that both show evidence for abstract representation. When either the timing or the scale of the required response was changed but the 
underlying structure left intact, participants showed a clear advantage on repeated segments over nonrepeated segments. Interestingly, Wulf and Schmidt also found 
that learning was enhanced by variable feedback, a factor that, so far as we know, has never been examined in the more cognitively based implicit­learning tasks.

Finally, Masters (1992) has shown that implicitly acquired motor skills show greater resiliency when participants are placed under stress than those acquired explicitly, 
a finding that is coordinate with results from the AG­learning literature (see A. Reber, 1976). Moreover, Knopman (1991) found that administration of the drugs 
scopolamine and lorazepan, which block excitatory cholinergic pathways to the hippocampus and hence impair verbal learning, do not impair performance on SRT 
motor learning. Both findings suggest that implicit motor learning is more robust than is explicit motor learning.

Formal Models of Implicit Learning

The process of implicit learning has attracted a good bit of modeling for obvious reasons. The effects are robust, the database large, and the acquisition process 
appears (at least superficially) to be relatively simple. All of the models that have been developed are computer­based, formal systems. They use architectures that 
compute statistically covarying relationships among elements in a complex stimulus display, although they vary in the specifics. Here, we will only touch on the 
conceptual issues; technical details can be found elsewhere (Cleeremans, 1993; Dienes, Altmann, & Gao, 1995). Note that these models tend to be based

  
Page 502

on connectionist neural nets that function in a purely bottom­up manner. This is an important point; if a connectionist system can capture the data from the typical 
implicit­learning experiment, it lends support to the argument that implicit processes can take place independent of a modulating, top­down consciousness.

One of the first successful models was Servan­Schreiber and Anderson's (1990) competitive­chunking model. It is based on detecting those elements in a display 
(such as symbols in an AG) that tend to occur together and building up representations based on groupings, or chunks. In this model chunks compete with each other; 
those with the higher statistical coherency get memorially represented. Dienes's early (1992) model works by representing specific symbols occurring in particular 
locations in a display and constructing connectionist relations between them. Mathews and his coworkers (Druhan & Mathews, 1989; Mathews & Roussel 1997) 
used a classifier system that keys in on the encoding of patterns of runs of elements. Cleeremans (1993; Cleeremans & McClelland, 1991) has developed what is 
probably the most general model, one built on what is known as a simple recurrent network (SRN). SRNs, as Elman (1990) has shown, have the capacity to 
encode complex structures by representing the "next" element in a sequential display. SRNs are connectionist in nature and induce representations by the detection of 
patterns of covariation between items as they occur in a sequence.

All of these models handle the data from the basic implicit­learning experiments reasonably well, although there are differences in the details (see Cleeremans, 1993, 
and Dienes, 1992, for reviews). The high level of success is not terribly surprising because, as noted, all of these models are based on the detection and representation 
of statistical features of the environment that serve as their input and so should, in principle, capture the essential underlying features of the kinds of displays that have 
been used. However, all of these models, based as they are on the representation of the physical characteristics of the stimulus display, find accounting for the transfer 
data discussed earlier to be a problem. If learning consists of a sequence of letters generated by an AG, then the models' representations will be based on these letters. 
If the input is a structured sequence of locations that flash on a computer screen, then so will the underlying encoding that the models will build. However, we know 
that humans

  
Page 503

function quite well when the letter set or the modality used to instantiate the AG is changed.

Recently, two models have been put forward that appear, in principle, to have the capacity for abstract representations Mathews and Roussel's (1997) model works 
by encoding abstract representations such as those reflected by runs of items. For example, a string from an AG such as KVVVVT is coded as "Kvrrr,T" where r 
notes that the preceding letter has been repeated. By using devices such as this, the model can capture some abstract features of a display independent of the physical 
form of the stimulus. But the more ambitious model is that recently presented by Dienes et al. (1995), which appears, at least in principle, to be able to bootstrap itself 
into solving the transfer problem. Their model is an extension of the general architecture of Cleeremans's (1993) SRN and functions essentially by introducing an 
additional hidden layer. Although Dienes et al. (in press) present data that are certainly suggestive of the model's capacity to capture the phenomenon of transfer in an 
AG­learning experiment, the jury is still out on the model's generalizability. It seems, nevertheless, to be a clear advance over previous models.

Affect and Implicit Learning

Lastly, we want to touch on a new aspect of implicit processing that suggests that implicit acquired knowledge can be used to form preferences for novel stimuli. 
Gordon and Holyoak (1983) showed some years back that participants in a typical AG­learning experiment developed a marked preference for novel strings that 
were grammatical over those that contained violations. This basic result has been replicated and extended by Zizak, Manza, and their colleagues in interesting ways. 
Manza and Bornstein (1995) showed that participants asked to make preference judgments about novel strings in an AG experiment exhibited less evidence of 
awareness of the rules than those asked to make the more traditional well­formedness judgments. In a similar vein, Manza and Skypala (1996) showed that divided 
attention disrupts participants' abilities to make well­formedness judgments but does not affect their preference judgments. Manza, Zizak, and A. Reber (1998) have 
reported that familiarity with the physical form of the symbols used to instantiate the items is important. Basically, the preference for well­formed strings tends not

  
Page 504

to emerge when novel stimuli, such as Japanese or Chinese characters, are used. Finally, Zizak and A. Reber (1994) have argued that because of the manner in which 
participants develop preferences for structured items in these experiments, implicit processes have the potential to provide a conceptual foundation for the 
development of aesthetic judgments. As with the other, less intensively studied areas, there are many fascinating issues here that need both empirical and theoretical 
exploration.

Summary

We've covered a good bit of ground here, and a quick summary is in order. We will simply list the basic characteristics of implicit learning that we feel have been firmly 
established by the data and conclude by outlining the boundaries of our current understanding. Specifically, implicit learning (a) operates largely independent of 
awareness, (b) is subsumed by neuroanatomical structures distinct from those that serve explicit, declarative processes, (c) yields memorial representations that can be 
either abstract or concrete, (d) is a relatively robust system that survives psychological, psychiatric, and neuroanatomical injury, (e) shows relatively little interindividual 
variability, and (f) is relatively unaffected by ontogenetic factors.

However, it is clear that there are important areas about which little is known. For example, although the evidence is for developmental continuity, there has been 
relatively little work on this topic. Although it seems fairly obvious that implicit acquisitional processes play a critical role in infancy and early childhood when natural 
language learning, socialization, and the like are taking place, there have been few specific studies of how these processes are actually carried out. Further, we have 
only weak evidence to support the (strong) argument that implicit­learning processes continue to operate unimpeded in an aged population. There is still little 
understanding about how implicit learning may interact with other factors such as motivation and attention—factors whose role must be understood, particularly if one 
begins to consider the possibility of applications into domains such as education and remediation. In a similar vein, there has been precious little work carried out on 
implicit motor learning and how learning in sensorimotor domains interacts with that

  
Page 505

in the more cognitive. We are fairly confident that we have identified the critical neuroanatomical structure for explicit memorial systems, but to date we have only 
speculation about which neural structures might be responsible for implicit systems. Interestingly, this issue is relevant for theories that are predicated on modular 
systems versus those that assume more globally distributed structures. There is the related, vexing question of flexibility—some of the evidence seems to support the 
notion that implicit knowledge is quite flexible; other evidence suggests that it is not. Are the inconsistencies here due to methodological factors or perhaps to more 
basic underlying processing mechanisms that are not yet understood? Finally, there is the question of how implicit acquisitional processes fit with other processes that 
occur largely or wholly outside of consciousness such as implicit (or subliminal) perception, implicit memory, and the role of unconscious motivational and emotional 
factors. The future looks like it will be fun.

Note

1. This chapter is concerned with the question of implicit learning. However, in places we will discuss issues and findings that have emerged in the study of implicit 
memory. The division that exists between these two areas is unfortunate, as they are intimately related in the most poignant of ways: implicit learning produces implicit 
memories. However, the two phenomena are studied using different methodologies. Studies of implicit learning tend to use unfamiliar displays and examine the manner 
in which participants build up representations of the underlying structure of those displays. Studies of implicit memory tend to use tasks such as priming, where 
preexisting knowledge is cued in episodic fashion and memory for the cuing episode is subsequently examined. This difference in the traditional methodologies has had 
the unhappy effect of driving a wedge between the two subdisciplines. Although this chapter is not the place to heal this rift, we will do what we can by bringing in 
issues and data from studies of implicit memory to help clarify issues that have emerged in the exploration of implicit learning.

References

Abrams, M., & Reber, A. S. (1988). Implicit learning: Robustness in the face of psychiatric disorders. Journal of Psycholinguistic Research, 17, 425–439.

Altmann, G. T. M., Dienes, Z., & Goode, A. (1995). On the modality independence of implicitly acquired grammatical knowledge. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 21, 899–912.

  
Page 506

Amaral, D. G. (1987). Memory: Anatomical organization of candidate brain regions. In J. M. Brookhart & V. B. Mountcastle (Eds.), Handbook of physiology: The 
nervous system: Vol. 5. Higher functions of the nervous system (F. Plum, Vol. Ed., pp. 211–294), Bethesda, MD: American Physiological Society.

Bauer, P. J. (1996). What do infants recall of their lives? Memory for specific events by one­ to two­year­olds. American Psychologist, 51, 29–41.

Berry, D. C., & Broadbent, D. E. (1994). On the relationship between task performance and associated verbalizable knowledge. Quarterly Journal of 
Experimental Psychology, 36, 209–231.

Berry, D. C., & Broadbent, D. E. (1995). Implicit learning in the context of control systems. In P. Frensch and J. Funke (Eds.), Complex problem solving (pp. 
131–150). Hillsdale, NJ: Erlbaum.

Berry, D. C., & Dienes, Z. (1993). Implicit learning: Theoretical and empirical issues. Hillsdale, NJ: Erlbaum.

Brody, N. (1989). Unconscious learning of rules: Comment of Reber's analysis of implicit learning. Journal of Experimental Psychology: General, 118, 236–238.

Brooks, L. R. (1978). Nonanalytic concept formation and memory for instances. In E. Rosch and B. B. Lloyd (Eds.), Cognition and categorization. New York: 
Wiley.

Brooks, L. R., & Vokey, J. R. (1991). Abstract analogies and abstracted grammars: Comments on Reber (1989) and Mathews et al. (1989). Journal of 
Experimental Psychology: General, 120, 316–323.

Cherry, K. E., & Stadler, M. E. (1995). Implicit learning of a nonverbal sequence in younger and older adults. Psychology and Aging, 10, 379–394.

Claparède, E. (1951). Recognition and ''me­ness." In D. Rapaport (Ed.), Organization and pathology of thought (pp. 58–75). New York: Columbia University 
Press. (Original work published 1911.)

Cleeremans, A. (1993). Mechanisms of implicit learning: Connectionist models of sequence processing. Cambridge, MA:MIT Press.

Cleeremans, A., & McClelland, J. L. (1991). Learning the structure of event sequences. Journal of Experimental Psychology: General, 120, 235–253.

Cohen, N. J., Ivry, R., & Keele, S. W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology. Learning, Memory, and 
Cognition, 16, 17–30.

DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers' voices. Science, 208, 1174–1176.

Dennett, D. D. (1987). Consciousness. In G. L. Gregory (Ed.), The Oxford companion to the mind (pp. 161–164). New York: Oxford University Press.

Dienes, Z. (1992). Connectionist and memory array models of artificial grammar learning. Cognitive Science, 16, 41–79.

  
Page 507

Dienes, Z., Altmann, G. T. M., & Gao, S.­J. (1995). Mapping across domains without feedback: A neural network model of transfer of implicit knowledge. In L. S. 
Smith & P. J. B. Hancock (Eds.), Neural computation and psychology (pp. 19–33). Springer­Verlag.

Dienes, Z., & Berry, D. C. (1997). Implicit learning: Below the subjective threshold. Psychonomic Bulletin and Review, 4, 3–32.

Druhan, B., & Mathews, R. (1989). THYIOS: A classifier system model of implicit knowledge of artificial grammars. Proceedings of the 11th Annual Conference 
of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Dulany, D. E. (1991). Conscious representation and thought systems. In R. S. Wyer Jr. & T. K. Srull (Eds.). Advances in social cognition (Vol. 4). Hillsdale, NJ: 
Erlbaum.

Dulany, D. E. (1997). Consciousness in the explicit (deliberative) and implicit (evocative) senses. In J. Cohen and J. Schooler (Eds.), The problem of consciousness. 
Hillsdale, NJ: Erlbaum.

Dulany, D. E., Carlson, R. A., & Dewey, D. I. (1984). A case of syntactical learning and judgment: How conscious and how abstract? Journal of Experimental 
Psychology: General, 113, 541–555.

Eichenbaum, H., Mathews, P., & Cohen, N. J. (1989). Further studies of hippocampal representation during odor discrimination learning. Behavioral Neuroscience, 
103, 1207–1216.

Eichenbaum, H., Stewart, C., & Morris, R. G. M. (1990). Hippocampal representation in place learning. Journal of Neuroscience, 10, 3531–3542.

Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

Frensch, P. A., Buchner, A., & Lin, J. (1994). Implicit learning of unique and ambiguous serial transitions in the presence and absence of a distracter task. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 20, 567–584.

Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in short­term memory capacity on an indirect measure of serial learning. 
Memory and Cognition, 22, 95–110.

Glisky, E. L., Schacter, D. L., & Tulving, E. (1986). Computer learning by memory­impaired patients: Acquisition and retention of complex knowledge. 
Neuropsychologia, 24, 313–328.

Gomez, R. L., & Schvaneveldt, R. W. (1994). What is learned from artificial grammars? Transfer tests of simple association. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 20, 396–410.

Gordon, P. C., & Holyoak, K. J. (1983). Implicit learning and generalization of the "mere exposure" effect. Journal of Personality and Social Psychology, 45, 
492–500.

Grafton, S. T., Hazeltine, E., Ivry, R. (1995). Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience, 7, 497–510.

  
Page 508

Green, R., & Shanks, D. (1993). On the existence of independent explicit and implicit learning systems: An examination of some evidence. Memory & Cognition, 
21, 304–317.

Griffin, D. R. (1981). The question of animal awareness: Evolutionary continuity of mental experience. New York: Rockefeller University Press.

Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information. American Psychologist, 39, 1372–1388.

Hayes, N. A., & Broadbent, D. E. (1988). Two modes of learning for interactive tasks. Cognition, 28, 249–276.

Howard, D. V., & Howard, J. H. (1989). Age differences in learning serial patterns: Direct vs. indirect measures. Psychology and Aging, 4, 357–364.

Howard, D. V., & Howard, J. H. (1992). Adult age differences in the rate of learning serial patterns: Evidence form direct and indirect tests. Psychology and Aging, 
7, 232–241.

Howard, J. H., & Ballas, J. A. (1980). Syntactic and semantic factors in the classification of nonspeech transient patterns. Perception and Psychophysics, 28, 431–
439.

Hsiao, A., & Reber, A. S. (1996, November). The role of attention in the SRT task. Paper presented at the Meetings of the Psychonomic Society, Chicago.

Hsiao, A., & Reber, A. S. (1998). The role of attention in implicit sequence learning: Theories, findings, and methodological issues. In M. S. Stadler & P. A. Frensch 
(Eds.), Handbook of Implicit learning (pp. 471–494). Thousand Oaks, CA: Sage.

Jackson, G. M., Jackson, S. R., Harrison, J., Henderson, L., & Kennard, C. (1995). Serial reaction time learning and Parkinson's disease: Evidence for a procedural 
learning deficit. Neuropsychologia, 33, 577–593.

Jiménez, L., Méndez, G., & Cleeremans, A. (1996). Comparing direct and indirect measures of sequence learning. Journal of Experimental Psychology: 
Learning, Memory, and cognition, 22,

Johnson, S. P. (1996). Young infants' perception of object unity: Implications for development of attentional and cognitive skills. Manuscript submitted for 
publication.

Johnson, S. P., & Nañez, J. E. (1995). Young infants' perception of object unity in two­dimensional displays. Infant Behavior and Development, 18, 133–143.

Karmiloff­Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.

Kassin, S., & Reber, A. S. (1979). Locus of control and the learning of an artificial language. Journal of Research in Personality, 13, 111–118.

Kihlstrom, J. F. (1990). The psychological unconscious. In L. A. Pervin (Ed.), Handbook of Personality: Theory and research (pp. 445–464). New York: 
Guilford.

  
Page 509

Knopman, D. S. (1991). Unaware learning versus preserved learning in pharmacologic amnesia: Similarities and differences. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 17, 1017–1029.

Knopman, D. S., & Nissen, M. J. (1987). Implicit learning in patients with probable Alzheimer's disease. Neurology, 37, 784–788.

Knowlton, B. J., Ramus, S. J., & Squire, L. R. (1992). Intact artificial grammar learning in amnesia: Dissociation of abstract knowledge and memory for specific 
instances. Psychological Science, 3, 172–179.

Knowlton, B. J., & Squire, L. R. (1993).The learning of natural categories: parallel memory systems for item memory and category­level knowledge Science, 262, 
1747–1749.

Knowlton, B. J., & Squire, L. R. (1994). The information acquired during artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 20, 79–91.

Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar learning depends on implicit acquisition of both abstract and exemplar­specific information. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 22, 169–181.

Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification learning in amnesia. Learning & Memory, 1, 106–120.

Knowlton, B. J., Squire, L. R., Paulsen, J. S., Swerdlow, N., Swenson, M., & Butters, N. (1996). Dissociations within nondeclarative memory in Huntington's 
disease. Neuropsychology, 10, 538–548.

Kunst­Wilson, W. R., & Zajonc, R. B. (1980). Affective discrimination of stimuli that cannot be recognized. Science, 207, 557–558.

Kushner, M., Cleeremans, A., & Reber, A. S. (1991). Implicit detection of event interdependencies and a PDP model of the process. In Proceedings of the 
Thirteenth Annual Conference of the Cognitive Science Society (pp. 215–220). Hillsdale, NJ: Erlbaum.

Lewicki, P., Czyzewska, M., & Hoffman, H. (1987). Unconscious acquisition of complex procedural knowledge. Journal of Experimental Psychology. Learning, 
Memory, and Cognition, 13, 523–530.

Manza, L., & Bornstein, R. F. (1995). Affective discrimination and the implicit learning process. Consciousness and Cognition, 4, 399–409.

Manza, L., & Reber, A. S. (1997). Representation of tacit knowledge: Transfer across stimulus forms and modalities. In D. C. Berry (Ed.). How implicit is implicit 
learning? New York: Oxford University Press. (pp. 73–106).

Manza, L., & Skypala, D. (1996). Interdependence and implicit and explicit knowledge systems. Unpublished manuscript.

Manza, L., Zizak, D., & Reber, A. S. (1998). Emotional preference tasks and the implicit learning process. In M. S. Stadler & P.A. Frensch (Eds.), Handbook of 
Implicit learning. Thousand Oaks, CA: Sage. (pp. 201–222).

  
Page 510

Masters, R. S. W. (1992). Knowledge, knerves, and know­how: The role of explicit versus implicit knowledge in the breakdown of a complex motor skill under 
pressure. British Journal of Psychology, 83, 343–358.

Mathews, R. C., Buss, R. R., Stanley, W. B., Blanchard­Fields, F., Cho, J.­R., & Druhan, B. (1989). The role of implicit and explicit processes in learning from 
examples: A synergistic effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1083–1100.

Mathews, R. C., & Roussel, L. G. (1997). Abstractness of implicit knowledge: A cognitive evolutionary perspective (pp. 13–47). In D. C. Berry (Ed.), How implicit 
is implicit learning? NY: Oxford University Press.

Mayberry, M., Taylor, M., & O'Brien­Malone, A. (1995). Implicit learning: Sensitive to age but not IQ. Australian Journal of Psychology, 47, 8–17.

McGeorge, P., Crawford, J. R., & Kelly, S. W. (1997). The relationships between psychometric intelligence and learning in an explicit and implicit task. Journal of 
Experimental Psychology: Learning, Memory and Cognition, 23, 239–245.

Millward, R. B., & Reber, A. S. (1972). Probability learning: Contingent­event sequences with lags. American Journal of Psychology, 85, 81–98.

Moon, C., & Fifer, W. P. (1990). Syllables as signals for 2­day­old infants. Infant Behavior and Development, 13, 377–390.

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.

Packard, M. G., Hirsch, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory 
systems. Journal of Neuroscience, 9, 1465–1472.

Parkin, A. J., & Streete, S. (1988). Implicit and explicit memory in young children and adults. British Journal of Psychology, 79, 361–369.

Pascual­Leone, A., Grafman, J., Clark, K. Stewart, M., Massaquoi, S., Lou, J.­S., & Hallett, M. (1993). Procedural learning in Parkinson's disease and cerebellar 
degeneration. Annals of Neurology, 34, 594–602.

Perruchet, P. (1994). Defining the units of a synthetic language: Comments on Vokey and Brooks (1992). Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 20, 223–228.

Perruchet, P., & Amorim, M. (1992). Conscious knowledge and changes in performance in sequence learning: Evidence against dissociation. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 18, 785–800.

Perruchet, P., Gallego, J., & Savy, I. (1990). A critical reappraisal of the evidence for unconscious abstraction of deterministic rules in complex experimental 
situations. Cognitive Psychology, 22, 493–516.

Perruchet, P., & Pacteau, C. (1990). Synthetic grammar learning: Implicit rule abstraction or explicit fragmentary knowledge? Journal of Experimental Psychology: 
General, 119, 264–275.

  
Page 511

Perruchet, P., & Pacteau, C. (1991). Implicit acquisition of abstract knowledge about artificial grammars: Some methodological and conceptual issues. Journal of 
Experimental Psychology: General, 120, 112–116.

Pew, R. W. (1974). Levels of analysis in motor control. Brain Research, 71, 393–400.

Piaget, J. (1976). The grasp of consciousness: Action and concept in the young child. Cambridge, MA: Harvard University Press. (Original work published 
1974.)

Piaget, J. (1977). The origins of intelligence in the child. London: Penguin. (Original work published 1936.).

Polanyi, M. (1966). The tacit dimension. Garden City, NJ: Doubleday.

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353–363.

Rathus, J., Reber, A. S., Manza, L., & Kushner, M. (1994). Implicit and explicit learning: Differential effects of affective states. Perceptual and Motor Skills, 79, 
163–184.

Rauch, S. L., Savage, C. R., Brown, H. D., Curran, T., Alpert, N. M., Kendrick, A., Fischman, A. J., & Kosslyn, S. M. (1995). A PET investigation of implicit and 
explicit sequence learning. Human Brain Mapping, 3, 271–286.

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 77, 317–327.

Reber, A. S. (1969). Transfer of syntactic structure in synthetic languages. Journal of Experimental Psychology, 81, 115–119.

Reber, A. S. (1976). Implicit learning of synthetic languages: The role of instructional set. Journal of Experimental Psychology: Human Learning and Memory, 2, 
88–94.

Reber, A. S. (1992). The cognitive unconscious: An evolutionary perspective. Consciousness and Cognition, 1, 93–133.

Reber, A. S. (1993a). Personal knowledge and the cognitive unconscious. Polanyiana, 3, 97–115.

Reber, A. S. (1993b). Implicit learning and tacit knowledge: An essay on the cognitive unconscious. New York: Oxford University Press.

Reber, A. S. (1997). How to differentiate implicit from explicit learning. In J. Cohen and J. Schooler (Eds.), The problem of consciousness. Hillsdale, NJ: Erlbaum.

Reber, A. S., & Allen, R. (1978). Analogy and abstraction strategies in synthetic grammar learning: A functionalist interpretation. Cognition, 6, 189–221.

Reber, A. S., & Lewis, S. (1997). Toward a theory of implicit learning: The analysis of the form and structure of a body of tacit knowledge. Cognition, 5, 333–361.

Reber, A. S., & Millward, R. B. (1968). Event observation in probability learning. Journal of Experimental Psychology, 77, 317–327.

  
Page 512

Reber, A. S., Walkenfeld, F. F., & Hernstadt, R. (1991). Implicit and explicit learning: Individual differences and IQ. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 17, 888–896.

Reber, P. J., Knowlton, B. J., & Squire, L. R. (1996). Dissociable properties of memory systems: Differences in the flexibility of declarative and nondeclarative 
knowledge. Behavioral Neuroscience, 110, 861–871.

Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning & Memory, 1, 217–229.

Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect tests: Determining what is learned about sequence structure. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 20, 585–594.

Rovee­Collier, C. (1990). The "memory system" of prelinguistic infants. Annals of the New York Academy of Sciences, 608, 517–542.

Sanderson, P. M. (1989). Verbalizable knowledge and skilled task performance: Association, dissociation, and mental models. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 15, 729–747.

Schacter, D. L., Chiu, C.­Y. P., & Ochsner, K. N. (1993). Implicit memory: A selective review. Annual Review of Neuroscience, 16, 159–182.

Schacter, D. L., & Graf, P. (1986). Preserved memory in amnesic patients: Perspectives from research on direct priming. Journal of Clinical and Experimental 
Neuropsychology, 8, 727–743.

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11–21.

Seger, C. A. (1994). Implicit learning. Psychological Bulletin, 115, 163–196.

Servan­Schreiber, E., & Anderson, J. R. (1990). Learning artificial grammars with competitive chunking. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 16, 592–608.

Shanks, D. R., Johnstone, T., & Staggs, L. (1997). Abstraction processes in artificial grammar learning. Quarterly Journal of Experimental Psychology, 50A, 
216–252.

Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17, 367–448.

Shimamura, A. P. (1993). Neuropsychological analyses of implicit memory: History, methodology and theoretical interpretations. In P. Graf and M. E. J. Masson 
(Eds.), Implicit memory: New directions in cognition, development, and neuropsychology. (pp. 265–285) Hillsdale, NJ: Earlbaum.

Squire, L. R. (1992). Memory and the hippocampus: A synthesis of findings with rats, monkeys and humans. Psychological Review, 99, 195–231.

Squire, L. R., Ojeman, J. G., Miezin, F. M., Peterson, S. E., Videen, T. O., & Raichle, M. E. (1992). Activation of the hippocampus in normal humans: A functional 
anatomical study of memory. Proceedings of the National Academy of Science, 89, 1837–1841.

  
Page 513

Stanley, W. B., Mathews, R. C., Buss, R. R., & Kotler­Cope, S. (1989). Insight without awareness: On the interaction of verbalization, instruction and practice in a 
simulated process control task. Quarterly Journal of Experimental Psychology, 41, 553–578.

Thompson, R. F. (1990). Neural mechanisms of classical conditioning in mammals. Philosophical Transactions of the Royal Society of London: Biology, 329, 
161–170.

Ungerleider, L. G. (1995). Functional brain imaging studies of cortical mechanisms for memory Science, 270, 769–775.

Vokey, J. R., & Brooks, L. R. (1992). Salience of item knowledge in learning artificial grammars. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 18, 328–344.

Whittlesea, B. W. A., & Dorken, M. D. (1993). Incidentally, things in general are particularly determined: An episodic­processing account of implicit learning. 
Journal of Experimental Psychology: General, 122, 227–248.

Willingham, D. B., Greeley, T., & Bardone, A. M. (1993). Dissociation in a serial response time task using a recognition measure: Comment on Perruchet and 
Amorim (1992). Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1424–1430.

Willingham, D. B., & Koroshetz, W. J. (1993). Evidence for dissociable motor skills in Huntington's disease patients. Psychobiology, 21, 173–182.

Winter, B. (1995). Implicit and explicit cognitive functioning in hippocampal amnesia. Unpublished doctoral, City University of New York.

Wulf, G., Lee, T. D., & Schmidt, R. A. (1994). Reducing knowledge of results about relative versus absolute timing: Differential effects on learning. Journal of Motor 
Behavior, 26, 362–369.

Wulf, G., & Schmidt, R. A. (1997). Variability of practice and implicit motor learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 
23, 987–1006.

Zizak, D., & Reber, A. S. (1994, October). Implicit preferences for novel stimuli. Paper presented at the meeting of Association for Consumer Research, Boston.

  
Page 515

15
Multi­Store versus Dynamic Models of Temporary Storage in Memory
Randall W. Engle and Natalie Oransky

The concept of short­term memory as a distinct type of memory has now become part of our cultural common knowledge. Evidence the Tom. Hanks character Mr. 
Short­Term Memory on the NBC television show Saturday Night Live. Mr. STM has good retention of very recent events, but that information is quickly lost and he 
shows no evidence of long­term retention. However, there has been strong debate throughout the entire era of modern memory research about whether memory for 
recent events and long­term retention obey different principles. Proponents of multiple memory stores suggest that different memory structures yield distinct memory 
traces. It seems intuitive that we have several types of memory (e.g., memories that are short lived and others that last for a very long time), but some theorists argue 
that it is not necessary to posit separate structures to explain different memory traces. According to this unitary approach to memory, differences between memories 
occur not because they are stored in separate systems, but because of the different processes and modes of representation used to perceive or think about events 
when they occur. Although the issue of whether or not memory is composed of stages or components is prevalent throughout the memory literature (e.g., implicit and 
explicit memory; see Roediger, 1990, and Schacter, 1987); this chapter will focus on the contribution of these opposing views to the development of the construct of 
short­term memory and its younger relative, working memory.

In this chapter, we will present a rather cursory history of the ideas about short­term memory along with some of the research findings that were presented to support 
or refute those ideas. The literature on short­term memory was an important part of the experimental psychology of

  
Page 516

human memory in the 1960s and early '70s. Early research focused on the nature of forgetting and whether forgetting from short­term memory is a result of decay, 
displacement, or some other mechanism different from those thought to mediate forgetting from long­term memory. One of the stronger proposals about short­term 
memory from the earliest theories (e.g., Hebb, 1949) was that the strength of a trace in long­term memory is a function of how long the information is retained in short­
term memory. We will see in a discussion of transfer of information to long­term memory that that proposal is quite wrong. Early research also suggested that short­
term memory is characterized by a speech­based code, whereas long­term memory is characterized by meaning­based codes. That idea also is likely wrong. These 
concerns gave rise to a disenchantment with the concept of short­term memory. But the seminal paper by Baddeley and Hitch (1974), along with new ideas in neo­
Piagetian approaches to developmental psychology (Pascal­Leone, 1970) and brain­based approaches to memory, led to a renascence that makes working memory 
one of the core topics in cognitive and developmental psychology today.

Multi­Store Model

The information­processing model proposed by Atkinson and Shiffrin (1968) represents a prototypical multi­store approach to memory. This model distinguished 
between sensory, short­term, and long­term stores, and it suggested that information is processed through these structurally and functionally independent stages. At the 
completion of each stage, products are copied to the next stage for further processing. Atkinson and Shiffrin's model combined the attentional system and the 
temporary storage component of Broadbent's (1958) seminal model into one limited capacity, short­term storage system. Their short­term store (STS) has a limited 
number of slots for holding information, 1  and this information decays rapidly if it is not maintained by control processes such as rehearsal. Support for multi­store 
models came from data showing differences between the characteristics of the proposed memory systems. For example, Atkinson and Shiffrin characterized STS as 
having a limited capacity, using primarily verbal codes, and losing information due to

  
Page 517

decay. In contrast, long­term store (LTS) was characterized as having a large capacity, primarily semantic coding, and losing information via interference.

Forgetting

It is difficult to understand the impetus for much of the early work on STS unless you understand that many of the putative characteristics of short­term memory arise 
from a theory about the physiology of the memory trace put forth by Hebb (1949). Hebb proposed that if two events occur in close proximity to one another, the 
neural circuits corresponding to those events are active at the same time, and new connections, called reverberatory traces, are formed between those two circuits. If 
given enough uninterrupted time, this new connection will consolidate and become a relatively permanent structural trace. Other events can, however, prevent the 
consolidation of the new trace so that the connection is lost, or more appropriately, never formed. Hebb envisioned that reverberatory traces and consolidated 
structural traces are qualitatively different states. The reverberatory trace is time limited and capable of displacement by new events. Neither of these traits are true of 
the long­term structural traces. There was relatively little evidence to support Hebb's ideas at the time and his book was rarely cited in the short­term memory 
literature that followed, but the influence of those ideas is obvious. 2

Following Hebb's theory, it is not surprising that the dominant issue in early research on the STS focused on forgetting. Proponents of multi­store approaches 
demonstrated differences in the mechanisms of information loss from STS and LTS. They suggested that information loss from STS results from one of two types of 
limitations: temporal persistence and capacity limitations. Some theorists argued that there are limits in how long information could be held in STS Brown, 1958; 
Conrad, 1957; Hebb, 1949; Peterson & Peterson, 1959). That is, if information is not rehearsed, it decays, or fades. Others suggested that there is a limit in the 
number of items that can be held in STS at a given moment and that information is lost because new information replaces or bumps old information out of STS (e.g., 
James, 1890; Miller, 1956; Waugh & Norman, 1965). Both of these mechanisms of forgetting, time limits and capacity limits, were distinguished from mechanisms 
proposed to account for

  
Page 518

long­term forgetting. More specifically, most researchers agreed that information in LTS is long lasting and is lost temporarily through proactive or retroactive 
interference affecting retrieval rather than through decay or replacement (McGeoch, 1932; Melton & Irwin, 1940; Postman, Stark, Fraser, 1968).

Brown (1958) and Peterson and Peterson (1959) argued for decay from STS based on the findings that when subjects are prevented from rehearsing, recall quickly 
declines over the delay. In the Peterson and Peterson experiments, subjects saw trigrams and tried to recall them after a delay period filled with a rehearsal­
preventative task requiring backward counting from a number. Recall accuracy of the trigrams dropped dramatically over filled delays of 18 seconds, suggesting that 
without rehearsal, information in STS is short lived and relatively transient and cannot be transferred to LTS. The rehearsal­preventative task involved numbers, so 
according to traditional interference theory (McGeoch, 1932), there should not have been material­specific interference for the letters or words in such a task. Further, 
Peterson and Peterson argued that proactive interference across trials did not occur in their short­term memory task. That is, early trials did not block the retrieval of 
items on later trials. The rate of forgetting was the same for the first block of 10 trials as for those blocks tested later. However, Keppel and Underwood (1962) 
showed that the build­up of proactive interference in the Peterson and Peterson task was rapid and quickly reached asymptote within the first 2 to 3 trials of the 
experiment. Peterson and Peterson had masked this interference by looking only at blocks of 10 trials. These and other results showing interference as a factor in 
forgetting in short­term memory tasks (e.g., Hebb, 1961; Murdock, 1961) led Melton (1963) to suggest that all memory traces, whether formed 5 seconds ago or 5 
years ago, share the same characteristics: namely, they are stable, permanent traces that are susceptible to interference from other traces during retrieval. Speaking to 
Hebb's reverberatory trace idea, Melton argued for ''the fixation of a structural trace by a single repetition of an event without the benefit of autonomous consolidation 
processes" (p. 19).

Waugh and Norman (1965) used a digit probe task to examine both decay and interference as factors in the loss of information from STS. Subjects heard digits 
presented at either a one­per­second or a four­per­

  
Page 519

second rate. At the end of a series of digits, subjects received a probe digit and recalled the digit that had occurred just prior to the probe in the digit series. The 
number of items intervening between the probe digit and the end of the list was manipulated. Waugh and Norman reasoned that if decay causes forgetting, then recall 
in the one­item­per­second condition should be worse than recall in the four­items­per­second condition because more time will have elapsed between the 
presentation of the target and recall. On the other hand, if forgetting is the result of capacity limits, recall of the target digit should be a function of the number of 
intervening items regardless of presentation rate. Waugh and Norman showed that recall is affected by the number of intervening items and not presentation rate, 
suggesting that displacement is the critical factor in STS forgetting. Waugh and Norman proposed that STS holds a limited amount of information and once the limit is 
reached, new information displaces old information, causing old information to be permanently lost. In addition, Waugh and Norman showed that when reinterpreted 
within their framework, data from other short­term memory tasks (e.g., immediate free recall) support a capacity/displacement interpretation of STS forgetting. This 
view is consistent with Miller's (1956) conception of STS as containing a fixed number of 7 ± 2 slots or bins for holding information. Thus, Waugh and Norman 
argued that memory traces in STS are transient because of capacity limitations. However, these traces can be maintained indefinitely in STS and copied to LTS 
through rehearsal.

Perhaps the most careful analysis of this issue was in two papers by Reitman (1971, 1974). She painstakingly prevented rehearsal over the 15­second filled delay, 
avoided a ceiling effect for the initial trials she used a task similar to that used by Brown (1958) and Peterson and Peterson (1959) in which each trial presented items 
for recall followed by a delay before recall, 3  and manipulated the nature of the rehearsal­preventative task, with one task being a tone detection task and the other 
being a syllable detection task. In the nonverbal but attention­demanding tone detection task, there was a 12% decline in recall, which Reitman attributed to decay. 
However, the syllable detection task led to a 56% loss in recall. She argued that the predominant cause of forgetting from short­term memory is interference through 
displacement but that there is

  
Page 520

evidence also for decay. Thus, there is evidence favoring both time limits and capacity limits as mechanisms for forgetting in STS.

More recent findings also suggest a role for a time­based loss of information. Baddeley, Thomson, and Buchanan (1975) showed that the number of words recalled in 
a task in which a short list of words list presented for recall in correct serial order depended on the spoken duration of the words in the list, suggesting that time limits 
are an important component of STS. On the other hand, Glanzer and Razel (1974) found that subjects recalled approximately the same number of items in a STM 
task regardless of the length of the items (words vs idioms), supporting STS capacity limits. One reason for these contradictory findings may be the use of different 
tasks. Baddeley, Thomson, et al. (1975) used serial recall of short lists of words that were from a small pool of items sampled with replacement. Glanzer and Razel 
used the immediate free­recall task in which subjects recalled longer lists of words selected without replacement, so words were never repeated across lists. Time 
limits may be most important when rote rehearsal processes are used to maintain information: However, when such strategies are less useful, a limitation based on the 
number of items being represented may be more important.

Transfer of Information to Long­Term Store

In multi­store models, one of the primary functions of STS is to hold information until it can be represented in a more permanent state. Because rehearsal was assumed 
to be the critical mechanism for this transfer, many researchers attempted to distinguish between STS and LTS by examining the relationship between rehearsal and 
long­term retention. One line of evidence suggesting that the formation of permanent memory traces depends on rehearsal of information in STS came from the U­
shaped immediate free­recall curve (Glanzer & Cunitz, 1966). Typically, recall of the first few items from a list is very high compared to items that occur in the middle 
of the list. This finding is known as the primacy effect. Glanzer and Cunitz believed that primacy reflects the effect of rehearsal, and studies show that initial items do 
receive more rehearsal than items from other positions in the list (Rundus & Atkinson, 1970). Recall of the last few items from a list is also very high, even though 
those items do not receive many rehearsals.

  
Page 521

Glanzer and Cunitz argued that this recency effect occurs because the last items have not yet decayed from STS and, therefore, are easily retrieved. In an attempt to 
show that the recency effect reflects short­term storage, they manipulated the delay between the presentation of the list and the recall of list items. During the delay, 
subjects counted aloud from a target number until they received a cue indicating that they should recall the items. As expected, this delay reduced the recency portion 
of the curve and left primacy unaffected. As we will see, however, performance on the recency portion of the immediate free­recall curve 4  does not seem to have any 
relationship to other measures of short­term memory, so it may not be a valid reflection of short­term memory.

Coding

Another distinction between STS and LTS, made by structural theorists, involved the type of coding used in each store. Early evidence suggested that information in 
STS is coded phonologically,5  whereas information in LTS is coded semantically. Again, such a dissociation between the two systems supports the existence of two 
distinct memory structures. For example, in a memory span task, subjects recalled fewer letters when lists were made up of phonologically similar letters (e.g., C, B, 
G, V, T, P) as compared with lists of phonologically dissimilar letters (e.g., F, J, M, R, L, Y; Conrad & Hull, 1964). Errors made on similar lists are typically 
phonological confusions (e.g., responding with B rather that D), suggesting that items are coded by their sound even if they are presented visually. Although the 
phonological similarity effect supports the use of phonological codes in STS, it does not address whether or not semantic, or any other types of coding, can also be 
used in STS. Baddeley (1966) presented similar and dissimilar lists to subjects for serial recall, but in his study some lists included either phonologically similar or 
dissimilar words, whereas others included either semantically similar or dissimilar words. Phonological similarity decreased recall performance, but semantic similarity 
only slightly affected recall performance.

Kintsch and Buschke (1969) used a serial probe task similar to the one used by Waugh and Norman (1965). They found that phonological similarity affected recall for 
targets at the end of the list (putatively items in STS), but not at the beginning of the list (items in LTS). Further,

  
Page 522

semantic similarity reduced recall of targets at the beginning of the list, but not at the end of the list. If the recency portion of the list reflects information in STS and the 
primacy portion reflects information that has been stored in LTS, as already described (Glanzer and Cunitz, 1966), then finding phonemic similarity effects at the end 
of the list and semantic similarity effects at the beginning of the list supports differential coding and the dual­store approach. That does not mean that all temporary 
traces, however, are necessarily coded in the same format. It is likely that different tasks used to study human memory encourage or force the use of different codes to 
represent the information.

Neuropsychological Evidence

In addition to the behavioral data, neuropsychological case studies provided converging evidence for multi­store models. The well­known case of HM suggested that 
different brain areas may underlie the functioning of proposed memory stores, and thus it supported a multi­store system (Milner, 1966). 6  HM showed normal 
performance on short­term memory tasks and good recall of events that occurred prior to his surgery. The deficit was clearly in the storage of information in the long­
term store. Shallice and Warrington (1970) presented the case of a subject who appeared to be the complement of HM. Their patient showed impaired performance 
on short­term memory tasks and normal performance on long­term memory tasks. Baddeley and Warrington (1970) compared patients with Korsakoff's syndrome 
(amnesia resulting from chronic alcoholism) to normal subjects on a variety of short­term and long­term memory tasks. The amnesics showed normal forgetting on the 
Brown­Peterson task and normal recency in free recall but reduced primacy as compared to control subjects.7  Together, these results suggested that two separate 
memory structures, in fact, exist and that performance on short and long­term memory tasks are mediated by different brain areas.

There is now strong evidence that the hippocampus is involved in the temporary storage of information and that bilateral removal of the hippocampus, as in HM, leads 
to reduced ability to recall information presented more than a few minutes earlier (Kolb & Whishaw, 1990). This reduced ability to store information so that it can be 
easily retrieved later appears to be specific to what some theorists refer to as explicit memory.

  
Page 523

HM, for example, learned the backward mirror­tracing task and retained the ability from day to day. Thus, although the research on the hippocampus supports a 
multi­store approach, it also suggests that the ideas hold for only certain kinds of representations or types of retention test.

Problems with the Multi­Store Model

Support for multiple memory structures based on both behavioral and neuropsychological dissociations seemed fairly strong; STS and LTS appeared to have distinctly 
different characteristics. However, a great deal of criticism surrounds research that distinguished the characteristics of short­and long­term memory as well as some of 
the basic features of the multi­store model (cf., Crowder, 1983, 1993). Crowder argued that in postulating distinct memory stores, multiple­memory approaches 
typically confounds codes and processes. 8  More specifically, he suggested that the distinction between STS and LTS may simply be a distinction between phonetic 
coding and semantic coding. These codes may be used in different tasks and may affect characteristics of retention, but it is not necessary to hypothesize that different 
processing systems are involved. In support of this idea, Crowder suggested that characteristics that appear to be unique to STS can be accounted for within a unitary 
memory framework. For example, as previously discussed, forgetting in the Brown­Peterson task may depend on interference and not on a decay mechanism (Keppel 
& Underwood, 1962). Similarly, the recency effect found for immediate free recall is also found in long­term memory tasks (Bjork & Whitten, 1974), as is the 
phonemic similarity effect (Gregg & Gardiner, 1984).

An elaboration on Crowder's point is that much of the early work on STS and, indeed, more recent work on the articulatory loop, made use of a procedure in which 
subjects were presented a short list of words or letters for serial recall. Further, the list items were generally selected from a small pool of items with replacement from 
list to list. It is likely that procedures such as the immediate fret: recall of 12­ to 15­item lists in which the items are never repeated gives rise to very different coding 
and processing. Thus, it is difficult to know how generalizable results are from one task to another, even though both are putative short­term memory tasks.9  We will 
further discuss measurement aspects of short­term memory in a later section.

  
Page 524

Another problem with the multi­store model is the assumption of serial processing through the different stages. First, serial ordering from STS to LTS does not make 
logical sense. Information is supposed to be held in STS before making contact with LTS, but how can that information be identified without relying on LTS? If you 
present me with the word dog as one item in a list to recall, I certainly recognize the word and have associations with its meaning soon after I see or hear it. Therefore, 
it must have led to access of some trace in the LTS prior to maintenance in STS. In addition, Shallice and Warrington (1970) pointed out that case studies of patients 
who have STS deficits without LTS impairments are inconsistent with the serial processing through STS and then LTS. If these processing stages are serial, then 
deficits in STS should also lead to deficits in LTS because long­term storage is supposed to be dependent on processing information through STS. To circumvent this 
problem, Shallice and Warrington suggested that information makes contact with STS and LTS in parallel. Most modern theories of short­ and long­term memory 
have eliminated the assumption of serial processing through different stages and assume that STS is a more highly activated subset of knowledge units in LTS.

Further, it is important to think about what really is being learned in a short­term memory task. What is retained in STS is not my knowledge about dog but that dog 
was on the list I just saw or heard, that it was near the middle of the list, that it followed the word table, and that it, in turn, was followed by the word aardvark. That 
would be the knowledge transferred to LTS or learned through appropriate coding or rehearsal. Correspondingly, that is the knowledge that would be lost either 
through decay, or interference according to more recent multi­store theories.

Finally, one of the biggest concerns about the multi­store model involved the assertion that strength of the representation in long­term memory is a function of the 
amount of rehearsal in STS. Rundus and Atkinson (1970) did show that immediate recall is a function of the number of rehearsals given to an item. However, other 
studies showed that delayed recall of information is not a function of the amount of simple rote rehearsal. For example, Tulving (1966) found that recall of a list of 
words was not enhanced when subjects repeated the list aloud six times. Similarly, the results of a study by Craik and Watkins (1973) argued against

  
Page 525

the idea that time spent in STS determines the transfer of information to LTS. Subjects received a target letter and then heard a list of words. They were to retain in 
memory the first word that began with the target letter until another word beginning with that letter occurred. At this point, subjects could drop the first word and hold 
the second word in memory. The task continued in this manner until the end of the list, when subjects reported the last word in the list that began with the target letter. 
By manipulating the number of words between target words, Craik and Watkins effectively manipulated the amount of time a given word spent in STS. At the end of 
the experiment, subjects were asked to recall all of the critical words from the experiment. Craik and Watkins found no relationship between time spent in STS and 
the probability of long­term recall. Because the time spent in STS should reflect the amount of rehearsal an item receives, these studies suggested that rehearsal alone 
is not sufficient to account for the transfer of information to LTS. Problems with serial processing, rehearsal as a mechanism of information transfer, and questions 
about the distinctiveness of the two stores all contributed to the decline of the popularity of structural models of memory.

In response to many of the problems with multi­store approaches, Craik and Lockhart (1972) suggested that apparent differences in STS and LTS reflect differences 
in the processes used to analyze information. For example, differences may result because of differential processing demands for tasks used to examine STS and LTS. 
According to this approach, the time spent in STS is not the factor that determines the strength of the memory trace. Rather, the level of processing may be the 
critical determinant of long­term storage, with "deeper" processing yielding stronger traces. Inconsistent results found in studies examining the relationship between 
rehearsal and transfer to LTS, then, may be the result of different types of rehearsal processes.

Although Craik and Lockhart (1972) did not propose the existence of multiple memory systems, they did distinguish between information that is currently in 
consciousness and that which is not. They assumed that a limited capacity central processor (i.e., controlled attention), which operates to provide the different levels of 
processing, is responsible for keeping information in consciousness and that information which is in consciousness is easily and accurately retrieved. When attention is

  
Page 526

directed away from information currently in consciousness, that information decays and is replaced by new information. Craik and Jacoby (1975) pointed out that the 
Craik and Lockhart view is not unlike the STS proposed by many multiple memory theorists (e.g., Atkinson & Shiffrin, 1968; Norman, 1969). The difference 
between the two approaches is that Craik and Lockhart did not believe that the properties of stored information depend on the structure in which information is held; 
nor did they believe that information is transferred between different stores. Consciousness, or primary memory, as Craik and Lockhart prefer to call it, is not a 
structure; rather, it is the activation of processes used to analyze information. Limitations in the amount of information that can be "in" primary memory are due to 
attentional processing limitations, not structural limitations. As you will see, this view is similar to the concept of the central executive proposed by Baddeley and Hitch 
(1974) and the idea of working memory capacity proposed by Turner and Engle (1989) and Just and Carpenter (1992).

Working Memory

A number of intellectual influences served to move thought about short­term memory to what is now called working memory. One of these influences was the 
resurgence of Piagetian constructs relating temporary storage and controlled attention in the developmental psychology literature. These are most clearly seen in the 
work by Pascual­Leone (1970) and Case (1985), who proposed the notion of M­space, which is similar to what later would be called working memory.

In the experimental psychology literature, Baddeley and Hitch (1974) proposed a flexible and more complex temporary storage system that avoids some of the 
weaknesses of the multi­store model. A major liability for the multi­store model is evidence that neuropsychological patients with STS deficits do not have impaired 
performance on complex cognitive tasks (e.g., Shallice and Warrington, 1970; Warrington, Logue, & Pratt, 1971; Warrington & Weiskrantz, 1972). This finding 
posed a problem for the multi­store model because STS is viewed as the limiting factor in the information­processing system, and so STS impairments should lead to 
impairments in other types of cognitive processing. In a similar vein,

  
Page 527

if STS is the bottleneck in processing, then processing on a task that depends on STS should be less efficient when STS is occupied with another task. Baddeley and 
Hitch examined this hypothesis in a series of studies that manipulated memory load during complex task performance. They showed that although performance on 
reasoning and comprehension tasks was not affected by a small memory load of two to three digits, performance on these tasks did decrease with a load of six items. 
These results led Baddeley and Hitch to propose a system of working memory (WM) consisting of three components (see also, Baddeley, 1986, 1996; Baddeley & 
Hitch, 1994). 10 Two of these components, the articulatory loop and the visual­spatial sketchpad, are "slave" systems, and the other is a central executive. The 
slave systems are largely responsible for the maintenance of acoustic and visual information, whereas the central executive is responsible for control of information 
processing. Baddeley and Hitch argued that WM is a unitary system limited in both storage and processing and that there is some flexibility in the allocation of attention 
to the components. This flexibility accounts for the results of their studies, which found that articulatory suppression and concurrent memory load interfere with the 
performance of learning and reasoning tasks, more or less independently, depending on the extent to which the task requires the use of phonological information and 
the extent to which it requires controlled attention for processing. Similarly, their model can account for neuropsychological case studies of patients who have STS 
deficits but who do not have serious deficits on many complex cognitive skills, by assuming that these individuals have damage to one of the slave systems rather than 
to the central executive.

Slave Systems

Most of Baddeley's work has focused on the two slave systems, with the articulatory loop receiving more attention than the sketchpad. As with the early work on 
STS, examinations of WM first focused on issues of coding, rehearsal, and loss of information. Thus, like early models of STS, the two slave systems represent the 
more rigid, structural aspects of Baddeley and Hitch's (1974) working memory model.

The articulatory loop most closely resembles earlier conceptions of STS because it consists of a limited duration, speech­based representation and

  
Page 528

is dependent on articulatory rehearsal for the maintenance of information. As previously described, reduced recall with phonemically similar lists suggests that 
information held in STS may be coded phonologically (Conrad, 1964; Conrad & Hull, 1964). Baddeley and Hitch suggested that because the articulatory loop is 
responsible for the temporary storage of verbal information, it is the locus of phonemic similarity effects. Further evidence for speech coding and time limits on the 
articulatory loop comes from studies showing that word length affects recall. That is, recall in a short­term memory task depends on the time it takes to articulate those 
words; fewer items from lists of long words are recalled than from lists of short words (e.g., Baddeley, Thomson, et al., 1975; Case, Kurland, & Goldberg, 1982; 
Ellis & Hennelley, 1980; see also, Cowan et al. 1992; Cowan, Keller, et al. 1994; Cowan, Wood, & Bourne, 1994). Further, the importance of articulatory rehearsal 
for the maintenance of verbal information is demonstrated by the fact that the phonemic similarity effect and word length effect are eliminated under conditions that 
prevent rehearsal. For example, both effects are eliminated by articulatory suppression, a procedure in which rehearsal is prevented by having subjects vocalize a 
sequence (e.g., saying ''blah, blah, blah") while completing an immediate recall task. The elimination of the effects by articulatory suppression suggests that these effects 
are the result of articulatory rehearsal (Baddeley, Lewis, & Vallar, 1984; Baddeley, Thomson, et al. 1975; Levy, 1971).

If the phonological loop is to be considered a viable component within the working memory system, it must have functional significance beyond its role in simple short­
term memory tasks. Because the phonological loop stores verbal information, it is not surprising that researchers have considered its role in both language 
comprehension and language acquisition. Results concerning the relationship between the phonological loop and language comprehension have been mixed (Baddeley 
& Wilson, 1985; Butterworth, Campbell, & Howard, 1986; Caplan & Waters, 1992; Wilson & Baddeley, 1993). However, developmental and neuropsychological 
studies suggest that the phonological loop may be an important mechanism in language acquisition (Baddeley, Papagno, & Vallar, 1988; Gathercole & Baddeley, 
1989, 1990; Papagno, Valentine, & Baddeley, 1991; Papagno & Vallar, 1992).

  
Page 529

The other slave system proposed by Baddeley and Hitch (1974), the visuospatial sketchpad, has received far less attention than the phonological loop. The sketchpad 
functions as a temporary store for holding and manipulating visual and spatial information. Current controversy over the visuospatial sketchpad centers on whether or 
not there are two interactive visual systems, one that holds visual patterns and the other of which represents spatial information. Both behavioral and 
neuropsychological dissociations support the dissociation of the sketchpad into two interactive subsystems (Baddeley Grant, Wright, Thomson, 1975; Baddeley & 
Lieberman, 1980; Farah, 1984; Farah, Hammond, Levine, & Calvanio, 1988; Hanley, Young, & Pearson, 1991; Logie, 1986).

Central Executive

The central executive component of Baddeley and Hitch's (1974) model is the least specified of the subsystems. It was conceived of as a limited capacity processor 
that is flexibly allocated to processing and/or storage functions. Baddeley (1986, 1996) suggested that the central executive is similar to the concept of supervisory 
attentional system (SAS) proposed by Norman and Shallice (1986). According to Norman and Shallice, actions are carried out via the activation of schemas. Given 
the appropriate goals and stimulus context, a schema will be automatically activated and initiate a sequence of actions. It is possible that several schemas may be 
carried out simultaneously (e.g., walking and talking at the same time), but sometimes schemas will conflict with one another or will need monitoring to catch errors. 
Norman and Shallice proposed two levels of control to activate schemas and resolve conflicts. First, the current goals can lead to the enhanced activation of some 
schemas and inhibited activation of others, a step that serves to select the most appropriate, or highly activated, schema for action. This complementary process is a 
result of automatic spreading activation and thus does not require attention unless the procedure is error prone and must be monitored. Second, a limited­capacity 
attentional control system, the SAS, mediates the scheduling of contending schemas. The SAS is necessary when activated schemas are incompatible with current 
goals.

Baddeley (1986) suggested that the SAS could account for the results of Baddeley and Hitch's (1974) studies, which showed that some primary

  
Page 530

tasks were affected by concurrent load while others were not. In several studies Baddeley and Hitch found that concurrent digit load did not affect retrieval accuracy, 
but did affect retrieval latency. Baddeley argued that neither retrieval nor maintenance of the digit load involves heavy demands on the SAS, so both tasks can be 
performed accurately. In contrast, retrieval latency was affected by load because performance on the two tasks simultaneously requires more time­consuming 
contention scheduling than when one task is performed alone. Another set of studies showed that generation of exemplars from a category (e.g., animals) was affected 
by load. Baddeley reasoned that there are no schemas that can be automatically activated for category generation, so this task relies heavy on the SAS.

Baddeley's reliance on the Norman and Shallice (1986) model to further specify the central executive makes it apparent that the central executive is really a method for 
allocating attention. So, this aspect of Baddeley's model is similar to Broadbent's (1958) information­processing model in the sense that attentional and short­term 
storage systems are separated, but highly interconnected.

Baddeley has recently attempted to identify processes that are characteristic of the central executive and has examined executive control by studying neurological 
patients who appear to have deficits in cognitive control. A series of studies showed that Alzheimer patients exhibited impairments in coordination of slave systems, 
switching retrieval plans, selective attention, and activation of long­term memory (e.g., Baddeley, Logie, Bressi, Della Sala, & Spinnler, 1986; Baddeley & Wilson, 
1988; Baddeley, Bressi, Della Sala, Logie, & Spinnler, 1991). As will be shown, there is now considerable evidence for a view that areas of the frontal lobes, 
particularly the prefrontal cortex, are important to central executive functioning.

Baddeley and Hitch (1974) set out to create a model of short­term storage that was more flexible than traditional short­term memory systems. According to their 
model, WM has both storage and processing functions. The slave systems are responsible for the maintenance of information and are similar to traditional STS 
models. Perhaps because of a rich history of research on temporary storage, these components are fairly well specified and allow for the generation of testable 
predictions. The

  
Page 531

central executive is an attentional control system and provides a great deal of flexibility to the WM system. Although the central executive is far less specified than the 
slave systems, tying it to short­term storage represents an important step toward the understanding of interactions between attention, short­term storage, and complex 
cognition. Because the model incorporates both processing and storage functions, it can be considered more dynamic than structural models proposed in the past, but 
it is still structural in nature and it is still a memory system that is distinct from other processing systems.

We should also point out that the two so­called slave systems of the Baddeley and Hitch model are not necessarily structural in nature. It is probable that the human 
brain has evolved to be especially good at processing speech and visual­spatial information. However, it is also possible to think of articulatory and visual­spatial 
coding as simply two of myriad other possible ways of coding information. For example, Reisberg, Rappaport, and O'Shaugnessy (1984) taught subjects to code lists 
of digits by tapping the corresponding fingers and found that the articulatory loop and the "finger" loop are independent of each other. These findings support the notion 
that the human information­processing system is very flexible in how it can represent information and that each format may have distinctively different characteristics.

Other Approaches to Working Memory

In contrast to Baddeley's (1986) structural approach to working memory, other researchers have described more dynamic or process­oriented models of working 
memory. Anderson (1983a) proposed a model of cognition in which working memory is simply the set of long­term memory units currently activated above a critical 
threshold. Schneider and Detweiller (1987) proposed a parallel distributed model of working memory, which, like Anderson's (1983a) model, views short­term 
storage as activated information. They argued that buffer models have difficulty explaining why temporary interruptions do not destroy performance on a complex task 
and force the individual to start the task over. In fact, we humans have rapid access to a great deal of information. For example, as I sit here writing this passage, I can 
quickly think about the previous section I

  
Page 532

wrote or what I want to say next. If I get interrupted by a student knocking at my door, I can go to the door, open it, greet the person, answer a question, talk about 
how the student is doing in my class, and so on, and quickly return to the point in my writing where I was interrupted. Miller's (1956) notion of 7 ± 2 items in 
temporary storage does not say that we can retain 7 ± 2 items in a number of different domains or contexts, but our common experience is that, in fact, we can. The 
Schneider and Detweiller model is unique in attempting to address this quality of working memory.

In their model, the information­processing system consists of three levels of analysis within many different processing modules. A module is analogous to a brain region 
that specializes in a class of processing (e.g., visual, motor, or lexical processing). Output units from each module may become activated and transmit activation to 
other modules or to the next level of analysis. Information in working memory is activated above a critical threshold. There is an active buffer, or short­term store, for 
each modality or stimulus context. Thus, my writing buffer would not necessarily be interfered with by my student­asking­question buffer. Schneider and Detweiller do 
not make qualitative distinctions between short and long storage of information; rather, in their model, short­ and long­term memory are differentiated by temporal 
distinctions. So, short­term storage is limited in duration, whereas long­term storage is not.

In addition, there are limitations in the amount of activation that can be transmitted at a given time; these limitations are analogous to capacity limitations in buffer 
models. Some information can be activated and transmitted automatically, without consuming limited controlled­processing resources. But, control processes at each 
level of analysis determine what information will and will not be transmitted and the order of transmission. The functions of these control processes are akin to the 
functions of Baddeley's central executive system; however, Schneider and Detweiller do not invoke a singular executive component that controls processing. Rather, 
control is distributed among modules and levels of processing within modules. Further, they suggest that there is not a central capacity limitation; processing limitations 
will depend on the specific modules being used. The most apparent benefit of Schneider and Detweiller's (1987) model is that it allows for a great deal of interaction

  
Page 533

among different types of processing; thus, it has more power to explain complex processing than do simple buffer models. However, along with the complexity comes 
a lack of specificity; it is difficult to generate testable hypotheses from their model. Further, there is growing neurological evidence of a central attentional system that is 
not domain­specific (Posner & Peterson, 1990).

Another comprehensive model of the attention and memory system was proposed by Cowan (1988, 1995). He proposed a dynamic model of attention and memory 
in which WM is considered an activated subset of LTM. In fact, he suggested that Anderson's (1983a) and Schneider and Detweiller's (1987) models are compatible 
with his ideas, but he believed that they reflect a different level of analysis. Cowan proposed that there is one storage system that consists of elements and their features 
in long­term memory (e.g., acoustic, visual, semantic, etc.). At any given time these elements may exist in one of three states of activation. First, they may be inactive, a 
state that is akin to long­term storage. Next, they may be in a moderately activated state, but outside the "focus of attention." Information in this state is outside 
conscious awareness, but can influence processing (e.g., semantic priming, subliminal perception, implicit memory). This level of activation represents the passive 
storage of information in Baddeley's slave systems. The duration of this activation is limited, and without strategies for maintaining activation, information will quickly 
return to an inactive state. Finally, when information is attended, the level of activation will increase and the information will become the focus of attention, which 
represents the highest level of activation and is synonymous with conscious awareness. Cowan suggested that there are severe limitations in the amount of information 
that can be maintained in the focus of attention and that these limitations reflect the capacity of the central executive in Baddeley's model. Cowan eliminated the need 
for multiple memory structures by invoking different levels of activation that have distinct limitations. Further, he suggested that although much of the evidence 
supporting short­ and long­term stores may actually reflect different processes used for activating information and maintaining activation, there is enough other evidence 
that supports a qualitative distinction between short­ and long­term storage systems to warrant a multiple memory system approach. Cowan suggested that viewing 
short­term

  
Page 534

storage as the activation of long­term memory units represents a middle ground between approaches that posit multiple memory structures and completely unitary 
approaches. Activation approaches eliminate the need for completely separate memory systems while continuing to suggest that short­ and long­term storage obey 
different sets of rules.

In addition to the memory system, Cowan's model includes a limited capacity central processor, or central executive, that is responsible for all control processes. 
Cowan defined control processes as those processes that are under voluntary control and that require attention for implementation (see Kahneman, 1973; Posner & 
Snyder, 1975; Shiffrin & Schneider, 1977). Cowan also solved the question of whether forgetting from short­term memory is based on time and decay or capacity 
limits and displacement. He assumed that the focus of attention is limited in capacity and that newly focused information displaces old information. Information that is 
activated but outside the focus of attention is lost over time through decay.

The Anderson (1983a), Schneider and Detweiller (1987), and Cowan (1995) views are similar in proposing an active portion of memory. They are different in how 
they handle the notion of executive control. Anderson proposes controlled attention for maintaining the activation of goals and for resolving conflict, which is similar to 
Shallice's SAS. Schneider and Detweiller propose that attention, like the memory representations, is distributed across modules. Cowan's view of executive control is, 
like Anderson's, more in line with Shallice's and with the Baddeley and Hitch central executive.

Working Memory Capacity and the Central Executive

Just and Carpenter (1992) and Engle, Cantor, and Carullo (1992) proposed models to explain individual differences in working memory. As with Anderson (1983) 
and Schneider and Detweiller (1987), these models assumed that working memory is an activated subset of long­term memory and that individuals differ in the amount 
of activation available for processing. Work on individual differences in working memory stems from studies that show that unlike traditional short­term memory 
measures, measures of WM correlate with performance on complex cognitive tasks. For example, Daneman and Carpenter (1980) showed that a mea­

  
Page 535

sure of WM capacity that involves both storage and processing is related to performance on a higher­level cognitive task. In their reading span task, subjects read a 
series of sentences and tried to remember the last word of each sentence. The maximum number of final words recalled correlated with reading comprehension and 
verbal scholastic aptitude scores (VSAT). Other researchers have shown that the reading span and similar WM measures are highly correlated with complex cognitive 
measures such as writing ability, following directions, logic learning, and vocabulary learning (e.g., Benton et al. 1984; Daneman & Carpenter, 1983; Daneman & 
Green, 1986; Engle, Carullo, & Collins, 1991; Kiewra & Benton, 1988; Kyllonen & Stephens, 1990). An understanding of why these measures are related and what 
components of the WM span task are important to individual differences in complex task performance will help to specify those aspects of working memory that are 
generalizable to real­world cognition and thus are less likely to be peculiar to a specific experimental task.

Daneman and Carpenter (1980, 1983) and Just and Carpenter (1992) argued that individual differences in the level of activation are important to lower­level language 
processing, such as syntactic parsing and disambiguation of ambiguous linguistic units. 11 They argued that these differences reflect differences in activation available to 
language processing, but, like Schneider and Detweiller, they assumed domain­specific limitations on activation.

On the other hand, Turner and Engle (1989) and Engle et al. (1992) assumed the central executive reflects a domain­free attention capacity limitation and suggested 
that individuals with high and low working­memory spans should differ on capacity­demanding tasks, no matter what the processing domain. Like Daneman and 
Carpenter (1980), they showed that reading­span task performance correlated with global verbal comprehension measures (e.g., VSAT). However, Turner and Engle 
(1989) also showed that performance on a working memory task that required subjects to solve math problems while remembering words correlated with verbal 
comprehension as well as did the reading span measure. This finding suggests that the storage component of these span tasks reflects differences in a central attention 
limitation, not differences due to task­specific processing.

  
Page 536

Engle et al. (1992) suggested that WM span differences reflect differences in the overall amount of activation available to the WM system for processing. Individuals 
with greater WM capacity are able to maintain activation of more LTM knowledge units than individuals with less WM capacity. Thus, high­WM span individuals can 
keep more units in an active state and available for rapid retrieval and further processing. In addition, Engle, Cantor, and Carullo argued that the amount of activation 
available is a stable characteristic of the information­processing system and that it changes little with changes in knowledge structure. Cantor and Engle (1993) 
provided evidence for the general capacity model by showing that working memory capacity and measures presumed to reflect activation of information in LTM are 
related. In that study, high and low working­memory span individuals learned a series of unrelated sentences. Each sentence consisted of a subject and a predicate 
(e.g., "The lawyer is in the park"). Further, each subject was paired with more than one predicate (e.g., lawyer might be paired with park and boat). Next, the 
participants performed a speeded recognition task in which they determined whether sentences belonged to the studied set or not. Typically, in this task, reaction time 
increases as a function of fan size (fan size is the number of times a given subject appears in the stimulus set with a different predicate; Anderson 1983b) and the 
increase is attributed to the division of activation among a greater number of knowledge units for sentences with larger fans. Cantor and Engle found that reaction time 
increased across fan size for both high­and low­WM groups. However, the increase was more dramatic for the low­span subjects, suggesting that it took them longer 
to activate target sentences because they had less overall activation spreading in the network than did high­span subjects. In fact, when the slope of the fan effect was 
partialled out of the correlation between span and verbal abilities, this correlation was no longer significant, suggesting that long­term memory activation is an important 
component of the relationship.

The general capacity model was elaborated by Conway and Engle (1994). They studied whether individual differences in working memory reflect differences in 
automatic spreading activation, as was argued in Engle, Cantor, and Carullo (1992), or differences in controlled attention, that is, the central executive. Conway and 
Engle suggested that Cantor

  
Page 537

and Engle's (1993) task is not sensitive to a distinction between controlled attentional processing and automatic activation, because the fact retrieval task used by 
Cantor and Engle requires both processes. In the verification phase of the 1993 task, subjects might encode the subject of the target sentence and activate all 
associated predicates. Next, subjects searched the activated set of information and determined whether the target was a member of the set. Because each sentence in 
the Cantor and Engle study shared a predicate with another sentence (e.g., "The lawyer is in the boat" and "The teacher is in the boat"), it is possible that there was 
response competition or conflict that would necessitate a controlled search of the activated information. Thus, differences between high and low WM groups could 
reflect differences in automatic activation of LTM units, a controlled search of these activated concepts, or differences in both processes. In order to assess differences 
in these two types of processing, Conway and Engle had subjects retrieve facts from either active or inactive memory.

High and low working­memory span subjects learned an association between items in memory sets of various sizes and a digit set cue that corresponded to the size of 
the set. Each set contained unique items in one experiment and overlapping items in another. Next, subjects performed a speeded verification task in which they saw a 
digit and an item and pressed a key to indicate whether the item was a member of the set. In the short­term memory condition, the digit set cue appeared 1 second 
before the probe. Thus, subjects knew which memory set was being tested and could retrieve the set information into active working memory before the probe 
appeared. Therefore, recognition only depended on a search of short­term memory. In the long­term memory condition the set cue and probe appeared 
simultaneously, so the set had to be activated before it could be searched. It was assumed that, in this condition, the subject would need to access the set information 
from long­term memory, move it into short­term memory, and then do a search of short­term memory. Thus, the two conditions differed in that a retrieval from long­
term memory was necessary for the latter condition. Conway and Engle found that the slope of the set size function did not differ for high­ and low­span subjects in the 
no­interference condition, that is, the condition in which there was no overlap in set membership. In the interference condition

  
Page 538

with overlapping sets and presumed response competition, the slope of the set size function did differ for high­ and low­span subjects. Under interference conditions, 
the low­span subjects were much slower to identify the item as belonging to the set. Conway and Engle (1994) argued that this difference between the search 
functions of high­ and low­span subjects resulted from search of activated memory, because the no delay and 1­second delay conditions showed the same slope.

For high­WM subjects, verification times across memory set size were the same for overlapping and unique memory sets. In contrast, set overlap slowed the 
verification times for low­span subjects. In summary, when unique sets were tested, and thus no response competition was present, the slope functions for high­ and 
low­WM subjects were nearly identical. However, low­span subjects' performance was slowed by overlap between memory set items, but the performance for high­
span subjects was not. Conway and Engle argued that the verification task in the conditions with nonoverlapping sets could be performed on the basis of automatic 
spreading activation between the digit probe and the target. In the overlapping sets conditions, however, a conflict would arise when the activation from the target 
would spread to the correct probe and to another probe, hence, a condition that would require the supervisory attentional system of Norman and Shallice. Conway 
and Engle further argued that this conflict forced the low­span subjects to do a controlled, serial search in that condition. The high spans were argued to use their 
greater attentional resources to suppress the irrelevant link so they did not need to do a controlled search of the list.

Conway and Engle (1994) argued that working memory capacity is important when retrieval is necessarily or voluntarily achieved through a controlled search, but not 
when achieved through passive automatic activation. This conclusion was also supported by a set of studies by Rosen and Engle (1997) in which high and low 
working­memory subjects were instructed to generate as many different animal names as possible over a 10­minute period. In the first study, high­span subjects 
generated about 40% more animals than low­span subjects. One possible explanation was that low­span subjects relied largely on automatic spreading activation for 
retrieval but that high­span subjects used controlled attention for search and to suppress previously retrieved responses. This explana­

  
Page 539

tion was supported by the finding that doing the retrieval under the workload of an attention­demanding detection task hurt performance for the high­span subjects but 
had no effect on the retrieval of the low­span subjects.

On the basis of these studies we have proposed that individual differences on measures of working memory capacity reflect differences in controlled attention 
capability and that those differences will only be reflected in situations that either encourage or demand controlled attention (Conway & Engle, 1994; Engle, Conway, 
Tuholski, & Shisler, 1995; Rosen & Engle, 1997a). Controlled attention is necessary when task goals may be lost unless they are actively maintained in working 
memory, where actions contending for the same stage must be scheduled, where conflict among actions must be resolved, where there is value in maintaining some 
task information in the face of distraction and interference, and where there is value in suppressing task­irrelevant information.

Measurement Issues with Working Memory

As we have traced the history of the literature on short­term and working memory, we have seen that the models have become more complex and more flexible. We 
have also seen a divergence of methodology from strictly experimental studies to studies of individual differences on hypothesized constructs. This evolution has given 
rise to some concerns that are novel to most experimental psychologists. Experimental psychologists have, traditionally, not paid much attention to measurement 
aspects of the tasks they use. Psychometric issues such as task reliability and validity are more often considered in applied areas or areas such as social and 
personality psychology. Many tasks have been used to study short­term memory and working memory, and because individual differences in working memory have 
become important, concerns about psychometric issues have increased. Validity as an issue is reflected in such questions as: Does the task measure what you want it 
to measure? Do different measures of working memory reflect the same construct? Do tasks that putatively measure short­term memory measure the same construct 
as tasks that putatively measure working memory? and Do working memory and/or short­term memory have construct validity? or Does the construct have some 
importance or relationship to real­world behavior?

  
Page 540

In a review of research on memory span, Dempster (1981) argued that if short­term memory is important to real­world tasks such as reading, and if memory span is 
an index of short­term memory, memory span should correlate with measures of reading. However, simple span measures, the digit span in particular, do not 
consistently correlate with measures of reading comprehension. Dempster argued that part of the problem is that simple memory­span scores are simply not very 
reliable: the same subject can show wide differences in span when different measures are used. The simple word span is typically more reliable than the digit span, 
which might explain the fact that nearly all of the studies from our lab (Engle et al., Collins, 1991; LaPointe & Engle, 1990; Turner & Engle, 1989) show that simple 
word span correlates with reading comprehension. We have also found that the digit span does not correlate well with other measures of short­term memory; again, 
the failure to find such correlations consistently is probably a reliability problem. So, from a simple measurement standpoint, the digit span is probably not a very 
sensitive measure and, thus, is not a very useful measure of short­term memory; the word span may be a better measure.

Another important measurement issue is whether STM and WM tasks reflect the same underlying construct. We recently addressed this question in a large­scale 
factor analysis (Engle, Tuholsky, Laughlin, Conway, 1998). The study included tasks traditionally thought of as short­term memory tasks, including forward word span 
with phonologically dissimilar words, forward word span with phonologically similar words, and the recency score from immediate free recall. Other tasks were 
chosen to reflect working memory capacity or the central executive. These included the random generation task (Baddeley, 1996), reading span (Daneman & 
Carpenter, 1980), operation span (Turner & Engle, 1989), and two tasks from the CAM4 battery: continuous opposites and ABCD (Kyllonen & Christal, 1990). 
Another set of tasks was used because whereas some authors have referred to them as short­term memory tasks, others have referred to them as working memory 
tasks. These include the backward word span with phonologically dissimilar words, keeping track task, counting span, and recall from all the serial positions in 
immediate free recall except recency. In addition to the memory tasks, subjects were tested on the Raven's Progressive Matrices Test and the Cattell Culture

  
Page 541

Fair Test, both of which are nonverbal tests of general fluid intelligence (gF). We tested 133 subjects individually over three sessions and obtained the Verbal and 
Quantitative Scholastic Aptitude Test scores for them all.

We performed a series of exploratory then confirmatory factor analyses on the memory tasks. These analyses showed that two different factors were necessary to 
account for the variance in the memory task scores. What we called the short­term memory (STM) factor included the two forward span tests and the backward 
span. The working memory (WM) factor included operation span, reading span, counting span, keeping track, secondary memory component from immediate free 
recall, and the two tasks from the CAM4. A partial regression analysis showed that when STM was controlled for, WM correlated with the general fluid intelligence 
tests, r = .5. However, if WM was controlled for, STM did not significantly correlate with gF. This finding shows quite conclusively that the STM tasks and the WM 
tasks reflect different underlying constructs. Both factors, however, contributed significant and independent variance to the Verbal SAT, a measure of verbal skills, 
including reading comprehension. Our present thinking about these results is that whereas the WM factor reflects controlled attention or attentional resources 
capability, the STM factor may reflect some basic aspect of speech representation that is also important to the VSAT. An appealing possibility is that the WM factor 
represents the central executive component of the Baddeley and Hitch (1974) model and the STM factor represents the capability of one of the slave systems, namely, 
the phonological loop. If this interpretation is correct, then tasks could also be used that reflected the domain­specific capability of the visuospatial sketchpad as well 
as the phonological loop.

The random generation and recency portion of immediate free recall did not fit with either factor and were dropped from the analyses. This finding calls into question 
the use of the recency portion of the free recall task for making inferences about short­term memory.

The results of the study fit nicely with work by Kyllonen and Christal (1990), which argues that working memory capacity is an important component of what is 
commonly thought of as general fluid intelligence. As we will see in the next section, the Kyllonen and Christal conclusions also tie in with work on controlled attention 
and the functions of the frontal lobes of the brain.

  
Page 542

At this point, it might be useful for us to attempt some generalizations about short­term memory and working memory. We would argue, following Craik and Jacoby 
(1975) and Cowan (1995), that many different processes can be used to maintain the temporary activation of memory units. Certainly phonological, visual, and spatial 
coding reflect common means of coding, but there are undoubtedly other means as well. It seems reasonable to think of those knowledge elements activated above 
some threshold as reflecting the contents of short­term memory. Some small number of those activated units may be in the focus of attention. From a measurement 
standpoint, individuals almost certainly differ in their ability to use speech­based, spatial, and visual coding, and those would be reflected in measures appropriate for 
each code. The vast majority of short­term memory studies reflect the use of phonological coding of short lists of words and rote rehearsal, using that code, to 
maintain activation of the representation. As Cowan (1995) pointed out, not all information in short­term memory, that is, activated knowledge, can be the focus of 
attention, because the focus of attention is quite limited in capacity. We argue that focused or controlled attention corresponds to Baddeley and Hitch's central 
executive. Individual differences in ''working memory capacity" (Just & Carpenter, 1992; Turner & Engle, 1989) are really individual differences in a single component 
of the working memory system: controlled attention. Further, the differences in working memory capacity are not really differences in memory at all. Those differences 
reflect differential ability to use controlled attention to raise the activation of knowledge units, to maintain or sustain that activation in the face of interference and 
distraction, and, occasionally, to select among schemes contending for action on the basis of the strength of their activation levels.

Working Memory Capacity and the Frontal Lobes 12

Research and theorizing about short­term and working memory have benefited considerably from neuropsychological research. As memory models become more 
complex, we must be mindful of whether the structures and processes proposed for the memory system fit with what is known about the brain.

There is growing evidence that connects the functions we have attributed to the central executive to structures in the frontal lobes, particularly

  
Page 543

the prefrontal cortex (Duncan, 1995; Duncan, Emslie, Williams, Johnson, & Freer, 1996; Goldman­Rakic, 1987; Kimberg & Farah, 1993; Pennington, 1994; 
Shallice & Burgess, 1993). Goldman­Rakic (1987), for example, has used a delayed response task in which monkeys are shown a food pellet being placed under one 
of two objects. Then a screen blocks the monkey's view of the two objects for a period of time, after which the monkey could have the food if it picked the correct 
object on the first trial. Normal monkeys have no difficulty in representing the correct object in memory over the delay and do well on the task. However, removal of 
parts of the prefrontal cortex (particularly Brodmann's area 46) leads to an inability on the part of the monkey to retain the information over the delay. This finding 
suggests that the prefrontal cortex is important to maintaining the temporary representation of the location of the hidden food.

Shallice and his colleagues (Shallice & Burgess, 1993) have argued that the frontal lobes are an important part of the circuitry of the supervisory attentional system, 
which we previously described. Evidence of this link shows that damage to the frontal lobes, particularly the prefrontal cortex, leads to difficulty in doing tasks that 
require sustained controlled attention (Duncan et al., 1996; Luria, Karpov, & Yarbuss, 1966; Weinberger, 1993). Duncan (1995) has also made the connection 
between sustained controlled attention, general intelligence, and the frontal lobes. He argues that frontal lobe damage leads to a substantial decline in general fluid 
intelligence and the ability to sustain controlled attention. This conclusion, of course, would follow from the research connecting the constructs of working memory 
capacity, central executive, and gF (Engle, Tuholski, Laughlin, & Conway, 1998; Kyllonen & Christal, 1990).

Although most of these studies used animals or patients with frontal lobe damage, there is at least suggestive evidence linking sustained attention to the frontal lobes in 
normal, non­brain­damaged individuals as well. For example, individuals with low WM capacity as defined by tasks such as reading span and operations span show 
similar (albeit less devastating) patterns of performance in comparison to frontal patients on a variety of cognitive tasks. Patients with frontal damage show decreased 
performance on the verbal fluency task which asks subjects to retrieve as many examples of a category as they can (Benton, 1968; Milner, 1964;

  
Page 544

Pendleton Heaton, Lehamen, Hulihen, 1982). Rosen and Engle (1997a) have shown the same pattern for low working memory subjects. Frontal patients also tend to 
perseverate on a strategy even after it is no longer useful (Drewe, 1974; Luria, 1966; Milner, 1963, 1964). Tuholski & Engle (1997) showed that low working­
memory subjects persist in using an ineffective mental model strategy longer than do high working­memory subjects. Finally, frontal patients have been shown, in 
comparison to normal subjects, to be more vulnerable to interference and less able to suppress irrelevant or inappropriate information (Dempster, 1992; Freedman & 
Cermak, 1986; Knight, 1995; Knight, Scabini, & Woods, 1989; Leng & Parkin, 1989; Longmore, Knight, Menlus, & Htope, 1988; Shimamura Gershberg, Jurica, 
Mangels, & Knight, 1992; Stuss, 1991). Similarly, low working­memory subjects have shown greater effects of proactive interference in a Brown­Peterson paradigm 
(Kane and Engle, 1997). Rosen and Engle (1997b) showed that in an A­B, A­C, A­B paired­associate procedure, high working­memory subjects suppressed the list­
1 responses during the learning of list 2 but that low working­memory subjects did not. Further, low working­memory subjects made many more intrusions from 
earlier lists than did high working­memory subjects, suggesting that the former group had not suppressed the intruding items as well as had the latter group. In contrast, 
frontal patients perform normally on tasks that can be done under proceduralized or automatized processing (Bianchi, 1922; Frith, Friston, Liddle, & Frackowiak, 
1991; Fuster, 1980, Penfield & Evans, 1935). Likewise, Conway and Engle (1994) showed that high and low working­memory subjects did not differ in a retrieval 
task in the absence of response competition.

In summary, there is growing speculation and evidence on the relationship between the central executive and the frontal lobes. It should be noted that Goldman­
Rakic's work with monkeys speaks to the storage of the temporary representation itself. The other work cited is more directed at the use of controlled attention to 
maintain activation of a representation, to suppress interfering representations, or to choose between contending actions. This area of research is particularly vital right 
now, and we can expect many new findings and ideas on the neuropsychology of working memory, controlled attention, and general fluid intelligence in the near future.

  
Page 545

Conclusion

We have briefly reviewed the history of the idea of a temporary memory store distinct from long­term memory starting with Hebb's (1949) physiological theory of the 
reverberatory trace. The psychological theories that followed were based on the idea that the temporary short­term trace behaved according to different laws than did 
the structural or long­term memory trace. Unfortunately, these theories were overly simplistic, and the characteristics attributed to short­term memory under the multi­
store theories were probably a result of the particular tasks used rather than the inexorable nature of the temporary trace. Modern theories allow for multiple types of 
representation, each of which may be differentially sensitive to interference and loss over time. Further, controlled attention is important for the maintenance and/or 
suppression of the representation over time and for resolution of conflict between automatically activated action schemas. The newer theories not only are more 
content valid, because they show statistical relationships with higher­order or real­world cognitive functions; they also appear to be soundly based in brain science.

Acknowledgments

During the preparation of this chapter, the authors' work was supported by grants F49620­93­1­0336 from the Air Force Office of Scientific Research and RO1­
HD­27490­01A1 from the National Institute of Child Health and Human Development. We thank Mike Kane for his helpful comments and criticisms.

Notes

1. Keeping with a useful convention adopted by Atkinson and Shiffrin (1968), we will use the term short­term store and the acronym STS to refer to the 
hypothesized temporary memory store, trace, or representation. The term short­term memory, or STM, will be used when talking about tasks and the phenomena 
observed from tasks that putatively reflect the underlying STS.

2. Despite the fact that Hebb's idea that the strength of the long­term trace was a function of time in the reverberatory trace has been discredited, the principle is still 
alive and kicking today in the form of Hebb's rule, which is an integral part of how learning occurs in neural net or connectionist models of cognition (Rumelhart, 
Hinton & McClellend, 1986).

  
Page 546

3. Ceiling effect refers to the problem occurring when performance is so high that two conditions cannot be distinguished from each other. If the 100% ceiling did not 
limit them, one could be higher than the other. A similar problem occurs when performance in two conditions is nearly zero—that is, floor effect.

4. It is likely that modality of presentation is important to whether this generalization is correct. Auditory presentation leads to higher recency than visual presentation, 
and there is evidence (Cantor & Engle, 1989) that the recency found with auditory presentation is preattentive.

5. There was considerable debate early in this literature as to whether the code used in STM tasks was acoustic (i.e., sound based; Conrad & Hull, 1964) or 
articulatory (i.e., speech based; Wickelgren, 1966). The issue was never resolved; hence, we will use the neutral term phonological. It should be pointed out, 
however, that articulatory code seems to have won the war because the articulatory loop is such an important element of the Baddeley and Hitch (1974) model.

6. HM is more than likely the basis for the Mr. Short Term Memory character.

7. Since Brown (1958) and Peterson & Peterson (1959) both published work using a similar task, the task is typically referred to as the Brown­Peterson task.

8. In taking this view, Crowder adopted a position much like that of his mentor, Melton (1963).

9. See LaPointe & Engle (1990) for an example of how sampling with and without replacement in short­term memory studies can differentially affect the results.

10. The term working memory had been used earlier (e.g., Douglas, 1967) but, as is often the case in science, the Zeitgeist was not ready for the term until later.

11. There is considerable controversy over this issue, but the debate is beyond the scope of this paper. The reader is referred to papers by Waters and Caplan 
(1966) and Deaton, Gernsbacher, Robertson, and Miyake (1995).

12. There is an extensive neuropsychological literature on aspects of working memory other than central executive, particularly the phonological loop, but a complete 
coverage is beyond our scope.

References

Anderson, J. R. (1974). Retrieval of propositional information from long­term memory. Cognitive Psychology, 6, 451–474.

Anderson, J. R. (1983a). The architecture of cognition. Cambridge, MA: Harvard University Press.

Anderson, J. R. (1983b). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior, 22, 261–295.

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology 
of learning and motivation (Vol. 2, pp. 89–95). New York: Academic Press.

  
Page 547

Baddeley, A. D. (1966). The influence of acoustic and semantic similarity on long­term memory for word sequences. Quarterly Journal of Experimental 
Psychology, 18, 302–309.

Baddeley, A. D. (1986). Working Memory. Oxford, England: Clarendon Press.

Baddeley, A. D. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology, 49A, 5–28.

Baddeley, A. D., Bressi, S., Della Sala, S., Logie, R., & Spinnler, H. (1991). The decline of working memory in Alzheimer's disease: A longitudinal study. Brain, 
114, 2521–2542.

Baddeley, A. D., Grant, S., Wight, E., & Thomson, N. (1975). Imagery and visual working memory. In P. M. A. Rabbitt & S. Dornic (Eds.), Attention and 
Performance (Vol. 5, pp. 205–217). Hillsdale, NJ: Erlbaum.

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. A. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–89). New York: 
Academic Press.

Baddeley, A. D., & Hitch, G. (1994). Developments in the concept of working memory. Neuropsychology, 8, 485–493.

Baddeley, A. D., Lewis, V. J., & Vallar, G. (1984). Exploring the articulatory loop. Quarterly Journal of Experimental Psychology, 36, 233–252.

Baddeley, A. D., & Lieberman, K. (1980). Spatial working memory. In R. Nickerson (Ed.), Attention and Performance (Vol. 7, pp. 521–539). Hillsdale, NJ: 
Erlbaum.

Baddeley, A. D., Logie, R., Bressi, S., Della Sala, S., & Spinnler, H. (1986). Dementia and working memory. Quarterly Journal of Experimental Psychology, 
38A, 602–618.

Baddeley, A. D., Papagno, C., & Vallar, G. (1988). When long­term learning depends on short­term storage. Journal of Memory and Language, 27, 586–595.

Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short­term memory. Journal of Verbal Learning and Verbal Behavior, 
14, 575–589.

Baddeley, A. D., & Warrington, E. K. (1970). Amnesia and the distinction between long­and short­term memory. Journal of Verbal Learning and Verbal 
Behavior, 9, 176–189.

Baddeley, A. D., & Wilson, B. (1985). Phonological coding and short­term memory in patients without speech. Journal of Memory and Language, 24, 490–502.

Baddeley, A. D., & Wilson, B. (1988). Frontal amnesia and the dysexecutive syndrome. Brain and Cognition, 7, 212–230.

Benton, A. L. (1968). Differential effects of frontal lobe disease. Neuropsychologia, 6, 53–60.

Benton, S. L., Kraft, R. G.., Glover, J. A., & Plake, B. S. (1984). Cognitive capacity differences among writers. Journal of Educational Psychology, 76, 820–834.

  
Page 548

Bianchi, L. (1922). The mechanism of the brain and the function of the frontal lobes. Edinburgh, Scotland: Livingstone.

Bjork, R. A., & Whitten, W. B. (1974). Recency­sensitive retrieval processes in long­term free recall. Cognitive Psychology, 6, 173–189.

Broadbent, D. (1958). Perception and Communication. Oxford, England: Pergamon Press.

Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21.

Butterworth, B., Campbell, R., & Howard, D. (1986). The uses of short­term memory: A case study. Quarterly Journal of Experimental Psychology, 38A, 705–
738.

Cantor, J., & Engle, R. W. (1989). The influence of concurrent load on mouthed and vocalized modality effects. Memory & Cognition, 17, 701–711.

Cantor, J., & Engle, R. W. (1993). Working memory capacity as long­term memory activation: An individual differences approach. Journal of Experimental 
Psychology: Learning, Memory, & Cognition, 19, 1101–1114.

Case, R. D. (1985). Intellectual development: Birth to adulthood. New York: Academic Press.

Case, R. D., Kurland, D. M., & Goldberg, J. (1982). Operational efficiency and the growth of short­term memory span. Journal of Experimental Child 
Psychology, 33, 386–404.

Conrad, R. (1957). Decay theory of immediate memory. Nature, 179, 831–832.

Conrad, R. (1964). Acoustic confusion in immediate memory. British Journal of Psychology, 55, 75–84.

Conrad, R., & Hull, A. J. (1964). Information, acoustic confusion and memory span. British Journal of Psychology, 55, 429–432.

Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: A resource­dependent inhibition model. Journal of Experimental Psychology: 
General, 123, 354–373.

Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information­processing system. 
Psychological Bulletin, 104, 163–191.

Cowan, N. (1995). Attention and Memory: An Integrated Framework. New York: Oxford University Press.

Cowan, N., Day, L., Saults, J. S., Keller, T. A., Johnson, T., & Flores, L. (1992). The role of verbal output time in the effects of word length on immediate memory. 
Journal of Memory & Language, 31, 1–17.

Cowan, N., Keller, T., Hulme, C., Roodenrys, S., McDougall, S., & Rack, J. (1994). Verbal memory span in children: Speech timing clues to the mechanisms 
underlying age and word length effects. Journal of Memory & Language, 33, 234–250.

  
Page 549

Cowan, N., Wood, N. L., & Bourne, D. N. (1994). Reconfirmation of the short­term storage concept. Psychological Science, 5, 103–106.

Craik, F. I. M., & Jacoby, L. L. (1975). A process view of short­term retention. In F. Restle, R. C. Shiffrin, N. J. Castellan, H. Lindman, & D. Pisoni, (Eds.), 
Cognitive Theory (pp. 173–192). Hillsdale, NJ: Erlbaum.

Craik, F. I. M., & Lockhart, R. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671–684.

Craik, F. I. M., & Watkins, M. J. (1973). The role of rehearsal in short­term memory. Journal of Verbal Learning and Verbal Behavior, 12, 599–607.

Crowder, R. G. (1983). The demise of short­term memory. Acta Psychologica, 50, 291–323.

Crowder, R. G. (1993). Short­term memory: Where do we stand? Memory & Cognition, 21, 142–145.

Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

Daneman, M., & Carpenter, P. A. (1983). Individual differences in working­memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

Daneman, M., & Green, I. (1986). Individual differences in comprehending and producing words in context. Journal of Memory and Language, 25, 1–18.

Deaton, J., Gernsbacher, M.A., Robertson, R., & Miyake, A. (1995) Working memory span and lexical ambiguity: problems with lexical access. Paper presented at 
Midwester Psychological Association, Chicago.

Dempster, F. N. (1981). Memory span: Sources of individual and developmental differences. Psychological Bulletin, 89, 63–100.

Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12, 45–
75.

Douglas, R. J. (1967). The hippocampus and behavior. Psychological Bulletin, 67, 416–442.

Drewe, E. A. (1974). The effect of type and area of brain lesion on Wisconsin Card Sort Test performance. Cortex, 10, 159–170.

Duncan, J. (1995). Attention, intelligence, and the frontal lobes. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 721–733). Cambridge, MA: MIT 
Press.

Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal­directed behavior. Cognitive 
Psychology, 30, 257–303.

  
Page 550

Ellis, N. C., & Hennelley, R. A. (1980). A bilingual word­length effect: Implications for intelligence testing and the relative ease of mental calculations in Welsh and 
English. British Journal of Psychology, 71, 43–52.

Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental 
Psychology: Learning, Memory, & Cognition, 18, 972–992.

Engle, R. W., Carullo, J. J., & Collins, K. W. (1991). Individual differences in the role of working memory in comprehension and following directions in children. 
Journal of Educational Research, 84, 253–262.

Engle, R. W., Conway, A. R. A., Tuholski, S. W., & Shisler, R. J. (1995). A resource account of inhibition. Psychological Science, 6, 122–125.

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A., (in press). Working memory, short­term memory and general fluid intelligence: A latent variable 
approach. Journal of Experimental Psychology: General.

Farah, M. J. (1984). The neurological basis of mental imagery: A componential analysis, Cognition, 18, 245–272.

Farah, M. J., Hammond, K. M., Levine, D. N., & Calvanio, R. (1988). Visual and spatial mental imagery: Dissociable systems of representation. Cognitive 
Psychology, 20, 439–462.

Freedman, M., & Cermak, L. S. (1986). Semantic encoding defecits in frontal lobe disease and amnesia. Brain and Cognition, 5, 108–114.

Frith, C. D., Friston, K., Liddle, P. F., & Frackowiak, R. S. J. (1991). Willed action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal 
Society London B, 244, 241–246.

Fuster, J. M. (1980). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. New York: Raven.

Gathercole, S. E., & Baddeley, A. D. (1989). Evaluation of the role of phonological STM in the development of vocabulary in children: A longitudinal study. Journal 
of Memory and Language, 28, 200–213.

Gathercole, S. E., & Baddeley, A. D. (1990). Phonological memory deficits in language disordered children: Is there a causal connection? Journal of Memory and 
Language, 29, 336–360.

Glanzer, M., & Cunitz, A. (1966). Two storage mechanisms in free recall. Journal of Verbal Learning and Verbal Behavior, 5, 351–360.

Glanzer, M., & Razel, M. (1974). The size of the unit in short­term storage. Journal of Verbal Learning and Verbal Behavior, 13, 114–131.

Goldman­Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In F. Plum (Ed.), Handbook of 
physiology: Section 1. The nervous system: Vol. 5, Higher functions of the brain. Bethesda, MD: American Physiological Society.

  
Page 551

Gregg, V. H., & Gardiner, J. M. (1984). Phonological similarity and enhanced auditory recency in longer­term free recall. Quarterly Journal of Experimental 
Psychology, 36A, 13–27.

Hanley, J. R., Young, A. W., & Pearson, N. A. (1991). Impairment of the visuo­spatial sketch pad. Quarterly Journal of Experimental Psychology, 43A, 101–
126.

Hebb, D. O. (1949). Organization of Behavior. New York: Wiley.

Hebb, D. O. (1961). Distinctive features of learning in the higher animal. In J. F. Delafresnaye (Ed.), Brain mechanisms and learning (pp. 37–46). London: Oxford 
University Press.

James, W. (1890). The principles of psychology. New York: Henry Holt.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122–149.

Kahneman, D. (1973). Attention and Effort. Englewood Cliffs, NJ: Prentice­Hall.

Kane, M., & Engle, R. W. (1998). The role of working memory capacity in proactive interference. Manuscript in preparation.

Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in short­term retention of single items. Journal of Verbal Learning and Verbal Behavior, 1, 153–
161.

Kiewra, K. A., & Benton, S. L. (1988). The relationship between information processing ability and note taking. Contemporary Educational Psychology, 13, 33–
44.

Kimberg, D. Y., & Farah, M. J. (1993). A unified account of cognitive impairments following frontal lobe damage: The role of working memory in complex, organized 
behavior. Journal of Experimental Psychology: General, 122, 411–428.

Kintsch, W., & Buschke, H. (1969). Homophones and synonyms in short­term memory. Journal of Experimental Psychology, 80, 403–407.

Kintsch, W., & van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 85, 363–394.

Knight, R. T. (1995). Escape from linear time: Prefrontal cortex and conscious experience. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 1357–
1371). Cambridge, MA: MIT Press.

Knight, R. T., Scabini, D., & Woods, D. L. (1989). Prefrontal cortex gating of auditory transmission in humans. Brain Research, 504, 338–342.

Kolb, B., & Whishaw, I. Q. (1990). Fundamentals of human neuropsychology. New York: W. H. Freeman.

Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working­memory capacity. Intelligence, 14, 389–433.

Kyllonen, P. C., & Stephens, D. L. (1990). Cognitive abilities as determinants of success in acquiring logic skill. Learning and Individual Differences, 2, 129–160.

  
Page 552

LaPointe, L. B., & Engle, R. W. (1990). Simple and complex word spans as measures of working memory capacity. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 16, 1118–1133.

Leng, N. R. C., & Parkin, A. J. (1989). Aetiological variations in the amnesic syndrome: Comparisons using the Brown­Peterson task. Cortex, 25, 251–259.

Levy, B. A. (1971). The role of articulation in auditory and visual short­term memory. Journal of Verbal Learning and Verbal Behavior, 10, 123–132.

Lockhart, R. S., & Craik, F. I. M. (1990). Levels of processing: A retrospective commentary on a framework for memory research. Canadian Journal of 
Psychology, 44, 87–112.

Logie, R. H. (1986). Visuo­spatial processing in working memory. Quarterly Journal of Experimental Psychology, 38A, 229–247.

Longmore, B. E., Knight, R. G., Menkes, D. J., & Hope, A. (1988). The experimental investigation of a case of alcohol­induced frontal lobe atrophy. 
Neuropsychology, 2, 77–86.

Luria, A. R. (1966). Higher cortical functions in man. London: Tavistock.

Luria, A. R., Karpov, B. A., & Yarbuss, A. L. (1966). Disturbances of active visual perception with lesions of frontal lobes. Cortex, 2, 202–212.

McGeoch, J. A. (1932). Forgetting and the law of disuse. Psychological Review, 39, 352–370.

Melton, A. W. (1963). Implications for short­term memory for a general theory of memory. Journal of Verbal Learning and Verbal Behavior, 2, 1–21.

Melton, A. W., & Irwin, J. M. (1940). The influence of degree of interpolated learning on retroactive interference and the overt transfer of specfic responses. 
American Journal of Psychology, 53, 173–203.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90–100.

Milner, B. (1964). Some effects of frontal lobectomy in man. In J. M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 313–334). New 
York: McGraw­Hill.

Milner, B. (1966). Amnesia following operation on the temporal lobes. In C. W. M. Whitty & O. L. Zangwell (Eds.), Amnesia (pp. 109–133). London: 
Butterworths.

Murdock, B. B. (1961). The retention of individual items. Journal of Experimental Psychology, 62, 618–625.

Norman, D. A. (1969). Memory and Attention. New York: Wiley.

Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), 
Consciousness and self­regulation (Vol. 4, pp. 1–18). New York: Plenum Press.

  
Page 553

Papagno, C., Valentine, T., & Baddeley, A. D. (1991). Phonological short­term memory and foreign­language vocabulary learning. Journal of Memory and 
Language, 30, 331–347,

Papagno, C., & Vallar, G. (1992). Phonological short­term memory and the learning of novel words: The effect of phonological similarity and item length. Quarterly 
Journal of Experimental Psychology, 44A, 47–67.

Pascal­Leone, J. (1970). A mathematical model for the transition rule In Piagets' developmental stages. Acta psychologia, 63, 301–345.

Pendleton, M. G., Heaton, R. K., Lehman, R. A., & Hulihan, D. (1982). Diagnostic utility of the Thurstone Word Fluency Test in neuropsychological evaluations. 
Journal of Clinical Neuropsychology, 4, 307–317.

Penfield, W., & Evans, J. (1935). The frontal lobe in man: A clinical study of maximum removals. Brain, 58, 115–133.

Pennington, B. F. (1994). The working memory function of the prefrontal cortices. In M. M. Haith, J. B. Bensen, R. J. Roberts, & B. F. Pennington (Eds.), The 
development of future oriented processes (pp. 243–285). Chicago: University of Chicago Press.

Peterson, L. R., & Peterson, M. (1959). Short­term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198.

Posner, M. I., & Peterson, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–n–42.

Posner, M. I., & Snyder, C. R. (1975). Attention and cognitive control. In R. Solso (Ed.), Information Processing and Cognition: The Loyola Symposium (pp. 
55–85). Potomac, MD: Erlbaum.

Postman, L., Stark, K., & Fraser, L. (1968). Temporal changes in interference. Journal of Verbal Learning and Verbal Behavior, 7, 672–694.

Reitman, J. S. (1971). Mechanisms of forgetting in short­term memory. Cognitive Psychology, 2, 185–195.

Reitman, J. S. (1974). Without surreptitious rehearsal: information in short­term memory decays. Journal of Verbal Learning and Verbal Behavior, 13, 365–377.

Reisberg, D., Rappaport, I., & O'Shaughnessy, M. (1984). Limits on working memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 
10, 203–221.

Roediger, H. L. (1990). Implicit memory: Retention without remembering. American Psychologist, 45, 1043–1056.

Rosen, V. M., & Engle, R. W. (1997). The role of working memory capacity in retrieval, Journal of Experimental Psychology: General 126, 211–227.

Rosen, V. M., & Engle, R. W. (1998). Working memory and suppression. (Manu­ script submitted).

Rumelhart, D. E., Hinton, G., & McClellend, J. L. (1986). A general framework for parallel distributed processing (Vol. 1). Cambridge, MA: MIT Press.

  
Page 554

Rundus, D., & Atkinson, R. C. (1970). Rehearsal processes in free recall: A procedure for direct observation. Journal of Verbal Learning and Verbal Behavior, 
9, 99–105.

Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 501–518.

Schneider, W., & Detweiller, M. (1987). A connectionist/control architecture for working memory. In G. H. Bower (Ed.), The psychology of learning and 
motivation (Vol. 21, pp. 53–119). New York: Academic Press.

Shallice, T., & Burgess, P. W. (1993). Supervisory control of thought and action. In A. D. Baddeley and L. Weiskrantz (Eds.), Attention: Selection, awareness 
and control: A tribute to Donald Broadbent (pp. 171–187). Oxford: Oxford University Press.

Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory scores: A neuropsychological study. Quarterly Journal of Experimental 
Psychology, 22, 261–273.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: Pt. 2. Perceptual learning, automatic attending and a general theory. 
Psychological Review, 84, 127–190.

Shimamura, A. P., Gershberg, F. B., Jurica, P. J., Mangels, J. A., & Knight, R. T. (1992). Intact implicit memory in patients with focal frontal lobe lesions. 
Neuropsychology, 30, 931–937.

Schneider, W., & Detweiler, M. (1987). A connectionist/control architecture for working memory. In G. H. Bower (Ed.), The psychology of learning and 
motivation (Vol. 21). New York: Academic Press.

Stuss, D. T. (1991). Self, awareness, and the frontal lobes: A neuropsychological perspective. In J. Strauss & G. R. Goethals (Eds.), The Self: Interdisciplinary Ap­ 
proaches (pp. 255–278). New York: Springer.

Tuholski, S. W., & Engle, R. W. Individual differences in working memory capacity and the use of mental models. Manuscript submitted for publication.

Tulving, E. (1966). Subjective organization and effects of repetition in multi­trial free­recall learning. Journal of Verbal Learning and Verbal Behavior, 5, 193–197.

Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127–154.

Warrington, E. K., Logue, V., & Pratt, R. T. C. (1971). The selective impairment of auditory verbal short­term memory. Neuropsychologica, 9, 377–387.

Warrington, E. K., & Weiskrantz, L. (1973). An analysis of short­term and long­term memory defects in man. In J. A. Deutsch (Ed.), The physiological basis of 
memory. New York: Academic Press.

Waters, G. S., Caplan, D. (1996). The measurement of verbal working memory capacity and its relation to leading comprehension. The Quarterly Journal of 
Experimental Psychology 1996, 49 A, 51–79.

  
Page 555

Waugh, N. C., & Norman, D. A. (1965). Primary memory. Psychological Review, 72, 89–104.

Weinberger, D. R. (1993). A connectionist approach to the prefrontal cortex. Journal of Neuropsychiatry, 5, 241–253.

Wickelgren, W. A. (1966). Distinctive features and errors in STM for English consonants. Journal of the Acoustical Society of America, 39, 388–398.

Wilson, B. A., & Baddeley, A. D. (1993). Spontaneous recovery of impaired memory span: Does comprehension recover? Cortex, 29, 143–159.

  
Page 557

16
Rational versus Arational Models of Thought
Steven A. Sloman

What do we mean when we say that a person is being irrational? Sometimes the phrase is used because of its pejorative connotations or to express the sentiment ''I 
strongly disagree." Let's ignore such pragmatic readings and consider how the phrase might be true or false. The conventional interpretation of an irrational belief or act 
is that it is incoherent or implies incoherence: it contradicts other beliefs or acts by, for example, violating common sense. In order to be more precise than this, we'll 
have to consider the multiple forms of rationality.

Forms of Rationality

Rationality sometimes refers to a sound or reasonable thought process. For example, someone engaged in a long division problem might be said to be performing a 
rational exercise. Rational thinking, in this sense, is logical (Evans, 1993; Evans, Over, & Manktelow, 1993) or at least involves a process that derives valid inferences 
(Johnson­Laird & Byrne, 1991). Thus, thought can be rational by virtue of the method of inference it employs. Using the Pythagorean theorem to determine the length 
of the hypotenuse of a right triangle is a rational process because, if applied correctly, it will provide the correct answer. Notice that thinking can involve a rational 
process even if it generates a wrong answer through an error in calculation.

In this chapter I will focus mainly on a different sense of rationality, which we can call rationality of response (cf. Evans, 1993; Evans et al., 1993). I will be 
concerned with whether or not we get the right answer, without regard to the method used to obtain it. The "right answer" is

  
Page 558

the solution to whatever problem is at hand. In other words, I will stipulate that you think or act rationally by thinking or acting in a way that maximizes attainment of 
your own goals. This is what two of the pioneers of cognitive science had in mind when they jump­started the computational analysis of human problem solving: 
rational behavior "is appropriate to the goal in the light of the problem environment" (Newell & Simon, 1972, p. 53). So rationality of response refers to a harmony 
between a description of a belief or action relevant to achievement of a goal and a theory of how that goal is best achieved. Of course, a common goal is to minimize 
the time and effort required to perform some task. Sometimes we'll save time or energy by not performing a task perfectly but only "well enough." If saving time and 
energy is part of one's goal, doing so is by no means irrational.

Three attributes of this definition of rationality are noteworthy. First, it assumes a goal. The rationality of a system cannot be defined if we have no idea what the system 
is trying to accomplish. For instance, if we don't know where a person is going, then there's no way to judge the rationality of the person's movement. Second, the 
definition assumes that we have some idea of the best way to achieve the goal; this is often called a normative theory. Obviously, we cannot evaluate whether a 
person is maximizing attainment of a goal without some idea of how to maximize it. Sometimes, we do have an idea. If we know that a person wants to go west, then 
clearly the person should not go east, assuming that going around the world is not feasible. But we don't always know the best way to reach a goal; as we'll see, a 
normative theory of optimal behavior is not always available. Finally, rationality refers to a relation between theories: a descriptive (psychological) theory and a 
normative theory. To illustrate, in several experiments to be described, people were asked to make judgments of frequency or probability. In such cases, the rationality 
of their judgments will refer to the relation between a description of their judgments and probability theory, a theory of optimal judgment in such circumstances.

Note that unlike rationality of process, rationality of response does not imply that a normative theory serves as a basis for thought in any sense. A person's responses 
could be rational even if the person had no knowledge (conscious or unconscious) of the relevant normative theory. The requi­

  
Page 559

site consistency between the normative theory and the response could be a result of using some arational procedure that has the effect of producing the right answer 
(as the natural assessment procedures that will be discussed usually do).

Harman (1995; see also Evans et al., 1993) points out that response rationality has two sides: theoretical and practical. Theoretical rationality entails having beliefs that 
correspond to reality. The belief that Rhode Island is east of Connecticut is rational in this sense because it is true (whether or not the belief was arrived at using a 
rational inference procedure). Practical rationality entails acting or intending to act in a way that is most likely to satisfy one's goals. To show that theoretical and 
practical rationality are not the same, Harman (1995) has us consider Jane. Jane has taken an exam, and before finding out her grade, she concludes and therefore 
believes she received a good grade because she wanted a good grade. This is clearly an irrational belief (wanting a good grade does not guarantee a good grade) and 
illustrates the inconsistency between wishful thinking and rational belief—that is, theoretical rationality. However, it would be quite rational for Jane to permit her desire 
to get a good grade on the exam to influence her studying to make it more likely that she'll, get a good grade. Thus, wishful thinking can be perfectly consistent with 
practical rationality. Hence, desire plays a causal role in practical rationality that it does not play in theoretical rationality.

Limitations on the Assessment of Rationality

Assessing rationality is a difficult and often impossible task. Furthermore, we must be very careful in these assessments because they entail a value judgment. When 
someone believes something is true or some course of action is optimal, then that person's belief represents not only a description of his or her cognitive state but also, 
from the person's point of view, a statement of what is normatively justified. If the person didn't consider it normatively justified, then he or she wouldn't believe it. 1  
The closest we can come to an independent and disinterested determination of the validity of the normative justification of a belief is to rely on any consensus that can 
be found in the community of experts (Stich & Nisbett, 1980). The fundamental justification for the belief that the square root

  
Page 560

of 144 is 12 is that mathematicians agree that it is. So I will limit my ascriptions of irrationality to cases in which a person's responses contradict the overwhelming 
consensus of a community of experts. In most cases mentioned here, people who provide irrational responses willingly admit the error themselves after consideration 
of the experts' argument.

Assessing rationality can be difficult because it depends on the goal being pursued. If the goal changes, the rationality of the relevant behavior could change. For 
example, an apparently irrational play in a poker game could prove quite rational upon realization that the player's goal is not to win the hand but to fool the opponent 
into the belief that the player is a novice (reminiscent of the familiar "bloodshot eyes" ruse; cf. Cherniak, 1986). Analogously, generals will often lose a battle in order to 
win a war. Attributing the wrong goal to an individual can be fatal to the accurate assessment of rationality.

A further complication is that on a specific occasion, we might apply the wrong descriptive theory, the wrong normative theory, or both. Descriptive theories are often 
wrong because identifying reliable psychological phenomena and generating general, empirically valid descriptions of them are notoriously difficult. The study of 
psychology is hard. Generating normative theories that win reasonable amounts of social acceptance is equally hard; rarely is the optimal way to achieve some goal 
beyond dispute. Indeed, the study of logic, probability, law, ethics, and other fields constitutes a colossal effort on the part of society to develop valid normative 
theories. It is clearly a long and ongoing process. So development of normative theory is just as constructive and dynamic a process as is development of descriptive 
theory.

Moreover, descriptive and normative theory are interdependent. Descriptive theory is often guided by normative theory. For example, some theories of reasoning 
(e.g., Rips, 1994) posit that everyday inference takes place using rule sets that derive from specific logical inference procedures. Typically, the descriptive theory of 
reasoning in such cases is composed from a part of a full normative logical theory. Descriptive theory can even include normative theories. Part of a descriptive theory 
might consist of people's efforts to employ normative principles. For example, the norma­

  
Page 561

tive theory of probability comprises part of the descriptive theory of (say) weather forecasting to the extent that forecasters deliberately and explicitly employ the rules 
of probability to derive predictions.

Conversely, normative theories depend on descriptive theories in a number of ways. Descriptive theories provide some of the goals and constraints that normative 
theories operate under. Without a descriptive theory of what people value, for instance, we couldn't derive a normative ethical theory concerning how people should 
be treated. More fundamentally, descriptive theories serve as the foundation of normative theories. 2  Some philosophers believe that the ultimate justification for 
theories such as probability and logic is the basic human intuition that their fundamental principles are sound (cf. Goodman, 1965; Savage, 1972).To illustrate, a basic 
principle (or axiom) of logic is that the statement x and its complement, not x, cannot both be true. Most people agree with this principle even though they cannot 
justify it; it seems self­evident. Normative theories generally rest on such (apparently) self­evident intuitions—general principles that are psychologically sound.

In many cases, a normative theory doesn't even exist. For example, the optimal strategy for playing poker is unknown and may well be unknowable. A more general 
example involves how we should change our beliefs when we encounter new information. Optimal belief­updating often depends on assumptions that we make about 
the situation. Let's say we see someone be helpful to someone else. A rational attribution of helpfulness to the first person presumably would consider the relative 
authority of the two people. In particular, we would consider the first person less helpful if the second person were his or her boss than if not (cf. Kelley, 1973). But 
no normative theory can tell us the optimal way to construe a situation. The laws of logic may tell us that new information is inconsistent with our beliefs, but they don't 
tell us how to revise the beliefs to rectify the inconsistency (Harman, 1995; Stich, 1990); the laws of probability do but in a way that is heavily dependent on prior 
assumptions (Pearl, 1988). In other words, neither of these theories by themselves can tell us when to ascribe helpfulness to another person and when not to. And 
whenever a normative theory is unavailable, ascriptions of rationality are too.

  
Page 562

Minimal Rationality

Summarizing a body of literature in the philosophy of mind, Cherniak (1986) states, "The most basic law of psychology is a rationality constraint on an agent's beliefs, 
desires, and actions: No rationality, no agent" (p. 3). Cherniak is referring to the close link that philosophers have established between a person's rationality and our 
ability to understand that person's plans and purposes—that is, to ascribe intentions to them. Without ascribing rationality to people, we couldn't engage in discourse 
with them, because we would have no basis for believing they understood our utterances. Imagine that we're taking a walk in the forest together, and an animal you've 
never seen before comes bounding along and I say, "that's a dax." How do you know what dax refers to? I could be referring to a part of the animal (its tail or ears, 
e.g.) or to its manner of movement or to the bush that it is occluding. All these possibilities seem silly, however; the implicit social demand for me to try to make only 
statements that you can understand (Grice, 1975) seems to require me to refer to this new, bounding creature in its entirety. Discourse inevitably requires a host of 
implicit assumptions and inferences from context that are licensed by the belief that our interlocuters are rational. If they weren't rational, we would have to spell out 
every phrase, reference, and allusion. We could not expect our listeners to fill in the smallest detail of our intended meaning. Discourse would grind to a halt, for, in 
fact, we expect our listeners to fill in a lot (Grice, 1975). We could not collaborate in conversation with those we did not assume were rational, because we could only 
assume their interpretations were random or absurd. To make matters worse, we could not predict the behavior of people who did not obey rational rules. How could 
we cross the street if we didn't believe that other people would behave in appropriate ways by, for example, obeying traffic laws? To live with other people and 
understand them, we must assume that their beliefs are rational (Quine, 1960). For the vast majority of people, the assumption of rationality seems appropriate and 
actually trivial. 3

But do we need to ascribe perfect rationality? Cherniak (1986) argues that we need only ascribe minimal rationality. We must ascribe enough rationality to allow 
communication and some predictability of behavior

  
Page 563

in constrained conditions (such as in traffic), but we need not assume that people never diverge from the dictates of normative theory. By assuming people are like 
ourselves, we can make educated guesses about how they will interpret us and what they will remember and know. These educated guesses serve to allow 
communication and prediction by making possible estimates of the degree and kind of rationality people will display. As long as we know how much rationality to 
expect, we can estimate the minimal amount of rationality that we can assume.

The Value of Error

The first observation made by most students of normal human behavior is the remarkable degree of theoretical and practical rationality that people display. People 
display more knowledge of the world (theoretical rationality) and perform more varied and complex actions successfully (practical rationality) than any other known 
entity in the universe. People can adjust themselves to changing environments, derive successful strategies, learn new tasks, imagine other possible worlds, perceive 
others' intentions, and much more, often rapidly and usually even effortlessly. A classic example of such an intellectual feat is language learning. Almost all children by a 
few years of age have mastered a huge vocabularly and a syntax too complex to teach any current computer. Another (possibly related) talent is pattern recognition. 
Even young children are able to distinguish and recognize thousands of objects, displays, and motions, despite variation in orientation, lighting, size, and function.

How do we do these things? This is the most basic question of cognitive science. One of the largest obstacles to answering it is that describing such skilled 
performance confounds the task performed and the cognitive apparatus performing it. When I see a master chess player plying his trade, I cannot separate what I'm 
learning about the intricacies of chess from what I'm learning about how humans go about playing chess. Thus most analyses of human behavior concern error—
deviations from optimal performance—because errors allow us to separate task factors from psychological factors. This point was made years ago by Newell and 
Simon (1972). Consider the larger context of their definition of rationality that I provided in the opening section:

  
Page 564

[Rational behavior] is appropriate to the goal in the light of the problem environment; it is the behavior demanded by the situation. Now if there is such a thing as behavior 
demanded by a situation, and if a subject exhibits it, then his behavior tells us more about the task environment than about him. We learn about the subject only that he is in fact 
motivated toward the goal, and that he is in fact capable of discovering and executing the behavior called for by the situation. If we put him in a different situation, he would 
behave differently.... To the extent that the behavior is precisely what is called for by the situation, it will give us information about the task environment.... To the extent that the 
behavior departs from perfect rationality, we gain information about the psychology of the subject, about the nature of the internal mechanisms that are limiting his performance.... 
A theory of thinking and problem solving cannot predict behavior unless it encompasses both an analysis of the structure of task environments and an analysis of the limits of 
rational adaptation to task requirements. (pp. 53–55)

Normative theories constitute attempts to describe what people are trying to accomplish in a given task. Points of divergence between what people try to do and what 
they actually do—errors—are more revealing about mental operation than points of convergence, because when people succeed in accomplishing their goals their 
performance can be equally well attributed to the structure of the task being performed as the structure of the mind performing the task. As a result, most of our 
lessons about human behavior come from a focus on error.

Some Deviations from Ideal Rationality

The most transparent and reliable examples of lessons about cognition provided by human error come from the study of visual illusions. One simple example is the 
moon illusion. The moon appears to be larger when it's near the horizon than when it's overhead, even when the size of the retinal images are identical. A common 
explanation for this phenomenon (elaborated in Kaufman & Rock, 1989) is that a number of distance cues are available when the moon is near the horizon, which 
gives the impression that the moon is far away. Because it is perceived as far away, our perceptual system increases its perceived size. When the moon is overhead, 
fewer distance cues are available, therefore less size correction occurs. Here's a case in which an error in size discrimination (a difference is observed that doesn't 
exist) provides evidence about the perceptual mechanism of distance percep­

  
Page 565

tion. It is the deviations from ideal (accurate) size judgments that produce the evidential value.

The 1960s saw the emergence of the study of what are often called, in analogy to visual illusions, cognitive illusions (a brief history can be found in Arkes & 
Hammond, 1986). These were cases in which people's most common responses on tasks involving probability judgment did not conform to the dictates of a 
probabilistic analysis of the task. These systematic deviations from normative theory are known as biases. For example, Troutman and Shanteau (1977) showed 
people samples of beads from a box known to contain either 70 red, 30 white, and 50 blue beads or 30 red, 70 white, and 50 blue beads. The samples were 
replaced after each presentation. After each sample, subjects were asked to estimate the probability that the box was predominantly white. Some of the samples were 
nondiagnostic; they consisted of either a red and a white bead, two blue beads, or no beads at all. None of these samples should have had any effect on subjects' 
probability judgments, because they were each equally likely to have come from either box. Nevertheless, each of them caused subjects to reduce their probability 
judgments (even no beads at all!). Here is a case in which people are clearly not responding in a way that is consistent with probability theory. Demonstrations of 
systematic error such as this have helped to uncover several general principles of human judgment and reasoning, some of which I will now review.

Reliance on Memory

Are there more words in the English language that end in ing or that have the single letter n in the second­last position (i.e., that end in _n_)? Most people's initial 
response to this query is that more words end in ing. The probable reason for this judgment is that most people try to generate both types of words to answer the 
question and are more successful generating words that end in ing than words that end in _n_. A simple heuristic can then be applied: objects and events are frequent 
to the extent they come easily to mind. This heuristic leads to the conclusion that words ending in ing must be the more frequent. Tversky and Kahneman (1973) label 
this the "availability heuristic" and demonstrate that it is often applied to make judgments of frequency and probability. The heuristic is effective much of the time, 
especially for rare objects and events, but it does lead

  
Page 566

to certain errors, as in the example cited. Words that end in _n_ must be more frequent than words that end in ing, because every word ending in ing is also a word 
ending in _n_. This is an instance of the conjunction fallacy of probability, a case in which people's judgments of frequency violate the conjunction rule of 
probability: the probability of an event (such as a word ending in ing) cannot be greater than the probability of the event's constituents (in this case, the constituent is 
that the word has n in the second­last position). The cause of the conjunction fallacy in this case is that the addition of i and g to _n_ aids memory retrieval but reduces 
the set of acceptable words.

A number of other phenomena can also be attributed to the availability heuristic. Our own actions are more available in memory than other people's actions, and tasks 
that we initiate are more available than tasks others inititiate. This explains Ross and Sicoly's (1979) finding that both husbands and wives tended to give themselves 
more responsibility for household activities than they gave each other, so the total amount of responsibility they estimated added up to more than 100%. Evidence that 
this assessment resulted from the availability heuristic and not an attempt by participants to present themselves as responsible is that the effect occurred for negative 
items (e.g., "Who is responsible for causing arguments"?) as well as for positive items such as household chores.

Events can be made more or less available by the degree to which we are exposed to them. The frequency of events that receive massive media coverage, 
earthquakes, accidents at nuclear power stations, and electrocutions, for example, tend to be overestimated, whereas the frequency of events that receive little or no 
coverage, such as deaths due to asthma or heart disease tend to be underestimated (Lichtenstein, Slovic, Fischhoff, Layman, & Combs, 1978).

Past experience serves as our sample of the way the world works and therefore can be a guide for making rational judgments and predictions. Memory serves as our 
repository of past experience, and therefore memory is central to thinking. But human memory is a mechanism that has certain principles of operation, and those 
principles make some events easier to retrieve than others. Events that we understand are easier to retrieve than events that are not meaningful (Craik & Lockhart, 
1972),

  
Page 567

and events for which more retrieval cues are provided—such as words ending in ing—are easier to retrieve than events not so well cued—such as words ending in 
_n_ (Tulving & Thomson, 1973). These principles of memory can lead to systematic errors, or biases, in judgment when the cues that ease memory retrieval reduce 
the size of the set of events whose probability is being judged.

Reliance on Similarity

Here's another example of how human error can lead to insights about how people think:

Linda is 31 years old, single, outspoken and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice and 
also participated in antinuclear demonstrations.

Which of the following two statements is more likely?

Linda is a bank teller. (T)

Linda is a bank teller and is active in the feminist movement. (T & F)

Tversky and Kahneman (1983) asked this question in a variety of ways and consistently found that most people judged the second statement to be more likely than 
the first. They attribute this pattern of performance to the representativeness heuristic, according to which the probability or frequency of an object or event increases 
to the extent that it is similar to the category being judged. The paragraph describing Linda is more similar to that of a feminist bank teller than it is to a stereotypical 
bank teller and therefore we can more easily imagine Linda as a feminist bank teller, which leads us to conclude that she is more likely to be one. Evidence that people 
use a similarity­based heuristic for this kind of judgment is strong (Crandall & Greenfield, 1986; Smith & Osherson, 1989), although they are also influenced by other 
factors (Gavanski & Roskos­Ewoldsen, 1991; Shafir, Smith, & Osherson, 1990).

Of course, this is another example of the conjunction fallacy. Statement T & F could not possibly be more probable than statement T, because it presupposes T. A 
conjunction can never be more probable than one of its constituents. Nevertheless, representativeness overwhelmingly dictates how people respond. The fallacy was 
committed even by the great majority of a group of doctoral students in the decision science program of the

  
Page 568

Stanford Business School, who are highly trained in probability theory (Tversky & Kahneman, 1983).

Another example of too much reliance on similarity to make judgments of probability comes from studies of base rate neglect. Consider Tom W.:

Tom W. is of high intelligence, although lacking in true creativity. He has a need for order and clarity, and for neat and tidy systems in which every detail finds its appropriate 
place. His writing is rather dull and mechanical, occasionally enlivened by somewhat corny puns and by flashes of imagination of the sci­fi type. He has a strong drive for 
competence. He seems to have little feel and little sympathy for other people and does not enjoy interacting with others. Self­centered, he nonetheless has a deep moral sense. 
(Kahneman & Tversky, 1973, p. 238)

Imagine that this sketch of Tom W. had been written by a psychologist, on the basis of projective tests, when Tom was a senior in high school. What field do you think 
you would find Tom W. in? Rank the following nine fields according to the probabilities that Tom W. is in them: business administration, computer science, 
engineering, humanities and education, law, library science, medicine, physical and life sciences, and social science and social work. According to Bayes's theorem of 
probability, your ranking should have considered two aspects of each field: the probability that someone in the field would have Tom W.'s description (case data) and 
the relative frequency of people in the field (the base rate). The base rate is important because it indicates the proportion of the population that the field includes. To 
see its importance, consider how much fear you should have about your next airplane trip. No matter how easily you can imagine a fiery crash or other tragedy, the 
base rate of airplane accidents is so low that you can feel secure about your next flight; tragedies simply hardly ever occur. Analogously, the probability that Tom W. is 
a computer scientist is a function of both how much he seems like a computer scientist and how frequent computer scientists are in the population. However, in this 
problem, people pay a lot of attention to the case data and show a relative neglect for the base rates. Rankings of the probability of Tom W.'s being in each field 
corresponded closely to rankings of the similarity between Tom W. and a typical graduate student in each field and had no relation to judgments of the base rates of 
students in the fields (Kahneman & Tversky, 1973). Generally speaking, base rates in this type of problem tend to be underweighted although not completely

  
Page 569

ignored (e.g., Bar­Hillel, 1983). This tendency for people to make their judgments according to the similarity between a description and a representation of a class is 
another example of the application of the representativeness heuristic.

Errors in reasoning due to reliance on similarity can also be found in tasks that ask people to project unfamiliar properties amongst categories. Sloman (1998) found 
that people tended to project properties from a superordinate category to a subordinate one in proportion to the extent that the categories were similar. For example, 
Brown University students were asked to rate the probability of the conclusion of the following argument (that every individual bank manager can use tax form 
addendum 10­83) given that the premise is true (that every individual white­collar worker can use tax form addendum 10­83):

Every individual white­collar worker can use tax form addendum 10­83.

Therefore, every individual bank manager can use tax form addendum 10­83.

The students gave it a mean probability rating of only .87. They found the conclusion likely but not certain despite agreeing that all bank managers are white­collar 
workers. Moreover, the argument

Every individual white­collar worker can use tax form addendum 10­83.

Therefore, every individual air traffic controller can use tax form addendum 10­83.

received a mean probability of only .62, even though participants also agreed that all air traffic controllers are white­collar workers. Air traffic controllers apparently 
have little enough in common with other white­collar workers that they are not automatically ascribed a property held by all white­collar workers, even though they 
themselves belong to the category. This pattern of response does not conform to set theoretic logic, which dictates that if all white­collar workers have a property then 
all members of that category must have it. Similarity seems to be playing a role in that the categories of the first argument, which received higher probability ratings, 
were judged more similar than categories of the

  
Page 570

second argument (bank managers and white­collar workers were judged more similar than air traffic controllers and white­collar workers). More evidence that 
similarity plays a critical role in the evaluation of such arguments can be found in Osherson, Smith, Wilkie, Lopez, & Shafir (1990) and Sloman (1993).

In many situations, similarity relations are excellent proxies for probabilistic relations. Generally, instances are more probable if they are similar to a category prototype. 
The probability of encountering someone whose height deviates slightly from the average—that is, who is similar to the average—is higher than the probability of 
encountering someone extraordinarily short or tall. Moreover, instances are more probable if they are more similar to the typical outcome of a process. The probability 
of a snowfall that drops a quantity of snow that's close (similar) to average is indeed higher than a more extreme snowfall. But similarity is determined according to 
certain cognitive principles such as feature overlap, feature contrast (Tversky, 1977), and feature alignment (Medin, Goldstone, Gentner, 1993), and those principles 
can lead to such systematic biases in the assessment of probability as neglect of the conjunction rule, of base rates, and of inclusion relations. By focusing on these 
biases, cognitive scientists have been able to uncover one of the principal means by which people make judgments: on the basis of similarity.

Reliance on Positive Tests

The Sabines were part of (a) Ancient India or (b) Ancient Rome?

Choose one of options (a) and (b), and then state the probability that you're correct. Koriat, Lichtenstein, and Fischhoff (1980) asked subjects to do this using a 
variety of general knowledge questions of this type. They found their subjects were overconfident in the sense that their probability judgments were too high (cf. 
Oskamp, 1965). They were uncalibrated: the proportion of times they were correct for all questions at each level of judged probability was lower than that 
probability. For example, considering only those questions that were assigned a probability judgment of .8, the proportion answered correctly was only about .6. In 
fact, of those questions that subjects assigned a probability of 1 (they were absolutely sure of the answer), they only got about 80% correct. In a

  
Page 571

subsequent experiment, Koriat et al. had subjects generate reasons either supporting their answer or contradicting their answer (reasons they might be wrong) before 
generating a probability judgment. Supporting reasons had no effect; subjects were just as overconfident as they were when they generated no reasons. However, 
generating contradicting reasons reduced the amount of overconfidence observed; judged probabilities moved closer to actual proportions correct. One explanation 
for these findings is that supporting reasons did not affect judgments, because subjects automatically generated them anyway. Supporting reasons were generated 
whether or not they were asked for, but contradicting reasons were not. People do not automatically generate reasons contradicting their conclusions, which causes 
their conclusions to appear to have more support than they do. This leads to overconfidence. 4

This tendency to generate supporting reasons hints at a more general tendency that has been observed in a number of tasks in which people are required to test 
hypotheses. People look for reasons that are implied by their hypotheses and examine data to see if they support their hypotheses. They fail to look for reasons that 
are implied by alternative hypotheses and examine data to see if they support other hypotheses. Klayman and Ha (1987) refer to this as a positive test strategy: 
''people tend to test hypotheses by looking at instances where the target property is hypothesized to be present or is known to be present" (p. 225).

Consider the Wason (1960) rule discovery task, which involves sets of three numbers (triples). The experimenter makes up a rule to which some triples conform and 
others do not. Subjects are given one triple that fits the rule: 2, 4, 6. Their task is to name other triples, and the experimenter tells them whether or not these other 
triples fit the rule. When ready, subjects try to guess the rule and test their guess by generating more triples. A common first guess is "three consecutive even numbers." 
After such a guess, subjects have an implicit choice. They can either try to disconfirm their hypothesis by generating a triple that does not conform to the rule (e.g., 2, 
4, 7) or they can try to confirm their hypothesis (a positive test; e.g., 4, 6, 8). Wason found that people tried to confirm their hypotheses much more often than they 
tried to disconfirm them. This led to trouble in Wason's case because the rule he had in mind was extremely general: any three ascending numbers. As a result, 
subjects' guesses

  
Page 572

tended to conform to the experimenter's rule, which led to confirmation of their hypothesis even though it was incorrect. This often caused subjects to develop an 
unwarranted degree of confidence in their hypothesis. Had subjects used a different strategy, if they had tested their hypothesis using negative instances that did not 
conform to the rule they had in mind, they would have rapidly disconfirmed it. In sum, use of the positive test strategy gave subjects a mistaken sense of confidence.

One effect of the positive test strategy is to cause people to neglect alternative hypotheses. Such neglect could explain why Troutman and Shanteau (1977), in the 
experiment described earlier, found that drawing a sample of beads that was unlikely given the hypothesis that subjects believed had the effect of reducing subjects' 
confidence in that hypothesis, even though the sample was equally unlikely given the alternative hypothesis that they did not believe. Fischhoff and Beyth­Marom 
(1983) make the point in this way:

A favorite ploy of magicians, mentalists, and pseudopsychics who claim to read other people's minds is to provide universally valid personality descriptions that apply to almost 
everyone, although this is not transparently so. These operators trust their listeners to assess P(this description given my mind is being read) and not P(this description given my 
mind is not being read). (p. 248)

This neglect of alternative hypotheses has obvious ramifications for scientific practice and explains why scientists must be reminded of the importance of trying to falsify 
their hypotheses (Popper, 1959).

Klayman and Ha (1987) demonstrate that the positive test strategy is a useful heuristic that often leads to an optimal information search; that is, it often provides 
maximum information about the validity of a hypothesis (for a related analysis of the Wason 4­card selection task, see Oaksford & Chater, 1994). However, like any 
heuristic, it can also lead us astray, as it does when it biases our search for evidence, as in Wason's (1960) rule discovery paradigm, or when it causes us to neglect 
alternative hypotheses. 5

I have reviewed only a small sample of the many heuristics that have been posited and the many biases and complexities in judgment and reasoning that have been 
uncovered. A number of fuller treatments and reviews exist, including Arkes and Hammond (1986); Baron (1994); Kahneman et al. (1982); Nisbett and Ross (1980); 
Payne, Bettman, and Johnson (1992); and Pious (1993).

  
Page 573

Why Do People Make Errors?

Bounded Rationality

Two complementary views of the reason we find systematic error can be distinguished. The older view, made popular by the seminal work of Herbert Simon, is 
commonly referred to as bounded rationality. The idea is that people make errors because they operate with limited cognitive resources. Our short­term memories 
have limited capacity; we can perform only a limited number of operations at any time; we have limited energy; indeed, we are limited in every way. However, many of 
the problems that confront us are enormously difficult computationally and sometimes impossible. For example, the world's fastest computer would be unable to 
consider all the possible sequences of moves in a chess game even if it ran for billions of years. Another example comes from the theory of computation. Some 
statements about the world are undecidable in the sense that we cannot tell if they are consequences of our beliefs or not. Computational bounds prevent us from 
knowing whether the desire to maintain consistency amongst our beliefs should cause us to believe these statements. Some problems cannot be solved by unaided 
humans, and some problems cannot be solved at all. Therefore, instead of deriving optimal strategies that are completely satisfactory, we resort to strategies that are 
satisficing, reasonable but not necessarily optimal (Simon, 1981). We strive to accomplish our main objectives without demanding optimality. We play the best game 
of chess we can with the expectation that every move won't be perfect, and we accept that some of our beliefs are likely to be inconsistent with others.

This acceptance that trade­offs are made between the efficiency of performing cognitive tasks and the achievement of optimal performance may explain some aspects 
of mental organization. For example, Cherniak (1986) argues that knowledge is compartmentalized in memory to promote search efficiency. To optimize accuracy, all 
knowledge would be accessible in memory at all times. But it's not. Knowledge is accessible only in certain contexts. This reduces our ability to make connections 
between pieces of knowledge stored in different compartments. This inability inhibits discovery as it did in the case of penicillin (Hilding, 1975). Many microbiologists 
were aware for at least a decade both that molds

  
Page 574

cause clear spots in bacteria cultures and that bare spots indicate no bacterial growth before Fleming made the critical connection and realized that molds must release 
an antibacterial agent. This realization led directly to the discovery of penicillin. Cherniak concludes that knowledge is divided into bundles in memory, so only the 
contents of a single bundle usually need to be searched for a desired trace. The downside of this type of organization is that not all traces will be in the active bundle 
and therefore will not be accessible when needed.

The observation that rationality is bounded has led to disagreement about the proper definition of it. An extreme view is that human thought and activity must be 
rational because behavior should be judged relative to the constraints under which the behavior is determined. Those constraints are both evolutionary (human 
behavior has adapted to its environments) and cognitive (human computational resources are necessarily limited). In other words, instead of regarding the constraints 
as part of a descriptive theory, this view regards them as part of a normative theory of whatever task is being performed. The normative theory thereby becomes much 
less exacting; people will always come out spectacularly well because any lack of optimality in performance can be attributed to phylogenetic and ontogenetic 
constraints. An even more extreme view is that all errors in human reasoning are mere performance errors, attributable to constraints on how cognitive systems are 
forced to operate when resources are limited (Cohen, 1981). According to Cohen, errors do not reflect underlying inferential competence, which is invariably 
normatively unimpeachable (for reasons already alluded to). 6

In the words of Bertrand Russell, these extreme views have all the virtues of theft over honest toil by simply defining away the problem of assessing human rationality. 
By disallowing the possibility of irrationality, they prevent the insights into cognition that error illuminates and they prevent us from trying to improve human 
performance. To retain content in the notion of rationality, at least some cognitive constraints must be ascribed to descriptive and not normative theory. After all, these 
constraints do serve to describe the cognitive system. Nevertheless, the alternative view does highlight a critical point. Some tasks, such as beating a grandmaster at 
chess, are hard. We would not want to label somebody irrational just because he or she failed to win a game against a

  
Page 575

grandmaster. Our processing is constrained, and our goal is often not to perform a task optimally but to perform it well without too much cost (in time, effort, etc.). If 
one of our goals is to reduce cost, then the constraint that engenders the cost belongs in normative and not descriptive theory. In sum, optimal performance is often 
usefully defined as that which could plausibly be expected of a human being with normal human resources. But discrepancies between descriptive and normative 
theory remain possible (Cherniak, 1986; Dennett, 1995; Evans, 1993). People do make errors.

Natural Assessment Methods

In the early 1970s, the work of Amos Tversky and Daniel Kahneman made popular a second view of the determinants of systematic error. They argued that people 
make errors because they make judgments and decisions using heuristics (rules of thumb) that are quick and easy for people and that usually provide reasonable and 
adequate answers but fail under particular conditions. The heuristics they posit draw on the strengths of the human cognitive machinery, and therefore they refer to 
these heuristics as natural assessment methods. We've already encountered the two most powerful and useful heuristics: representativeness and availability. 
Representativeness relies on one function at which our cognitive systems excel, similarity assessment. It takes advantage of the ability of similarity relations to 
approximately map probability distributions. Availability relies on a different cognitive strength, memory retrieval. It takes advantage of the ability of memory to draw 
on past experience. But these heuristics also lead to certain biases in reasoning and judgment, examples of which we've seen earlier.

The main difference between the two views of error has to do with the rationality of the process people are understood to be using when making judgments. Bounded 
rationality assumes that people are using a rational inference procedure; they are just limited in their ability to fully exploit it. The natural assessment approach assumes 
that people are using an arational procedure that approximates rational inference. As we will see in the next section, evidence exists suggesting that people think in 
different ways, using both rational and heuristic procedures. Given this multiplicity of thought, the two views of error are complementary. Bounded

  
Page 576

rationality explains error in situations in which people are using a rational procedure, and the natural assessment approach explains why people also use procedures 
other than rational ones.

Two Types of Thinking

Each of these two views of human error suggests a different way to conceive of the place of normative rules in human thought. Bounded rationality suggests that 
people are able to follow rules derived from normative theory, although their ability to do so is limited by their limited cognitive resources. The natural assessment 
approach suggests that thought involves a process in which no rules of any kind are followed. Evidence can be found for both of these suggestions. Human thought 
seems to have two complementary aspects. These aspects have been distinguished in a variety of ways by a number of theorists over the years. To take only one 
example, Reason (1992) distinguishes an attentional control mode from an automatic one, which he takes to be the locus of much human error. Following Sloman 
(1996), I will call the two forms of thought rule­based and associative.

Rule­Based Thinking

Our ability to use formal systems such as mathematics and logic testifies to our ability to apply rules to perform symbolic manipulations. Our inclination to obey cultural 
rules (like stopping at stop signs) suggests that not only are we capable of applying rules, but we actually do apply them on a regular basis. This ability to follow rules 
enables us to follow normative rules, for they are simply rules of a specific kind. We can, for example, apply the rules of probability to derive prescriptions for optimal 
uncertain inference, as we did to understand the conjunction fallacies introduced earlier. More generally, we have the capacity to strategically adapt to problems in an 
effort to optimize performance. This type of thinking is flexible and productive and usually involves deliberation and symbolic manipulation (for a fuller characterization, 
see Sloman, 1996).

Rule­based thinking can lead to error due to bounds on rationality in the way described. Our efforts to follow normative rules may be bounded by the limited cognitive 
resources at our disposal. Some reasoning prob­

  
Page 577

lems, for example, require us to maintain more information in working memory at one time than we can handle (e.g., Johnson­Laird & Byrne, 1991). A simple 
illustration can be constructed using arithmetic. If I ask you to multiply 13 and 9 without the aid of pencil and paper (or a calculator), you are more likely to give the 
right answer than if I ask you to mentally multiply 138 and 94. The latter problem requires several more intermediate calculations, which quickly overload working 
memory. You are competent at applying the rules of multiplication, but your performance is constrained by your limited cognitive resources.

Associative Thinking

In contrast to rule­based thinking, thinking compatible with natural assessment methods is guided by principles, such as reliance on memory and similarity, which serve 
as good approximations to normative principles but are not identical to them. This view of the thinking process has a long history; one tradition it is compatible with is 
associationism. Associationism, especially in its modern guise of connectionism, or parallel, distributed computation, starts from the premise that knowledge is built 
out of relations based on temporal and spatial contiguity. According to the modern view, an association is a learned tendency for one representation to elicit another 
when they represent objects that were in the same general vicinity at roughly the same time. Much of the inferential capacity of such systems emanates from their ability 
to generalize on the basis of similarity. For example, an associative system that has encountered many birds that have wings can automatically infer that a bird it has 
never seen before also has wings (Hinton, McClelland, & Rumelhart, 1986; Sloman, 1993). Other associative systems are capable of more sophisticated inferences as 
well (e.g., Barnden, 1994). Associative systems tend to be good at pattern recognition—essentially a form of similarity assessment—and memory retrieval. Not 
coincidentally, similarity assessment and memory are the two primary functions relied on by the natural assessment approach—in the guise of the representativeness 
and availability heuristics—to account for patterns of human error. This correlation between the functions that associative systems can serve and those human thought 
relies on suggests that associationism might serve as one reasonable model of thought.

  
Page 578

In conclusion, although the characters of the systems of thought need to be more fully fleshed out (Gigerenzer & Regier, 1996), evidence does exist for both rule­
based and associative thought. The best explanation for the available evidence seems to be that human cognition includes both kinds (Sloman, 1996, Gigerenzer & 
Regier, 1996, provide a contrary opinion). One motivation for this conclusion is the strength of the evidence for each system separately (evidence that people reason 
using rules is reviewed in Smith, Langston, & Nisbett, 1992). For example, when assigning objects to categories under conditions that demand justification, people 
tend to base their categorization decisions on rules encoding necessary conditions of the category (e.g., Rips, 1989). But when the demand for justification is removed, 
people tend to make assignments based on similarity (Smith & Sloman, 1994).

Another form of evidence suggesting two distinct systems of thought is the phenomenon of simultaneous contradictory belief (Sloman, 1996). Sometimes we maintain 
two contradictory responses to a reasoning problem at the same time, one based on rules and the other on associations. A good example is the "Linda the bank teller" 
problem described earlier. Even after understanding and accepting the conjunction rule of probability and thus affirming that Linda is more likely to be a bank teller 
than a feminist bank teller, most people still admit a propensity to believe that she is more likely to be a feminist bank teller. This conviction does not go away despite 
an equally firm conviction, based on the conjunction rule of probability, that she can't be. She seems like a feminist and thus more like a feminist bank teller, even 
though we know that she's more likely to be a bank teller. This phenomenon of simultaneously believing two contradictory statements implies that two systems are 
operating, each supporting one belief. This assumes, of course, that a system of thought can only maintain one coherent opinion at a time. In conclusion, thought has at 
least two modes, modes that apparently can operate in the same person at the same time. They are not equals, though. The rule­based system seems to be able, given 
sufficient time, to overrule and inhibit the associative one.

A variety of evidence suggests that thought consists of at least two systems. Each of these systems offers a solution to the problem of maintaining minimal rationality. 
The rule­based one does it directly by explic­

  
Page 579

itly following normative rules to the extent that it is able. The associative one does it by operating according to principles that approximate normative ones and by 
operating quickly while requiring few cognitive resources (cf. Reason, 1992).

Extensional Cues

Can thought and action be made more rational; that is, are there conditions that cause descriptive theory to approach normative theory? The answer is yes. However, 
the conditions are restrictive: they apply to only certain kinds of problems or can be demanding. I describe two ways to increase the coherence of judgment.

Probability versus Frequency

In some cases, simple cues can serve to make behavior more rational. One cue that has increased the coherence of probability judgments involves asking people to 
assess frequency rather than probability. Tversky and Kahneman (1983) reduced the incidence of the conjunction fallacy by asking their subjects to estimate the 
relative frequency of an event given a specified number of possibilities instead of asking for judgments of probability. Similarly, Fiedler (1988) found that only 22% of 
his subjects violated the conjunction rule using the Linda the bank teller problem when he asked them how many people the statements applied to out of 100 people 
who are like Linda. However, 91% of his subjects violated the rule when he gave them the standard problem of rank ordering statements about Linda's profession 
"with respect to their probability." An effective way to understand the conjunction rule is in set­theoretic terms (the set of things with properties T and F is a subset of 
the set of things with property T). Describing the options in terms of concrete sets seems to make people aware of the subset relation relevant for the conjunction rule 
in a way that describing the options in terms of combinations of properties does not. Overconfidence can also be reduced by having people assess frequency rather 
than probability, although the result is sometimes underconfidence (Griffin & Tversky, 1992).

Evaluating relative frequency within a concrete set increases the transparency of relations that are compatible with probability theory.

  
Page 580

Evaluating probability directly causes us to rely more on similarity. Unfortunately, assessing frequency rather than probability is not a panacea for irrational judgment, 
because frequency does not always provide a sensible alternative to probability. For instance, an assessment of the probability that an individual is guilty of murder 
cannot be transformed into a meaningful assessment of frequency. The desire for rationality (and justice) would hardly be satisfied by substituting the probability 
question with "How many of 100 people like the accused would have committed the murder?"

Education

Richard Nisbett and his colleagues have amassed a variety of evidence concerning the ability to teach people to apply normative rules (Nisbett, 1993). Because of 
people's ability to do rule­based processing, if a rule is simple enough, then anybody can be taught to apply it within a given context. Only the rare person cannot be 
taught the rule "If you are driving and you approach a red sign with the word STOP on it, then stop." In consequence, people's ability to learn to apply normative rules 
must be measured in less transparent ways. One test is whether people can learn to solve a specific rule­based problem through training on an abstract version of the 
rule (Smith et al., 1992). This test has been applied to a small number of rules, some of which have passed and others of which have failed. Specifically, learning has 
been demonstrated using statistical rules such as the law of large numbers (Fong, Krantz, & Nisbett, 1986; Lehman, Lempert, & Nisbett, 1988; Lehman &, Nisbett, 
1990) and the contractual rules of permission and obligation (Cheng, Holyoak, Nisbett, & Oliver, 1986). Learning has not been found for the logical rule of modus 
tollens (Cheng et al., 1986).

In sum, given sufficient training, people can learn to apply some normative rules but not others. Which rules can be taught? According to Lehman et al. (1989),
A major class of such rules are those that people have induced, though only partially, in the course of their daily existence. Rules about assessing causality, rules for generalizing, 
rules for determining argument validity, and rules for assessing the probativeness of evidence are the kinds of rules that people must have in some measure in order to live 
effectively in the world. (p. 335)

  
Page 581

As far as these authors are concerned, then, we can learn to apply only those rules that are pragmatically relevant.

Conclusions

People may have a variety of systems for thinking, reasoning, and acting, which are able to serve multiple purposes, singly and collectively. Each system is able to do 
some things well (i.e., rationally). But this suggests that it won't do other things well. The evidence suggests that some specific functions are not always performed 
optimally by the system that normally takes responsibility for them. The mere fact that a specific response is irrational in this sense does not condemn a larger more 
inclusive response repertoire. People may make a specific error because they engage in a form of thinking that is generally well adapted to the activities they engage in 
and the goals they pursue.

Noting our limitations is part of the process by which society at large can try to relieve them. For example, if people were all born with calculators, then there would be 
less need to teach arithmetic in school. But we are not; we are naturally limited in our ability to add, subtract, multiply, and divide. By noting this, society has learned 
that we can benefit one another by teaching arithmetic in school. Likewise, by noting other patterns of thought that can lead to less than optimal responses, we can 
benefit one another in other ways.

Acknowledgments

I am indebted to David Over, Heather Sloman, and Gideon Forman for their comments on prior versions of this chapter.

Notes

1. At least one philosopher (Cohen, 1981) argues that a person's set of core beliefs is identical to the set of beliefs that person is justified in having; that is, the 
descriptive and normative theory of an individual's beliefs cannot be distinguished. However, this argument has drawn sharp criticism (see the commentaries following 
Cohen, 1981) and a detailed rebuttal (Stich, 1990).

2. This proposition supplies a premise to Cohen's (1981) argument that human cognitive competence is necessarily rational.

  
Page 582

3. The critical ascription of rationality is not actually to individual beliefs but to systems of beliefs (Stich, 1990).

4. For a review of confidence and its calibration, see Yates (1990).

5. The general conditions under which the positive test strategy does not lead to optimal information gain are discussed in Klayman and Ha (1987).

6. Although the distinction between competence and performance can be found in many flavors, my usage (and Cohen's) corresponds to Chomsky's (1965) original 
distinction.

References

Arkes, H. R., & Hammond, K. R. (1986) (Eds.). Judgment and decision making: An interdisciplinary reader. Cambridge, England: Cambridge University Press.

Bar­Hillel, M. (1983). The base rate fallacy controversy. In R. W. Scholz (Ed.), Decision making under uncertainty (pp. 39–61). Amsterdam: North­Holland.

Barnden, J. A. (1994). Advances in connectionist and neural computation theory (Vols. 1–3). Norwood, NJ: Ablex.

Baron, J. (1994). Thinking and deciding (2nd ed.). Cambridge, England: Cambridge University Press.

Cheng, P. W., Holyoak, K. J., Nisbett, R. E., & Oliver, L. M. (1986). Pragmatic versus syntactic approaches to training deductive reasoning. Cognitive 
Psychology, 18, 293–328.

Cherniak, C. (1986). Minimal rationality. Cambridge, MA:MIT Press.

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

Cohen, L. J. (1981). Can human irrationality be experimentally demonstrated? Behavioral and Brain Sciences, 4, 317–331.

Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671–
684.

Crandall, C. S., & Greenfield, B. (1986). Understanding the conjunction fallacy: A conjunction of effects? Social Cognition, 4, 408–419.

Dennett, D. C. (1995). Darwin's dangerous idea. New York: Simon & Schuster.

Evans, J. St. B. T. (1993). Bias and rationality. In K. I. Manktelow & D. E. Over (Eds.) Rationality: psychological and philosophical perspectives. London: 
Routledge.

Evans, J. St. B. T., Manktelow, K. I., & Over, D. E. (1993). Reasoning, decision making, and rationality. Cognition, 49, 165–187.

Fiedler, K. (1988). The dependence of the conjunction fallacy on subtle linguistic factors. Psychological Research, 50, 123–129.

  
Page 583

Fischhoff, B., & Beyth­Marom, R. (1983). Hypothesis evaluation from a Bayesian perspective. Psychological Review, 90, 239–260.

Fong, G. T., Krantz, D. H., & Nisbett, R. E. (1986). The effects of statistical training on thinking about everyday problems. Cognitive Psychology, 18, 253–292.

Gavanski, I., & Roskos­Ewoldsen D. R. (1991). Representativeness and conjoint probability. Journal of Personality and Social Psychology, 61, 191–194.

Gigerenzer, G., & Regier, T. (1996). How do we tell an association from a rule? Comment on Sloman (1996). Psychological Bulletin, 119, 23–26.

Goodman, N. (1965). Fact, Fiction, and Forecast. Indianapolis, IN: Bobbs­Merrrill.

Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and Semantics: Vol. 3: Speech Acts. New York: Academic Press.

Griffin, D., & Tversky, A. (1992). The weighing of evidence and the determinants of confidence. Cognitive Psychology, 24, 411–435.

Harman, G. (1995). Rationality. In E. E. Smith & D. N. Osherson (Eds.). Thinking (an invitation to cognitive science) (Vol. 3). Cambridge, MA: MIT Press.

Hilding, A. (1975). Letter. Science, 187, 703.

Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations. In Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (Eds.) 
Parallel distributed processing (Vol. 1, pp. 77–109). Cambridge, MA: MIT Press.

Johnson­Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Hillsdale, NJ: Erlbaum.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge, England: Cambridge University Press.

Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80, 237–251.

Kaufman, L., & Rock, I. (1989). The moon illusion thirty years later. In M. Hershenson (Ed.), The moon illusion (pp. 193–234). Hillsdale, NJ: Erlbaum.

Kelley, H. H. (1973). The processes of causal attribution. American Psychologist, 28, 107–127.

Klayman, J., & Ha, Y. (1987). Confirmation, disconfirmation, and information in hypothesis testing. Psychological Review, 94, 211–228.

Koriat, A., Lichtenstein, S., & Fischhoff, B. (1980). Reasons for confidence. Journal of Experimental Psychology: Human Learning and Memory, 6, 107–118.

Lehman, D. R., Lempert, R. O., & Nisbett, R. E. (1988). The effects of graduate training on reasoning: Formal discipline and thinking about everyday life events. 
American Psychologist, 43, 431–433.

Lehman, D. R., & Nisbett, R. E. (1990). A longitudinal study of the effects of undergraduate education on reasoning. Developmental Psychology, 26, 952–960.

  
Page 584

Lichtenstein, S., Slovic, P., Fischhoff, B., Layman, M., & Combs, B. (1978). Judged frequency of lethal events. Journal of Experimental Psychology: Human 
Learning and Memory, 4, 551–578.

Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for similarity. Psychological Review, 100, 254–278.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice­Hall.

Nisbett, R. E. (Ed.) (1993). Rules for reasoning. Hillsdale, NJ: Erlbaum.

Nisbett, R. E., & Ross, L. (1980). Human inference: Strategies and shortcomings of social judgment. Englewood Cliffs, NJ: Prentice­Hall.

Oaksford, M., & Chater, N. (1994). A rational analysis of the selection task as optimal data selection. Psychological Review, 101, 608–631.

Osherson, D., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category­based induction. Psychological Review, 97, 185–200.

Oskamp, S. (1965). Overconfidence in case­study Judgments. Journal of Consulting Psychology, 29, 261–265.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1992). Behavioral decision research: A constructive processing perspective. Annual Review of Psychology, 43, 87–
131.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann.

Plous, S. (1993). The psychology of judgment and decision making. New York: McGraw­Hill.

Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.

Quine, W. (1960). Word and object. Cambridge, MA: MIT Press.

Reason, J. T. (1992). Cognitive underspecification: Its variety and consequences. In B. J. Baars (Ed.) Experimental slips and human error (pp. 71–91). New 
York: Plenum Press.

Rips, L. J. (1989). Similarity, typicality, and categorization. In S. Vosniadou & A. Ortony (Eds.) Similarity and analogical reasoning. Cambridge, England: 
Cambridge University Press.

Rips, L. J. (1994). The psychology of proof. Deductive reasoning in human thinking. Cambridge, MA: MIT Press.

Ross, M. & Sicoly, F. (1979). Egocentric bias in availability and attribution. Journal of Personality and Social Psychology, 37, 322–336.

Savage, L. J. (1972). The foundations of statistics (2nd ed.). New York: Dover.

Shafir, E., Smith, E. E., & Osherson, D. (1990). Typicality and reasoning fallacies. Memory & Cognition, 18, 229–239.

Simon, H. A. (1981). The sciences of the artificial (2nd ed.). Cambridge, MA: MIT Press.

  
Page 585

Sloman, S. A. (1993). Feature­based induction. Cognitive Psychology, 25, 231–280.

Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119, 3–22.

Sloman, S. A. (1998). Categorical inference is not a tree: The myth of inheritance hierarchies. Cognitive Psychology, 35, 1–33.

Smith, E. E., Langston, C., & Nisbett, R. (1992) The case for rules in reasoning. Cognitive Science, 16, 1–40.

Smith, E. E., & Osherson, D. N. (1989). Similarity and decision­making. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 60–75). 
Cambridge, England: Cambridge University Press.

Smith, E. E., & Sloman, S. A. (1994). Similarity­versus rule­based categorization. Memory & Cognition, 22, 377–386.

Stich, S. (1990). The fragmentation of reason. Cambridge: MIT press.

Stich, S., & Nisbett, R. (1980). Justification and the psychology of human reasoning. Philosophy of Science, 47.

Troutman, C. M., & Shanteau, J. (1977). Inferences based on nondiagnostic information. Organizational Behavior and Human Performance, 19, 43–55.

Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373.

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207–232.

Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90, 293–315.

Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual task. Quarterly Journal of Experimental Psychology, 12, 129–140.

Yates, J. F. (1990). Judgment and decision making. Englewood Cliffs, NJ: Prentice Hall.

  
Page 587

17
Formal Rules versus Mental Models in Reasoning
P. N. Johnson­Laird

Psychologists are still arguing about how people reason. Some say that it depends on a memory for previous examples, or on principles in the form of conditional rules 
that capture general knowledge, or even on neural nets representing concepts. Such accounts, however, do not extend to the full inferential competence that most of 
us can display. We can make deductions about matters of which we know nothing:

All zugs squack.

Olp is a zug.

 Olp squacks.

Such an inference hinges not on general knowledge, but on linguistic knowledge. The real controversy is accordingly about this sort of deductive reasoning. On one 
side, there are those who claim that it is a syntactic process that depends on formal rules of inference akin to those of a logical calculus. On the other side, there are 
those who claim that it is a semantic process that depends on mental models akin to the models that logicians invoke in formulating the semantics of their calculi. The 
controversy has been fruitful—it has led to improvements in experimental methodology and in the theories themselves. But it has been going on for a long time, and 
skeptics have even hinted that it may go on forever. That assessment, however, is premature and pessimistic. It may never be settled to the satisfaction of all parties—
controversies in science seldom are—but it is about a major component of human thinking, and it is open to empirical investigation using methods acceptable to all 
cognitive psychologists. If these methods fail to settle the issue, they are unlikely to be any more successful in any other case.

  
Page 588

This chapter is about the controversy. It will describe its background and origins, draw a logical distinction between syntactic and semantic principles, and outline the 
two sorts of psychological theories and the respective evidence for them. Finally, it will present a new phenomenon—a class of fallacious inferences with compelling 
conclusions that everyone accepts even though they are totally wrong. These cognitive illusions may resolve the controversy at last.

At this point, I should declare an interest. More than twenty years ago, I published a paper in which I proposed a formal rule theory for one sort of reasoning and a 
mental model theory for other sorts of reasoning (Johnson­Laird, 1975). I was thus one of the original proponents both of formal rules and of mental models—the two 
approaches are not necessarily incompatible—but nowadays I am firmly on the side, if not of the angels, at least of mental models. This personal history may disqualify 
me from giving a fair picture of the controversy, but at least it allows me to sympathize with both sides.

Background to the Controversy

The ability to make deductive inferences is a key component of human thinking. Without it, science and mathematics could not exist, and laws, conventions, rules, and 
regulations would probably not exist either. Psychologists have long recognized its importance, and they have been investigating it for almost the entire century. Their 
earliest studies solicited the participants' introspections on reasoning—a procedure that was not very revealing (see, e.g., Störring, 1908). Later, their interests shifted 
to the causes of error and to the effects of people's prejudices and beliefs on performance (see, e.g., Janis & Frick, 1943; Woodworth & Sells, 1935). What is 
striking about these early studies is that they were carried out in a theoretical vacuum. There were no theories of how, in principle, individuals could reason correctly. If 
they had been taught logic, they might fall back on it in a self­conscious way. But, if they had not been taught logic, were they incapable of right reasoning? Of course 
not. So how were logically untrained individuals supposed to reason? No one knew; more surprisingly, few psychologists seemed to care.

  
Page 589

The first theorist to offer any account of deductive competence was the distinguished Swiss scientist Jean Piaget. In a general theory of the psychological foundations 
of knowledge, he argued that children spontaneously recapitulate the historical development of mathematics (see, e.g., Beth & Piaget, 1966) and eventually arrive at 
formal reasoning in early adolescence—the so­called stage of formal operations. The formal logic embodied in Piaget's theorizing was idiosyncratic—so idiosyncratic, 
in fact, that even sympathetic critics have argued that his theory could not possibly account for human logical competence (see Braine & Rumain, 1983). Thirty years 
ago, the study of deductive reasoning could thus be summarized as follows: psychologists had some ideas about what causes people to make mistakes—though 
certain dissenters argued that people never make logical errors (Henle, 1962)—but they did not know what mental equipment was responsible for logical 
competence. Even worse, they did not know that they did not know. This extraordinary state of affairs arose from a ubiquitous but tacit assumption: even though 
Piagetian theory might not be viable in detail, it was right about the ''big picture." People could reason because they were equipped with some sort of mental logic. 
The task for psychologists—so they thought—was to carry out experiments that would reveal the principles of this mental logic.

At this point, Wason, the founder of modern psychological studies of reasoning, discovered a disturbing phenomenon. It came in two parts. The first part was that 
intelligent adults regularly committed a serious logical error (Wason, 1966). He laid out four cards in front of them:

A 3

The participants knew that each card had a letter on one side and a number on the other side. He then showed them a conditional rule:

If a card has the letter A on one side, then it has the number 2 on the other side.

Their task was to select whichever of the four cards they needed to turn over in order to find out whether the conditional rule was true or false about the four cards. 
The participants in Wason's study, and in replications of it that we carried out together, for the most part selected the A

  
Page 590

card alone or the A card and the 2 card. What was puzzling was their failure to select the 3 card: if it has an A on its other side, the rule is certainly false. Indeed, 
nearly everyone judges the rule to be false in that case. Piaget wrote that if individuals have to verify whether x implies y, then they "will took in this case to see 
whether or not there is a counterexample x and non­y" (Beth & Piaget, 1966, p. 181). Yet our adult reasoners were failing to select the x and non­y cards that 
falsified an implication of the form "if x then y."

The second part of Wason's disturbing phenomenon was a discovery that could have been made only by someone not in the grip of the tacit assumption that there is a 
mental logic. He changed the content of the problem, and—much to many people's surprise, including mine—the participants made the correct selections. Wason & 
Shapiro (1971) used the conditional rule

Every time I travel to Manchester I travel by train

and a set of cards that named a destination on one side and a mode of transport on the other side:

Manchester Car

Now, at last, the majority of participants correctly selected the Manchester card and the Car card. Other studies at this time corroborated the result (see, e.g., 
Johnson­Laird, Legrenzi, & Legrenzi, 1972).

Wason's selection task has launched a vast amount of research, and it still has no generally accepted explanation. It showed, however, that no simple account of 
mental logic was likely to do justice to human reasoning. Formal rules apply uniformly to expressions of the same form, such as conditionals, without regard to their 
content. Wason's two­part discovery showed on the contrary that human reasoning was highly susceptible to content. When Wason and I wrote a book summarizing 
our research, our efforts to develop a theory of logical competence were stymied by the results of the selection task. All that we were able to conclude was that formal 
logic did not seem a very plausible contender as a psychological theory (Wason & Johnson­Laird, 1972).

So much for the background to the controversy. To go any further into it, the distinction between formal rules and mental models must be made

  
Page 591

clear. At the root of this distinction is the contrast between syntax and semantics, and so the next section turns to logic in order to elucidate this contrast.

The Distinction between Syntax and Semantics

How people reason is a concern of psychology. Logic, in contrast, is concerned with certain relations between sentences and, in particular, with capturing the relation 
that holds if a set of sentences implies a conclusion. Readers who have studied logic will know that twentieth­century logicians draw a sharp distinction between 
syntactic systems of logic (formal proof theory) and their semantic interpretation (model theory). The distinction is easiest to grasp in the case of the sentential 
calculus, which concerns the logic of such connectives as if, and, or or (conceived in a somewhat idealized way) and negation. Thus, the following inference is an 
example of the sort of deduction that can be proved in the sentential calculus:

There is a fault in the device or there is no current, or both.

But, there is not a fault in the device.

Therefore, there is no current.

The formal calculus can be specified in various equivalent ways. One way is to use the method of natural deduction (see, e.g., Gentzen, 1935/1969). This method 
renounces axioms in favor of rules of inference. Each logical connective accordingly has its own rules of inference. There are rules that introduce each connective, and 
there are rules that eliminate it. Inclusive disjunction—as expressed by or in the example just given—has the following rules of inference that eliminate the connective:

A or B, or both A or B, or both

not B not A

 A  not B

And it has the following rules that introduce the connective—

A B

 A or B, or both  A or B

where A and B can stand for any propositions whatsoever. Natural

  
Page 592

deduction can yield intuitive proofs, and it had a vogue in logic texts, though it has been supplanted by another still more intuitive method (see, e.g., Jeffrey, 1981).

When you inspect the preceding rules, you naturally allow your knowledge of the meaning of or to help you to construe them. It is important to realize, however, that 
formal rules of inference operate solely in virtue of the form of expressions and that they do not rely in any way on their meaning. The rules allow the formal derivations 
of conclusions. These derivations are valid—that is, each conclusion must be true if the premises are true—but validity itself is not part of the formal calculus (which 
logicians contrive to allow only the derivation of valid conclusions). Validity, in other words, is part of the semantics of the calculus. This semantics can be made 
entirely explicit in a separate system. In this system, the meaning of or is defined by stating how the truth of assertions containing it depends on the truth of the 
constituent propositions. Thus, an assertion of the form "A or B or both" is true if both A and B are true, if A is true (and B is false), or if B is true (and A is false). This 
definition can be laid out in the form of a truth table:

B A or B, or both
A

True True True

True False True

False True True

False False False

Each row in the table shows a possible combination of the truth values of A and B, and the resulting truth­value of the assertion that is an inclusive disjunction of the 
two: A or B, or both.

The formal sentential calculus allows you to test the validity of any argument depending solely on the logical properties of if, and, or, and not. You can derive the 
conclusion of any valid argument in a proof in which each step is sanctioned by a rule of inference for a connective. Table 17.1 presents a set of rules for the 
connectives. Consider now the following argument:

1. The circuit is intact.

2. The battery has power.

  
Page 593

Table 17.1
Some formal rules of inference for introducing and eliminating the sentential operator not 
and the sentential connectives and, or, and if

A not(not A)

 not(not A)  A

A  
B A and B

 A and B  A

  A or B

A not B

 A or B  A

  If A then B

A   B (i.e., B can be derived from A) A

 If A then B  B

3. Current flows or it is not the case that both the circuit is intact and the battery has power.

 Current flows.

The conclusion is valid, that is, it must be true given that the premises are true, and it can be proved using the rules in table 17.1. The first step is to conjoin premises 1 
and 2 using the first rule for and in table 17.1:

 The circuit is intact and the battery has power.

Next, we convert this assertion into a double negation using the first rule for not in table 17.1:

 not(not(the circuit is intact and the battery has power))

Finally, we apply the second rule for or in the table to this assertion and premise 3 in order to derive the required conclusion:

 Current flows.

The validity of an argument in the sentential calculus can also be demonstrated using the semantic method of truth tables. Table 17.2 shows all the possible 
combinations of truth values for the three propositions: the circuit is intact, the battery has power, and current flows. We can then eliminate those possibilities that are 
incompatible with the truth of each premise. Only one possibility survives—the one corresponding to

  
Page 594

Table 17.2
Truth table for an argument in the text: each premise rules out one or more possibilities

The circuit is intact The battery has power Current flows  


True True True  
True True False Ruled out by premise 3

True False True Ruled out by premise 2

True False False Ruled out by premise 2

False True True Ruled out by premise 1

False True False Ruled out by premise 1

False False True Ruled out by premise 1

False False False Ruled out by premise 1

the first row in the table—and in this case it is true that current flows. Hence, the conclusion that follows validity is

 Current flows.

Any conclusion that can be derived using the formal rules is also valid using truth tables, and so the formal calculus is sound (see, e.g., Jeffrey, 1981). Any conclusion 
that is valid using truth tables can also be derived using formal rules, and so the formal calculus is complete. Moreover, the calculus is decidable, that is, one can 
determine in a finite number of steps whether or not an argument is valid. Logicians have formulated a more powerful system, the predicate calculus, which includes 
the sentential calculus as a proper part but which also deals with quantifiers, that is, with the logical properties of words such as all and some, which occur in such 
assertions as

All philosophers have read some books.

The predicate calculus is not decidable: valid arguments can be proved in a finite number of steps, but there is no guarantee that the invalidity of an argument can be 
shown in a finite number of steps. In a higher­order predicate calculus, quantifiers range not just over individual entities but also properties: for example,

Some philosophers have all the qualities of great writers.

  
Page 595

This calculus is not even complete in the technical sense just given: it is impossible to frame a consistent set of formal rules of inference from which all valid conclusions 
are derivable. This result drives a wedge between the syntax of logic and its semantics, and so any attempt to argue that semantics can be reduced to syntax is bound 
to fail. Semantics has to do with truth (and validity), whereas syntax has to do with form (and derivability). The question is whether human reasoners rely on syntactic 
or semantic principles. And that is the root of the controversy. The following sections describe the two psychological theories, the evidence in favor of them, and, 
finally, a possible resolution of the controversy between them.

Formal Rule Theories

In the mid­1970s, several investigators for the first time formulated theories of human logical competence. Notwithstanding the results of the selection task, which I 
described earlier, these theories assumed that human reasoning depends on formal rules of inference such as those of a system of natural deduction (see, e.g., Braine, 
1978; Johnson­Laird, 1975; Osherson, 1974–1976). The different theories postulated slightly different formal rules and slightly different procedures for searching for 
derivations, but they had in common the following point of view, aptly expressed by Rips (1983): "Deductive reasoning consists in the application of mental inference 
rules to the premises and conclusions of an argument. The sequence of applied rules forms a mental derivation or proof of the conclusion from the premises where 
these implicit proofs are analogous to the explicit proofs of elementary logic" (p. 38). Since these first efforts, theorists in various disciplines—philosophy, linguistics, 
and artificial intelligence—have continued to defend the formal point of view (see, e.g., Macnamara, 1986; Pollock, 1989; Robinson, 1979; Sperber & Wilson, 1986; 
Wos, 1988). In psychology, the two major advocates of formal rules are the late Braine (see, e.g., Braine & O'Brien, 1991; Braine, Reiser, & Rumain, 1984), and 
Rips (see, e.g., Rips, 1983). Their respective theories are similar, but Rips's (1994) PSYCOP theory is the first formal rule theory in psychology to cope with both 
sentential connectives and quantifiers and to be implemented in a computer program (written

  
Page 596

in PROLOG). Hence, this section will concentrate on PSYCOP: it is the most comprehensive theory according to which the mind uses formal rules of inference.

The task for a formal rule theorist is to devise psychologically plausible rules of inference and a psychologically plausible mechanism to construct mental proofs. 
Following the earlier proposals, Rips adopted the natural deduction method, and a key feature of this method is the use of suppositions—assumptions that are made 
for the sake of argument and that must be "discharged" sooner or later if a derivation is to yield a conclusion. One way to discharge a supposition is to incorporate it 
into a conditional conclusion, as done by the first rule for if (the rule of conditional proof) in table 16.1. Another way to discharge a supposition is to prove that it 
leads to a contradiction and must therefore be false (the rule of reductio ad absurdum, which is not shown in table 16.1). Thus, consider the following proof of an 
argument in the form known as modus tollens:

1. If there isn't a break in the circuit then current flows.

2. Current doesn't flow.

3. There isn't a break in the circuit. (a supposition)

The second rule for if in table 16.1 has the form

If A then B

 B

and is known as the rule of modus ponens, a pattern of inference that is ubiquitous and easy for logically untrained individuals. This rule can be applied to premise 1 
and to the supposition in order to derive

4. Current flows. (modus ponens applied to 1 and 3)

At this point, there is a contradiction between a sentence in the domain of the premises ("Current doesn't flow") and a sentence in the subdomain of the supposition 
("Current flows"). The rule of reductio ad absurdum uses such a contradiction to negate—and thereby discharge—the supposition that led to the contradiction:

5. There is a break in the circuit.

Rips could have adopted a single rule for modus tollens, but the inference is harder for logically untrained individuals than is modus ponens, and

  
Page 597

so he assumed that it depends on the chain of inferential steps illustrated here. A supposition can be made within the subdomain of a supposition, and so on to any 
arbitrary depth, but each supposition must be discharged for a proof to yield a conclusion in the same domain as the premises.

The two main problems in developing any psychological theory are to ensure that it is computationally viable and that it makes sense of the empirical phenomena. An 
example of a computational difficulty is that unless the rule for introducing and (see table 16.1) is curbed, it can lead to such futile derivations as

 A and B

 A and (A and B)

 A and (A and (A and B))

and so on ad infinitum. Two sorts of rules are potentially dangerous: those that introduce a connective and thereby increase the length of expressions and those that 
introduce suppositions. One radical solution is to do away with a rule altogether by incorporating its effects within other rules—a method adopted by Braine for and 
and or introduction (see, e.g., Braine, 1978). Another solution is to ensure that these rules can be used only in preparation for the use of other major rules (Johnson­
Laird, 1975). A lesson from artificial intelligence, however, is that programs can use a rule in two ways: either to derive a step in a forward chain of inference from 
some assertions to a conclusion or to derive a step in a backward chain from a conclusion to the subgoal of proving its required premises (see Hewitt, 1972). The 
problem of curbing rules can be solved by using the potentially dangerous rules only in backward chains. Rips adopted this idea. PSYCOP accordingly has three sorts 
of rules: those that it uses forward, those that it uses backward, and those that it uses in either direction.

The choice of rules of inference for formal theorists is an empirical matter. The rules should be those that individuals recognize as intuitively sound. Rips has canvassed 
previous theories to come up with the set of forward and bidirectional rules shown in table 17.3 and the set of

  
Page 598
Table 17.3
PSYCOP's forward and bidirectional rules

 
Source: Adapted from Rips (1994).
Note: Certain rules, such as the one eliminating AND, are shown lading to the conclusion P; another version of the rule yields 
the conclusion Q (see Rips 1994).
* signifies that a rule can also be used backwards.

backward rules shown in table 17.4. He allows that individuals may differ in the particular rules they possess, they may acquire new rules, and they may even have 
idiosyncratic rules that lead them to invalid conclusions. He proves two theorems about PSYCOP and the rules in tables 17.3 and 17.4. First, given an argument to 
evaluate, PSYCOP always halts after a finite number of steps either with a proof of the conclusion or after having unsuccessfully tried all available derivations. Second, 
PSYCOP is incomplete with respect to the classical sentential calculus: that is, there are valid arguments that it cannot prove.

PSYCOP can generate its own conclusions by using forward rules to derive them from the premises. In principle, it can use backward rules if it guesses a putative 
conclusion. However, it is geared to the evaluation of given conclusions. The strategy that it then follows is to apply all its forward rules (breadth first) until they yield 
no new conclusions. It then checks whether the given conclusion is among the sentences that it has derived. If not, it tries to work backward from the given conclusion, 
pursuing a chain of inference (depth first) until it finds the sentences that

  
Page 599
 
 
Table 17.4
PSYCOP's rules that can be used only backward, including all rules that use suppositions (i.e., assumptions made for the sake of 
argument).

 
Source: Adapted from Rips (1994)
Note: The ''+" symbol designates a supposition.

satisfy the subgoals or until it has run out of rules to try. Either it succeeds in deriving the conclusion, or else it returns to an earlier choice point in the chain and tries to 
satisfy an alternative subgoal. Finally, if it fails all the subgoals, it gives up.

Prior to PSYCOP, formal rule theories did not deal with inferences based on quantifiers, such as:

All philosophers have read some books.

Russell is a philosopher.

 Russell has read some books.

The standard treatment of quantifiers in logic is to use rules that eliminate them and then rules that reintroduce them after inferences based on sentential connectives 
alone have been made. These proofs rapidly become intractable—you are liable to run out of time or memory before you can explore all the alternatives. PSYCOP 
does not use such rules, but rather transforms quantified assertions into a form in which the work of quantifiers is performed by names and variables. The resulting 
expressions are

  
Page 600

akin to those used by automated theorem­provers in artificial intelligence, and Rips invokes rules for matching one expression to another in these quantifier­free 
expressions.

One final aspect of Rips's theory should be mentioned. Unlike other rule theorists, Rips argues that formal rules of inference underlie not just deduction but thinking in 
general. Formal rules are accordingly part of cognitive architecture, and they can be used as a general­purpose programming language. This step makes formal rules 
almost irrefutable. Suppose, for example, that psychologists discover that reasoning depends on a computable procedure, X, which is not part of PSYCOP. The 
discovery does not jeopardize formal rules in general, because they can be used to write a program that carries out X. When rules are conceived in this general way, 
they can even simulate the mental model theory. Indeed, the computer programs implementing the model theory depend on purely formal rules because computer 
programs, at present, do not really understand anything. The controversy about reasoning therefore does not concern formal rules in general but rather current theories 
of reasoning, such as PSYCOP or Braine's system, which are based on "natural deduction." The issue between them and mental models—as all parties agree—is 
open to empirical resolution.

Evidence for Formal Rule Theories

The difficulty of a deduction according to formal rule theories depends on two factors: the number of steps in the formal derivation, and the relative availability, or ease 
of use, of the rules used in the derivation. Modus ponens, for instance, is easier than modus tollens because there is a single mental rule for modus ponens but no single 
rule for modus tollens, which depends on a chain of inferences. The evidence for formal rule theories, however, mainly comes from studies of large batteries of 
deductions (for a review, see Evans, Newstead, & Byrne, 1993). In one such study, Braine et al. (1984) tested their theory by asking participants to evaluate given 
arguments and then to rate them for difficulty. The problems concerned the presence or absence of letters on an imaginary blackboard; for example,

  
Page 601

If there is either a C or an H, then there is a P.

There is a C.

 There is a P.

The study examined two potential indices of difficulty—the number of steps in a deduction according to the theory, and the difficulty weights of these steps as 
estimated from the data. Both measures predicted the rated difficulty of the problems, the latencies of response (adjusted for the time it took to read the problem), and 
the percentages of errors.

In another study of a battery of deductions, Rips (1983) also asked participants to assess the validity of given arguments. Subsequently, he used the PSYCOP 
program to find the proofs of the arguments and thus to reveal which rules were needed for the derivations. He then estimated the probabilities that the rules were 
available to the subjects from an examination of the experimental results. When he combined the probabilities for each rule needed in the derivations for the inferences, 
the theoretical predictions fitted the data reasonably well. It is worth noting, however, that half of the valid deductions in this experiment called for semantic information 
to be thrown away, because the conclusion was less informative than the premises; that is, the conclusion was consistent with more possibilities than were the premises 
(see Johnson­Laird & Byrne, 1991). Only 1 out of those 16 problems was evaluated better than chance, with an overall performance of 35% correct evaluations. 
Conversely, 14 of the other 16 problems, which maintained semantic information, were evaluated better than chance, with an overall performance of 66% correct 
evaluations. 1  The difference between these two sets of problems was highly significant, corroborating the claim that human reasoners are reluctant to throw semantic 
information away. Braine et al. (1984, p. 360) have also expressed a methodological worry about the experiment. In commenting on the difficulty of certain 
deductions, they wrote: "So high a failure rate on transparent problems suggests that the experiment often failed to engage the reasoning procedures of subjects."

In recent work, Rips (1994) found that his theory accounted for the times participants took to understand proofs laid out in explicit derivations and for their memory of 
proofs: they remembered sentences in the same domain as the premises better than those in a subdornain based on

  
Page 602

a supposition. Rips has also applied the theory to Wason's selection task, which was described earlier. With abstract conditionals, such as "If there is an A on one side 
of a card, then there is a 2 on the other side," the program behaves similarly to people: it follows up the implications of a true antecedent, but not a false consequent. It 
can make modus ponens working forward, but not modus tollens. Rips makes a tentative move to invoke rules from deontic logic in order to explain participants' 
success with more realistic rules.

In summary, formal rule theories make no surprising predictions, and they have not yet led to the discovery of any striking phenomena. They have been successful, 
however, in making sense of a body of experimental results. No studies have been carried out as yet to compare different theories based on formal rules.

The Mental Model Theory

Consider the following inference (from Johnson­Laird, 1975):

The black ball is directly behind the cue ball. The green ball is on the right of the cue ball, and there is a red ball between them.

Therefore, if I move so that the red ball is between me and the black ball, the cue ball is to the left of my line of sight.

It is possible to frame rules that capture this inference, but it seems likely that people will make it by imagining the relevant spatial layout. This idea lies at the heart of 
the theory of mental models. Reasoning according to this theory is a semantic process rather than a syntactic one. Reasoners imagine the states of affairs described by 
the premises—that is, they build mental models of the relevant situations based on their understanding of the premises and, where relevant, on their general knowledge; 
they formulate an informative conclusion that is true in these models; and they establish its validity by ensuring that there are no models of the premises in which the 
conclusion is false (Johnson­Laird & Byrne, 1991). A mental model is a representation that corresponds to a set of situations and that has a structure and content that 
captures what is common to these situations. For example, an assertion such as "The triangle is on the right of the circle" calls for a model of the form

  
Page 603

in which the two referents are represented by two corresponding mental tokens, and the spatial relation between them is represented by the relation between the two 
tokens in the model.

The first mental model theory was formulated for syllogisms, such as

Some of the artists are beekeepers.

All the beekeepers are chemists.

 Some of the artists are chemists.

Several theorists proposed that such inferences might be based, not on mental rules of inference, but on mental representations of the premises that functioned as 
models of the world. Erickson (1974) suggested that these representations might take the form of Euler circles. In Euler circles, each set is represented by a circle 
(drawn on the plane), and the relations between sets is represented by the relations between the circles. Thus, the premise

All the beekeepers are chemists

calls for two separate Euler circle representations. In one, the circle representing beekeepers lies wholly within the circle representing chemists to show that one set is 
properly included within the other. In the other representation, the two circles are coextensive to show that the two sets are coextensive. With a pencil and paper, 
some reasoners do use Euler circles. But one wonders whether they would use them if they had not been taught them or at least seen them as part of the "new math." 
The circles also cannot deal with assertions containing more than one quantifier. They cannot distinguish between the natural interpretations of

All philosophers have read some books

and

Some books have been read by all philosophers.

My colleagues and I therefore argued for a different sort of representation in which sets of individual entities are represented by mental models containing sets of 
individual tokens. The theory has developed over the years, but it still reflects this same underlying principle.

In the latest version (Bara, Bucciarelli, & Johnson­Laird, 1995), the premises

  
Page 604

Some of the artists are beekeepers

and

All the beekeepers are chemists

call for the following sort of model:

beekeeper chemist
artist

artist beekeeper chemist

artist    

  beekeeper chemist

  ...  

Each row in this diagram denotes a separate individual and the numbers of the different sorts of individual are arbitrary. The first and second individuals are artists, 
beekeepers, and chemists; the third individual is an artist; and the fourth individual is a beekeeper and chemist. The ellipsis allows for other individuals, and the theory 
assumes that reasoners have some way to represent that the set of beekeepers has been exhaustively represented in relation to chemists, and so the other possible 
individuals cannot include beekeepers who are not chemists. The overall model supports the conclusion

Some of the artists are chemists

and no model of the premises refutes this conclusion, which is accordingly valid. Other syllogisms require multiple models. For example, the premises

None of the artists is a beekeeper

and

All of the beekeepers are chemists

yield the initial model

   
artist

artist    

  beekeeper chemist

  beekeeper chemist

  ...  

in which artists and beekeepers are represented exhaustively. This model supports the conclusion

  
Page 605

None of the artists is a chemist.

But this conclusion can be refuted by an alternative model of the premises:

  chemist
artist

artist   chemist

  beekeeper chemist

  beekeeper chemist

  ...  

All that follows validly is the conclusion

Some of the chemists are not artists

because it cannot be refuted by any model of the premises.

This account illustrates the fundamental principle of validity: a conclusion is valid if, and only if, it cannot be refuted by any model of the premises. The task of 
establishing validity is therefore to ensure that there is no model of the premises in which the conclusion is false.

Mental models readily extend to deal with inferences based on multiple quantifiers, spatial relations, and temporal relations (Byrne & Johnson­Laird, 1989; Johnson­
Laird & Byrne, 1991; Schaeken, Johnson­Laird, & d'Ydewalle, 1996). But how do they apply to reasoning based on sentential connectives? One possible answer is 
that the mind uses truth tables akin to the one in table 16.2. This idea occurred to Osherson (1974–1976) in his pioneering study, but he was able to refute it. The truth 
table in table 16.2 is based on three propositions and has eight rows. If you added a fourth proposition to the argument, the table would have sixteen rows; and, in 
general, the size of the table doubles each time you add an extra proposition. The difficulty of inferences for human reasoners, as Osherson showed, does not double 
in this way. The impasse seemed to rule out the feasibility of a semantic theory of reasoning—at least for sentential inferences.

My colleagues and I did not discover a way around the impasse for some years. It rests on the principle of truth: individuals tend to minimize the load on working 
memory by constructing mental models that represent what is true, but not what is false. Hence, given an assertion of the form

There is a king or there is an ace, but not both,

  
Page 606

reasoners construct two alternative models to represent the two alternative possibilities:

 
king

  ace

where this diagram is based on the convention that each row denotes a separate model of a separate possibility. Similarly, the inclusive disjunction

There is a king or there is an ace, or both

calls for three models:

 
king

  ace

king ace

A conditional,

If there is a king then there is an ace,

calls for one explicit model of the salient contingency and an implicit model that merely allows for other possibilities (in which the antecedent is false) without spelling 
them out explicitly:

  ace
king

  ...  

As a final example, a conjunction,

There is a king and there is an ace

calls for just a single model:

king ace

One subtlety is that even the explicit models do not contain representations of what is false. Consider again the models of the exclusive disjunction "There is a king or 
else there is an ace, but not both":

 
king

  ace

The first model represents that there is a king, but it does not explicitly represent that in this case it is false that there is an ace. Similarly, the second model represents 
that there is an ace, but it does not explicitly

  
Page 607

Table 17.5
The mental models and the fully explicit models for five sentential connectives

Connective Mental models Fully explicit models

A and B A B A B

A or else B A   A ¬B

    B ¬A B

A or B, or both A   A ¬B

    B ¬A B

  A B A B

If A then B A B A B

  ... ¬A B

      ¬A ¬B

If and only if A then B A B A B

  ... ¬A ¬B

Note: "¬" symbolizes negation, and "..." a wholly implicit model. The difference between the mental 
models for if and if and only if is their associated mental footnotes (see text).

represent that in this case it is false that there is a king. The theory assumes that reasoners make a "mental footnote" to keep track of this information, but that these 
footnotes are soon likely to be forgotten. In contrast to models based on the principle of truth, fully explicit models of the exclusive disjunction would be of the form

¬ace
king

¬king ace

where ¬ represents negation. Table 17.5 summarizes the initial mental models for the five main sentential connectives, and it also shows the fully explicit models for 
these connectives.

One advantage of the mental model theory is that it provides a unified account of logical reasoning yielding necessary conclusions, probable conclusions, and possible 
conclusions. A conclusion is necessary—it must be true—if it holds in all the models of the premises; a conclusion is probable—it is likely to be true—if it holds in 
most of the models of the premises; and a conclusion is possible—it may be true—if it holds in at least some model of the premises. The theory thus purports to 
explain how intelligent, but mathematically ignorant, individuals reason about

  
Page 608

the probabilities of events from the different ways in which they could occur. Other sorts of judgment are based on the availability of models, that is, how easy it is to 
construct them (see Tversky & Kahneman, 1973). Still others may call for models to be linked to numerical representations of probabilities.

I have written a suite of computer programs simulating the model theory of reasoning for each of the following domains: sentential, spatial, temporal, and quantified 
reasoning. Each program is equipped with a lexicon and a grammar. It parses the premises using its representation of the meanings of words and of the semantic 
import of grammatical structures. The parse yields a representation of the meaning of the premises, which in turn is used to construct models of the situation. The 
program draws conclusions, and it tests their validity by ensuring that they hold in all the possible models of the premises. These programs merely simulate the theory 
because they do not really represent the meaning of sentences.

Evidence for the Mental Model Theory

The model theory makes three main predictions about reasoning. First, inferences that depend on only one model will be easier than those that depend on multiple 
models: reasoners will be faster to reach a conclusion, and they will be more likely to be correct. Second, systematic errors are likely to correspond to initial models of 
the premises. Third, knowledge can influence the process of inference. If any one of these predictions were shown to be wrong in a robust and replicable series of 
experiments, then the model theory would be thereby disconfirmed. In fact, all three predictions have been corroborated in a variety of different studies (see, e.g., 
Johnson­Laird & Byrne, 1991). The following section will describe some illustrative results.

One­Model Problems Are Easier than Multiple­Model Problems

One example is that exclusive disjunctions, which require only two models, are easier to reason with than inclusive disjunctions, which require three models (Johnson­
Laird & Byrne, 1991). Formal rule theories make the opposite prediction because they have no rules for exclusive disjunctions (see, e.g., tables 17.3 and 17.4). 
Another domain in which this prediction

  
Page 609

has been confirmed is temporal reasoning. Consider, for example, the following problem:

After the suspect ran away, the clerk rang the alarm.

The manager in the bank was stabbed while the alarm was ringing.

What is the temporal relation between the suspect running away and the stabbing of the manager?

The first premise calls for a model of the form

r a——

in which the time axis runs from left to right, r denotes a model of the suspect running away, a denotes a model of the clerk sounding the alarm, and ''———" denotes 
the alarm ringing for some time. The second premise,

The manager was stabbed while the alarm was ringing,

means that the stabbing occurred at some time between the onset and offset of the alarm:

r a——
s

where s denotes a model of the stabbing. This model corresponds to infinitely many different situations that have in common only the truth of the two premises. The 
model thus contains no explicit representation of the duration for which the alarm sounded, or of the precise point at which the stabbing occurred. Yet, the conclusion

The stabbing occurred after the suspect ran away

is true in this model, and it is not falsified by any other model of the premises.

Schaeken et al. (1996) carried out five experiments to examine the predictions of the model theory of temporal inferences. They examined problems that call for only 
one model, such as premises of the following form:

a happens before b

b happens before c

d happens while a

e happens while c

What's the relation between d and e?

  
Page 610

The content of the premises concerned everyday events, such as "John reads his newspaper" and "Mary drinks her coffee." The premises above yield a model of the 
form

b c
a

d   e

which supports the conclusion

d happens before e.

The model theory predicts that this one­model problem should be easier than problems that are similar but that call for multiple models, such as

a happens before c

b happens before c

d happens while b

e happens while c

What's the relation between d and e?

The premises are satisfied by the following models:

b c   b a c   a c
a

  d e   d   e   b  

                d e

In all three models, d happens before e, and so that is a valid conclusion. Schaeken et al. observed that participants make reliably more errors (about 10% more) with 
these problems than with one­model problems. The second premise in the problem is the one calling for multiple models, because it creates an uncertainty about 
whether a happens before b, or after b, or at the same time as b. Hence, the model theory predicts that individuals should spend more time reading this premise than 
reading the second premise of the one­model problem. The results also corroborated this prediction: participants took reliably longer (about 2 seconds) to read this 
premise in the multiple­model problem than in the one­model problem.

Readers should note that theories based on formal rules of inference make exactly the wrong predictions about these problems. The one­model problem just 
discussed calls for a transitive inference to establish the relation between a and c, which is a precursor to estab­

  
Page 611

lishing the relation between d and e. In contrast, the multiple­model problem does not call for the relation between b and c to be derived, because it is directly asserted 
by the second premise. Hence, the one­model problem has a formal derivation that contains the derivation for the multiple­model problem, and so according to rule 
theories the one­model problem should be harder than the multiple­model problem. The irrelevant premise in the multiple­model problem cannot be responsible for its 
greater difficulty, because one­model problems with an irrelevant premise remain reliably easier than multiple­model problems and no harder than one­model problems 
without an irrelevant premise. In sum, multiple models do cause problems for the human inferential system.

Systematic Errors Correspond to Initial Models of Premises

This prediction has also been corroborated in all the main domains of reasoning (see Johnson­Laird & Byrne, 1991). Thus, a common sort of error in syllogistic 
reasoning is exemplified by arguing from the premises

All the athletes are bakers

and

Some of the bakers are chemists

to the conclusion

Some of the athletes are chemists.

Such errors used to be described as resulting from the "atmosphere" of the premises (Woodworth & Sells, 1935), where a premise containing some was supposed to 
bias individuals toard a conclusion containing some. The model theory, however, provides an alternative explanation. The error arises from a genuine attempt to 
reason. The initial model of the premises

baker chemist
athlete

athlete baker chemist

athlete baker  

    chemist

   
...

  
Page 612

where each row represents a separate individual, supports the conclusion

Some of the athletes are chemists.

This conclusion is refuted by an alternative model of the premises:

baker  
athlete

athlete baker  

  baker chemist

  baker chemist

    chemist

   
...

But reasoners who fall to construct this alternative model will draw the erroneous conclusion. In fact, the initial model for every syllogism yields a conclusion that 
matches the mood of one of the premises. Hence, the model theory also explains the tendency for erroneous conclusions to match the atmosphere of the premises. But 
which account is correct—the atmosphere hypothesis or the model theory?

Several phenomena count in favor of the model theory. If individuals were guided solely by the atmosphere of the premises, then they would never respond, "no valid 
conclusion." But they do make this response, and they make it correctly better than one would expect by chance. They are also much more likely to draw a conclusion 
that matches the mood of a premise for one­model syllogisms than for multiple­model syllogisms. The atmosphere hypothesis does not predict this difference. 
According to the model theory, however, the one­model conclusions should occur more often than the multiple­model matching conclusions, because the latter should 
tend sometimes to be refuted by the construction of an alternative model. The data from four experiments bear out this prediction: one­model syllogisms yielded 76% 
matching conclusions, whereas multiple­model syllogisms yielded only 39% matching conclusions (see Johnson­Laird & Byrne, 1991, table 6.1).

Knowledge Influences the Process of Reasoning

If reasoning is a formal process depending on rules of inference, then knowledge can influence the interpretation of premises, but, once their logical form has been 
mentally represented, it cannot affect the process itself. In contrast, if reasoning is a semantic process based on models, then knowledge can influence the

  
Page 613

process. Oakhill, Garnham, and I have obtained evidence in favor of the latter prediction from studies of syllogistic reasoning (e.g., Oakhill, Johnson­Laird, & 
Garnham, 1989). Given the following sort of premises

All the Frenchmen are gourmets

and

Some of the gourmets are wine drinkers,

the majority of our participants (72%) drew the conclusion

Some of the Frenchmen are wine drinkers.

But, given the following sort of premises,

All the Frenchmen are gourmets

and

Some of the gourmets are Italians,

only a few of our participants (8%) drew the equivalent conclusion:

Some of the Frenchmen are Italians.

No participant saw both of these problems, but they each saw a set of problems in which the conclusions based on the initial models were highly believable—as rated 
by an independent panel of judges—and a set of problems in which these conclusions were rated as highly unbelievable. The results bore out the pattern of response 
just illustrated.

The phenomenon was predicted by the model theory. In the first case, the theory predicts that reasoners will construct the following sort of initial model, Frenchman 
gourmet wine drinker

gourmet wine 
Frenchman drinker

Frenchman gourmet wine 


drinker

Frenchman gourmet  

    wine 
drinker

  ...  

which yields the conclusion

Some of the Frenchmen are wine drinkers.

This conclusion is highly believable, and so the participants do not bother to search for alternative models of the premises. In the second case, the

  
Page 614

theory predicts that reasoners will construct the same sort of initial model,

gourmet Italian
Frenchman

Frenchman gourmet Italian

Frenchman gourmet  

    Italian

  ...  

which yields the conclusion

Some of the Frenchmen are Italians.

This conclusion is highly unbelievable, and so the participants will search for an alternative model. They may succeed in constructing the model

gourmet  
Frenchman

Frenchman gourmet  

  gourmet Italian

  gourmet Italian

    Italian

  ...  

If so, they will respond that there is no valid conclusion. The initial conclusion is invalid in both cases, but plausible only in the first case. It is hard to see how a theory 
based on formal rules of inference could even generate the initial invalid conclusion, let alone account for the effects of believability.

Some formal theorists have seen the force of some of these experimental results. Braine (1990, p. 147), for example, suggested that reasoners often use mental 
models in reasoning. None of the results, however, has been recognized as decisive in resolving the controversy. The next section describes a new phenomenon that 
may settle the issue.

Truth and Fallacies in Reasoning

The traditional way to resolve a scientific controversy is to demonstrate a crucial phenomenon that is predicted by one theory but that contravenes the other theory. 
The more general and the more robust the phenomenon, the more likely it is to be decisive. My colleagues and I have

  
Page 615

discovered such a phenomenon: human beings are programmed to reason in a systematically fallacious way. This propensity is an unexpected consequence of the 
principle of truth, that is, of the principle that reasoners construct models of what is true rather than of what is false. This procedure is sensible because it avoids 
overloading working memory, and it normally yields valid conclusions. But, as a computer program implementing the theory revealed, it can lead to fallacious 
conclusions for certain inferences.

To understand the phenomenon, readers should make the following inference:

Only one of the following premises is true about a particular hand of cards:
There is a king in the hand or there is an ace, or both.

There is a queen in the hand or there is an ace, or both.

There is a jack in the hand or there is a 10, or both.

Is it possible that there is an ace in the hand? (1)

The model theory postulates that individuals consider the possibilities for each of the three premises. For the first premise, they consider three models, shown, as usual, 
on separate lines, which each correspond to a possibility given the truth of the premise:

 
king

  ace

king ace

These models suggest that an ace is possible. The second premise also suggests that an ace is possible. Hence, individuals should respond yes.

Nearly all logically naive individuals drew this conclusion, that is, 99% of responses in two separate experiments (Johnson­Laird & Goldvarg, 1997). Yet, it is a fallacy 
that an ace is possible, because if there were an ace in the hand, then two of the premises would be true, contrary to the rubric that only one of them is true. The same 
strategy, however, yielded a correct response to a control problem in which only one premise refers to an ace. The participants also succumbed to fallacies of 
impossibility that elicited a predicted "no" response. Their confidence in their conclusions did not differ between the fallacies and the control problems. But they were 
less likely to commit a fallacy of impossibility than a fallacy of possibility. To infer that a situation is impossible calls for a check of

  
Page 616

every model, whereas to infer that a situation is possible does not, and so reasoners are less likely to make the inference of impossibility. Two studies have 
corroborated this difference in more difficult control problems than those in the experiment under discussion (Johnson­Laird & Bell, 1997).

If the fallacies result from a failure to reason about what is false, then any manipulation that emphasizes falsity should reduce them. We used the rubric "Only one of the 
following two premises is false" in a different study, and it did reliably reduce the occurrence of the fallacies, but only by 15% (Tabossi, Bell, & Johnson­Laird, in 
press). One problem is that individuals do not have a direct access to the cases in which disjunctions, or other compound assertions, are false. They first have to 
consider the situations in which the assertions would be true and then infer from them the situations in which the assertions would be false (Barres & Johnson­Laird, 
1997).

With hindsight, it is astonishing that 99% of the responses to such items as problem 1 were yes, because it seems obvious that the presence of an ace renders two of 
the premises true. We therefore repeated the experiment, but after half the inferences, we gave one of the two groups of participants a special instruction to check 
whether their conclusions met the constraint that only one of the premises was true. This procedure had the advantage that the participants did not have to envisage the 
circumstances in which the premises would be false. They merely had to check how many premises their conclusion rendered true. The results replicated those of the 
first experiment, except that the group that received the special instruction thereafter showed a striking decline in fallacies. They drew 57% correct conclusions to 
fallacies of possibility compared to the 0% correct of their previous performance and to the 0% correct performance of the other group. Even with this instruction, 
however, their performance was far from perfect.

The rubric "One of these two assertions is true and one of them is false" is equivalent to an exclusive disjunction between two assertions, which we can convey more 
idiomatically as

A or else B, but not both,

where A and B denote the two assertions. This usage leads to still more compelling fallacies that seduce almost everyone, novices and experts alike. Consider this 
problem:

  
Page 617

Suppose you know the following about a particular hand of cards:
If there is a king in the hand, then there is an ace in the hand; or else if there isn't a king in the hand, then there is an ace in the hand.

What, if anything, follows? (2)

The model theory predicts that the first conditional will be represented by the models

  ace
king

  ...  

and that the second conditional will be represented by the models

  ace
¬king

  ...  

An exclusive disjunction, as table 17.5 shows, has as its initial models merely the two sets of possibilities, and so if reasoners interpret or else exclusively, they should 
construct the following models:

  ace
king

¬king   ace

  ...  

They are likely to forget about the implicit model, and so they should conclude:

Therefore, there is an ace in the hand.

Just about everyone, as Fabien Savary and I have shown in an unpublished experiment, draws this conclusion. Yet, it is a fallacy granted there is a disjunction—
exclusive or inclusive—between the two conditional assertions. It then follows that one or other of the two conditionals could be false; and if either of them is false, 
then there is no guarantee of an ace in the hand. Indeed, if the disjunction is exclusive, it follows that there is not an ace; and if it is inclusive, then nothing follows about 
whether or not there is an ace. The fallacy, like the previous one, rests on the failure to reason about what is false.

Because so many experts have committed the fallacies, we have accumulated many putative explanations for them. For example, the premises of the fallacious 
inferences may be so complex, ambiguous, and pragmatically odd that they confuse people, who, as a result, commit a fallacy.

  
Page 618

This hypothesis overlooks the fact that the participants are highly confident in their responses and that the control problems are often equally complex. Likewise, in 
another experiment, we have shown that when the fallacies and controls are based on the same premises, but different questions, that are all in the form of 
conjunctions, participants still commit the fallacies but get the control problems correct (Johnson­Laird & Goldvarg, 1997). The other putative explanations depend on 
special claims about the interpretations of conditionals or disjunctions in problem 2. They offer no account of the results with problem 1 and its cohort.

The fallacies also occur in the case of inferences about relative probabilities (Johnson­Laird & Savary, 1996). Here, for example, is an instructive contrast. Consider 
the following problem:

If one assertion is true about a specific hand of cards, then so is the other:

There is a jack in the hand if and only if there is a queen in the hand.

There is a lack in the hand. (3)

Nearly everyone infers that the two cards are equally likely to be in the hand, but this conclusion is a fallacy based again on representing only the true cases: if both 
premises are true, then there is both a jack and a queen. But, consider the consequences of both premises being false: there is no jack because the second premise if 
false, but there is therefore a queen (from the falsity of the first premise). Hence, the queen is more likely to be in hand than the jack. Only 10% of participants made 
this correct inference. Now consider the control problem, where the failure to represent false contingencies does not yield the wrong conclusion:

If one assertion is true about a specific hand of cards, then so is the other:
If there is a jack in the hand then there is a queen in the hand.

There is a jack in the hand. (4)

Nearly everyone drew the correct conclusion that the two cards are equally likely (95% of participants). The two problems are so similar that it is difficult to believe 
that one is pragmatically odd and the other is not: the only difference between them is that the illusion uses a biconditional whereas the control problem uses a regular 
conditional.

  
Page 619

Many other robust phenomena in reasoning appear to arise from the neglect of what is false. In Wason's selection task, for instance, reasoners fail to represent the 
false contingencies of the conditional and so go wrong in choosing potentially falsifying instances. Social exchanges were important to our hunter­gatherer ancestors, 
and thus Cosmides (1989) postulated an innate module for reasoning about cheating. She used a selection task about a potential cheater, and then, as she predicted, 
most people made the correct choice. Our results suggest an alternative explanation. People construct models of what is true, not of what is false. Hence, any 
manipulation that helps them to consider false instances of the rule, including their knowledge of cheating, should improve performance. Several studies have 
corroborated this explanation in selection tasks that do not depend on cheaters (e.g., Green & Larking, 1995; Sperber, Cara, & Girotto, 1995). Likewise, given a 
conditional, such as

If the experiment continued, then the turbine was generating emergency electricity,

people readily infer that the truth of the antecedent (the experiment continued) implies the truth of the consequent (the turbine was generating emergency electricity). 
What they have difficulty in inferring is that the falsity of the consequent implies the falsity of the antecedent—a failure that occurs in laboratory tests and that 
contributed to Chernobyl and other disasters in real life (Medvedev, 1990).

Conclusions

The controversy about whether reasoning depends on formal rules or mental models began some twenty years ago. Both sorts of theory have been formulated in 
detail, implemented in computer programs, and corroborated experimentally. Although some commentators have argued that the controversy may never be resolved, 
there are three arguments that favor the mental model theory at the expense of current formal rule theories.

The first argument is that the model theory has a much wider purview than the rule theory. The model theory explains how reasoners reach conclusions that are 
necessarily true—the conclusions hold in all models

  
Page 620

of the premises, conclusions that are probably true—the conclusions hold in most models of the premises, and conclusions that are possibly true—the conclusions hold 
in at least some model of the premises. In contrast, the rule theories have so far been formulated only for necessary conclusions and a small set of possible conclusions.

The second argument concerns judgments of invalidity. The model theory explains these judgments in a simple way: a conclusion is invalid if there is a model of the 
premises in which it is false. Such a counterexample demonstrates invalidity. However, rule theories have a much more indirect account: reasoners judge that a 
conclusion is invalid only if they fail to find a formal derivation for it. In contrasting a syntactic and a semantic method in logic, Quine (1974, p. 75) wrote: ''[The 
syntactic method] is inferior in that it affords no general way of reaching a verdict of invalidity; failure to discover a proof for a schema can mean either invalidity or 
mere bad luck." Barwise (1993, p. 338) has argued that the same problem vitiates psychological theories based on formal rules: "The 'search till you're exhausted' 
strategy gives one at best an educated, correct guess that something does not follow." If a theory is incomplete—as PSYCOP is—the "search till you're exhausted" 
strategy is particularly dubious because you may fail to find a derivation for a valid argument. Thus, when PSYCOP gives up, it may do so because an argument is 
invalid, or because an argument is valid but it cannot derive the proof with its incomplete rules. In short, incompleteness has a "knock­on" effect: you can no longer 
decide whether a conclusion is valid or invalid; that is, the failure to discover a proof does not necessarily mean that an argument is invalid. Hence, there is no way to 
know that an argument is invalid (unless the conclusion contradicts the premises). The theory therefore cannot offer any account of the difference between knowing 
that an argument is invalid and not knowing whether it is valid or invalid.

The third argument concerns systematic errors. The model theory explains them in terms of the initial models that reasoners construct. Often, as in the case of 
syllogisms, the result of constructing only a single model of a multiple­model problem is that reasoners will draw a conclusion that is consistent with the premises, 
though it does not follow from them necessarily. Other systematic fallacies arise because models fail to repre­

  
Page 621

sent what is false. These errors are compelling; they have the character of cognitive illusions. They are also a crucial phenomenon for deciding between the two 
competing sets of theories. They were first predicted by a computer program that I devised to simulate the model theory. At first, I thought there was a bug in the 
program. But there was no bug, and the fallacies were a genuine prediction, subsequently corroborated by our experiments. If the fallacies had not occurred in the 
experiments, then the model theory would have been disconfirmed. In contrast, these cognitive illusions are counterexamples to current formal rule theories. Such 
theories contain only logically impeccable rules, and so the only way in which they can yield fallacious conclusions is by a mistake in applying a rule. Such mistakes, 
however, should be like "throwing a spanner in the works." As Rips (1994) points out, they should occur arbitrarily and have diverse results, not one and the same 
fallacious conclusion. Indeed, neither PSYCOP nor Braine's system draws any conclusion to problem 1, and neither can accommodate problems 2 and 3.

These three arguments, together with the evidence in favor of the model theory, show that it gives a better account of reasoning than current formal rule theories. They 
do not, of course, eliminate the possibility that reasoning depends on both mental models and formal rules—only parsimony could count against such an account. 
Likewise, they do not eliminate the possibility of a new formal rule theory that uses invalid rules or principles to deliver systematic fallacies (cf. Jackendoff, 1988). Still 
less do they rule out the possibility of some entirely new theory. One fine day, someone may formulate just such a theory, one that leads to the discovery of 
counterexamples to the mental model theory. The theory will be thereby overturned, but it will at least be able to account for its own demise. It argues that 
counterexamples refute theories.

Note

1. Rips (1994, p. 407, n. 3) claims that only three arguments in his experiment maintain semantic information (arguments C, O, and X in his table 5.1). Consider, as 
just one counterexample, the following argument (corresponding to argument E in Rips's table 5.1):
If p or r, or both, then q
If p or q, or both, then q

  
Page 622

There are three possibilities consistent with the conclusion (p and q, q alone, and, where both the antecedent and consequent are false, neither p nor q). Each of 
these possibilities is consistent with the premise. Hence, this argument does not throw semantic information away. Clearly, there is a misunderstanding here of the 
sort that often arises in the minutiae of a controversy. Perhaps Rips assumes that the argument throws information away because a term in the premise, r, does not 
appear in the conclusion. The critical criterion, however, is that information is thrown away only if the conclusion is consistent with more situations than are the 
premises.

References

Bara, B., Bucciarelli, M., & Johnson­Laird, P. N. (1995). The development of syllogistic reasoning. American Journal of Psychology, 108, 157–193.

Barres, P. E., & Johnson­Laird, P. N. (1997). Why is it hard to imagine what is false? In M. G. Shafto & P. Langley (Eds.) Proceedings of Nineteenth Annual 
Conference of the Cognitive Science Society (p. 859). Mahwah, NJ: Erlbaum.

Barwise, J. (1993). Everyday reasoning and logical inference [Commentary on Johnson­Laird & Byrne (1991)]. Behavioral and Brain Sciences, 16, 337–338.

Beth, E. W., & Piaget, J. (1966). Mathematical epistemology and psychology. Dordrecht, Netherlands: Reidel.

Braine, M. D. S. (1978). On the relation between the natural logic of reasoning and standard logic. Psychological Review, 85, 1–21.

Braine, M. D. S. (1990). The "natural logic" approach to reasoning. In W. F. Overton (Ed.), Reasoning, necessity, and logic: Developmental perspectives (pp. 
133–157). Hillsdale, NJ: Erlbaum.

Braine, M. D. S., & O'Brien, D. P. (1991). A theory of If: A lexical entry, reasoning program, and pragmatic principles. Psychological Review, 98, 182–203.

Braine, M. D. S., Reiser, B. J., & Rumain, B. (1984). Some empirical justification for a theory of natural propositional logic. The psychology of learning and 
motivation (Vol. 18). New York: Academic Press.

Braine, M. D. S., & Rumain, B. (1983). Logical reasoning. In J. H. Flavell & E. M. Markman (Eds.), Carmichael's handbook of child psychology: Vol. 3. 
Cognitive Development (4th ed.). New York: Wiley.

Byrne, R. M. J., & Johnson­Laird, P. N. (1989). Spatial reasoning. Journal of Memory and Language, 28, 564–575.

Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped how humans reason? Studies with the Wason selection task. Cognition, 31, 187–
276.

Erickson, J. R. (1974). A set analysis theory of behavior in formal syllogistic reasoning tasks. In R. Solso (Ed.), Loyola Symposium on Cognition (Vol. 2). Hillsdale, 
NJ: Erlbaum.

  
Page 623

Evans, J. St. B. T., Newstead, S. E., & Byrne, R. M. J. (1993). Human reasoning: The psychology of deduction. Hillsdale, NJ: Erlbaum.

Gentzen, G. (1969). Investigations into logical deduction. In M. E. Szabo (Ed. and Trans.), The collected papers of Gerhard Gentzen. Amsterdam: North­Holland. 
(Original work published 1935.)

Green, D. W., & Larking, R. (1995). The locus of facilitation in the abstract selection task. Thinking and Reasoning, 1, 183–199.

Henle, M. (1962). The relation between logic and thinking. Psychological Review, 69, 366–378.

Hewitt, C. (1972). Description and theoretical analysis of PLANNER (Laboratory Report MIT­AI­258). Cambridge, MA: MIT AI.

Jackendoff, R. (1988). Exploring the form of information in the dynamic unconscious. In M. J. Horowitz (Ed.), Psychodynamics and Cognition. Chicago: University 
of Chicago Press.

Janis, I., & Frick, P. (1943). The relationship between attitudes towards conclusions and errors of judging logical validity of syllogisms. Journal of Experimental 
Psychology, 33, 73–77.

Jeffrey, R. (1981). Formal logic: Its scope and limits (2nd ed.). New York: McGraw­Hill.

Johnson­Laird, P. N. (1975). Models of deduction. In R. J. Falmagne (Ed.), Reasoning: Representation and process in children and adults (pp. 7–54). Hillsdale, 
NJ: Erlbaum.

Johnson­Laird, P. N., & Bell, V. (1997). A model theory of modal reasoning. In M. G. Shafto & P. Langley (Eds.), Proceedings of Nineteenth Annual 
Conference of the Cognitive Science Society (pp. 349–353). Mahwah, NJ: Erlbaum.

Johnson­Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Hillsdale, NJ: Erlbaum.

Johnson­Laird, P. N., & Goldvarg, Y. (1997). How to make the possible seem possible. In M. G. Shafto & P. Langley (Eds.), Proceedings of the Nineteenth 
Annual Conference of the Cognitive Science Society (pp. 354–357). Mahwah, NJ: Erlbaum.

Johnson­Laird, P. N., Legrenzi, P., & Legrenzi, M. S. (1972). Reasoning and a sense of reality. British Journal of Psychology, 63, 395–400.

Johnson­Laird, P. N., & Savary, F. (1996). Illusory inferences about probabilities. Acta Psychologica, 93, 69–90.

Macnamara, J. (1986). A border dispute: The place of logic in psychology. Cambridge, MA: Bradford Books, MIT Press.

Medvedev, Z. A. (1990). The Legacy of Chernobyl. New York: Norton.

Oakhill, J. V., Johnson­Laird, P. N., & Garnham, A. (1989). Believability and syllogistic reasoning. Cognition, 31, 117–140.

Osherson, D. N. (1974–1976). Logical Abilities in Children (Vols. 1–4). Hillsdale, NJ: Erlbaum.

  
Page 624

Osherson, D. N. (1975). Logic and models of logical thinking. In R. J. Falmagne (Ed.), Reasoning: Representation and process in children and adults (pp. 81–
91). Hillsdale, NJ: Erlbaum.

Pollock, J. (1989). How to build a person: A prolegomenon. Cambridge, MA: Bradford Books, MIT Press.

Quine, W. V. O. (1974). Methods of logic (3rd ed.). London: Routledge.

Rips, L. J. (1983). Cognitive processes in propositional reasoning. Psychological Review, 90, 38–71.

Rips, L. J. (1994). The psychology of proof. Cambridge, MA: MIT Press.

Robinson, J. A. (1979). Logic: Form and function. The mechanization of deductive reasoning. Edinburgh, Scotland: Edinburgh University Press.

Schaeken, W. S., Johnson­Laird, P. N., & d'Ydewalle, G. (1996). Mental models and temporal reasoning. Cognition, 60, 205–234.

Sperber, D., Cara, F., & Girotto, V. (1995). Relevance theory explains the selection task. Cognition, 52, 3–39.

Sperber, D., & Wilson, D. (1986). Relevance: Communication and cognition. Oxford, England: Basil Blackwell.

Störring, G. (1908). Experimentelle Untersuchungen über einfache Schlussprozesse. Archiv für die gesamte Psychologie, 11, 1–27.

Tabossi, P., Bell, V. A., & Johnson­Laird, P. N. (in press). Mental models in deductive, modal, and probabilistic reasoning. In C. Habel & G. Rickheit (Eds.), 
Mental models in discourse processing and reasoning. Berlin: John Benjamins.

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207–232.

Wason, P. C. (1966). Reasoning. In B. M. Foss (Ed.), New horizons in psychology. Harmondsworth, England: Penguin.

Wason, P. C., & Johnson­Laird, P. N. (1972). Psychology of Reasoning: Structure and Content. London: Batsford and Cambridge, MA: Harvard University 
Press.

Wason, P. C., & Shapiro, D. (1971). Natural and contrived experience in a reasoning problem. Quarterly Journal of Experimental Psychology, 23, 63–71.

Woodworth, R. S., & Sells, S. B. (1935). An atmosphere effect in formal syllogistic reasoning. Journal of Experimental Psychology, 18, 451–460.

Wos, L. (1988). Automated reasoning: 33 basic research problems. Englewood Cliffs, NJ: Prentice­Hall.

  
Page 625

18
Cognition versus Metacognition
Thomas O. Nelson

Metacognition is defined as the scientific study of an individual's cognitions about his or her own cognitions. As such, metacognition is more of a subset of cognition 
than something other than cognition. Put differently, metacognition is a particular kind of cognition.

If this seems a little complicated, it can quickly become even more complicated. The reason is that the difference between an aspect of metacognition versus the aspect 
of cognition that it is "about" (see the first sentence of this chapter) is relational rather than absolute. Put differently, there is no particular aspect of cognition that is 
always at the metalevel in any absolute sense. Instead, we say that if one aspect of cognition is monitoring or controlling another aspect of cognition, then the former 
aspect is metacognitive in relation to the latter aspect. An elaboration of this idea can be found in Nelson and Narens (1994), and several examples will be given now 
to help illustrate these distinctions.

In terms of metacognitive monitoring, sometimes you might recall an answer to a question (e.g., to the question "What is the capital of Australia?"), and then I could 
ask you how sure you are that your answer is correct. Thus you would make a confidence judgment about your recall of that answer. This is an example of your 
cognition (namely, confidence) about one of your own cognitions (namely, recall). Research has shown that most people tend to be overconfident in such a judgment 
(e.g., in terms of the preceding question, the answer is not Sydney or Brisbane or Perth or Melbourne but rather is Canberra). Similarly, I could ask you how 
confident you are about your confidence in your recall of that answer! Then you might respond by telling the size of the confidence interval around the aforementioned 
confidence judgment; a large confidence

  
Page 626

interval would represent less confidence about your confidence than would a small interval. The first confidence judgment that was mentioned in this paragraph would 
be at the metalevel relative to recall (the confidence is "about" recall) but would be the object of (and therefore is said to be at the object level) for the confidence 
judgment about that confidence.

Or, instead of your metacognitive monitoring being about an answer you just gave, it might instead be about an answer that you have not yet recalled but on which you 
will have an upcoming recognition test. For instance, I could ask you, "What is the likelihood that you will recognize the answer that you currently cannot recall?" This 
kind of metacognitive judgment is called a feeling­of­knowing judgment.

Or, your metacognitive judgment might instead be about an item you have recently studied. For instance, I could ask you, "What is the likelihood that you will recall 
this item approximately 10 minutes from now?" This kind of metacognitive judgment is called a judgment of learning. Judgments of learning can be particularly 
important because they can indicate (either accurately or inaccurately) to the person that he or she should or shouldn't devote additional study to a given item.

This brings us to the second major subdivision of metacognition—in addition to the metacognitive monitoring already described. This subdivision is called 
metacognitive control of one's own cognitions. For instance, as just indicated, one kind of metacognitive control is the control of one's self­paced study. You can 
devote additional study to a given item if you decide to do so. Or you can decide not to devote additional study to a given item. Either way, that's an example of 
metacognitive control.

An abstract representation of monitoring and control that arises from this interplay between two levels is shown in figure 18.1. To make this abstract representation 
more concrete, let's consider examples of metacognitive monitoring and metacognitive control in the area of human learning and memory.

A general framework showing the main components of metacognitive monitoring and metacognitive control during the acquisition or retrieval of information from 
memory was first formulated by Nelson and Narens (1990; reproduced in part in the book of core readings about metacognition by Nelson, 1992). Figure 18.2 
shows an overview of the framework.

  
Page 627

Figure 18.1
Relationship between a component of cognition at the metalevel versus object level in terms 
of the flow of information from one of those levels to the other level. (Adapted from Nelson & Narens, 1990.)

In figure 18.2 you can see the aforementioned components of metacognition, plus additional components. This subvariety of metacognition that pertains to learning and 
memory is called metamemory and refers to the monitoring and control of one's own memory during the acquisition of new information and during the retrieval of 
previously acquired information.

Metamemory has been investigated by psychologists for only about 40 years. Prior to that time, researchers often conceptualized people as blank slates, wherein the 
learner was considered to be passive and to have little or no control over his or her own acquisition. Since the 1950s, researchers have conceptualized the individual 
as having substantial control over acquisition and as being active rather than passive, both during the acquisition of new information and during the retrieval of 
previously learned information (for more discussion, see Nelson, 1996).

An example of the utility of conceptualizing the learner as active is illustrated in table 18.1, which summarizes data collected by Eagle (1967). The percentage of words 
recalled is shown as a joint function of the strategy the experimenter instructed the subjects to use and the strategy the subjects reported using. Eagle instructed one 
group of subjects to use rote rehearsal to learn a list of 20 words and instructed another group to use associative organization for the same word list. After study, the 
subjects verbally described the strategies they had used, and those verbal

  
Page 628

Figure 18.2
A theoretical framework of the metacognitive components involved in 
acquisition and retrieval. (Adapted from Nelson & Narens, 1990.)

Table 18.1
Mean percentage of words recalled as a joint function of instructed strategy and reported strategy

  Reported strategy

Instructed strategy Rehearsal Associative organization

Rehearsal 48 62

Associative organization 49 65

Source: Data from Eagle (1967).

  
Page 629

reports were classified by neutral judges into the categories of rote rehearsal or associative organization. As table 18.1 shows, the effect of various mnemonic 
strategies are more obvious from knowing the subjects' verbal reports than from knowing the external stimulus condition of the instructed strategy. Thus the traditional 
effect of instructions on behavior appears to be an indirect one; namely, the experimenter's instructions serve only to influence the subjects' choice of strategy, with the 
critical factor for predicting the subjects' recall being the strategy that the subjects report using. This is another example—in addition to the above­mentioned example 
of control of the amount of self­paced study—of how subjects can metacognitively control their processing during learning, in this case by choosing one versus another 
strategy.

Next, imagine the monitoring and control processes that occur while a student learns new foreign­language vocabulary—say, French/English vocabulary such as 
château/castle—and while the student attempts to retrieve the answers during a subsequent examination. The various kinds of monitoring processes are distinguished 
by when they occur during acquisition and retrieval, especially in terms of whether they pertain to the person's future performance (prospective monitoring) or the 
person's past performance (retrospective monitoring). Let's consider each of these separately.

Prospective Monitoring

Ease­of­Learning Judgments

When someone is getting ready to learn new information, then even prior to the beginning of acquisition some metacognitive monitoring occurs. An ease­of­learning 
judgment is the person's judgment of how easy or difficult the items will be to acquire. For instance, the person might believe that château/castle will be easier to 
learn than boite/box. Underwood (1966) showed that people are somewhat (but not perfectly) accurate at predicting which items will be easier to learn. People's 
predictions (made in advance of acquisition) of how easy each item would be to learn were moderately correlated with subsequent recall after a constant amount of 
study time on every item: The items people predicted would be easier to learn had a greater subsequent likelihood of being recalled than items people predicted would 
be harder to learn.

  
Page 630

Judgments of Learning

During or soon after acquisition, the person's judgment of learning is the person's evaluation of how well he or she has learned a given item. It is a prediction of the 
likelihood that the item will be remembered correctly on a future test. Arbuckle and Cuddy (1969) showed that the predictive accuracy of people's judgments of 
learning is above chance but far from perfect, similar to the situation for ease­of­learning judgments. Subsequently Leonesio and Nelson (1990) showed that 
judgments of learning are more accurate than ease­of­learning judgments for predicting eventual recall, probably because people's judgments of learning can be based 
on what the learner notices about how well he or she is mastering the items during acquisition.

Nelson and Dunlosky (1991) isolated a situation in which people's judgments of learning can be extremely accurate, if not perfectly accurate. This occurs when people 
make the judgment of learning not immediately after studying a given item but rather after a short delay; this is called the delayed judgment­of­learning (delayed­JOL) 
effect. Dunlosky and Nelson (1992) showed that the delayed­JOL effect occurs if and only if the cue for the judgments is the stimulus alone rather than the stimulus­
response pair. For instance, the delayed­JOL effect occurs if the cue for the judgment about château/castle is ''château?" but not if the cue is "château/castle." This 
delayed­JOL effect is exciting because it shows that under the proper conditions, people can monitor their learning extremely accurately. Most recently, Dunlosky and 
Nelson (1997) found that the delayed­JOL effect is not due merely to the situation at the time of the delayed JOL being nominally more similar to the situation at the 
time of the eventual test. However, exactly what mechanisms underlie the delayed­JOL effect are not yet established (for an example of the controversy, see Nelson & 
Dunlosky, 1992, and Spellman & Bjork, 1992.).

Feeling­of­Knowing Judgments

These were the first metamemory judgments examined in the laboratory. Hart (1965) found that the likelihood of correctly recognizing a nonrecalled answer was 
higher for nonrecalled items people said were stored in memory than for nonrecalled items people said weren't stored in memory. But people frequently did not 
recognize answers that they had

  
Page 631

claimed that they would recognize, and people sometimes did recognize answers they had claimed they wouldn't recognize. Subsequently, the accuracy of predicting 
other kinds of memory performance such as relearning was investigated by Nelson, Gerler, and Narens (1964), who also offered approximately a dozen theoretical 
explanations for how people might make their feeling­of­knowing judgments. However, their and Hart's findings—and more recent ones by Metcalfe, Schwartz, and 
Joaquim (1993) and by Reder and Ritter (1992)—have led current researchers to conclude that the feeling of knowing is based not so much on the monitoring of 
nonrecalled information but instead on an inference based on the retrieved aspects of memory (e.g., recognition of the question as having been previously encountered 
before or recall of some components of the answer such as the first letter or the number of syllables it contains). A currently popular theory of the feeling of knowing 
that encompasses these ideas was formulated by Koriat (1993).

Retrospective Confidence Judgments

In contrast to the previous metamemory monitoring judgments, in which people attempted to predict their future memory performance, retrospective confidence 
judgments occur after someone recalls or recognizes an answer and pertain to how confident the person is that his or her answer was correct. For instance, if someone 
were asked to recall the English equivalent of château, the person might say, "castle" (the correct answer) or might say, "red" (the incorrect answer), after which he or 
she would make a confidence judgment about the likelihood that the recalled answer was correct. Fischhoff, Slovic, and Lichtenstein (1977) discovered a strong 
tendency for people to be overconfident, especially when the test was one of recognition.

Source Monitoring and Reality Monitoring

In addition to the aforementioned kinds of monitoring that pertain to a person's knowledge of a particular item, people also monitor information about when and where 
they learned a given item (called source information). People who are unable to remember the source of when and where

  
Page 632

the acquisition occurred are said to have source amnesia. One useful distinction in terms of the source of prior acquisition is whether the item occurred externally to 
the person (e.g., from someone else's saying it to the person) or occurred internally in the person (e.g., in a dream). The ability to distinguish between those two 
possibilities for a given item is called reality monitoring and has been investigated by Johnson and Raye (1981); a quantitative theory of source monitoring is available 
in Batchelder and Riefer (1990), and potential researchers who need to decide between different measures of source monitoring should see Murnane and Bayen 
(1996).

Metacognitive Control

That people can monitor their progress during acquisition and retrieval is interesting, but it is little more than a curiosity if has no other role in the overall memory 
system. However, as alluded to earlier, people can control aspects of their acquisition and retrieval. First, consider what people can control during self­paced 
acquisition, and then consider what they can control during retrieval.

Control during Self­Paced Acquisition

A model of how the monitoring and control components interact to form a metacognitive system for the acquisition of new information into memory is shown in figure 
18.3. It shows the aforementioned judgments of learning, which are compared to the desired degree of learning (called the norm of study). When the person believes 
he or she has not learned the item as well as desired, then more study time is devoted to the item, and some strategy is employed in an attempt to increase the degree 
of learning. Consider several empirical findings that are relevant to such a metacognitive system for acquisition.

Allocation of Self­Paced Study during Acquisition

Someone who is learning foreign­language vocabulary can choose to allocate various amounts of study time to each item and can allocate more study time to some 
items during subsequent study trials. In 1978, the researchers Bisanz, Vesonder, and Voss found that the allocation of self­paced study seems to occur in conjunction 
with people's judgments of learning. Bisanz

  
Page 633

Figure 18.3
Model of the interplay of metacognitive components involved in acquisition of 
new information into memory. (Adapted from Nelson & Narens, 1990.)

et al. discovered that learners in the early years of primary school make accurate judgments of learning but will not utilize those judgments when allocating additional 
study time across the items. By contrast, slightly older children will utilize those judgments when allocating additional study time. Whereas older children allocated extra 
study time to items they judged to have not yet learned and did not allocate extra study time to items they judged to have learned, the younger children were not 
systematic in allocating extra study time primarily to the unlearned items.

Strategy Employed during Self­Paced Study

There often are strategies that are more effective than rote repetition, but do people know what they are?

  
Page 634

People's utilization of a mnemonic strategy for the acquisition of foreign­language vocabulary was investigated by Pressley, Levin, and Ghatala (1984). After people 
had learned some foreign­language vocabulary by rote and other foreign­language vocabulary by the mnemonic strategy, they were allowed a choice of using 
whichever strategy they wanted for a final trial of learning some additional foreign­language vocabulary. Only 12% of the adults chose the mnemonic strategy if they 
had not received any test trials during the earlier phase, whereas 87% of them chose the mnemonic strategy if they had received test trials during the earlier acquisition 
phase. Thus test trials help people to realize the effectiveness of different strategies for acquisition. When the subjects were children, instead of adults, then they not 
only needed test trials, but they also needed to have feedback after those test trials to tell them how well they had done on the rote­learned items versus the 
mnemonically learned items; without both the test trials and feedback, the children were unlikely to adopt the advantageous mnemonic strategy.

Control during Retrieval

Control of Initiating One's Retrieval

Immediately after someone is asked a question and before attempting to search memory for the answer, a metacognitive decision is made about whether the answer is 
likely to be found in memory. If you were asked what the telephone number is for the current president of the United States, you probably would decide immediately 
that the answer is not in your memory. Notice that you do not need to search through all the telephone numbers that you know; nor do you need to search through all 
the information you have stored in your memory about the president. Put differently, you don't even initiate protracted attempts to retrieve that answer. Consider how 
that situation might differ from one in which you were asked the telephone number of one of your friends.

This initial feeling­of­knowing judgment that precedes an attempt to retrieve an answer was first investigated by Reder (1987). She found that people are faster at 
making a feeling­of­knowing decision about whether or not they know the answer to a general information question (e.g., "What is the capital of Finland?") than they 
are at answering that ques­

  
Page 635

tion (e.g., saying "Helsinki"). This demonstrates that the metacognitive decision is made prior to (rather than after) retrieving the answer. Only if people feel that they 
know the answer will they continue their attempts to retrieve the answer. When they feel they do not know the answer, they don't even attempt to search memory (as 
in the example of the president's telephone number).

Control of the Termination of Extended Attempts at Retrieval

It is often the case that people who initially believe strongly enough that they know an answer to begin searching memory for it but who after extended attempts at 
retrieval do not produce it will eventually terminate searching for it. The metacognitive decision to terminate such an extended search of memory was investigated by 
Nelson, Gerler, and Narens (1964). They found that the amount of time elapsing before someone gives up searching memory for a nonretrieved answer is greater 
when the person's ongoing feeling of knowing for the answer is high rather than low. As an example, someone might spend a long time during an examination 
attempting to retrieve the English equivalent of château (which the person studied the night before) but little or no time attempting to retrieve the English equivalent of 
cheval (which the person did not study previously). The metacognitive decision to continue versus terminate attempts at retrieving an answer from memory may of 
course also be affected by other factors, such as the total amount of time available during the examination.

Most of the research articles cited so far in the chapter have been reprinted (with a discussion to tie them together and with additional articles suggested for further 
reading) in the book by Nelson (1992). Additional research on the above topics can found in the book by Metcalfe and Shimamura (1994).

Neuropsychological Correlates of Metacognition

Neuropsychological Patients

People interested in neuropsychology may be interested in some of the findings that have been discovered in neuropsychological patients concerning various aspects of 
memory and metacognition. For instance, Korsakoff patients, whose brain damage includes frontal lobe damage

  
Page 636

(Shimamura, Jernigan, & Squire, 1988), have deficits in the accuracy of their judgments of learning in terms of predicting their future recall on recently learned items 
(Bauer, Kyaw, & Kilbey, 1984). In terms of the kinds of dissociations that are the focus of this chapter, patients with less widespread brain damage but with frontal 
lobe deficits sometimes show normal recall but deficient feeling­of­knowing accuracy (Janowsky, Shimamura, & Squire, 1989). Janowsky et al. concluded, "The 
frontal lobes make an essential contribution to metamemory ability. Because patients with frontal lobe lesions do not exhibit memory impairment [recall or recognition 
failure], the present study demonstrates that metamemory deficits can occur in the absence of amnesia" (p. 10). This conclusion provides additional confirmation for 
the distinction between metacognitive processing (which might be deficient when there is frontal lobe damage) and whatever is being monitored during feeling­of­
knowing judgments.

Normal Subjects in Extreme Environments

Research conducted on high­altitude climbers at various elevations on Mount Everest also supports the distinction between metacognitive processing and the cognitive 
processing that is being metacognitively monitored. Related to the pattern mentioned in the previous paragraph in terms of an effect on the feeling of knowing in the 
absence of an effect on recall or recognition, Nelson et al. (1990) found that cognitive performance at extreme altitudes, that is, above 6400 meters (relative to lower 
altitudes such as at Kathmandu or base camp), was unaffected in terms of recall or recognition of the answers to general information questions. However, the 
magnitude of the feeling of knowing was affected—in particular, was reduced—at the two extreme altitude tests and also on the test one week later back at 
Kathmandu, relative to feelings of knowing at the initial Kathmandu test or at base camp (Nelson et al., 1990, figure 2).

This finding was important enough that Nelson et al. (1990) decided to examine the individual subjects median feelings of knowing (FOKs) to have a more fine­
grained look at the data that gave rise to the overall group performance. Figure 18.4 is a scatterplot matrix (Cleveland, 1985) showing bivariate data wherein each 
data point indicates one subject's

  
Page 637

Figure 18.4
Scatterplot matrix showing each individual subject's performance at different test 
locations. (Reprinted from Nelson et al., 1990.)

median FOK for the row location plotted against that subject's median FOK for the column location. The petals on each sunflower indicate the number of subjects 
when more than one subject had a given bivariate entry. For instance, the three­petal sunflower in the subplot for the Base­camp column and the 2nd Kathmandu 
row indicates that three subjects had a median FOK of 4 at basecamp and a median FOK of 3 on the second Kathmandu test. Although an appreciation of the results 
shown in figure 17.4 may require a little more effort than usual, such an examination is informative: For all six of the subplots comparing any of the first two tests with 
any of the last three tests—these subplots are enclosed inside the dashed box—the number of subjects who had a lower median FOK after going to high altitude 
(versus before going to high altitude) is remarkable. For instance, every climber had a lower median FOK at the

  
Page 638

second high­altitude test than at basecamp. Moreover, there were only two inversions in those six subplots—one in each of the upper two sub­plots—and both of 
those inversions came from the same climber. For comparison, notice that there is no trend in one direction or the other for the remaining four subplots that are outside 
the dashed box. Thus figure 17.4 shows that the group effect mentioned in the previous paragraph is also obvious for the preponderance of individual subjects.

The aftereffects of going to an extreme altitude that Nelson et al. (1990) observed may be due to a relatively long­lasting effect on the frontal lobes. Oelz and Regard 
(1988) reported that world­class climbers who had repeatedly climbed without supplementary oxygen above 8,000 meters showed subsequent impaired performance 
on neuropsychological tests at sea level. Those researchers concluded that repeated extreme altitude climbing produces an accumulating and possibly permanent 
dysfunction in "the fronto­temporal basal brain areas" (p. 86). Similar findings of frontal lobe deficits in climbers returning from high­altitude climbs have also been 
reported by Cavaletti, Moroni, Garavaglia, and Tredici (1987).

Given that there is a neuropsychological frontal lobe deficit after going to an extreme altitude, the effects during the expedition that were observed by Nelson et al. 
(1990) may have their origin in that same brain area. This pattern of findings represents a nice convergence of neuropsychological data and behavioral data, and both 
sets of data support a potential dissociation between metacognitive processing and lower­level cognitive processing.

Consciousness and Metacognition

The ideas about metacognition described in this chapter are also related to conceptions of consciousness. Most conceptions (e.g., Kihlstrom, 1984, p. 150) divide 
consciousness into two major aspects: conscious monitoring and conscious control. The way in which the data from research on metacognition are relevant to theories 
of consciousness has been elaborated in Nelson (1996), along with additional findings that support the distinction between, on the one hand, the metacognitive aspect 
of cognition responsible for monitoring and control and, on the

  
Page 639

other hand, the aspect of the cognitive system that is being monitored and controlled by metacognitive processing.

There is of course plenty of room for modifications to be made in our views of metacognition in comparison with other kinds of cognitive processing. More 
sophisticated conceptualizations need to be developed, and empirical evidence needs to be collected that refutes or confirms those conceptualizations and that gives us 
clues about new ways of formulating ideas about metacognition.

Acknowledgments

Preparation of this chapter was supported by grant R01­MH32205 and a career development award (K05­MH1075) from the National Institute of Mental Health.

References

Arbuckle, T. Y., & Cuddy, L. L. (1969). Discrimination of item strength at time of presentation. Journal of Experimental Psychology, 81, 126–131.

Batchelder, W., & Riefer, D. (1990). Multinomial processing models of source monitoring. Psychological Review, 97, 548–564.

Bauer, R. H., Kyaw, D., & Kilbey, M. M. (1984). Metamemory of alcoholic Korsakoff patients. Society for Neurosciences Abstracts, 10, 318.

Bisanz, G. L., Vesonder, G. T., & Voss, J. F. (1978). Knowledge of one's own responding and the relation of such knowledge to learning. Journal of Experimental 
Child Psychology, 25, 116–128.

Cavaletti, G., Moroni, R. Garavaglia, P., & Tredici, G. (1987). Brain damage after high­altitude climbs without oxygen. Lancet, 101.

Cleveland, W. (1985). The elements of graphing data. Monterey, CA: Wadsworth.

Dunlosky, J., & Nelson, T. O. (1992). Importance of the kind of cue for judgments of learning (JOL) and the delayed­JOL effect. Memory & Cognition, 20, 374–
380.

Dunlosky, J., & Nelson,T. O. (1997). Similarity between the cue for judgments of learning (JOL) and the cue for test is not the primary determinant of JOL accuracy. 
Journal of Memory and Language. 36, 34–49.

Eagle, M. (1967). The effect of learning strategies upon free recall. American Journal of Psychology, 80, 421–425.

  
Page 640

Fischhoff, B., Slovic, P., & Lichtenstein, S. (1977). Knowing with certainty: The appropriateness of extreme confidence. Journal of Experimental Psychology: 
Human Perception and Performance, 3, 552–564.

Hart, J. T. (1965). Memory and the feeling­of­knowing experience. Journal of Educational Psychology, 56, 208–216.

Janowsky, J., Shimamura, A., & Squire, L. (1989). Memory and metamemory: Comparisons between patients with frontal lobe lesions and amnesic patients. 
Psychobiology, 17, 3–11.

Johnson, M. K., & Raye, C. L. (1981). Reality monitoring. Psychological Review, 88, 67–85.

Kihlstrom, J. (1984). Conscious, subconscious, unconscious: A cognitive perspective. In K. S. Bowers & D. Meichenbaum (Eds.), The unconscious reconsidered. 
New York: Wiley.

Koriat, A. (1993). How do we know that we know? The accessibility model of the feeling of knowing. Psychological Review, 100, 609–639.

Leonesio, R. J., & Nelson, T. O. (1990). Do different measures of metamemory tap the same underlying aspects of memory? Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 16, 464–470.

Metcalfe, J., Schwartz, B., & Joaquim, S. (1993). The cue familiarity heuristic in metacognition. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 19, 851–861.

Metcalfe, J., & Shimamura, A. (1994). Metacognition: Knowing about knowing. Cambridge, MA: Bradford Books.

Murnane, K., & Bayen, U. (1996). An evaluation of empirical measures of source identification. Memory and Cognition, 24, 417–428.

Nelson, T. O. (1992). Metacognition: Core readings. Boston: Allyn & Bacon.

Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51, 102–116.

Nelson, T. O., & Dunlosky, J. (1991). The delayed­JOL effect: When delaying your judgments of learning can improve the accuracy of your metacognitive 
monitoring. Psychological Science, 2, 267–270.

Nelson, T. O., & Dunlosky, J. (1992). How shall we explain the delayed­judgments­of­learning effect? Psychological Science, 3, 317–318.

Nelson, T. O., Dunlosky, J., White, D. M., Steinberg, J., Townes, B., & Anderson, D. (1990). Cognition and metacognition at extreme altitudes on Mount Everest. 
Journal of Experimental Psychology: General, 119, 367–374.

Nelson, T. O., Gerler, D., & Narens, L. (1984). Accuracy of feeling­of­knowing judgments for predicting perceptual identification and relearning. Journal of 
Experimental Psychology: General, 113, 282–300.

Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In G. H. Bower (Ed.), The psychology of learning and motivation 
(pp. 26, 125–173.) New York: Academic Press.

  
Page 641

Nelson, T. O., & Narens, L. (1994). Why investigate metacognition? In J. Metcalfe & A. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 1–25). 
Cambridge, MA: MIT Press.

Oelz, O., & Regard, M. (1988). Physiological and neuropsychological characteristics of world­class extreme­altitude climbers. American Alpine Journal, 83–86.

Pressley, M., Levin, J. R., & Ghatala, E. (1984). Memory strategy monitoring in adults and children. Journal of Verbal Learning and Verbal Behavior, 23, 270–
288.

Reder, L. M., (1987). Strategy selection in question answering. Cognitive Psychology, 19, 90–138.

Reder, L. M., & Ritter, F. (1992). What determines initial feeling of knowing? Familiarity with question terms, not with the answer. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 18, 435–452.

Shimamura, A. P., Jernigan, T. L., & Squire, L. R. (1988). Radiological (CT) findings in patients with Korsakoff's syndrome and their relationship to memory 
impairment. Journal of Neuroscience, 8, 4400–4410.

Spellman, B. A., & Bjork, R. A. (1992). People's judgments of learning are extremely accurate at predicting subsequent recall when retrieval practice mediates both 
tasks. Psychological Science, 3, 315–316.

Underwood, B. J. (1966). Individual and group predictions of item difficulty for free learning. Journal of Experimental Psychology, 71, 673–679.

  
Page 643

V
GROUP AND INDIVIDUAL DIFFERENCES IN COGNITION

  
Page 645

19
Culture­Free versus Culture­Based Measures of Cognition
Michael Cole

For almost as long as there have been IQ tests, there have been psychologists who believe it is possible to construct ''culture­free" tests (Jensen, 1980). The desire for 
such tests springs directly out of the purposes for which tests of general intellectual ability were constructed in the first place: to provide a valid, objective, and socially 
unbiased measure of intellectual ability. Our society, founded upon the principle that all people are created equal, has never lived easily with the recognition of 
enormous de facto social inequality. We need a rationale for such inequality, and our traditions strongly bias us to seek the causes of inequality in properties of the 
individual, not society. At the same time, we realize that social and economic conditions, by shaping people's experiences, can be the causes of individual intellectual 
differences, as well as their consequences. Can't we find universals in human experience and construct a test on this basis?

What would be more ideal than a psychological test that could measure intellectual potential independently of the specific experience provided by sociocultural and 
economic circumstance? Such a test would provide an excellent tool for insuring that unfortunate social circumstances would not prevent the identification of intellectual 
potential. Some psychologists have claimed that such tests are not only possible in principle, but have been applied in practice (Hernnstein & Murray, 1994).

In this chapter, I will argue that the notion of culture­free intelligence is a contradiction in terms. I begin by reviewing the historical background of efforts to understand 
the relation between culture and thought that formed the scholarly background against which IQ testing came into being. After summarizing briefly the strategy 
developed by the

  
Page 646

pioneers of IQ testing, I will present a "thought experiment" to help clarify why, by its vary nature, IQ testing is culture bound. I close by offering some comments on 
how to think about culture and IQ testing given the impossibility of a culture­free test of intellectual ability.

Nineteenth­Century Beliefs about Culture and Cognitive Ability

The several decades just proceeding this century provide a useful starting point from which to trace theories of culture and cognitive development because it was 
during this period that both anthropology and psychology, the disciplines assigned the roles of studying culture and cognition, took shape. Until this time there was no 
distinctive body of methods for the study of the "humane sciences"; nor had scholars with different theories been institutionally divided into separate disciplines, each 
with its own methods of studying human nature.

Obvious differences in technological achievement between peoples living in different parts of the world were common knowledge among European scholars. Their 
theorizing about sources of these differences had produced rather general acceptance of the notion that it is possible to study the history of humanity by a study of 
contemporary peoples at different "levels of progress." The "father of anthropology," E. B. Tylor, summarized (in what he called a "mythic fashion") the general course 
of culture that most of his fellow scholars would have adhered to:
We may fancy ourselves looking on Civilization, as in personal figure she traverses the world; we see her lingering or resting by the way, and often deviating into paths that bring 
her toiling back to where she had passed by long ago; but direct or devious, her path lies forward, and if now and then she tries a few backward steps, her walk soon falls into a 
helpless stumbling. It is not according to her nature, her feet were not made to plant uncertain steps behind her, for both in her forward view and in her onward gait she is of truly 
human type. (Tylor, 1958, p. 69)

Tylor made another assumption that also won general acceptance: there is an intimate connection between sociocultural progress and mental progress. "[T]he 
condition of culture among various societies of mankind," he wrote, "is a subject apt for the study of laws of human thought and action" (Tylor, 1874, p. 1). He even 
adopted the notion of a "mental

  
Page 647

culture," which he expected to be high or low depending upon the other conditions of culture with which it was associated.

Spencer, writing at about the same time, shared Tylor's belief in the fusion of mental and sociocultural progress. He argued that the circumstances under which the 
earliest human beings lived provided only a limited number and variety of experiences. "Consequently," he argued, "there can be no considerable exercise of faculties 
which take cognizance of the general truths displayed throughout many special truths" (Spencer, 1886, p. 521).

Spencer invites us to consider the most extreme case; suppose that only one experience were repeated over and over again, such that this single event comprised all of 
the person's experiences. In this case, as he put it, "the power of representation is limited to reproduction of the experience" in the mind. There isn't anything else to 
think about! Next we can imagine that life consists of two experiences, thus allowing at least elementary comparison. Three experiences add to the elementary 
comparisons and to the elementary generalizations that we make on the basis on our limited (three) experiences. We can keep adding experience to our hypothetical 
culture until we arrive at the rich variety of experiences that characterizes our lives. It follows from this line of reasoning that generalizations, the "general truths" 
attainable by people, will be more numerous and more powerful the greater one's experience. Because cultures provide experience, and some cultures (Spencer 
claimed) provide a greater diversity of experience than others, a neat bond between cultural progress and mental progress is cemented.

Although such evolutionary schemes seemed almost transparently obvious in the enthusiasm following publication of Darwin's Origin of Species, events toward the 
close of the nineteenth century proved that there could be a great deal of disagreement about the relation between culture and thought, despite the compelling story 
constructed by scholars such as Tylor and Spencer. One set of disagreements arose when researchers started to examine more closely the data used to support 
conclusions about relations between cultures, especially claims for historical or evolutionary sequences. A different set of disagreements arose around conflicting claims 
about mental processes.

  
Page 648

The source of these disagreements concerning sociocultural sequences can be found in Tylor's own work. The main criteria he used for judging the stage of a culture 
were the sophistication of its industrial arts (including its manufacturing techniques for metal tools and its agricultural practices) and "the extent of scientific knowledge, 
the definitions of moral principles, the conditions of religious belief and ceremony, the degree of social and political organization, and so forth." However, in Tylor's 
words, "If not only knowledge and art, but at the same time moral and political excellence, be taken into consideration it becomes more difficult to scale societies from 
lower to higher stages of culture" (Tylor, 1874, p. 29).

This undeveloped theme in Tylor's work was taken up by Boas, who submitted the cultural evolution position to a devastating critique at the close of the nineteenth 
century. On the basis of his own ethnographic work, Boas (1911) concluded that a great deal of the evidence apparently supportive of evolutionary schemes was so 
deeply flawed that no clear conclusions ranking one culture above another could be accepted. Boas did more than show the flaws in evolutionists' data and arguments 
concerning culture; he also delighted in showing that examples of the "primitive mind" produced as part of this argument were based on misunderstandings.

Consider the following example from Boas's classic, The Mind of Primitive Man, which repeats evidence used by Spencer to make some generalizations about 
properties of the primitive mind:

In his description of the natives of the west coast of Vancouver Island, Sproat says, "The native mind, to an educated man, seems generally to be asleep.... On his attention being 
fully aroused, he often shows much quickness in reply and ingenuity in argument. But a short conversation wearies him, particularly if questions are asked that require efforts of 
thought or memory on his part. The mind of the savage then appears to rock to and fro out of mere weakness." (Boas, 1911, p. 111)

Spencer's text goes on to cite a number of similar anecdotes corroborating this point. But Boas produces an anecdote of his own.
I happen to know through personal contact the tribes mentioned by Sproat. The questions put by the traveller seem mostly trifling to the Indian, and he naturally soon tires of a 
conversation carried on in a foreign language, and one in which he finds nothing to interest him. As a matter of fact, the interest of these natives

  
Page 649

can easily be raised to a high pitch, and I have often been the one who was wearied out first. Neither does the management of their intricate system of exchange prove mental 
inertness in matters which concern them. Without mnemonic aids to speak of, they plan the systematic distribution of their property in such a manner as to increase their wealth 
and social position. These plans require great foresight and constant application. (Boas, 1911, p. 128)

Thus, Boas tells us that the entire scheme was wrong. Cultures cannot be ranked using evolutionary age as a basis for comparison, and "mind" cannot be seen as rank 
in developmental age. (Boas also demonstrates the total hopelessness of deducing cultural differences from any differences, real or imagined, in genetic makeup.)

Finally, and very importantly, Boas was a leader in a subtle, but essential, change in anthropological thinking about the concept of culture itself. Educated in Germany, 
Boas had begun his career imbued with the romantic concept of Kultur, the expression of the highest attainments of human experience, as expressed in the arts, music, 
literature, and science. This is the conception of culture that allowed Tylor to talk about "the conditions of culture among various societies." Tylor, like Boas as a young 
man, conceived of culture as something groups and individuals had more or less of. It was a singular noun: one talked of higher or lower culture, not more or fewer 
culture. By the same route that led him to deny the basis for ranking cultures in terms of a hypothetical, evolutionary sequence, Boas arrived at the idea that different 
societies create different "designs for living," each representing a uniquely adapted fit between their past and their present circumstances in the world. This point of 
view is central to contemporary anthropology, and it clearly has to be taken into account if we want to rank the intellectual achievements (levels of mental 
development) of people growing up with different cultural experiences. It renders simple more­less comparisons of cultures difficult and restricted, with parallel effects 
on our inferences about mind.

Enter Psychology

The birth of psychology is usually dated back to 1879, when Wilhelm Wundt officially opened an experimental laboratory in Leipzig. The exact date is not important, 
because several laboratories opened almost simultaneously in different industrialized countries. But the reasons for these

  
Page 650

laboratory openings are important for understanding the problems of understanding the relation between culture and intelligence.

Boas's critique of developmental theories, whether of mind or culture, produced controversy in both domains of inquiry. Boas earned the enmity of those 
anthropologists who believed his criticisms of their general theories unjust; they sought to rescue the more general theories, criticizing Boas and his students for 
"historical particularism" (Harris, 1968).

While anthropologists generally focused on contents of culture and therefore of mind, psychologists took up the other half of the equation, the problem of specifying 
mental mechanisms. The major difficulty facing psychologists was to devise methods for specifying pretty exactly what happens in an individual when some sort of 
"thinking" is going on. Competing claims were evaluated by constructing settings to control as exactly as possible the kinds of events a person experienced and to 
record the kinds of responses these experiences evoked. Because the presumed processes were not observable (they were, as we say, "psychological"), 
psychologists spent a great deal of time and ingenuity devising ways to pin down what these nonobservable processes might be.

The rapidly growing ability to control electricity and to build precision machinery was exploited to the fullest; the early psychology laboratories were marvels of 
inventions. Their instruments allowed psychologists to present people carefully controlled lights and tones for carefully controlled intervals and to measure precisely the 
time it took to respond. In their search for ways to make mind observable, they used electrophysiological devices to record internal, organic functioning. The discipline 
of "psychophysics" advanced appreciably in its quest to relate psychological phenomena of an elementary order (discriminating tones, judging hues). There were even 
hopes of uncovering a "cognitive algebra" by carefully comparing reaction times to stimuli of various complexities arranged to reveal steps in the thought process.

The activities of psychologists and anthropologists soon contrasted very dramatically. Psychologists brought people into the laboratory, where behavior could be 
constrained, events controlled, and the mind made visible. Whereas the anthropologists continued to concentrate on gathering data that would permit them firm 
statements about historical relations between cultures, scholars who came to identify themselves as

  
Page 651

psychologists concentrated on resolving arguments about thinking such as those illustrated in the passage quoted by Boas. Just as anthropology evolved careful field 
techniques to disambiguate competing claims about culture, psychologists developed the laboratory experiment as a way to test competing claims about mind.

There occurred, in effect, a division of labor in the "humane sciences," a division that was primarily a matter of scientific strategy in the beginning: progress required 
some concentrated work on specialized subtopics. The overall task remained the same for everyone: how do human beings come to be the way they are?

Enter Testing

Despite an increasing gulf between scholars who called themselves psychologists and those who called themselves anthropologists, it was not long before those two 
areas of inquiry were brought together again. At the end of the nineteenth century, Francis Galton, in England, set out to test hypotheses about mental differences 
among people, using the newly devised psychological techniques. His concern was not differences between people growing up in different cultures. Rather, he studied 
people growing up in different families. Significantly, his tests were theoretically motivated; he believed that speed of mental processing was central to intelligence, so 
he created tests to measure the rapid processing of elementary signals. Galton succeeded in finding differences among subjects on such tests as simple reaction time to 
a pure tone, but he did not succeed in relating these "psychological test" differences to human characteristics of greater interest to him such as scientific excellence or 
musical ability. Galton's tests, based on an oversimplified model of the human mind and the highly controlled procedures adopted from the laboratory appropriate to 
testing his theory, were not taken up by society. However, in creating an early precursor of existing IQ tests, Galton did begin the development of the statistical 
techniques that would be necessary to show how test differences correlate with interesting behavioral differences.

Galton did all of his work in England, but other Englishmen, including Rivers (1901), traveled to the Torres Strait, northeast of Australia, to see if psychological tests 
could be used to settle disputes over cultural

  
Page 652

differences in cognition. Rivers was in some senses an antique. He was both anthropologist and psychologist, which meant that he considered both the evidence of his 
tests and evidence provided by observation of the people he went to study when he made statements about culture and thought. His conclusions were consistent with 
Galton's data on individual differences; natives differed from each other on such simple tasks as their ability to detect a gap in a line or their recognition of colors. But 
there were no impressive differences between the natives of the Torres Strait and English people he studied.

It would appear on the basis of this evidence that there are no cultural differences in thinking, at least no differences consistent with the pattern proposed by Tylor, 
Spencer, and others. However, it could be (and was) argued, that the important ways in which cultural differences cause mental differences were not even tested by 
Rivers and his associates. After all, Galton had found no relation between responses to his psychological tests and other presumed indicators of intelligence. Why 
would anyone, then, expect cultural differences in elementary sensory abilities, because these depended on physiological mechanisms common to all people? What 
seemed necessary were tests of higher psychological processes that could be used to compare people from different cultures or different people in the same culture.

This distinction between elementary and higher processes pinpoints a weakness in the basic foundations of experimental psychology, a weakness acknowledged by 
Wundt, its founder. It is impossible, Wundt believed, to study higher psychological functions in experiments because such functions always depend on prior, culturally 
organized experience that differs from one individual and society to another, and these differences undermine the purity of the experiment. Wundt believed that 
scientists should use ethnological evidence and folklore if they want to discover the properties of the mind that get constructed on the basis of the elementary processes 
he studied in the laboratory.

Wundt's doubts about the experimental method were not accepted, because they put psychologists in a difficult bind. Psychology had been founded on the principle 
that carefully controlled environments are required to make legitimate statements about how the mind works. But a great many of the questions about how the mind 
works that interested

  
Page 653

psychologists and anthropologists alike clearly refer to "higher" psychological processes such as logical reasoning and inference. When Wundt gave up on the idea that 
such processes could be studied in the laboratory, he was, it seemed, robbing psychology of most of its interesting subject matter. For psychologists, the inability to 
study higher psychological processes in the laboratory meant that they could not be studied at all.

Binet's Strategy

The major push for a way to measure mental ability apart from culturally conditioned experience came from a source seemingly remote from theoretical disputes 
among anthropologists about the possibility of reconstructing history through a study of contemporary cultural variation or from issues of cross­cultural experimentation 
among psychologists. Early in this century, Alfred Binet was asked to deal with a practical, social problem. With the growth of public education in France, there was a 
growing problem of school failure, or at least severe school underachievement. It seemed not only that some children learned more slowly than others but that some 
children, who otherwise appeared perfectly normal, did not seem to benefit much from instruction at all. Binet and his colleagues were asked to see if they could find a 
way to identify slow­learning children at an early stage in their education. If such identification were possible, special education could be provided them, and the 
remaining children could be more efficiently taught.

The subsequent history of IQ testing has been described too frequently to bear repetition here, but a sketch of the basic strategy of research is necessary as 
background to understand just how deeply IQ tests are embedded in cultural experience.

To begin with, early test makers had to decide what to test for. The decision seemed straightforward. They wanted to test people's ability to perform the kinds of 
tasks that are required by schools. They observed classrooms, looked at textbooks, talked to teachers, and used their intuitions to arrive at some idea of the many 
different kinds of knowledge and skills that children are eventually expected to master in school.

What Binet and his colleagues found was not easy to describe briefly, as anyone who has looked into a classroom can quickly testify (and all

  
Page 654

of us have done so, or we would not be reading these words). There was a very obvious need to understand graphic symbols, such as alphabets and number systems. 
So recognition of these symbols was tested. But mastery of the rudiments of these symbols was not enough. Children were also expected to manipulate these symbols 
to store and retrieve vast amounts of information, to rearrange this information according to the demands of the moment, and to use the information to solve a great 
variety of problems that had never arisen before in the experience of the individual pupil. Thus, children's abilities to remember and carry out sequences of movements, 
to define words, to construct plausible event sequences from jumbled picture sequences, and to recognize the missing element in graphic designs were tested (along 
with many other components of school­based problems).

It was also obvious that to master more and more esoteric applications of the basic knowledge contained in alphanumeric writing systems, pupils had to learn to 
master their own behavior. They not only had to engage in a variety of "mental activities" directed at processing information; they also had to gain control over their 
own attention, applying it not according to the whim of the moment but according to the whim of the teacher and the demands of the text.

It was clearly impossible to arrive at a single sample of all the kinds of thinking required by "the" school. Not only was there too much going on in any one classroom 
to make this feasible; it was equally clear that the school required different abilities from children of different ages. Binet realized that estimates of "basic aptitude" for 
this range of material would depend upon how much the child had learned about the specific content before he or she arrived at school, but he felt knowing the child's 
current abilities would be useful to teachers anyway.

In the face of these difficulties, Binet decided to construct a sample of school­like tasks appropriate for each year of education, starting with elementary grades and 
reaching into higher levels of the curriculum. He would have liked to sample so that all the essential activities were included in his test and that tasks at one level of 
difficulty would be stepping stones to tasks at the next higher level. But because no firmly grounded theory of higher psychological functions existed, Binet had to rely 
on a combination of his own common sense and a logical analysis of tasks

  
Page 655

that different classrooms seemed to require (for example, you have to be able to remember three random digits before you can remember four; you have to know the 
alphabet before you can read). He also hit on the handy strategy of letting the children themselves tell him when an item selected for the test was appropriate. 
Beginning with a large set of possible test questions, Binet hunted for items that half the children at a given age level could solve. An ''average" child would then be the 
one who solved problems appropriate to his or her age level. Keeping items that discriminated between children of different ages (as well as items that seemed to 
sample the activities demanded of kids in their classrooms), he arrived, with help from his colleagues, at the first important prototype of the modern IQ test.

Of course a great deal of work has gone into the construction of tests since Binet's early efforts, but the underlying logic has remained pretty much the same: sample 
the kinds of activities demanded by the culture (in the form of problems it requires that its children master in school), and compare children's performance to see how 
many of these activities they have mastered. Children who have mastered far less than we would expect given a comparable sample of kids their own age are those 
who will need extra help if they are to reach the level expected by the culture.

This strategy is perfectly reasonable, so long as we stay within the framework that generated the item selection procedures in the first place. However, much to the 
disapproval of Binet, people found new uses for the tests of school­based knowledge that carried with them the seeds of the current disputes over IQ testing.

Although Binet specifically warned against the procedure, his test and tests like it began to be used as measures of an overall aptitude for solving problems in general, 
rather than samples of problem­solving ability and knowledge in particular. Those engaged in such extrapolations acknowledged that in principle it is important to 
make certain that everyone given the test has an equal opportunity to learn the material the test demands. But in practice there was no way to guarantee this essential 
prerequisite for making comparative judgments about basic abilities.

These are important issues in thinking about applications of IQ testing, and they are extensively discussed in the psychological literature. However, it is not until we 
back up and examine the possible significance of

  
Page 656

Binet's work in the light of anthropological scholarship that we can see just how limited an enterprise IQ testing was at the beginning and how restricted it remains 
today.

A Thought Experiment in Test Construction

A good starting point for this reexamination is to think about what sort of activity Binet would have engaged in if he had been a member of a cultural group vastly 
different from his own. As a sort of "thought experiment" let us suppose that a "West African" Binet has taken an interest in the kinds of knowledge and skills that a 
child growing up in his part of the world would need to master as an adult. To make the thought experiment somewhat concrete, I will do my supposing about the 
tribal groups inhabiting the interior of Liberia, principally the Kpelle people, among whom I have worked and about whom a good deal of relevant information is 
available.

Following in the footsteps of his French model, our Liberian Binet would want to make a catalogue of the kinds of activities that children are expected to master by 
their parents and the village elders. People in rural Liberia make their living by growing rice and other crops, which they supplement with meat and fish when these 
scarce commodities can be obtained. Rice farming is physically difficult work that demands considerable knowledge and planning for its success, but as practiced by 
the Kpelle, it is not a technologically sophisticated enterprise. It is carried out using simple tools such as a machete to cut the underbrush, fire to burn the dry bush, 
vines to tie together fence posts in order to keep out animals, and slingshots to harass animals (Gay, 1973). Other aspects of Kpelle material culture are relatively 
simple, although in every case the proper use of tools requires a good deal of knowledge about how the tools are supposed to be used. There is division of labor 
among Kpelle adults (men hunt, and women do most of the fishing; men cut the bush on the farms, women plant the seed, and children guard the crops), but far more 
than is true of contemporary America, everyone pretty well knows what there is to know about adult economic activities. There are some specialists (e.g., 
blacksmiths, bonesetters, and weavers) whose work is an exception

  
Page 657

to the generalization, and study of their activities would certainly be important.

Of course, there is more to getting through life as a Kpelle than growing rice or weaving cloth. All descriptions of the social organization of Kpelle life stress that, as in 
America, knowledge of the social world is essential to adult stature (Bellman, 1975). Kpelle people are linked by a complex set of relations that control how much of 
the resources available to the society actually get to the individual.

Faced with this situation, how should our West African Binet proceed? Should he sample all the kinds of activities valued by adults? This strategy is almost certainly 
unrealistic. Even allowing for the possibility that aspects of technology make it reasonable to speak of the Kpelle as a "less complex" society than our own, it is very 
complex indeed. No anthropologist would claim to have achieved a really thorough description of even one such society. Moreover, like Tylor, he would have to 
admit the possibility that in some respects Kpelle society provides members with more complex tasks than we are likely to face. Because it is unreasonable in Liberia, 
as it is in the United States, to think that we can come up with a test that samples all types of Kpelle adult activities, why not follow Binet's example and sample an 
important subset of those activities? From an anthropological perspective, schools are social institutions for assuring that adult knowledge of highly valued kinds gets 
transmitted to a society's next generation (it must be transmitted, or there would be no later generations!). Although the school is not likely to contain a random sample 
of life's tasks, it is certainly a convenient place to sample activities that adults consider important, activities complex enough to make it unlikely that kids would learn 
what they need to know simply by "hanging around."

So, our Liberian Binet might decide to search for some institutions in his society that correspond roughly with the basic goals of schooling in ours. Not all societies 
readily manifest such institutions, so anthropologists are led to speak of "socialization" as the broadest relevant category. Fortunately for discussion, in the case of 
Liberia, he would undoubtedly discover the existence of institutions called bush schools in the Liberian English vernacular.

  
Page 658

There are no detailed accounts of the curriculum of the bush school. The 3 or 4 years youngsters spend are organized by town elders who are leaders in the secret 
societies that control a variety of esoteric information. This material cannot, on pain of death, be communicated to outsiders. However, we know enough about 
aspects of bush school activities to continue our hypothetical research (Bellman, 1975; Gay, 1973): we know that youngsters learn to farm, construct houses, track 
animals, shoot birds, and carry out a variety of adult economic activities (children live apart from their home villages in something like a scouting camp during their time 
in bush school). The children are also taught the important lore of the group. This lore is communicated not only in a variety of ceremonies, but in stories, myths, and 
riddles. So, let us suppose that our West African Binet decided to use successful execution of bush school activities as the abilities he wanted to sample.

Again, like Binet, our researcher would not be able to sample all such activities for his test, nor would he want to. He would not, for example, want to sample activities 
that all children knew how to accomplish before they got to school; nor would he want to sample activities considered so universally accessible that everyone mastered 
them well before the end of schooling. This information would not help him pick out those children who needed extra instruction. Instead, he would seek those 
activities that discriminated among children, activities that some mastered far earlier than others and perhaps activities that some mastered only in later life. Once these 
Binet­like restrictions had been placed upon the activities selected for study, our hypothetical researcher could begin selecting tasks on which he could base test items.

In considering what sort of test would emerge, it is useful first to consider what activities would be excluded as well as those included. Cutting brush or sowing rice 
seed probably would not be on the test; everyone knows how to do those tasks before he or she gets to school. Nor would anyone spend time explicitly teaching 
children common vocabulary. However, there would be explicit instruction in such tasks as constructing houses and identifying leaves that are useful in different kinds 
of medicine. There would also be some mechanism for insuring that the history of the group and its laws and customs were taught to everyone in the form of stories 
and dances. Finally, some children would be selected for

  
Page 659

specialist roles that would require special tests (bonesetter, weaver, midwife, blacksmith, hunter, and so on). These children would receive additional instruction.

Looking at those areas where instruction might be considered important, we can see many candidate activities for testing. We might want to see if children have 
learned all of the important leaf names for making medicine (Bowen, 1964). Riddles are often important parts of stories and arguments, so we could test to see how 
many riddles children know and how adept they are at interpreting them (Kulah, 1973). The specialists would be a rich source of test material, especially if we thought 
that rational testing of ability to perform like adults would improve the quality of our cloth or machetes. In short, it seems possible, in principle, to come up with test 
items that could perform functions in Kpelle society similar to the way that Binet wanted to use IQ tests.

Could we carry out such a program of research in practice? There is no simple answer to this question, but it is useful to consider the obstacles. For some activities 
such as naming leaves or remembering riddles, it should be relatively easy to make the relevant observations because the Kpelle have already arranged for them: 
several researchers have described children's games that embody precisely these activities (Cole, Gay, Glick, & Sharp, 1971; Lancy, 1977). We could also test 
people's skills at constructing houses, weaving designs, and forging sturdy hoes. However, from a Kpelle point of view, tests of such skills would not be particularly 
interesting. The real stuff of using one's wits to get along in the world has been excluded.

This point was made very explicitly by a Kpelle anthropological acquaintance of mine who was versed in the more esoteric aspects of Kpelle secret societies and 
medicine (or magic, according to American stereotypes). We had been talking about what it means to be intelligent in Kpelle society (the most appropriate term is 
translated as "clever"). "Can you be a clever farmer?" I asked. "No,'' came the reply.
You can be a hardworking farmer, or you can be a lucky farmer, but we couldn't say that someone is a clever farmer. Everyone knows how to farm. We use "clever" when we talk 
about the way someone gets other people to help him. Some people always win arguments. Some people know how to deal with strangers. Some people know powerful medicine. 
These are the things we talk about as clever.

  
Page 660

In this bit of dialogue we see an emphasis on activities that require social interaction as the arena where intelligence is an appropriate concept. (Among the Kpelle and 
many other nontechnological groups, display of a good memory for use in discussions is often considered an important component of intelligence; see Dube, 1977) 
This usage is quite consistent with Binet's analysis; it is those activities that differentiate among people in terms of the way they manipulate information that the Kpelle, 
like the French, use to mark intelligence.

However, once we reach this point, we face two important difficulties. First, the situations we have selected for our study of Kpelle intelligence are exceedingly difficult 
to describe. Second, these contexts are very difficult to arrange. It is not enough to know riddles; everyone knows riddles. What is important about riddles is how they 
are used to get one's way with other people. Riddles are a resource to be used in a variety of social interactions where people's statuses and rights are at issue.

Consider the first difficulty. Bellman (1978) recounts an occasion when an elder member of a secret society told a long story about how he came to be a high­ranking 
shaman. He followed this (presumably autobiographical) story with a long riddle, which was also in story form. A novice such as myself would have no way of figuring 
out what part of the story was true, and I certainly would not have responded to the riddle as if its interpretation depended upon the autobiographical story; the two 
monologues appear to be about quite different topics. Bellman succeeds in demonstrating, however, that the riddle is closely linked to the autobiography. Not only are 
there formal, structural similarities (once one understands the basic categories of the relevant Kpelle belief systems); there is a rhetorical link as well. The 
autobiographical story actually represents a bit of self­aggrandizement by the person who has told it. The man is claiming special knowledge and special power in a 
covert manner. The riddle reinforces the main point of the story (which raises the teller above his fellow shaman), giving the story "logical" as well as "historical" 
validity. The fact that listeners are constrained to agree with the riddle also gets them to agree, at least in part, with the message of the autobiographical story.

By almost any account, this man's autobiographical account plus riddle is a clever bit of behavior. It is exactly the kind of thing that our West

  
Page 661

African Binet ought to be sampling. But, at precisely this point, our cross­cultural thought experiment in IQ testing comes apart. As I have already pointed out, in order 
to construct a test Binet needed to be able to select a large number of items. But the "item" we have just described (very loosely) is not easily constructible. The 
participants in this scene were doing social work on each other; the shaman, in particular, was attempting to establish his preeminence using an account of his past 
history that would be difficult to check up on, a riddle whose structure was designed to reinforce his account, and his knowledge of his listener's state of knowledge 
concerning both the shaman's past and Kpelle social structure. This is one item; it was constructed by the subject, not the "tester." It is difficult for me to imagine how 
to insure that a test includes one or more items of this type. Furthermore, because the example's structure and content depend upon the special circumstances 
surrounding it, how could I insure that I would be able to present the test to the subject given that it was the "subject" who did a lot of the presenting in the example I 
have described?

Here the contrast with Binet's situation is strong. Like Binet, we have proceeded by figuring out what sorts of activities differentiate people according to some notion of 
what it means to behave intelligently. Unlike Binet, the activities we need to sample in West Africa to accomplish this goal lead us into domains that are systematically 
absent from Binet's tests. These domains involve interactions among people in which flexibly employed social knowledge is of paramount importance. They are not 
domains of hypothetical knowledge; rather, they always involve some real operations on the world, operations that require a great deal of care simply to describe. We 
have no good notion of how to make such activities happen in a manner analogous to the way teachers make vocabulary tests and multiplication problems happen. 
Furthermore, even if we solved all these problems, we would have no real theory of the psychological processes our subject engaged in. Such problems have not been 
studied by cognitive psychologists.

On both practical and theoretical grounds, then, it appears virtually impossible to come up with a way of testing Kpelle intelligence in a manner really equivalent to 
what we understand to be intelligence tests in our society. So long as we restrict our attention to Kpelle culture, this

  
Page 662

conclusion should not cause much consternation. After all, the idea of a West African Binet is rather absurd; Kpelle people have managed to pass on their culture for 
many years without IQ tests to help them select clever children and give extra assistance to the dull.

Some Implications for the Notion of a Culture­Free Test

Our characterization of what one has to do to be clever in Kpelle culture and what it would take to sample such cleverness in a test must be discomforting for anyone 
who imagines that one can construct a culture­free test of intelligence. Imagine, for example, that by some quirk it was our imaginary Liberian Binet who constructed 
the first IQ test and that other West African tribal people had adopted it. Next, imagine that American children were posed items from the West African test. Even 
items considered too simple for Kpelle 8­year­olds would cause our children severe problems. Learning the names of leaves, for example, has proven too difficult for 
more than one American Ph.D. Our children know some riddles, but little use is made of such knowledge in our society except for riddling, which would put American 
children at a severe disadvantage on more "advanced" items.

If our children were forced to take a test constructed by a West African Binet, we might object that these Kpelle­derived items were unfairly biased toward Kpelle 
culture. If the eventual incomes of our children depended in any way on their ability to interpret Kpelle riddles, we would be outraged. Nor would we be too happy if 
their incomes depended upon their use of their own riddles as rhetorical devices. At the very minimum, we would want a culture­free test if real life outcomes 
depended upon test performance. However, what kind of test is a West African Binet likely to dream up that we would consider culture free? It would not involve a 
set of drawings of geometrically precise figures, because Kpelle, a preliterate group, do not engage in much graphic representation and have no technology for drawing 
straight lines. It would not be recall of lists of nonsense syllables or even lists of words, because there are no corresponding activities in Kpelle adult life. We might try 
a memory test such as recalling all of one's family, but here the Kpelle, who teach their children genealogies, would have a distinct advantage: what is the name

  
Page 663

of your grandmother's father on your father's side of the family? In fact, if we run down the list of presumably culture­free items that our mental experiment on Kpelle 
IQ testing turned up, we would almost certainly find none of the subtests that have been claimed as culture­free tests of intelligence in our society. The reason is simple; 
our West African Binet, having scientifically sampled his culture, would have come up with items that reflect valued activities and that differentiate people in his culture, 
whereas Binet and all his successors have come up with items that do the same job in their culture. They are different kinds of activities.

Our imagined study of cross­cultural test construction makes it clear that tests of ability are inevitably cultural devices. This conclusion must seem dreary and 
disappointing to people who have been working to construct valid, culture­free tests. But from the perspective of history and logic, it simply confirms the fact, stated 
so clearly by Boas (1911, p. 133) half a century ago, "that the existence of a mind, absolutely independent of conditions of life is unthinkable."

References

Bellman, B. L. (1975). Village of curers and assassins: On the production of Fala Kpelle cosmological categories: The Hague, Netherlands: Mouton.

Bellman, B. L. (1978). Ethnohermeneutics: On the interpretation of subjective meaning. In W. C. McCormack and S. A. Wurm. (Eds.), Language and the mind. 
The Hague, Netherlands: Mouton.

Boas, F. (1911). The mind of primitive man. New York: Macmillan.

Bowen, E. S. (1964). Return to laughter. New York: Doubleday.

Cole, M., Gay, J., Glick, J. A., & Sharp, D. W. (1971). The cultural context of learning and thinking. New York: Basic Books.

Dube, E. F. (1977). A cross­cultural study of the relationship between "Intelligence" level and story recall. Unpublished doctoral dissertation, Cornell 
University, Ithaca, NY.

Gay, J. (1973). Red dust on the green leaves. Thompson, CT: InterCulture Associates.

Gibbs, J. L. (1965). The Kpelle of Liberia. In J. L. Gibbs (Ed.), Peoples of Africa (pp. 197–240). New York: Holt, Rinehart and Winston.

Harris, M. (1968). The rise of anthropological Theory. New York: Crowell.

Hernnstein, R. J., & Murray, C. (1994). The bell curve: Intelligence and class structure in American life. New York: Free Press.

  
Page 664

Jensen, A. (1980). Bias in mental testing. New York: Free Press.

Kulah, A. A. (1973). The organization and learning of proverbs among the Kpelle of Liberia. Unpublished doctoral dissertation, University of California, Irvine.

Lancy, D. (1977). Studies of memory in culture. Annals of the New York Academy of Science, 307, 285–297.

Rivers, W. H. R. (1901). Vision. In A. C. Haddon (Ed.), Report of the Cambridge anthropological expedition to the Torres Straits (Vol. 2). Cambridge, 
England: Cambridge University Press.

Spencer, H. (1886). The principles of psychology (Vol. 5). New York: D. Appleton.

Tylor, E. B. (1874/1958). Primitive Culture. London: J. Murray.

  
Page 665

20
Heredity versus Environment as the Basis of Cognitive Ability
Elena L. Grigorenko

Why do people differ in the way they think? Why are some people smarter than others? Why do children's abilities resemble their parents' abilities? Why do children 
in one family differ in the way they learn compared with children in another family and, moreover, compared with each other? Why do people vary in intelligence?

The observation of differences in cognitive abilities between people has many explanations, depending on the context and goal of a given discussion. For example, if 
we discuss differences in people's performance on an IQ test, nutritionists are likely to inquire whether the person had breakfast on the test day and what it was; 
physiologists will think of differences in serotonin level or nerve conduct velocity; psychologists will look for previous learning experiences, motivation, and ability level. 
As a psychologist, I will try to address the question of observed variation in cognitive functioning by concentrating on ability level. Moreover, it is not the absolute 
ability level that is going to be the center of my attention, but rather the causes that lead to differences in abilities.

The goal of this chapter is to explore the problem of sources of observed differences in cognitive functioning. Specifically, I hope to provide a comprehensive overview 
of how this problem is approached by behavior­genetic research. The design of the chapter is as follows. After describing the phenomenon of individual differences in 
cognition, I then show how this phenomenon is studied in the behavior­genetic approach. Finally, I summarize the current state of knowledge regarding understanding 
the sources of individual differences in cognition.

  
Page 666

Behavior­Genetic Approach to Studying Individual Differences

The Concept of Individual Differences

If we randomly enter a classroom in any nonspecialized school in any corner of the world and look at the children in this classroom, at first glance we would notice 
how different these children are. They are different in height and weight, their bodies are formed differently, and their noses and eyes have different shapes. Then, if we 
look at the class year­book or talk to a teacher, we will discover that all of these children vary in terms of their academic performance and abilities. In other words, in 
any randomly chosen group of children (or adults, for that matter), we will find a significant amount of variation in virtually any trait we look at. Almost everything that 
can be measured or counted in human beings demonstrates variation around the mean value in a given population. The concept traditionally used to refer to such 
variation in human traits (height, weight, facial features, academic performance, etc.) is that of individual differences.

The existence of individual differences in the ways people think, cognize, and learn attracted the attention of philosophers many centuries ago. And along with the 
questions, theories appeared. The main point of the theories was to reveal the sources of interindividual variation. The assumption made was quite simple: if people 
vary in the way they think, there should be some explanation of this variation. Two hypotheses appear to be useful: (1) people are born to be the way they are, or (2) 
people learn to be the way they are. There have been many attempts to verify both hypotheses, and as a result of this massive scientific endeavor, much information 
has been accumulated. The consensus today, however, is that there is no sole source of individual differences and that the appearance of interindividual variation in any 
population is the product of a complex interplay of two forces, which are globally referred to as genes and environment.

Genes versus Environment: The Paradigm

How did the idea come about that genes and environments may be relevant to cognition? The idea to look for a link between genes, environments, and cognitive 
functioning is relatively novel, but its philosophical

  
Page 667

frame was formulated many centuries ago. The roots of this idea are in the well­known nature­versus­nurture controversy, which has been around for long time. The 
nature­nurture controversy has many faces, including the nativism­empiricism issue in the psychology of sensation and perception, the issue of maturation versus 
learning in developmental psychology, and the issue of environmental equipotentiality versus biological preparedness in the psychology of learning and cognition (for 
more details, see Kimble, 1994). At the end of the last century, British scientist Francis Galton narrowed the nature­nurture controversy down to an opposition 
between heredity and environment. With the discovery of genes as units of heredity, the controversy took its current form of the "genes­versus­environment" debate. 
The motivation for formulating such an opposition is obvious—knowing that people differ in the ways they think, scientists wanted to understand why they differ and, 
subsequently, what (if anything) can be done to minimize (or maximize) these differences. In other words, knowing that there is variation in cognitive functions between 
people, scientists want to understand the sources of this variation and how to control them.

Studies investigating sources of variability in behavioral traits are being conducted in different fields, among which are developmental psychology, psychology of 
individual differences, quantitative genetics, molecular genetics, psychiatric genetics, behavior genetics, and others. For the sake of brevity, in this chapter we will refer 
to all these studies as behavior­genetic studies. Such studies are the focus of attention in this chapter.

Definition of Terms

Definitions are essential at the outset for the following four terms: phenotype, genotype, components of the phenotypic variance, and familial resemblance.

Phenotype

One of the most important concepts for this chapter is the concept of phenotype. Phenotype refers to apparent, observable, measurable characteristics of the 
individual. Behavior is a phenotype. Cognition is a phenotype. When a given phenotype (e.g., IQ) is measured in a population of individuals and characteristics of the 
distribution of this measure

  
Page 668

are obtained, the variance of this distribution is referred to as phenotypic variance. The concept of phenotypic variance is a congruent behavior­genetic concept to that 
of individual differences used in psychology.

Genotype

Another important concept is the concept of genotype. Genotype refers to the genetic composition of the individual. At the present time, there are no known genes 
that contribute to normal interindividual variation in cognition. Therefore, in the context of this chapter, we will refer to the genotype as an unobservable, latent 
characteristic of the individual that manifests itself in cognitive phenotypes.

Causal Components of the Phenotypic Variance 1

The importance of the phenotype­genotype distinction is that it depicts the relation between the observable and unobservable characteristics: an observable trait 
(phenotype) is not a perfect indicator of the individual's latent qualities (genotype). These differences between the phenotype and the corresponding genotype can be 
accounted for by environmental influences. For example, monozygotic (identical) twins have identical genotypes, yet one might have a higher IQ than the other because 
of differences in environment. These relationships between the individual's phenotype (P), the individual's genotype (G), and the environment (E) can be expressed in a 
simplistic mathematical scheme as

P = G + E.

This formula signifies that an individual has a given genotype and is exposed to a given environment at a given point of time, so for this person at that point of time there 
will be one unique value of P. The phrase at any given time implies that the individual's environment varies over time. The degree to which environmental changes 
would influence the phenotypic value depends on what is being measured. For example, whereas a measurement of my height does not depend on daily environment, 
a measurement of my verbal ability might vary daily, depending on whether it is assessed in Russian, which is my native language, or in English, in which my fluency is 
magnitudes poorer.

In its somewhat more sophisticated form, this model may also include an interactive term, G × E, referring to possible combinations of genetic

  
Page 669

and environmental effects. For example, if parental intellectual ability is related to the parents' income and occupation (traits that elate both to genetic and 
environmental factors), then more able parents will provide a more intellectually stimulating environment. Thus, when the interactive term is included, the formula takes 
the following form:

P = G + E + (G × E).

At the individual level, this formula, though being illustrative, is quite meaningless. Unless we know precisely the values of at least two out of the three unknowns [G, E, 
and G × E], we cannot assign values to any of them.

The situation changes, however, when we look at variation between individuals, quantified by a variety of P values. For example, let us assume that we are measuring 
IQ in a group of people. Thus, our studied phenotype is IQ. We can calculate the mean value of IQ in this group and then determine where each individual in the 
group scores relative to the mean. Next, we can determine the variance (V) of IQ in the group, calculated as the sum of individual's squared deviations from the mean, 
divided by the number of individuals. Thus,

V(IQ) = V(P) = V [G + E + (G × E)]
= VG + VE + 2Cov(G)(E) + VG×E.

In other words, the observed variance in intelligence in a group in which the IQ is measured contains components due to genetic variance (VG) and those due to 
environmental variance (VE). Phenotypic variance also includes components resulting from the covariance (correlation) between genetic and environmental effects 
[2Cov(G) × (E)], as well as from the interaction between G and E (VG×E). The reader might ask why this formula appears to be solvable at the population level and 
not at the individual level: what enables us to determine the values of the VG, VE, Cov(G) × (E), and VG×E at the population level, while they are unknown at the 
individual level? The answer to this question is provided in the next section.

Familial Resemblance

There are two methods of determining each of the components of the phenotypic variance: measuring response to genetic selection and

  
Page 670

assessing resemblance between relatives. The first method assumes breeding organisms selectively for a given trait and measuring the outcome of the genetic 
experiments. The structure of modern human society is such that, due to our ethical norms and values, we do not wish to do it. What we can do, however, is utilize the 
second method. We can benefit from so­called natural experiments and assess resemblances between relatives, finding spontaneously occurring situations in which (a) 
genetic influences are either controlled or randomized so the effects of the environment can be studied or (b) environmental influences are controlled so the effects of 
genes can be studied. So what is the rationale behind quantifying familial resemblance?

Relatives share genes. Monozygotic (MZ; identical) twins share all of their genes. A parent and his or her offspring have half of their genes in common. Two siblings 
share, on average, half of their genes. Dizygotic (DZ; fraternal) twins, just as regular siblings, also share half of their genes. Half­siblings have a quarter of their genes in 
common, on average, and so on. Moreover, relatives who live in one home share the family environment. Thus, both genetic and environmental hypotheses predict 
similarity between relatives living together. This similarity is usually measured by covariance, or correlation, between relatives on a given trait. For example, the 
correlation of IQs between pairs of unrelated individuals picked at random is 0. Because such individuals share neither genes nor environment, their scores do not 
resemble each other. Other relationships, however, have both genes and environment in common. For example, the correlation for IQ between identical twins reared 
together is .86, between fraternal twins reared together is .60, between siblings reared together is .47, and between cousins is .15 (Chipuer, Rovine, & Plomin, 1990). 
The covariance between relatives could be described as Cov(P1)(P2), where P1 is the phenotype of one relative and P2 is the phenotype of the other. In the section on 
causal components of phenotypic variance, we noted that P = G + E, so

Cov(P1)(P2) = Cov[(G1 + E1)(G2 + E2)].

When expressed in terms of components of variance,

Cov(P1)(P2) = VG + VE.

  
Page 671

In other words, for a given trait (e.g., IQ), the correlation between relatives could be explained by the genetic variance and the environmental variance resulting from 
genetic and environmental influences shared between relatives.

The simplest illustration of how components of the phenotypic variance can be determined from studying relatives comes from studying identical and fraternal twins. 
Identical twins reared together share 100% of their genes and 100% of their family environment. Thus,

CovMZTwins = VG + VE MZ Twins.

Fraternal twins, reared together, share only 50% of their genes but 100% of their family environment. In other words,

CovDZTwins = 1/2VG + VE DZ Twins.

Assuming there are no differences in twin environments of identical and fraternal twins (i.e., VE MZ Twins = VE DZ Twins), these two equations can be solved for VG. That is,

1/2VG = CovMZTwins ­ CovDZTwins

VG = 2(CovMZTwins ­ CovDZTwins).

Thus, the components of phenotypic variance can be determined by combining various types of relatives and comparing the measures of their similarity on the trait. 
Behavior­genetic studies use a variety of methods (e.g., the family method, twin method, adoption/separation method) in which resemblance between relatives of 
different degrees is assessed.

In this section, I defined the fundamental terms of the chapter. In addition, I summarized the reasoning behind quantifying phenotypic variance and showed how the 
components of the phenotypic variance can be estimated based on assessing trait similarity in relatives of various degrees. Now, with the necessary background 
reviewed, the rest of the discussion will center around the following questions:

• What are the factors that determine interindividual variation in cognitive functioning?

• What are the major concepts used to study these factors?

• What is the current state of knowledge regarding relative contributions of genes and environments to variation in cognition?

  
Page 672

The Forces in Play

Current behavioral­genetic conceptualization of the forces determining individual differences in cognition distinguish three major groups of factors: genetic, 
environmental, and interactional. Let us consider each of them separately.

Genetic Influences (G): Types and Effects

Every human cell has two copies of each chromosome, one inherited from the mother and one from the father. Chromosomes are made of genetic material, organized 
into genes, which are templates for the synthesis of the proteins crucial in the functioning of our organism. Every gene, similar to chromosomes, exists in two copies: 
maternal and paternal. These gene copies are referred to as alleles.

Additive Genetic Effects

Additive genetic effects refer to the combined effects of alleles both within and between genes. If a trait is controlled by a number of genes, the additive genetic effect 
is calculated as a sum of contributions from every allele, each of which independently contributes a small amount to phenotypic diversity. When alleles do not interact, 
their effects on the trait is equal to a simple sum of their individual effects. Today's assumption is that human intelligence relies on the effects of the alleles of dozens of 
genes; thus, many different genes of fairly small effects contribute to the trait of intelligence.

Nonadditive Genetic Effects

The two main types of genetic nonadditivity are dominance and epistasis. Dominance refers to types of interaction between alleles of the same gene, whereas 
epistasis refers to types of interaction between different genes. As we will show, both dominant and epistatic effects appear to be important in determining variation in 
IQ.

Environmental Influences (E): Types and Effects

Behavior­genetic researchers divide environmental variance into shared (between­family) and nonshared (within­family) components.

  
Page 673

Shared Environmental Effects

All children in a family share the same environment to the degree that, on average, psychosocial environmental characteristics (e.g., social class and patenting styles) 
differ from those in other families. Shared environmental effects make children reared in the same family more similar than children reared in different families. Scarr 
(1997) suggests viewing between­family differences as differences in opportunities. For example, children from a low socioeconomic status (SES) class are thought of 
as having fewer opportunities to develop higher cognitive abilities than do children from a higher SES class as a result of both more stimulating home environment and 
the corresponding school and after­school activities.

Nonshared Environmental Effects

Nonshared environmental variance refers to those aspects of the environment that make children in the same family different. Parents, no matter how hard they try, do 
not treat all their children in exactly the same way. Examples of within­family environment variance include a wide range of conditions, from prenatal to psychosocial 
events that affect one sibling differently than another sibling.

It is important to note that decomposition of phenotypic variance, discussed earlier, is carried out under the assumption that the error variance associated, in particular, 
with measurement error in the phenotype is an indistinguishable part of the nonshared environment component (E) of the total variance (P). In other words, the 
estimates of E obtained under this model, in addition to reflecting the effects of nonshared environment also contain the error variance, partially attributable to 
imprecision in the measurement of the phenotype. The significance of this is that, in theory, when the studied trait is influenced by a genetic factor, but the reliability of 
the trait measurement is less than 1.0, this imprecision in measurement might reduce the estimated size of the genetic effect.

When the Two Are Brought Together: Gene­Environment Effects (G × E)

It has long been realized that the heuristic distinction between ''genes" and "environments" is a simplified model that ignores several processes

  
Page 674

that are important in the appearance of variation between individuals. Thus, three concepts depicting these processes have been suggested.

Gene­Environment Correlations

In most cases (with the exception of children given up for adoption or adverse social circumstances that result in externally caused family destruction), parents bestow 
upon their children not only their genes but also their related immediate environments and experiences. This phenomenon is referred to as the passive gene­
environment correlation. One example of evidence supporting the passive gene­environment correlation is the finding that social disadvantage tends to correlate with 
lower levels of IQ. To take the example a step further, consider the child who inherits the genes that predispose him to a high IQ and who may also experience the 
stimulating influence of a family environment that promotes reading. It may be that the tendency of parents to read to the child a lot may be associated with the same 
genes that control high IQ. There are also other types of gene­environment correlations. Evocative correlations arise from the fact that the ways people respond to 
children are influenced by the children's own characteristics (Plomin, DeFries, & Loehlin, 1977). It is possible that high­IQ children elicit different responses from their 
caregivers than do children of low intelligence. Active correlations arise as a result of the increased control over the environment that is experienced by growing 
children. Children themselves shape and organize their environments. For example, children with lower levels of intelligence tend to spend less time engaged in 
activities that would further stimulate their intellectual development. Scarr and McCartney (1983) hypothesized that the role of passive, evocative, and active 
correlations shift in their significance in the course of development, with the passive type declining, the active type increasing, and the evocative type remaining 
important throughout the lifespan. Effects that are outcomes of gene­environment correlations are bidirectional—the observed differences, resulting from differential 
levels of intelligence, may in turn influence the later development of intelligence.

Detection of genotype­environment correlations requires large sample sizes. As of today, only one metastudy, combining data from five adoption studies, has sufficient 
power to conduct an analysis of the importance of passive genotype­environment correlation for IQ (Loehlin & DeFries,

  
Page 675

1987). It was concluded that passive correlation may account for as much as 30% of the overall variance in IQ. However, none of the subsequent behavior­genetic 
studies have yet replicated this finding.

Genotype × Environment Interaction

Gene­environment interaction refers to conditions in which genetically influenced characteristics mediate individual responsiveness to the encountered environment. G 
× E refers to the genetic control of sensitivity to environmental differences (Neale & Cardon, 1992). For example, individuals who are genetically susceptible to a 
disease will be free of the condition as long as the environment does not contain the pathogen; resistant individuals, those who do not have the mutant gene, will be free 
of the disease even in a pathogenic environment. Thus, the appearance of the pathogen in the environment will have a very different impact on the phenotype of 
susceptible individuals as compared with resistant ones. In the context of our discussion, if it were found that genetic predispositions for higher levels of cognitive 
abilities were actualized to a greater extent in some environments than in others, this would be interpreted as genotype­environment interaction.

Although there are many examples of gene­environment interactions in biology and medicine (Rutter & Pickles, 1991), there has been little evidence of G × E 
interactions for variation in cognitive abilities within their normal range. For example, a recent publication from the Colorado Adoption Project, a large longitudinal 
study of adoptive families, reported the number of statistically significant interactions that was actually less than expected by chance (Plomin, DeFries, & Fulker, 
1988). There are three possible explanations for this observation. First, most designs have rather weak power for detecting interactions that may be small compared to 
the main effects of genes and environment (Wahlsten, 1990). Second, it might be the case that genotype­environment interactions for cognitive abilities, if they exist, 
are not linear and that they have localized effects. In other words, these interactions might be important at extremes, but not around the typical range of environment 
(Turkheimer & Gottesman, 1991). For example, genotype­environment interactions might be significant within the range of environments thought to impede intellectual 
development (e.g., undernutrition, poverty, abuse, and authoritarian patenting), but would be virtually undetectable in average

  
Page 676

nonproblematic families. Most behavior­genetic studies done to date involve middle­class families in which such disadvantaged environments are underrepresented. 
Third, our statistical apparatus may not be sufficiently developed to detect these interactions (Molenaar, Boomsma, & Dolan, in press).

Assortative Mating

Assortative mating refers to nonrandom pairing of mates based on factors other than biological relatedness. Assortative mating is mostly based on some aspects of 
phenotype and, correspondingly, influences both genetic and environmental factors. Thus, it may increase homozygosity in a population and affect the transmission, 
magnitude, correlation, and estimates of both genetic and environmental effects (e.g., Gilger, 1991; Rice, Carey, Fulker, & DeFries, 1989). Positive assortative mating 
has been demonstrated for a variety of physical, cultural, cognitive, educational, and personality traits and tends to be higher for age, education, ethnic background, 
and religion and somewhat lower, yet statistically significant, for general and specific cognitive abilities, personality traits, and physical attractiveness (Feng & Baker, 
1994; Gilger, 1991; Jensen, 1978; Vandenberg, 1972; Watkins & Meredith, 1981).

The tendency of people to marry others of similar levels of cognitive abilities has been long noticed. Generally, the correlations between spouses on measures of IQ 
are between .30 and .40 (Dixon & Johnson, 1980). This similarity does not necessarily mean that we intentionally look for partners whose scores on ability tests are 
similar to ours. Instead, this similarity is derivative of a number of other factors. We tend to marry people of a similar level of educational and socioeconomic status as 
we are. Moreover, there are correlations between our abilities and both education and economic status (e.g., whether one graduates from college influences the 
probability than one will marry a college graduate). Thus, it is not difficult to see why spouses resemble each other in ability level. But no matter what the mechanism of 
assortative mating is, the outcome is that people tend to marry people similar to themselves in ability level. As a result, any given offspring is likely to receive from his 
other parents genes that are similar. In addition, it may be that assortative mating is stronger at both the higher and lower ends of the IQ range. In other words, 
correlations between spouses at the higher and lower tails of the IQ distribution are stronger than correlations between spouses of

  
Page 677

an average level of intelligence. Assuming that intelligence is influenced by genes, such "doubling" of genes increases the proportion of persons who are quite high or 
quite low, relative to a population mean. Higher assortative mating coefficients at the tails of the distribution might lead to an underestimation of heritability (Simonoff, 
McGuffin, & Gottesman, 1994).

In the preceding sections I introduced the concept of individual differences; translated this concept into the behavior­genetic concept of phenotype; showed how 
phenotypic variation on a trait In a population could be described in terms of genetic, environmental, and interactive factors; and described all of these factors. In the 
next section, I would like to familiarize the reader with two other important concepts: heritability and environmentality.

Major Concepts Utilized in Behavior­Genetic Research

The concepts of heritability and environmentality (Plomin, DeFries, & McClearn, 1990) are used in behavior­genetic studies to quantify the relative contribution of 
genes and environment to the observed variation on a studied trait in a given population. In other words, heritability and environmentality are the respective measures 
of G and E.

What Heritability and Environmentality Are ...

Heritability

The concept of heritability (h2), or the proportion of trait variance (phenotypic variance) due to genetic factors, is used to quantify the genetic contribution. In terms 
of the components of the phenotypic variance,

heritability (h2) = VG/VP,

where VG represents the sum of additive and nonadditive genetic influences.

Environmentality

Environmentality (e2) is defined as the aggregate estimate of the proportion of environmental variance in the phenotype (or 1 ­ h2). In terms of the components of the 
phenotypic variance,

environmentality (e2) = VE/VP,

  
Page 678

where VE represents the sum of shared and nonshared environmental influences.

... And What They Are Not

Both the heritability and environmentatity statistics have a number of frequently misunderstood properties (Plomin et al., 1990; Sternberg & Grigorenko, 1997). In 
considering the value of these statistics, it is important to remember the following five points.

Heritability and Environmentality Are Estimated Variance Components, Not Measured Effects

Neither heritability nor environmentality estimates point to measurable genetic or environmental effects. In other words, h2 does not translate into an understanding of 
the biological mechanisms underlying it; getting a global estimate of the genotypic effect that is reflected by h2 does not bring us to the discovery of the biological 
mechanisms behind intellectual development. The same is true for e2: the estimate of environmentality has yet to be linked to measured characteristics of the 
environment that can explain the observed variation in cognition.

Heritability and Environmentality Are Not Constants, and Their Estimates Are Not Precise

Both heritability and environmentality refer to a particular phenotype measured in a given population at a given time. These estimates may vary from population to 
population and from time to time. Both h2 and e2 values vary across age: h2 generally increases with age, whereas e2 declines with age, changes that reflect both 
changes in the age­specific breakdown of genetic and environmental influences on the trait and changes in age­to­age genetic effects. Both h2 and e2 are estimated with 
a certain degree of precision involving a range of error that is a function of both sample size and type of relatives from which the estimate is obtained.

Heritability and Environmentality Apply to a Population, Not to One Individual

These concepts apply to populations, not individuals; hence, they do not say anything regarding the strength of either genetic or environmental effects on an individual's 
intellectual functioning. If we state

  
Page 679

that IQ has a heritability of .50, that means that 50% of the variation in IQ observed in a given population at this time of the population's history is accounted for by 
genetic differences among the population's members. It does not mean that an individual whose IQ is 110 got 55 IQ points as a result of his or her genes and the other 
55 as a result of the influences of his or her environment. However, if an individual from this population were about 20 IQ points smarter than average, one could 
estimate (roughly) that about 50% of this deviation is explainable by genetic effects and the other 50% are due to the influence of the environment.

Heritability and Environmentality Do Not Say Much about Means

It is important to realize that almost every result and conclusion obtained in the field of behavior­genetic research relates to the causes of human differences and does 
not deal with the processes that account for the development of the typical expression of a trait in a particular population. The field is concerned with what makes 
people vary around the mean of the group, population, race, or species from which they are sampled, not with what makes people score at a given level.

Suppose, for example, it is found that differences in the ability to write poetry have a significant component only of genetic (and not environmental) variation among 
citizens of the country Ursulandia. What would this finding tell us about the role of Ursulu culture in determining this ability? This finding could suggest two different 
meanings. It might mean that the culture is uniform for everyone (i.e., poetry education is either compulsory and equal for everybody or absent for all), so only genetic 
effects can account for variability in the ability to write poetry. Or it might mean that cultural changes are adopted by everyone so rapidly that environmental effects are 
not apparent. For example, let us assume that Ursulandia has undergone a war resulting in the simultaneous worsening of the living standards of most of the population; 
the rapid nature of this change might result in a leveling of the profile of various environments. Perhaps instead of teaching how to write poetry, schools, due to societal 
hardship, a lack of financial support, and a shortage of teachers, might be forced to concentrate on teaching grammar. In other words, differential levels of poetry 
education as a source of environmental variability in the ability to write poetry would be absent.

  
Page 680

Taking into account this example, it is important to understand the incorrectness of such statements as "The ability to write poetry is genetic," because the precise 
correct statement based on behavior­genetic analysis would instead be "Individual differences in the ability to write poetry are mainly genetic." It is crucial to be aware 
of which conclusions are justified and which are not, on the basis of behavior­genetic data.

Heritability and Environmentality Do Not Refer to Modification and Intervention

In early behavior­genetic work, it was assumed that the degree to which a studied trait is inherited carried important implications for the quantification of any 
environmental intervention (Jensen, 1969). Today, it is, recognized that this assumption is wrong. First, intervention influences the mean of the studied phenotypic 
variable and can raise the mean and the scores going into it. The mechanism controlling the appearance of individual differences for a given trait might not be altered, 
however. Second, the causes of variation derived from behavior­genetic studies relate to a particular population of individuals at a given time. Results of these studies 
might change as a result of the influence of factors altering the gene frequencies in the population, the expression of genes in the population, or frequencies and 
structures of different environments.

This logic can be easily illustrated by an example from the evolutionary history of the human species. In a given population, gene frequencies have been altered multiple 
times due to rapid decreases in the size of a population due to wars, hunger, or epidemics. The relocation of a population or rapid changes in climate resulted in 
changed expression of genes. Cultural developments led to better schooling, reflecting a structural environmental change, which gradually became accessible to the 
majority of populations, reflecting a change in the frequency of schooling. Third, even when it is shown that genetic effects are important, the possibility of the existence 
of a rare crucial environmental factor cannot be entirely excluded. An example of such factor is a brain injury that could result in severe mental retardation in an 
individual with normal genetic endowment for intelligence. Similarly, a rare gene of major effect may hold the key to understanding cognitive development. Due to its 
rarity, this gene might account only for a relatively small amount of the total variation in cogni­

  
Page 681

tion, but, when present in an individual, might completely determine the course of cognitive development.

Now, with the measurements of the relative contributions of genes and environment to the phenotypic variation in a given population defined, I would like to review the 
current state of knowledge regarding the heritability and environmentality of cognitive functions.

What Do We Know about Causes of Variation in Various Cognitive Abilities?

So far in this chapter most of the examples have pertained to general cognitive ability as measured by IQ. There is certainly more to cognitive functioning than the IQ 
score alone. Regardless of significant correlations between most specific cognitive abilities, the correlations between them are certainly different enough to generate a 
more detailed analysis of cognitive functioning than is permitted by IQ alone. Even though the number of studies of heritability of IQ is magnitudes larger, there have 
been a few studies of heritabilities of specific cognitive abilities. In the following section I will provide a brief overview of the behavior­genetic findings regarding 
heritabilities (and indirectly environmentalities) of (a) general cognitive ability and (b) specific cognitive abilities.

What Have We Learned about Heritability of General Cognitive Ability (IQ)?

The heritability and environmentality estimates of IQ have been obtained by comparing the degree of resemblance of different types of relatives. Three main 
methodological approaches—family, twin, and adoption/separation methods—are utilized in behavior­genetic research. I will now summarize the results obtained 
within each of these methods.

Family Studies

Since the late 1920s, when the first studies regarding familial resemblance for IQ were conducted, dozens of studies have been published (for a review, see Bouchard 
& McGue, 1981). There is a consensus that the data can be divided into two parts, the so­called old (conducted prior to 1980) and new (conducted after 1980) 
studies. The older studies had relatively small samples, were less sophisticated methodologically, and

  
Page 682

provided rather high estimates of heritability (with a median correlation of about .42). The newer studies are characterized by larger sample sizes and more 
sophisticated methodology. The correlations obtained in these studies tend to be lower (e.g., r = .26; DeFries, Corey, Johnson, Vandenberg, & Wilson, 1982).

Three explanations of these differences have been suggested. First, the failure of the old data to match the new data may be attributable to environmental and genetic 
changes in the studied populations that occurred in the time frame between the new and the old studies. This explanation seems plausible for environmental effects (life 
has changed dramatically since the 1930s), but unlikely for genetic components. Second, there may be restriction of range in the new data (Caruso, 1983). The newer 
data were collected primarily from middle­class white families, which offer somewhat less variation in IQ than is observed in a normal population and limit the current 
findings to a group with above­average IQ. The third, most plausible, explanation highlights the role of methodological differences between the old and new studies. 
The methodological procedures in the newer studies are more standardized. Moreover, whereas the older studies were extended for a longer period of time, the 
newer studies have involved tests administered to many families at the same time in the same testing facilities.

Twin Studies

The first behavioral­genetic twin study focusing on IQ was conducted by Merriman (1924). Since then, many thousands of twins around the world have served as 
recruits in studies of general and specific cognitive abilities. Meta­analyses of these data (Bouchard & McGue, 1981; Loehlin & Nichols, 1976) suggest a heritability 
of about .50 for general cognitive ability. These estimates are not corrected for the effects of either assortative mating or nonadditive genetic variance, but such 
adjustments are not expected to change this estimate dramatically.

A detailed review of the twin studies of cognitive abilities is beyond the scope of this chapter. However, a number of them have addressed specific issues that are of 
interest to our broad discussion. For example, cohort changes in heritability of IQ were investigated in a large Norwegian study of approximately 2000 twin pairs born 
from 1930 through 1960 (Sundet, Tambs, Magnus, & Berg, 1988). The question was

  
Page 683

whether the implementation of the more egalitarian social and educational policies that took place in Norway after World War II influenced the degree of resemblance 
between MZ and DZ twins. No clear changes were observed: the correlations for MZ and DZ twins born from 1931 to 1935 were .84 and .51, respectively; after the 
war, the correlations were .83 and .51. This study is an illustration of the point made earlier—global societal changes tend to influence the mean of the trait rather than 
the mechanism explaining individual differences.

Another important finding resulted from a study of 300 pairs of same­sex twins and 100 nontwin siblings evenly distributed by gender and ages (from 7 to 12). The 
pairs were oversampled at the low and high ends of the IQ distribution (Detterman, Thompson, & Plomin, 1990; Thompson, Detterman, & Plomin, 1993). This study 
indicated, among other findings, that heritability of IQ appears to be different for both high­ and low­ability subjects in comparison to each other suggesting that 
different genetic mechanisms might be involved in the manifestation of individual differences in IQ at different ends of the IQ distribution.

Adoption/Separation Studies

Most adoption studies, like family and twin studies, have also investigated the heritability of IQ. The range of obtained estimates of correlations between biological 
relatives, though broad (from .22 to .72), results in a mean heritability score of about .50, meaning that genetic differences among individuals account for about half of 
the differences in their performance on IQ tests.

Some interesting findings regarding the links between IQ and environmental influences were obtained by French researchers. They found that the mean IQ of adoptees 
reared by parents of high SES was higher than that of children adopted by low­SES parents (Capron & Duyme, 1989). Moreover, children whose biological parents 
were of high SES scored higher than children of parents of low SES, and school failures of adoptive children were associated with the SES of the adoptive rather than 
of the biological parents (Duyme, 1988). Thus, the results of the French studies point to the importance of shared environment in IQ variation. Speculating about these 
and other similar findings, Loehlin (1989) suggested that significant increases in average IQ might occur as a result of radical environmental change due to adoption. 
However, individual differences

  
Page 684

remain large and they appear to be mostly genetic in origin. Moreover, a recent review of adoption studies (Locurto, 1990) concludes that they provide modest 
evidence, at best, for environmental effects on cognitive abilities.

Summary Comments

Four comments should be made regarding the findings resulting from the studies of heritability of general cognitive ability. First, numerous family, twin, and adoption 
studies have been combined into global analyses using a model­fitting approach (Chipuer, Rovine, & Plomin, 1990; Loehlin, 1989). This approach allows one to 
analyze simultaneously the data collected in different studies and to obtain more elaborate and precise estimates of genetic and environmental contributions than is 
possible by comparing simple correlations. The outcome of these analyses places the estimate of heritability of intelligence at 50% to 51% (Plomin & Neiderhiser, 
1991), placing it midway between .1 and .9 and indicating approximately equal effects from both genetic and nongenetic influences.

Second, heritability estimates vary depending on the method by which they were obtained. In detail, h2 appears to be higher when obtained by comparing the 
resemblance between individuals reared apart than when obtained by comparing the similarity between individuals reared together.

Third, along with showing the importance of additive genetic components arising from summative main effects of a number of genes, researchers (Chipuer et al., 1990) 
demonstrated the contribution of nonadditive genetic effects, pointing to the importance of gene­gene interaction (i.e., dominance and epistasis).

Finally, behavior­genetic studies of intelligence revealed a number of findings regarding environmental influences. Thus, it has been found that shared and nonshared 
environmental influences account for approximately the same amount of variance (10%–30%), with the percentage of shared environment contribution being higher for 
closer relatives (35% for twins, 22% for siblings, and 11% for cousins) and, symmetrically, the percentage of nonshared environment contribution being higher for 
more distant relatives (38% for cousins, 27% for siblings, and 14% for twins).

  
Page 685

These conclusions have been challenged, however, by both those who question the underlying theory and those who question the nature of the data. Theoretical 
challenges of the global heritability estimates come from (a) those who deny the importance of genetic effects (Schiff & Lewontin, 1986), (b) those who suggest that 
the magnitude of environmental effects are almost negligible within the normal range of environments (Rowe, 1994; Scarr, 1992, 1997), and (c) those who question 
the generalizability of these findings (Waldman, 1997).

Researchers who deny the importance of genetic effects point to various inconsistencies in the evidence accumulated from different studies. Supporters of heritability 
studies counter that when considered as a whole, the evidence is unequivocal in pointing to a substantial genetic effect (Plomin & Neiderhiser, 1991; Rutter & Madge, 
1976). Though individual studies are often controversial, and the range of heritability estimates is between .1 (Matheny, Wilson, Dolan, & Krantz, 1981) and .9 
(Iskol'dsky, 1988), if one ''mixes" them together and estimates the heritability based on weighted correlations, the estimate comes out to be around .5.

Those researchers who doubt the importance of environmental effects point to the following two lines of reasoning. First, they refer to the failure to account for the 
50% of nongenetic effects when the estimated environmental variance is partially substituted by measured environmental variables (Cherny, 1994). In other words, 
when researchers have tried to incorporate measured variables into their model, dividing VE into measured and nonmeasured components, the measured variables 
failed to account for any significant amount of variance in VE. Thus, even though we have an estimate of the nongenetic effect for IQ, we have no idea what concrete 
environmental forces are reflected in this estimate. The second point of argument is the "purity" of environmental measures. In detail, researchers have found that many 
environmental measures, ranging from SES to parenting styles, are still partially under genetic control and therefore not purely environmental (Plomin, 1994, 1995; 
Plomin & Bergeman, 1991; Posner, Baker, & Martin, 1994). In other words, many of those variables that were nominated as measures of shared environment appear 
to be, at least in part, influenced by genes, as when parents with genes for high intelligence are led by these genes to provide good environments for their children.

  
Page 686

A serious concern regarding the generalizability of findings on heritability of intelligence arises from the fact that most of the data have come from predominantly white, 
middle­class, North American and European populations. Therefore, the generalizability of these findings is quite limited. With the exception of only a few studies (e.g., 
Moore, 1986; Scarr & Weinberg, 1978; Scarr, Weinberg, & Waldman, 1993), other populations have not been studied. As has been pointed out earlier, heritability 
estimates are population specific, and extreme caution is necessary when extending the current knowledge to different populations. Moreover, the vast majority of the 
relative correlations were derived from samples of individuals between 9 and 20 years of age (Bouchard & McGue, 1981; McGue, Bouchard, Iacono, & Lykken, 
1994). Thus, it is unclear whether the obtained heritability estimate of 50% to 51% is applicable to individual variation in IQ at other stages of the life span.

What Have We Learned about Heritability of Specific Cognitive Abilities?

As much as behavior­genetic ideas influence psychology (Waldman, 1997), psychological theories penetrate the field of behavior genetics and influence the 
heritability­based studies. Even though g (general cognitive ability usually measured by IQ) remains the king or queen ruling the kingdom of h2 research, attempts have 
been made to introduce some other cognitive abilities into the kingdom. Although scant, some attention has been given to studying specific cognitive abilities. 
Researchers have focused on verbal and nonverbal abilities: Thurstone's factors (Thurstone, 1938; Thurstone & Thurstone, 1941) and Guilford's factors (Guilford, 
1967), respectively. The general conclusion today is an expected one—specific abilities are differentially heritable (Cardon & Fulker, 1994).

The first assessment of heritabilities of specific cognitive abilities was conducted by Vandenberg (1968a, 1968b). In his twin studies, Vandenberg obtained evidence 
for the genetic influence on some abilities (verbal, spatial, and language skills) but not on others (memory, numerical, and reasoning skills). This result has been 
interpreted as evidence that genetic factors play a more significant role in determining individual variation in some cognitive domains than in others. In an attempt to 
expand these findings, Vandenberg formulated a hypothesis that what is

  
Page 687

heritable in specific cognitive abilities is the variance that is accounted for by the g factor. In other words, he suggested the presence of a genetic g with environmental 
contributions determining specific h2 to e2 ratios of various cognitive abilities. A series of Vandenberg's studies was designed to verify this hypothesis. The results 
yielded evidence both for and against the hypothesis, indicating both a genetic endowment of the correlated components of cognitive abilities (Bock & Vandenberg, 
1968; Loehlin & Vandenberg, 1968) as well as unique genetic contributions to various abilities (Vandenberg, 1968a).

Unfortunately, subsequent studies have not clarified the picture. A number of twin studies (Eaves & Gale, 1974; Loehlin & Nichols, 1976; Martin & Eaves, 1977; 
Martin, Jardine, & Eaves, 1984; Plomin & DeFries, 1979), family studies (DeFries et al., 1979; Spuhler & Vandenberg, 1980), and adoption/separation studies 
(Horn, Loehlin, & Willerman, 1982; Plomin, 1988; Rice, Carey, Fulker, & DeFries, 1989) presented results suggesting the presence of genetic factors for some 
specific abilities (most consistently, verbal and/or spatial), but not for others. For example, Scarr and Weinberg (1978), in their adoption study, found significant 
correlations between biological relatives, whereas the correlations between adoptive parents and their adopted children on virtually all studied measures of specific 
cognitive abilities are mostly not statistically significant. The exception is vocabulary scores, which appear to be influenced by shared environment in addition to genes. 
In addition to the ongoing debate on which specific abilities are controlled by genes and which are not, little agreement is present on the magnitude of genetic influence.

Horn (1988) reported results from a behavior­genetic study of eight mental measures mapping Cattell's higher­order factors of fluid and crystallized abilities. (Fluid 
ability to grasp relationships in novel situations quickly and make correct deductions from them; fluid ability is considered to be relatively culture free. Crystallized 
ability is the ability to accommodate and assimilate cultural knowledge such as vocabulary, math operations, etc.; crystallized ability is culture and education 
dependent.) According to Cattell (1941), variability in fluid ability is due primarily to genes, whereas variability in crystallized ability is due primary to environmental 
factors. In contrast, Horn found that variation in both abilities is approximately 60% heritable, but the genetic variance shared between

  
Page 688

these abilities is only about 14%, suggesting that, most likely, the abilities are influenced by different sets of genes.

One of the largest studies of specific cognitive abilities, the Hawaii Family Study of Cognition (DeFries et al., 1979), demonstrated another controversy. Fifteen 
different cognitive tests were administered to over 6000 individuals. Factor analysis yielded four groups of factors: (1) verbal (vocabulary and fluency), (2) spatial 
(visualizing and rotating objects in space), (3) perceptual speed (simple arithmetic and number comparison), and (4) visual memory (short­and long­term recollection 
of line drawing). In addition to differences in heritabilities for the four factors, it was found that tests within each factor also demonstrated a wide range in familial 
resemblance. For example, one spatial test, requiring cutting a figure to yield a certain pattern, showed a heritability of about .60. On the contrary, another spatial test, 
involving drawing one line and connecting as many dots as possible, showed the lowest familial resemblance (about .27).

Based on the findings of the Hawaii study, in the Colorado Adoption Project (Plomin, DeFries, & Fulker, 1988), an ongoing study of specific cognitive abilities, 
researchers assessed four broad cognitive domains: verbal comprehension, spatial visualization, memory, and perceptual speed. The results (Cardon & Fulker, 1994) 
showed that, in part, these different abilities were influenced by the same genes, and, in part, by separate genes, acting independently from each other. Due to the 
longitudinal nature of their data, the researchers have demonstrated that the ability­specific genes are pervasive throughout young childhood. However, the presence of 
novel genetic influences was detected at year 7 of the study and have been shown to continue to influence variation in ability at year 9. The environmental analysis 
showed a large role of nonshared environmental factors, which were found to be important at each age and exhibited lasting effects over childhood. This finding has 
been interpreted as an indicator that childhood experiences may play an important role for a specific ability at the time of the occurrence, as well as perhaps having a 
generalized effect on all mental skills. According to these results, educational or childrearing changes that might influence verbal learning at a given age might also 
influence both verbal and performance abilities in later childhood.

  
Page 689

Another dimension of cognition that has been studied is creativity. Creativity demonstrates little genetic influence. A review of 10 studies of twins (Nichols, 1978) 
presented mean correlations of .61 for identical twins and .50 for fraternal twins. When controlled for IQ, twin correlations for creativity tests become indistinguishable 
(Canter, 1973). Thus, it appears that the heritability of creativity, estimated at 20%, is primarily due to existing correlations between creativity and IQ.

In summary, tests of some cognitive abilities, primarily verbal and spatial, demonstrate significant and often substantial genetic influence throughout the life span. On the 
contrary, it appears that memory abilities, perceptual speed, and creativity are influenced by heredity less (if at all). In concluding this discussion, I would like to make 
four comments. First, whereas the number of behavior­genetic studies of IQ is exceedingly high, there are only a handful of studies on specific cognitive abilities. These 
studies are characterized by heterogeneity of both underlying theoretical models (e.g., Cattell, 1971, versus Thurstone, 1938) and assessment instruments used. Thus, 
the observed controversial nature of findings might change when more data are accumulated. Second, a special concern is the diversity of phenotypic definitions 
utilized in these studies. For example, in studies of creativity, the indicators range from the measures obtained from the Torrance Test of Creative Thinking to raters' 
evaluations of creativity in the subjects' writings. When there is no agreement on the definition of the studied trait at the phenotypic level, it is unlikely that the results of 
heritability studies will arrive at a consensus. Third, lower heritability estimates, obtained for specific cognitive abilities, might reflect inadequate redistribution of the 
phenotypic variance due to considerably less reliable measures used for assessment of these abilities. For example, the fact that behavior­genetic studies of creativity 
utilize measures whose test­retest reliability is quite (often unacceptably) low might result in attenuation of the genetic factor estimates. Fourth, a distinct characteristic 
of specific abilities studies is the gap between the richness of psychological theories of cognition existing in modern cognitive psychology and their oversimplified 
applications in behavior­genetic studies. Thus, the findings might have been more homogeneous were the data obtained in correspondence with modern theories of 
cognitive abilities.

  
Page 690

Concluding Remarks

To understand why people vary in cognitive abilities, one must know what sources contribute to interindividual differences and what the magnitudes of these 
contributions are. Hence, the problem of heredity and environment and their co­contribution to variation in cognitive functioning has always attracted and will always 
attract the attention of many psychologists and cognitive scientists.

Many attempts have been made to understand and to theorize about the sources of individual differences in cognition. This chapter presented an overview of only one 
of those traditions striving to solve the puzzle of individual differences in cognition: the behavior­genetic approach. According to this approach, the phenomenon of 
individual differences on a studied ability might be translated into the phenotypic variance that can be decomposed into genetic, environmental, and interactive 
components. These components can be estimated by means of comparing relatives of various degrees. When phenotype is measured in relatives, those who are more 
closely related genetically are expected to be more similar on the studied ability than those who are genetically more distant.

Behavior­genetic studies of cognitive functioning have investigated both general and specific cognitive abilities. Almost 50 years of intensive research of general 
cognitive ability (IQ) have revealed a robust estimate of its heritability. It appears that about 50% in interindividual variation on IQ can be explained by genetic 
influences. Another 50% of the variation is accounted for by environmental factors. Today researchers try to extend their findings beyond the estimates of heritability 
and environmentality to find specific genes and specific measurable environmental factors that contribute to these estimates.

The field of studying specific cognitive abilities, however, is significantly less explored. Not enough work has been done to warrant firm conclusions concerning the 
relative contributions of genes and environment to phenotypic variance for specific cognitive abilities. As of today, it appears that variation in verbal and spatial abilities 
might be under genetic control; however, the significance of nonshared environmental influences also appears to be crucial. Much as with IQ research, even though it 
has been suggested that the environment plays a significant role

  
Page 691

in such specific cognitive abilities as perceptual speed and memory, specific environmental components that influence this variation have not yet been identified.

Recent behavior­genetic studies apply sophisticated methodologies in order to go beyond initial heritability and environmentality estimates and to (a) sharpen the 
existing estimates by minimizing the measurement error, (b) explore sex­specific differences in the ways genes and the environment operate, (c) detect both genetic and 
environmental influences that will "fit" in the estimated portion of variance, and (d) explore the role of both genotype­environment correlations and interactions. Fifty 
years of behavior­genetic studies of cognitive functions have brought us to believe that genes are important virtually for every measured cognitive ability. And, when 
genes are secondary, the leading role belongs to environment. We know that both genes and environments are responsible for individual differences. The next task is 
to address the questions of which (which genes and which environments) and how (what biological and social­cultural pathways determine mechanisms of cognitive 
development). Both are exciting tasks that will be in the center of behavior­genetic research for the next decade or more.

Note

1. For details, see Plomin, DeFries, & McClearn, 1990.

References

Bock, R. D., & Vandenberg, S. G. (1968) Components of heritable variation in mental test scores. In S. G. Vandenberg (Ed.), Progress in human behavior 
genetics (pp. 233–260). Baltimore: Johns Hopkins University Press.

Bouchard, T. J., Jr., & McGue, M. (1981). Familial studies of intelligence: A review. Science, 250, 223–238.

Capron, C., & Duyme, M. (1989). Assessment of effects of socio­economic status on IQ in a full cross­fostering study. Nature, 340, 552–554.

Cardon, L. R., & Fulker, D. W. (1994). Genetics of specific cognitive abilities. In R. Plomin & G. E. McClearn (Eds.), Nature and nurture and psychology (pp. 
99–120). Washington, DC: American Psychological Association.

Caruso, D. R. (1983). Sample differences in genetics and intelligence data: Sibling and parent­offspring studies. Behavior Genetics, 13, 453–458.

  
Page 692

Canter, S. (1973). Personality traits in twins. In G. Claridge, S. Canter, & W. I. Hume (Eds.), Personality differences and biological variation (pp. 21–51). New 
York: Pergamon Press.

Cattell, R. B. (1941). Some theoretical issues in adult intelligence testing. Psychological Bulletin, 38, 562.

Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton­Miffin.

Cherny, S. (1994). Home environmental influences on general cognitive ability. In J. C. DeFries, R. Plomin, & D. W. Fulker (Eds.), Nature and nurture during 
middle childhood (pp. 262–280). Cambridge, MA: Basil Blackwell.

Chipuer, H. M., Rovine, M., & Plomin, R. (1990). LISREL modeling: Genetic and environmental influences on IQ revisited. Intelligence, 14, 11–29.

DeFries, J. C., Corey, R. P., Johnson, R. C., Vandenberg, S. C., & Wilson, J. R. (1982). Sex­by­generation and ethnic group­by­generation interactions in the 
Hawaii, Family Study of Cognition. Behavior Genetics, 12, 223–230.

DeFries, J. C., Johnson, R. C., Kuse, A. P., McClearn, G. E., Polovina, J., Vandenberg, S. G., & Wilson, J. R. (1979). Familial resemblance for specific cognitive 
abilities. Behavior Genetics, 9, 23–43.

Detterman, D. K., Thompson, L. A., & Plomin, R. (1990). Differences in heritability across groups differing in ability. Behavior Genetics, 20, 369–384.

Dixon, L. K., & Johnson, R. C. (1980). The roots of individuality: A survey of human behavior genetics. Monterey, CA: Brooks/Cole Publishing Company.

Duyme, M. (1988). School success and social class: An adoption study. Developmental Psychology, 24, 203–209.

Eaves, L. J., & Gale, J. S. (1974). A method for analyzing the genetic basis of covariation. Behavior Genetics, 4, 253–267.

Feng, D., & Baker, L. (1994). Spouse similarity in attitudes, personality, and psychological well­being. Behavior Genetics, 24, 357–364.

Gilger, J. W. (1991). Differential assortative mating found for academic and demographic variables as a function of time of assessment. Behavior Genetics, 21, 131–
150.

Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw­Hill.

Horn, J. M. (1988). Thinking about human abilities. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate psychology (pp. 645–685). New York: 
Academic Press.

Horn, J. M., Loehlin, J. C., & Willerman, L. (1982). Aspects of the inheritance of intellectual abilities. Behavior Genetics, 12, 479–516.

Iskol'dsky, N. V. (1988). Vliyanie social'no­psikhologicheskikh factorov na individual'nye osobennosti bliznetsov i ikh vnutriparnoe skhodstvo po 
psikhologicheskim parametram [The role of social­psychological factors in individual and

  
Page 693

dyadic twin development]. Unpublished doctoral dissertation. Psychological Institute of the Russian Academy of Education, Moscow.

Jensen, A. R. (1969). How much can we boost IQ and scholastic achievement? Harvard Educational Review, 39, 1–123.

Jensen, A. R. (1978). Genetic and behavioral effects of nonrandom mating. In R. T. Osborne, C. E. Nobble, & N. Weyl (Eds.), Human variation: The 
biopsychology of age, race, and sex (pp. 51–105) New York: Academic Press.

Kimble, G. E. (1994). Evolution of the nature­nurture issue in the history of psychology. In R. Plomin & G. E. McClearn (Eds.), Nature, nurture and psychology 
(pp. 3–26). Washington, DC: American Psychological Association.

Locurto, C. (1990). The malleability of IQ as judged from adoption studies. Intelligence, 14, 275–292.

Loehlin, J. C. (1989). Partitioning environmental and genetic contributions to behavioral development. American Psychologist, 44, 1295–1292.

Loehlin, J. C., & DeFries, J. C. (1987). Genotype­environment correlation and IQ. Behavior Genetics, 17, 263–277.

Loehlin, J. C., & Nichols, R. C. (1976). Heredity, environment, and personality. Austin: University of Texas Press.

Loehlin, J. C., & Vandenberg, S. G. (1968). Genetic and environmental components in the covariation of cognitive abilities: An additive model. In S. G. Vandenberg 
(Ed.), Progress in human behavior genetics (pp. 261–285). Baltimore: Johns Hopkins University Press.

Martin, N. G., & Eaves, L. J. (1977). The genetical analysis of covariance structure. Heredity, 38, 79–95.

Martin, N. G., Jardine, R., & Eaves, L. J. (1984). Is there only one set of genes for different abilities? A reanalysis of the National Merit Scholarship Qualifying Test 
(NMSQT) data. Behavior Genetics, 14, 355–370.

Matheny, A. P., Wilson, R. S., Dolan, A. B., & Krantz, J. Z. (1981). Behavioral contrasts in twinship: Stability patterns of differences in childhood. Child 
Development, 52, 579–588.

McGue, M., Bouchard, T. J., Iacono, W. G., & Lykken, D. T. (1994). Behavioral genetics of cognitive ability: A life­span perspective. In R. Plomin & G. E. 
McClearn (Eds.), Nature and nurture and psychology (pp. 59–76). Washington, DC: American Psychological Association.

Merriman, C. (1924). The intellectual resemblance of twins. Psychological Monographs, 33, 1–58.

Molenaar, P. C. M., Boomsma, D. I., & Dolan, C. V. (in press). The detection of genotype­environment interaction in longitudinal genetic models. In M. C. LaBuda 
& E. L. Grigorenko (Eds.) On the way to individuality: Current methodological issues in behavior genetics. Commack, NY: Nova Sciences.

Moore, E. G. J. (1986). Family socialization and the IQ test performance of traditionally and transracially adopted black children. Developmental Psychology, 22, 
317–326.

  
Page 694

Neale, M. C., & Cardon, L. R. (Eds.) (1992). Methodology for genetic studies of twins and families. Dordrecht, Netherlands: Kluwer Academic Press.

Nichols, R. C. (1978). Twin studies of ability, personality, and interests. Homo, 29, 158–173.

Plomin, R. (1988). The nature and nurture of cognitive abilities. In R. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 4). Hillsdale, NJ: 
Erlbaum.

Plomin, R. (1994). Genetics and experience: The developmental interplay between nature and nurture. Newbury Park, CA: Sage.

Plomin, R. (1995). Genetics and children's experiences in the family. Journal of Child Psychology and Psychiatry, 36, 33–68.

Plomin, R., & Bergeman, C. S. (1991). The nature of nurture: Genetic influence on "evironmental" measures. Behavioral and Brain Sciences, 14, 373–386.

Plomin, R., & DeFries, J. C. (1979). Multivariate behavioural genetic analysis of twin data on scholastic abilities. Behavior Genetics, 9, 505–517.

Plomin, R., DeFries, J. C., & Fulker, D. W. (1988). Nature and nurture during infancy and early childhood. Cambridge, England: Cambridge University Press.

Plomin, R., DeFrties, J. C., & Loehlin, J. C. (1977). Genotype­environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84, 
309–322.

Plomin, R., DeFries, J. C., & McClearn, G. E. (1990). Behavioral genetics: A primer. New York: W. H. Freeman.

Plomin, R., & Neiderhiser, J. M. (1991). Quantitative genetics, molecular genetics, and intelligence. Intelligence, 15, 369–387.

Posner, S., Baker, L. A., & Martin, N. G. (1994). Genetics of social class in Australian twins. Behavior Genetics, 24, 525.

Rice, T., Carey, G., Fulker, D. W., & DeFries, J. C. (1989). Multivariate path analysis of specific cognitive abilities in the Colorado Adoption Project: Conditional 
path model for assortative mating. Behavior Genetics, 19, 195–208.

Rowe, D. C. (1994). The limits of family influence: Genes, experience, and behavior. New York: Guilford.

Rutter, M., & Madge, N. (1976). Cycles of disadvantage. London: Heinemann Educational Books.

Rutter, M., & Pickles, A. (1991). Person­environment interaction: Concepts, mechanisms, and implications for data analysis. In T. D. Wachs & R. Plomin (Eds.) 
Conceptualization and measurement of organism­environment interaction (pp. 105–141). Washington, DC: American Psychological Association.

Rutter, M., & Quinton, D. (1984). Parental psychiatric disorder: Effects on children. Psychological Medicine, 14, 853–880.

Scarr, S. (1992). Developmental theories for the 1990s: Development and individual differences. Child Development, 54, 424–435.

  
Page 695

Scarr, S. (1997). Behavior­genetic and socialization theories of intelligence: Truce and reconciliation. In R. J. Sternberg & E. L. Grigorenko (Eds.), Intelligence, 
heredity, and environment (pp. 3–41). New York: Cambridge University Press.

Scarr, S., & McCartney, K. (1983). How people create their own environments: A theory of genotype­environment effects. Child Development, 54, 424–435.

Scarr, S., & Weinberg, R. (1978). The influence of family background on intellectual attainment. American Sociological Review, 43, 674–692.

Scarr, S., Weinberg, R, & Waldman, I. (1993). IQ correlations in transracial adoptive families. Intelligence, 17, 545–555.

Schiff, M., & Lewontin, R. (1986). Education and class: The irrelevance of IQ genetic studies. Oxford, England: Clarendon.

Simonoff, E., McGuffin, P., & Gottesman, I. I. (1994). Genetic influences on normal and abnormal development. In M. Rutter, E. A. Taylor, & L. Hersov (Eds.) 
Child and adolescent psychiatry: Modern approaches. (pp. 129–151). Oxford, England: Blackwell Scientific Publication.

Spuhler, K. P., & Vandenberg, S. G. (1980). Comparison of parent­offspring resemblance for specific cognitive abilities. Behavior Genetics, 10, 413–418.

Sternberg, R. J., & Grigorenko, E. L. (1998). Interventions for cognitive development in children 0–3 year old. In M. E. Young (Ed.), Early child development: 
Investing in our children's future (pp. 127–156). Amsterdam: Elsevier.

Sundet, J. M. Tambs, K., Magnus, P., Berg, K. (1988). On the question of secular trends in the heritability of intelligence test scores: A study of Norwegian twins. 
Intelligence, 12, 47–59.

Thompson, L. A., Detterman, D. K., & Plomin, R. (1993). Differences in heritability across groups differing in ability, revisited. Behavior Genetics, 23, 331–336.

Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago.

Thurstone, L. L., & Thurstone, T. D. (1941). Factorial studies of intelligence. Psychometric Monographs (2).

Turkheimer, E., & Gottesman, I. I. (1991). Individual differences and the canalization of human behavior. Developmental Psychology, 27, 18–22.

Vandenberg, S. G. (1968a). The nature and nurture of intelligence. In D. C. Glass (Ed.), Genetics (pp. 3–58). New York: Rockefeller University Press.

Vandenberg, S. G. (1968b). Primary mental abilities or general intelligence? Evidence from twin studies. In J. M. Thoday & A. S. Parke (Eds.), Genetic and 
environmental influences on behavior (pp. 146–160). New York: Plenum.

Vandenberg, S. G. (1972). Assortative mating, or who marries whom? Behavior Genetics, 2, 127–157.

Wahlsten, D. (1990). Insensitivity of the analysis of variance to heredity­environment interaction. Behavioral and Brain Sciences, 13, 109–161.

  
Page 696

Waldman, I. (1997). Unresolved questions and future directions in behavior­genetic studies of intelligence. In R. J. Sternberg & E. L. Grigorenko (Eds.), Intelligence, 
heredity, and environment (pp. 552–570). New York: Cambridge University Press.

Watkins, M. P., & Meredith, W. (1981). Spouse similarity in newlyweds with respect to specific cognitive abilities, socioeconomic status, and education. Behavior 
Genetics, 11, 1–21.

  
Page 697

CONTRIBUTORS
Rhianon Allen
Department of Psychology
Long Island University
Brooklyn, New York

Axel Buchner
Department of Psychology
University of Trier
Trier, Germany

Patricia A. Carpenter
Professor of Psychology
Carnegie Mellon University
Pittsburgh, Pennsylvania

Stephen J. Ceci
Department of Psychology
Cornell University
Ithaca, New York

Michael Cole
Department of Psychology
University of California
La Jolla, California

Eduardus DeBruyn
Department of Human Development
Cornell University
Ithaca, New York

Randall W. Engle
Professor and Chair
School of Psychology
Georgia Institute of Technology
Atlanta, Georgia

Peter Frensch
Department of Psychology
University of Missouri
Columbia, Missouri

Elena L. Grigorenko
Department of Psychology
Yale University
New Haven, Connecticut

Earl Hunt
Department of Psychology
University of Washington
Seattle, Washington

P. N. Johnson­Laird 
Department of Psychology
Princeton University
Princeton, New Jersey

Marcel Adam Just
Carnegie Mellon University
Pittsburgh, Pennsylvania

Michael J. Kahana
Assistant Professor
Center for Complex Systems
Brandeis University
Waltham, Massachusetts

John F. Kihlstrom
Department of Psychology
University of California, Berkeley
Berkeley, California

  
Page 698

Geoffrey Loftus
Center for Complex Systems
Brandeis University
Waltham, Massachusetts

Valerie S. Makin
Beckman Institute
University of Illinois at Urbana­
Champaign
Urbana, Illinois

Timothy P. McNamara
Department of Psychology
Vanderbilt University
Nashville, Tennessee

Thomas O. Nelson
Department of Psychology
University of Maryland
College Park, Maryland

Raymond S. Nickerson
Tufts University
Medfield, Massachusetts

Natalie Oransky
Department of Psychology
Appalachian State University
Boone, North Carolina

Elizabeth Phelps
Department of Psychology
Yale University
New Haven, Connecticut

Dennis R. Proffitt
Department of Psychology
University of Virginia
Charlottesville, Virginia

Arthur S. Reber
Department of Psychology
CUNY
Brooklyn College
Brooklyn, New York

Paul J. Reber
Department of Psychiatry
Veterans Affairs Medical Center
University of California at San Diego
San Diego, California

Daniel N. Robinson
Department of Psychology
Georgetown University
Washington, DC

Tina B. Rosenblum
Department of Human Development
Cornell University
Ithaca, New York

Brian H. Ross
Department of Psychology
University of Illinois at Urbana­
Champaign
Urbana, Illinois

Steven A. Sloman
Department of Linguistic
and Cognitive Sciences
Brown University
Providence, Rhode Island

Robert J. Sternberg
Department of Psychology
Yale University
New Haven, Connecticut

  
Page 699

AUTHOR INDEX

A
Abelson, R. P., 233

Abrahamsen, A., 257

Abrams, M., 494

Ajjanagadde, V., 257

Allen, J., 252

Allen, R., 492

Allen, S. W., 231, 233

Allison, T., 308, 315

Alpert, N. M., 129­130, 483

Altarriba, J., 121

Altmann, G. T. M., 491, 501

Amaral, D. G., 482

Ames, A., Jr., 451­452, 463­464

Amorim, M., 496

Anderson, J. A., 224

Anderson, J. R., 116­119, 121, 125­126, 132, 137, 157­158, 161, 176, 181, 194, 220, 222­223, 228, 273­275, 295, 324, 344, 365, 368, 502, 531, 533­534, 
536

Anderson, S. W., 298

Angell, J. R., 66­68

Appel, 287

APS Observer, 439­440

Aquinas, Thomas, 58­59

Arbuckle, T. Y., 329, 630

Archimedes, 411

Aristotle, 12, 51­56, 60, 69, 82­85, 460

Arkes, H. R., 565, 572

Aronson, 398­399

Ashby, F. G., 344, 347, 366

Aslin, R. N., 157

Atkinson, R. C., 174, 373, 516­517, 520, 524, 526

Augustine of Hippo, 57­58

Austin, G. A., 228

B
Baars, B. J., 3

Bacon, F., 60­61, 80, 87

Baddeley, A., 390

Baddeley, A. D., 323, 342, 516, 520­522, 526­531, 528­530, 532­534, 540­542

Baillargeon, R., 161

Baker, L., 676

Baker, L. A., 685

Baker­Sennett, G., 385­388, 393­394

Balakrishan, J. D., 344

Ball, T. M., 122, 128­129

Ballas, J. A., 491

Balthazard, C. G., 192

Banaji, M. R., 179, 391

Bar­Hillel, M., 569

Bara, B., 603

Barclay, J. R., 119

Bardone, A. M., 496

Bargh, J. A., 179

Barnden, J. A., 577

Barnhardt, T. M., 182­183, 189

Baron, J., 150, 572

Barraclough, M., 190

Barres, P. E., 616

  
Page 700

Barsalou, L. W., 207, 227

Bartlett, F., 418

Bartlett, F. C., 388, 390­391

Barwise, J., 620

Basseches, M. A., 65

Bastedo, J., 142

Batchelder, W. H., 327, 632

Bauer, P. J., 480

Bauer, R. H., 636

Bayen, U., 632

Beauchamp, T., 99

Bechtel, W., 257

Behr, S. E., 190

Beilin, H., 161

Bekker, J. A. M., 352­353

Belgar, A., 315

Bell, B. G., 331­332

Bell, E. T., 410, 412­413

Bell, V. A., 616

Belliveau, J. W., 309

Bellman, B. L., 657­658, 660

Bellugi, U., 226

Benson, D. F., 298

Benton, A. L., 535, 543­544

Benton, S. L., 535

Berg, K., 682

Bergeman, C. S., 685

Bergson, H., 181

Berhaut, J. C., 142

Berkeley, G., 80, 89­90, 98, 137

Berkowitz, L., 179

Berliner, H., 151, 248

Berry, D. C., 476, 486, 493

Beth, E. W., 589­590

Bettman, J. R., 572

Bever, T. G., 257

Beyth­Marom, R., 572

Bhalla, M., 468

Bianchi, L., 544

Biederman, I., 188

Binet, A., 417, 653­658, 661­663

Bjork, R. A., 181, 523, 630

Black, J. B., 233

Blamire, A. M., 310

Blanchard­Fields, F., 476, 488, 491

Blessing, S. B., 234

Blondlot, 435­436

Boas, F., 648­651, 663

Bock, R. D., 687

Boller, F., 186

Boomsma, D. I., 676

Boorstin, D. J., 8

Bornstein, R. F., 503

Bouchard, T. J., Jr., 681­682, 686

Bourne, D. N., 528

Bowen, E. S., 659

Bower, G. H., 124­125, 224, 233, 432

Bowers, F., 301

Bowers, J. S., 187

Bowers, K. S., 191­193

Boyer, C. B., 410­411

Boyes­Braem, P., 225, 230

Boyle, C. R., 275

Boyle, R., 88

Brady, J. P., 190

Brady, T. J., 309

Braine, M. D. S., 589, 595, 597, 600­601, 614, 621

Bransford, J. D., 119

Bressi, S., 530

Brewer, D. D., 327

Broadbent, D. E., 175, 305, 418, 476, 500, 516, 530

Broca, P., 22­23, 27, 298

Brody, N., 487

Bronfenbrenner, U., 385­389, 391­394

Brooks, L., 212, 221, 231

Brooks, L. R., 221, 231, 233, 489­492

Brown, A. L., 399­400

Brown, H. D., 483

Brown, J., 272, 286, 296, 517­519, 522­523, 544

Brown, R., 124

Brown, T. H., 369

Browne, T., 80

Brownell, H. H., 211

Bruner, J. S., 161, 228

Bryant, R. A., 191

Bucciarelli, M., 603

  
Page 701

Buchanan, M., 520, 528

Buchbinder, B. R., 309

Buchner, A., 499

Bugelski, B. R., 122, 124­125, 127

Bullemer, P., 476, 496, 499

Buonanno, F. S., 130

Burgess, P. W., 543

Burkhardt, F., 301

Burrows, D., 342­343

Buschke, H., 521

Bush, G., 12

Buss, R. R., 476, 488, 491

Busse, T. V., 423

Butterfield, E. C., 305, 399

Butters, N., 186

Butterworth, B., 528

Butterworth, G., 390

Byrne, R., 248, 272

Byrne, R. M. J., 557, 577, 600­602, 605, 608, 611­612

C
Cajori, F., 433

Calvanio, R., 529

Cameron, S., 142

Campbell, R., 528

Campione, J. C., 399­400

Canter, S., 689

Cantor, J., 536­537

Caplan, 528

Capron, C., 683

Cara, F., 619

Cardon, L. R., 686, 688

Carey, G., 676, 687

Carey, S., 157

Carlson, N. R., 303

Carlson, R. A., 487

Carmichael, L., 418

Carpenter, P. A., 27­28, 254, 258­262, 267, 269­272, 277­278, 280 288, 526, 534­535, 540, 542

Carroll, J. B., 150

Carter, J., 30

Cartwright, A., 460

Carullo, J. J., 534­536, 540

Caruso, D. R., 682

Case, R., 161

Case, R. D., 526, 528

Cattell, R. B., 151, 417, 687, 689

Cava, R. J., 423

Cavaletti, G., 638

Cave, C. B., 128

Ceci, S.J., 149­150, 385­388, 393­394, 400­402

Cellarius, R. A., 425

Cermak, L. S., 544

Chabris, C. F., 130

Chamberlain, N., 12

Chappell, M., 368­369

Charness, N., 247

Charniak, E., 254

Chase, W. G., 140, 153­154, 247

Chater, N., 572

Chattarji, S., 369

Cheesman, J., 191

Cheng, P. W., 395, 580

Cherniak, C., 560, 562­563, 573­575

Cherny, S., 685

Cherry, K. E., 495

Chevedden, P. E., 413

Chi, M. T. H., 144, 149, 154, 160, 396

Chidester, T. R., 432

Chiesi, H. L, 31

Chipeur, H. M., 670, 684

Chiu, C.­Y. P., 493, 496

Cho, J.­R., 476, 488, 491

Chomsky, N., 24­26, 103, 115, 144, 146

Christal, R. E., 540­541, 543

Churchland, P. M., 179

Churchland, P. S., 317

Clancey, W. J., 273

Claparéde, E., 489

Clark, K., 483

Cleeremans, A., 324, 332­334, 368, 476, 501­503

Cleveland, W., 636

Clifton, C., 270

Cofer, C. N., 370

Cohen, I. B., 435

Cohen, J. D., 310

  
Page 702

Cohen, L. J., 574

Cohen, M. S., 309

Cohen, N. J., 145, 181, 185, 498­499

Cole, M., 659

Collins, A. M., 117­118

Collins, K. W., 534­536, 540

Coltheart, V., 396

Combs, B., 566

Conot, R., 423

Conrad, R., 517, 521, 528

Conway, A. R. A., 536­540, 543­544

Cooke, N. M., 327

Cooper, L. A., 122, 150

Cooper, R., 282

Copernicus, N., 59

Corbett, A. T., 273­274, 347

Corey, R. P., 682

Cork, R. C., 190

Corkin, S., 300

Cosmides, L., 143, 619

Coupe, P., 126

Couture, L. J., 190

Cowan, N., 528, 533­534, 542

Craik, F. I. M., 524­526, 542, 566

Craik, K., 418

Crandall, C. S., 567

Crannell, C. W., 337

Cranston, M., 140

Crawford, J. R., 493­494

Crawford, R. P., 137

Crick, F., 6­7, 35­36, 40­41, 43

Cromer, A., 423

Crowder, R. G., 323, 334, 523

Cuddy, L. L., 630

Cunitz, A., 520­522

Cunningham, K., 340­341

Curran, T., 178, 373, 483

Czyzewska, M., 476

D
D'Alembert, Jean Le Rond, 87

Dallas, M., 181, 332

Damasio, A. R., 298

Daneman, M., 190, 259, 534­535, 540

Darwin, C., 67, 647

Dashen, M. L., 234

Davies, J., 92

Davis, P. J., 410, 433

Day, J. D., 399

Day, L., 528

de Groot, A. D., 138, 149, 152­154, 247

de la Roche, D., 392

De Valois, R. L., 130

DeCasper, A. J., 480

DeFries, J. C., 674­678, 682, 687­688

DeJong, R., 357

Della Sala, S., 530

Delman, S., 456

DeLoache, J. S., 155

Dempster, F. N., 540, 544

DeNise, H. E., 327

Dennett, D., 63, 178­179, 477, 575

Descartes, R., 4, 7, 60­61, 95­96, 100, 138, 477

Detterman, D. K., 395, 683

Detweiller, M., 531­535

Deutsch, D., 176, 305

Deutsch, J. A., 176, 305

Devine, P. G., 179

Dewey, G. I., 219, 487

Dewey, J., 67­68, 417

Diamond, R., 186­187

Diderot, D., 87

Dienes, Z., 486, 491, 493, 501­503

Dixon, L. K., 676

Dolan, A. B., 685

Dolan, C. V., 676

Doll, J., 150­151

Donders, F. C., 310­311, 323

Dorfman, J., 187­188, 193­194

Doris, J. L., 390

Dorken, M. D., 492

Dosher, B. A., 340, 342, 354­356, 366, 371­372

Downs, J. H., 130

Drevdahl, J. E., 151

Drewe, E. A., 544

Druhan, B., 476, 488, 491, 502

Dube, E. F., 660

Duda, R. O., 152

  
Page 703

Dulany, D. E., 477, 487

Duncan, J., 543

Dunlosky, J., 630

Durso, F. T., 327

Duyme, M., 683

d'Ydewalle, G., 605, 609­610

E
Eagle, M., 627­628

Eaves, L. J., 687

Ebbesen, 363

Ebbinghaus, H., 41, 69­70, 147, 387­389

Eberling, C., 248

Ecob, J. R., 342

Edelson, S. M., 216, 221

Egan, J. P., 363

Egeth, H. E., 370

Eichenbaum, H., 498

Eigenbrod, L., 413

Eimas, P. D., 157

Einstein, A., 460

Ekeland, I., 411­412

Elio, R., 220

Ellis, N. D., 628

Elo, A., 149­150

Emery, R. E., 432

Emmert, E., 456

Emslie, H., 543

Engle, R. W., 526, 534­540, 542­544

Enns, J. T., 454

Epstein, W., 457

Erickson, J. R., 603

Ericsson, K. A., 70, 140, 148, 151, 288

Eriksen, C. W., 127, 191

Ernst, G. W., 151

Estes, W. K., 220

Euclid, 87, 97, 410

Evans, F. J., 180

Evans, J. St. B. T., 544, 557, 559, 575, 600

Eves, H., 411

F
Fallside, D. C., 272

Farah, M. J., 130, 260, 314, 529, 543

Farvolden, P., 192­193

Fazio, R. H., 179

Fechner, G., 387­388

Feigenbaum, E. A., 151

Feltovich, P. J., 149, 154

Feng, D., 676

Ferrara, R. A., 399­400

Ferreira, F., 270

Ferretti, R. P., 399

Fiedler, K., 579

Fifer, W. P., 480

Fincham, J. M., 223, 273

Finke, R. A., 122, 128­129

Fischhoff, B., 566, 570­572, 631

Fischman, A. J., 483

Fitts, P., 418

Fivush, R., 390

Flanagan, O., 173, 175

Flores, L, 528

Florian, J. E., 216, 221

Fodor, J., 257, 270

Fodor, J. A., 117, 132, 156­157, 258

Foley, V., 413

Fong, G., 395

Fong, G. T., 580

Forrin, B., 340­341

Forster, K. I., 189, 193

Fox, P. T., 130, 311

Frackowiak, R. S. J., 544

Franks, F., 435

Franks, J. J., 119

Fraser, L., 518

Freedman, M., 544

Freer, C., 543

Frensch, P. A., 142, 151, 154, 161, 499

Freud, S., 195

Frick, P., 588

Friston, K., 544

Frith, C. D., 544

Fulker, D. W., 675­676, 686­688

Funke, J., 142, 154

Fuster, J. M., 544

G
Gabbert, B., 397­398

Gage, P., 298

Galanter, E., 75, 317­318

  
Page 704

Gale, J. S., 687

Galileo Galilei, 59, 88, 409, 411, 414

Gall, F. J., 303

Gallego, J., 477, 497

Galton, F., 149, 208, 212, 417, 651­652, 667

Gao, S.­J., 501

Garavaglia, P., 638

Gardiner, J. M., 523

Gardner, H., 186

Gardner, M. K., 331­332

Garfield, J. L., 140, 258

Garner, W. R., 127

Garnham, A., 613

Garrett, M. F., 27­29

Gassendi, P., 100

Gathercole, S. E., 528

Gauss, 412

Gavanski, I., 567

Gay, J., 656, 658­659

Gazzaniga, M., 22

Gelade, G., 144

Gelman, R., 161, 228

Gentner, D., 570

Gentzen, G., 591

George, W. H., 5

Georgopoulos, A. P., 121, 130

Gerler, D., 631, 635

Gershberg, F. B., 544

Gerstein, D. R., 439

Ghatala, E., 634

Gholson, B., 395

Giard, M. H., 130

Gibson, J. J., 41, 449, 459­460, 462­463, 465, 467­471

Gick, M. L., 140

Gigerenzer, G., 578

Gilchrist, A., 456

Gilger, J. W., 676

Girotto, V., 619

Glanzer, M., 520­522

Glaser, R., 149, 154, 432

Glass, T., 130

Glick, J. A., 659

Glisky, E. L., 498

Glover, J. A., 535

Gluck, M. A., 224, 497

Glucksberg, S., 211

Gogel, W. C., 457

Goldberg, J., 528

Goldman, S. R., 272

Goldman­Rakic, P. S., 543­544

Goldstone, R. L., 207, 570

Goldvarg, Y., 615, 618

Gomez, R. L., 491­492

Gonon, M. A., 130

Goode, A., 491

Goodman, N., 561

Goodnow, J. J., 228

Gordon, P. C., 503

Goshen­Gottstein, Y., 332

Gottesman, I. I., 675, 677

Gournic, S. J., 5

Graf, P., 180­181, 186, 300, 332, 493

Grafman, J., 483

Grafton, S. T., 482

Grant, S., 529

Gray, W., 225, 230

Greeley, T., 496

Green, D. W., 619

Green, I., 535

Green, R., 500

Greene, R. L., 325, 335

Greenfield, B., 567

Greenfield, P. M., 161

Greeno, J. G., 41­43, 286

Greenwald, A. G., 179, 191

Gregg, V. H., 523

Gregory, R. L., 451

Grice, H. P., 562

Griffin, D. R., 479, 579

Grigorenko, E. L., 678

Gronlund, S. D., 372

Grossweiler, R., 468

Gruetter, R., 310

Gruneberg, M. M., 390

Guilford, J. P., 150, 686

Guthrie, E., 70

H
Ha, Y., 571­572

Haarmann, H. J., 276­277

Hacker, M. J., 371­372

Haden, P. E., 300

  
Page 705

Hake, H. W., 127

Haken, 287

Halford, G., 162

Hall, J. F., 323

Hall, L. K., 399

Hallett, M., 483

Hamilton, S. E. 130

Hammond, K. M., 529

Hammond, K. R., 565, 572

Hampson, S. E., 227

Hampton, J. A., 208­209

Hanley, J. R., 529

Hardy, G. H., 411

Harlow, 298

Harmon, G., 559, 561

Harris, M., 650

Harrison, J., 483

Hart, J. T., 630­631

Hartley, D., 137

Hasher, L., 177, 181, 499

Haydon, M., 299

Hayes, J. R., 234

Hayes, N. A., 500

Hayes­Roth, F., 152

Hazeltine, E., 482

Healy, A. F., 174

Heaton, R. K., 544

Hebb, D. O., 369, 516­518, 545

Hegel, G. W. F., 52, 63, 460

Heisenberg, W., 106

Heit, E., 228

Helmholtz, H. von, 323, 449­451, 458

Henderson, E. N., 390

Henderson, L., 483

Henle, M., 589

Hennelley, R. A., 528

Hernnstein, R. J., 645

Hernstadt, R., 493

Herrnstein, R., 404

Hersh, R., 410, 433

Hertz, J., 40

Hewitt, C., 597

Hilding, A., 573

Hilgard, E. R., 65, 68, 72, 190, 196

Hillyard, S. A., 305­306

Hink, R. F., 306

Hinsley, D. A., 234

Hinton, G. E., 577

Hintzman, D. L., 39, 178, 212, 214, 363, 373

Hipparchus, 411

Hippocrates, 54, 80

Hiroto, D. S., 143

Hirsch, R., 483

Hirsch, T. B., 130

Hirst, W., 295

Hitch, G., 516, 526­531, 534, 541­542

Hitler, A., 12

Hockley, W. E., 340, 344, 363

Hoffman, D., 273

Hoffman, H., 476

Holcomb, P., 27

Holender, D., 176, 191

Holland, J. H., 254

Hollander, M., 257

Holton, G., 429­430

Holyoak, K. J., 39, 140, 254, 503, 580

Homa, D., 220, 227

Hope, A., 544

Hopfield, J. J., 369

Horn, J. M., 687­688

Horowitz, F. D., 432

Howard, D. V., 495, 528

Howard, J. H., 491, 495

Hsiao, A., 492­493, 499­500

Hudson, J., 390

Hulihan, D., 544

Hull, A. J., 521, 528

Hull, C. L., 72­73, 137, 157

Hulme, C., 528

Hume, D., 80, 86, 90­92, 94, 96­100, 102, 137

Humphreys, M. S., 368­369

Hunt, E., 150, 250, 429

Hurt, C. A., 190

Hussein, S., 12

I
Iacono, W. G., 686

Irwin, D. E., 357

Irwin, J. M., 518

Iskol'dsky, N. V., 685

  
Page 706

Ittelson, W. H., 451

Ivry, R., 482, 499

J
Jackendoff, R., 621

Jackson, G. M., 483

Jackson, S. R., 483

Jacobs, J., 335­336

Jacobsen, A., 456

Jacoby, L. L., 145, 177­178, 180­181, 186, 221, 233, 332, 526, 542

Jahnke, J. C., 334

James, H., 67

James, W., 67, 70, 106, 124, 189, 195, 301, 417, 460, 517

Janet, P., 195

Janis, I. L., 588

Janowsky, J., 636

Jardine, R., 687

Javits Act Program, 76

Jeffrey, R., 592, 594

Jensen, A. R., 645, 676, 680

Jerabek, P. A., 130

Jernigan, T. L., 636

Jiménez, L., 324, 332­334, 476

Joaquim, S., 631

Johnson, D. W., 225, 230, 397­398

Johnson, E. J., 572

Johnson, M. K., 181, 632

Johnson, P., 476, 499

Johnson, R., 543

Johnson, R. C., 676, 682

Johnson, R. T., 397­398

Johnson, S. P., 480

Johnson, T., 528

Johnson­Laird, P. N., 295, 317­318, 395­396, 400, 557, 577, 588, 590, 595, 597, 601­603, 605, 608­613, 615­616, 618

Johnston, T. D., 146

Johnstone, T., 491

Jongman, R. W., 153

Juola, J. F., 373

Jurica, P. J., 544

Jusczyk, P., 157

Just, M. A., 28­29, 254, 258­262, 267, 269­272, 277­278, 280, 288, 526, 534­535, 542

K
Kahana, M. J., 325, 327, 335­336, 362, 371

Kahneman, D., 176, 534, 565, 567­569, 572, 575, 579, 608

Kaiser, M. K., 451

Kalmer, D. A., 52

Kane, M., 544

Kant, I., 62­63, 80­81, 100­102, 105, 138

Kardes, F. R., 179

Karmiloff­Smith, A., 479­480

Karpov, B. A., 543

Kasparov, G., 248­249

Kasschau, R. A., 327

Kassin, S., 494

Kaufman, L., 564

Kausler, D. H., 323

Keele, S. W., 211, 497, 499

Keil, F. C., 144, 146, 157, 160

Keller, T. A., 528

Kelley, H. H., 150, 561

Kelly, S. W., 493­494

Kendrick, A., 483

Kennard, C., 483

Kennedy, D. N., 309

Kennedy, P. T., 219

Kepler, J., 409

Keppel, G., 518, 523

Kettner, R. E., 121, 130

Khomeini, A. R., 30

Kiewra, K. A., 535

Kihlstrom, J. F., 186­187, 189­190, 194, 475, 486, 638

Kilbey, M. M., 636

Kim, I. J., 129

Kim, J. J., 257

Kimberg, D. Y., 543

Kimble, G., 667

King, J. P., 410, 433, 435

Kintsch, W., 32­34, 117, 119, 521

Klaczynski, 399­400

Klahr, D., 158

Klatzky, R., 397

Klayman, J., 395, 571­572

Kline, M., 410, 430

Klinger, M. R., 191

Knapp, A. G., 224

  
Page 707

Knight, R. G., 544

Knight, R. T., 544

Knopman, D. S., 483, 501

Knowlton, B. J., 185, 483, 491­492, 496­498

Koch, C., 457­458

Koedinger, K., 273­274

Koffka, K., 74

Köhler, W., 74

Kolb, B., 522

Kolk, H. H. J., 276

Kolodner, J. L., 233

Koppell, S., 365

Koriat, A., 570­571, 631

Koroshetz, W. J., 483

Kosslyn, S. M., 121­122, 125, 128­131, 260, 312­313, 483

Kotler­Cope, S., 476

Kounios, J., 357

Kraft, R. G., 535

Krantz, D. H., 580

Krantz, J. Z., 685

Krause, L. M., 8

Krogh, A., 40

Kruschke, J. K., 220, 225

Kubovy, M., 452­454

Kuhn, T. S., 140

Kulah, A. A., 659

Kunda, Z., 396

Kunst­Wilson, W. R., 487

Kurland, D., 528

Kushner, M., 476, 494

Kyaw, D., 636

Kyllonen, P. C., 331­332, 535, 540­541, 543

L
LaBerge, D., 176

Labouvie­Vief, G., 65

Lachman, J. L., 305

Lachman, R., 305

Laipple, 399­400

Laird, J. E., 250, 281

Lamberts, K., 220

Lancaster, J. L., 130

Lancy, D., 659

Langston, C., 578, 580

LaPointe, L. B., 540

Larking, R., 619

Lassaline, M. E., 225

Laughlin, J. E., 540, 543

Lave, J., 42, 390, 392

Lawrence, J. A., 31

Layman, M., 566

LeDoux, J. E., 295

Lee, H., 94

Lee, T. D., 501

Legrenzi, M. S., 590

Legrenzi, P., 590

Lehman, D. R., 395, 580

Lehman, R. A., 544

Lehrman, D., 146

Leibniz, G. W., 100

Lempert, R. O., 580

Lenat D. B., 152

Leng, N. R. C., 544

Leonesio, R. J., 630

Lerner, R., 146

Levin, I., 162

Levin, J. R., 634

Levine, D. N., 529

Levy, B. A., 528

Levy­Berger, G., 299

Lewicki, P., 476

Lewis, S., 476

Lewis, V. J., 528

Lewontin, R., 685

Lichtenstein, S., 566, 570­571, 631

Liddle, P. F., 544

Lieberman, K., 529

Light, P., 390

Liker, J. K., 149­150, 400­401

Lin, J., 499

Lind, D. L., 190

Lindfield, K., 327

Lindsay, R. K., 250, 282

Liu, T. J., 191

LNR Research Group, 117­118

Locke, J., 61, 80, 86­89, 92­94, 98­99, 477

Lockhart, R. S., 525­526, 566

Locurto, C., 684

Loehlin, J. C., 674­675, 682­684, 687

Loftus, E. F., 117­118

  
Page 708

Logan, G. D., 176, 233

Logie, R., 396, 529, 530

Logue, V., 526

Longmore, B. E., 544

Lopez, A., 228, 570

Lou, S.­J., 483

Luby, M., 315

Lucas, R., 327

Luce, R. D., 340, 439

Luck, S. J., 306

Ludlam, G., 214

Luria, A. R., 543­544

Lurito, J. T., 130

Lykken, D. T., 686

M
McAfee, M. P., 5

McCarthy, G., 306, 308, 310, 315

McCartney, K., 674

McClearn, G. E., 677­678

McClelland, J. L., 132, 157, 224, 255, 260, 332, 340, 347, 368­370, 476, 502, 577

McCloskey, M. E., 211, 286

McConkey, K. M., 191

McCulloch, W. S., 37, 369

McDermott, D. B., 182, 186, 254

McDonald, M. C., 28­29

McDougall, W., 74

McElree, B., 340, 342, 354­356, 366, 371­372

McFarland, R., 418

McGeoch, J. A., 518

McGeorge, P., 493­494

McGill, 329

McGue, M., 681­682, 686

McGuffin, P., 677

McKeachie, W., 432

McKelvey, J. P., 413

McKinley, S. C., 225, 228

McKinstry, R. C., 309

McKoon, G., 116, 119­120, 365, 372

Mackworth, N. H., 423

MacLeod, C. M., 370

McNamara, D. S., 174

Macnamara, J., 595

McNamara, T. P., 121

McNaughton, B. L., 369

Maddox, W. T., 366

Madge, N., 685

Magnus, P., 682

Maljkovic, V., 130

Malt, B. C., 212, 219

Mandler, G., 185­187, 300, 327

Mangels, J. A., 544

Mangun, G. R., 306

Manktelow, K. I., 557, 559

Mansfield, R. S., 423

Manza, L., 491­492, 494, 503­504

Maratsos, M., 144

Marcel, A., 176, 189, 191

Marcus, G. F., 257

Markman, E. M., 156, 228

Marr, D., 143, 458, 469­470

Martin, C. C., 130

Martin, N. G., 685, 687

Massaquoi, S., 483

Massaro, D. W., 440

Massey, J. T., 130

Masson, M. E. J., 368­369

Masters, R. S. W., 501

Matheny, A. P., 685

Mathews, P., 498

Mathews, R. C., 476, 488, 491, 502­503

Mayberry, M., 494­495

Mayr, U., 150­151

Medin, D. L., 207­209, 211­213, 215­216, 219, 221, 225, 227­228, 234, 570

Mednick, S., 192

Medvedev, Z. A., 619

Melton, A. W., 418, 518

Meltzer, R. H., 327

Méndez, C., 324, 333­334, 476

Menkes, D. J., 544

Meredith, W., 676

Merikle, P. M., 190­191

Mermigis, L., 192­193

Merriman, C., 682

Mervis, C. B., 211, 214, 225, 230

Merzbach, U. C., 410­411

  
Page 709

Metcalfe, J., 363, 368, 631, 635

Metzler, J., 122

Meyer, D. E., 193, 324, 357­358

Midgett, J., 468

Miezin, F. M., 493

Mill, J., 61­62, 69, 71, 80

Mill, J. S., 80, 91, 95­96

Miller, G. A., 75, 140, 296, 317­318, 517, 519, 532

Miller, J. L., 157

Millward, R. B., 476

Milner, B., 300, 481, 522, 543­544

Milner, C. S., 499

Minsky, M., 104

Mintun, M., 311

Miyake, A., 259­260, 272

Molenaar, P. C. M., 676

Molyneux, 92

Monsell, S., 340­343, 363

Montgomery, E. C., 357

Moon, C., 480

Moore, E. G. J., 686

Moray, N., 440

Mordkoff, J. T., 370

Moreines, J., 186

Moroni, R., 638

Morris, P., 390

Morris, R. G. M., 369, 498

Morton, J., 185

Moscovitch, M., 332

Murdock, B. B., 323, 325­326, 328, 340, 344, 362­365, 372, 433, 518

Murnane, K., 632

Murphy, G. L., 211, 215, 223, 226, 228­229

Murphy, T. D., 219

Murray, C., 404, 645

Murtaugh, M., 392

Muter, P., 371­372

N
Nakayama, K., 458

Nañez, J. E., 480

Narens, L., 625­626, 631, 633, 635­638

Neely, J. H., 144, 146, 324

Neiderhiser, J. M., 684­685

Neisser, U., 75, 175, 388, 390

Nelson, T. O., 180­181, 192, 370, 625­626, 630­631, 633, 635­638

Newell, A., 14, 44, 75, 151, 192, 250, 253, 281, 330, 558, 563

Newport, E. L., 158­159, 226

Newstead, S. E., 600

Newton, I., 8, 80, 88, 409, 460

Nichols, R. C., 682, 687, 689

Nickerson, R. S., 440

Nisbett, R. E., 69, 178­179, 254, 395, 396, 559, 572, 578, 580

Nissen, M. J., 476, 483, 496, 499

Nobre, A. C., 306

Noll, D. C., 310

Norman, D. A., 117­118, 174, 176, 305, 363, 517­519, 521, 526, 529­530

Norman, G. R., 231

Norris, J., 5

Nosofsky, R. M., 207, 211­212, 215, 220, 223, 225, 228, 366, 368

Nye, M. J., 435

O
Oakhill, J. V., 613

Oaksford, M., 572

O'Brien, D. P., 595

O'Brien­Malone, A., 494

Ochsner, K. N., 493, 496

Oelz, O., 638

Office of Naval Research, 289

Ojeman, J. G., 493

Okada, R., 325­326, 328, 342­343

Oliver, L. M., 580

Oliver, R. R., 161

O'Shaughnessy, M., 531

Osherson, D. N., 228, 567, 570, 605

Oskamp, S., 570

Osman, A. M., 357

Osterhout, L., 27, 357

Over, D. E., 557, 559

P
Pachella, R. G., 346­348, 352

Packard, M. G., 483

Pacteau, C., 477­478, 490

Paivio, A., 121­122, 124­125

  
Page 710

Palmer, R. G., 40

Palmer, S. E., 121

Palmeri, T. J., 228, 366, 368

Papagno C., 528

Parish, J. M., 337

Parker, K., 192

Parkin, A. J., 495, 544

Parsons, L. M., 130

Pascual­Leone, A., 483

Pascual­Leone, J., 65, 516, 526

Patterson, K. E., 327

Pavlov, I., 71­72

Payne, J. W., 572

Pearl, J., 561

Pearlstone, Z., 195

Pearson, N. A., 529

Peirce, C. S., 155

Pelletier, R., 273­274

Pellizzer, G., 130

Pendleton, M. G., 544

Penfield, W., 544

Pennington, B. F., 543

Penrose, R., 63

Perkins, D. N., 452

Perkins, S. J., 216, 221

Péronnet, F., 130

Perrin, N. A., 366

Perruchet, P., 477­478, 490, 496­497

Petersen, S. E., 311

Peterson, L. R., 296, 517­519, 522­523, 544

Peterson, M., 296, 517­519, 522­523, 544

Peterson, S. E., 493, 533

Petrides, M., 130

Pew, R. W., 500­501

Piaget, J., 137, 145, 155, 161, 162, 479­480, 526, 589­590

Piatteli­Palmarini, M., 386

Pickles, A., 675

Picton, T. W., 306

Piner, S., 257

Pinker, S., 125, 128­129

Pitts, W., 37

Pitts, W. H., 369

Plake, B. S., 535

Plato, 7, 12, 54­58, 81, 85, 138

Platt, J., 425

Plomin, R., 670, 674­675, 677­678, 683­685, 687­688

Plous, S., 572

Poggio, T., 457­458

Polanyi, M., 489

Pollio, H. R., 327

Pollock, J., 595

Pomerantz, J. R., 125, 128

Popper, K. R., 572

Posner, M. I., 4, 10, 175­177, 211, 310­311, 497, 533­534

Posner, S., 685

Postman, L., 518

Powell, M. C., 179

Pratt, R. T. C., 526

Press, F., 415­416

Pressley, M., 634

Pribram, K. H., 75, 317­318

Price, D. J. de S., 435

Prince, A., 257

Proctor, R. W., 342

Proffitt, D. R., 451, 468

Provost, D. A., 128

Ptolemy, 411

Puce, A., 315

Pylyshyn, Z. W., 13, 122, 125­128, 132, 249, 257, 312­313

Pythagoras, 80, 85, 410­411

Q
Quillian, M. R., 117­118

Quine, W. V. O., 159, 562, 620

R
Raaijmakers, J. G. W., 325

Rack, J., 528

Raichle, M. E., 4, 10, 310­311, 493

Ramus, S. J., 496

Rappaport, I., 531

Ratcliff, R., 116, 119­120, 344, 356, 365­367, 369­370, 372

Rathus, J., 494

Rauch, S. L., 130, 483

Raye, C. L., 632

Razel, M., 520

  
Page 711

Reason, J. T., 576, 579

Reber, A. S., 324, 332, 476­478, 489­495, 499­501, 503­504

Reber, P. J., 476, 496­498

Reder, L. M., 397, 631, 634

Reed, A. V., 354­355

Reed, J., 476, 499

Reed, S. K., 128, 207

Regan, D. T., 150

Regard, M., 638

Regehr, G., 192

Regier, T., 578

Reid, T., 96­100, 103­105

Reinitz, M. T., 359

Reisberg, D., 531

Reiser, B. J., 122, 128­129, 275, 595, 600­601

Reitman, J. S., 519

Rensink, R. A., 454

Restle, F., 448

Rice, T., 676, 687

Richards, S., 327

Richardson­Klavehn, A., 181

Richman, H. B., 256

Riefer, D., 632

Riegel, K. F., 65

Rips, L. J., 208, 211­212, 560, 595, 597­602, 621

Ritter, F., 631

Rivers, W. H. R., 651

Roberts, S., 347

Robinson, D. N., 54, 72, 99

Robinson, J. A., 595

Rock, I., 455­458, 564

Roediger, H. L., 145, 182, 186, 515

Rogoff, B., 390, 392

Rohrer, D., 328­329

Rolls, E. T., 369

Romney, A. K., 327

Roodenrys, S., 528

Rosch, E., 208, 211, 214, 225, 230

Rosen, B. R., 309

Rosen, V. M., 538­539, 544

Rosenblatt, 256

Rosenbloom, P. S., 250, 281, 330

Rosenblum, T. B., 398

Rosenthal, V., 143

Roskos­Ewoldsen, D. R., 567

Ross, B. H., 211, 216, 219, 221, 223, 225, 228­229, 234

Ross, L., 572

Ross, M., 566

Rostand, J., 435

Rothkopf, E. Z., 234

Rothman, D. L., 310

Roussel, L. G., 502­503

Rovine, M., 670, 684

Rowe, D. C., 685

Rozin, P., 186­187

Rubin, D., 363

Ruiz, A., 400, 402

Rumain, B., 589, 595, 600­601

Rumelhart, D. E., 37, 117­118, 132, 157, 224, 255, 577

Runco, M. A., 423

Rundus, D., 520, 524

Rushdie, S., 30­31

Russell, B., 574

Rutter, M., 675, 685

Ryle, G., 116, 181

S
Sachs, J., 119

St. John, M. F., 191, 487, 497

Salthouse, T. A., 158, 277

Samuels, S. J., 176

Sanbonmatsu, D. M., 179

Sanders, A. F., 346, 370

Sanderson, P. M., 500

Sanderson, R., 79

Santee, L., 370

Saults J. S., 528

Savage, C. R., 483

Savage, L. J., 561

Savy, I., 477, 497

Scabini, D., 544

Scarr, S., 673­674, 685, 686­687

Schacter, D. L., 180­181, 185­186, 491, 301, 332, 493, 496, 498, 515

Schaeken, W. S., 605, 609­610

Schaffer, M. M., 212­213

Schank, R. C., 233

Schiff, M., 685

  
Page 712

Schmidt, R. A., 501

Schneider, W., 176­177, 310, 531­533, 534­535

Schouten, J. F., 352­353

Schroeer, D., 414

Schuh, E. S., 191

Schultz, D., 61, 74

Schvaneveldt, R. W., 324, 327, 358, 491­492

Schwartz, A. B., 121, 130

Schwartz, B., 631

Schweikert, R., 347

Schwent, V. L., 306

Scoville, W. B., 299, 481

Scribner, S., 42, 160

Sedgwick, H. A., 465

Seger, C. A., 481

Sells, S. B., 588, 611

Sergeant, J., 94

Servan­Schreiber, E., 502

Shafir, E., 228, 567, 570

Shah, P., 272

Shakespeare, W., 5, 79

Shallice, T., 282, 522, 524, 526, 529­530, 534, 543

Shames, V. A., 193­194

Shanks, D. R., 191, 487, 491, 497, 500

Shanteau, J., 565, 572

Shantz, C., 404

Shapiro, D., 590

Sharp, D. W., 659

Shastri, L., 257

Shaw, J., 192

Shell, P., 278, 280

Shepard, R. N., 122, 312, 452

Shiffrin, R. M., 174, 176­177, 325, 362, 516­517, 526, 534

Shimamura, A. P., 186, 496, 544, 635­636

Shimojo, S., 458

Shipley, C., 277

Shisler, R. J., 539

Shoben, E. J., 208, 211

Shortliffe, E. H., 152

Shulman, R. G., 310

Shwartz, S. P., 125

Sicoly, F., 566

Siegler, R. S., 158, 277

Silverman, M. S., 130

Simon, H. A., 6, 40­41, 44, 70, 75, 143­144, 153­154, 192, 234, 247, 250, 253, 256, 288, 558, 563, 573

Simonoff, E., 677

Skinner, B. F., 73, 103, 115, 137, 174, 179

Skypala, D., 503

Sleeman, D. H., 272

Sloman, S. A., 569­570, 576­578

Slovic, P., 566, 572, 631

Smelser, N. J., 439

Smith, E. E., 207­209, 211­212, 215, 226, 228, 567, 570, 578, 580

Smith, G., 125

Smith, J., 148, 151

Smith, L. B., 157

Smith, P. M., 440

Smith, R., 460

Smith, R. W., 357

Smolensky, P., 257

Snodgrass, J. G., 299

Snow, C. P., 429

Snyder, C. R. R., 176­177, 534

Socrates, 57, 85

Soedel, W., 413

Solso, R. L., 440

Spalding, T. L., 211, 216, 221, 225

Spellman, B. A., 630

Spencer, H., 647­648, 652

Sperber, D., 7, 595, 619

Sperling, G. A., 296

Sperry, R., 22, 76

Sperry, R. W., 425

Spillich, G. J., 31

Spinnler, H., 530

Spuhler, K. P., 687

Squire, L., 636

Squire, L. R., 116, 132, 145, 181­182, 185­186, 476, 483, 491­492, 493, 496­498, 636

Stadler, M. E., 495

Staggs, L., 491

Stanley, W. B., 476, 488, 491

  
Page 713

Stark, H. A., 332

Stark, K., 518

Steele, C., 398­399

Stephens, D. L., 535

Sternberg, R. J., 52, 147, 150­151, 154, 165, 678

Sternberg, S., 310­311, 324, 337­343, 345­348, 351, 354, 356, 363, 365, 368, 370

Stevens, A., 126

Stevens, S. S., 418

Stewart, C., 498

Stewart, M., 483

Stich, S., 104, 559, 561

Störring, G., 588

Streete, S., 495

Strong, E. K., Jr., 362

Stuss, D. T., 544

Sullivan, J. W. N., 422

Sundet, J. M., 682

Swets, J. A., 365, 432

Switkes, E., 130

Sykes, P., 390

Sylvester, J. J., 411

T
Tabossi, P., 616

Tambs, K., 682

Tanaka, J. W., 230

Tataryn, D. J., 189

Taylor, M. E., 230, 494

Tein, J. Y., 344

Tenpenny, P. L., 216, 221

Terres, J. K., 114

Teuber, H.­L., 300

Thagard, P. R., 39, 254, 289

Thales, 52

Thibadeau, R., 254, 258

Thompson, L. A., 683

Thompson, R. F., 11, 483

Thompson, W. L., 129­130

Thomson, D. M., 567

Thomson, N., 520, 528­529

Thorn, W. A. E., 180

Thorndike, E. L., 70­72, 138, 174, 417

Thurstone, L. L., 686, 689

Thurstone, T. D., 686

Tindall, M. H., 365

Tipper, S. P., 140, 142, 144, 146

Titchener, E., 65­66, 477­478

Todd, J. T., 463

Tooby, J., 143

Tootell, R. B. H., 130

Torre, V., 457­458

Torrey, B. B., 440

Touretzky, D. S., 257

Townsend, J. T., 344

Trager, J., 54

Tredici, G., 638

Treisman, A., 144

Treisman, A. M., 175­176, 305

Treves, A., 369

Troutman, C. M., 565, 572

Tuholski, S. W., 539­540, 543­544

Tulving, E., 185­186, 195, 301, 329, 332, 498, 524, 567

Turkheimer, E., 675

Turner, M. L., 526, 535, 540, 542

Turner, T. J., 233

Tversky, A., 565, 567­570, 572, 575, 579, 608

Tyler, L. E., 150

Tylor, E. B., 646­649, 652

U
Ulam, S. M., 410

Ullman, S., 457­458, 462, 470­471

Underwood, B. J., 146, 372, 518, 523, 629

Ungerleider, L. G., 483

U.S. Department of Education, 76

Usher, M., 368­370

V
Valentine, T., 528

Vallar, G., 528

van Dijk, T. A., 32

Van Kleeck, M., 260

Van­Zandt, T., 366, 369

Vandenberg, S. C., 682

Vandenberg, S. G., 676, 686­687

VanLehn, K., 286

Varma, S., 272

Vesonder, G. T., 31

Vevea, J. M., 309

Videen, T. O., 493

  
Page 714

Vokey, J. R., 491­492

von Gierke, S. M., 128

Voss, J. L., 31

Vygotsky, L. S., 138, 161

W
Wagman, M., 287

Wahlsten, D., 675

Waldman, I., 685­686

Waldrop, M. M., 281

Walkenfeld, F. F., 493

Walker, C. H., 396

Wallach, H., 456, 459

Wallas, G., 192

Walsh, P., 396

Warrington, E. K., 180, 300, 522, 524, 526

Wason, P. C., 395, 571­572, 589­590, 602

Waterman, D. A., 152

Waters, 528

Watkins, M. J., 524­525

Watkins, M. P., 676

Watson, J. B., 71­74, 124­125, 137

Wattenmaker, W. D., 227

Waugh, N. C., 174, 517­519, 521

Weaver, B., 142

Weber, B., 248

Weinberg, R., 686­687

Weinberger, D. R., 543

Weise, S. B., 130

Weiskrantz, L, 180, 190, 300, 526

Weisskoff, R. M., 309

Weisz, J., 391

Wenzel, A. E., 363

Werner, H., 161

Wernicke, C., 22­23, 298

Wertheimer, M., 74

Whipple, G. M., 390

Whishaw, I. Q., 522

Whitaker, L., 370

White, N. M., 483

Whitten, W. B., 523

Whittlesea, B. W. A., 212, 492

Wickelgren, W. A., 347­348, 363

Wight, E., 529

Wilkie, O., 228, 570

Will, G. F., 460

Willerman, L., 687

William of Ockham, 86

Williams, P., 31, 543

Willingham, D. B., 483, 496

Wilson, B., 528, 530

Wilson, D., 7, 595

Wilson, G. R., 682

Wilson, R. S., 685

Wilson, T. D., 69, 178­179

Wingfield, A., 327

Winograd, E., 390

Winograd, T., 181, 194

Winter, B., 498

Wisniewski, E. J., 225

Wixted, J. T., 328­329, 363

Woldoroff, M., 306

Woltz, D. J., 331­332

Wood, C. C., 308

Wood, N. L., 528

Woods, D. L., 544

Woodworth, R. S., 588, 611

Wos, L., 595

Wright, R., 396

Wulf, G., 501

Wundt, W., 64­65, 69, 298, 387­388, 649, 652­653

Y
Yaniv, I., 193

Yarbuss, A. L., 543

Young, A. W., 529

Z
Zacks, R. T., 177, 499

Zajonc, R. B., 487

Zeigarnik, B., 193

Zizak, D., 503­504

Zurif, E. B., 22­24

  
Page 715

SUBJECT INDEX

A
A posteriori knowledge, 62

A priori constraints, 458, 470

A priori knowledge, 62, 100­102, 458­459

Abstractions, exemplar­based, 221­222

Acquired constraints, 146

Acquisition view, 185­186

ACT theory, 117, 132

ACT­R theory, 273­274

Activation view, 185, 187

Activation­based production system, 261

Additive factors method, 347­348

Additive function, 209

Additive genetic effects, 672, 684

Adoption studies, 675, 683­684, 688

Affect, implicit versus explicit learning and, 503­504

Affordances, 460, 467­468

AG learning tasks, 476, 483­485, 488, 490­493, 496, 499, 502­503

Agrammatic aphasia, 276­277

AI, 245­249, 597

Alciphron (Berkeley), 98

Algorithmic theories, 469­470

Algorithms, 15, 17, 20­21, 26, 44, 394

Alzheimer's disease, 530

American Sign Language, 226

Ames distorted room

ecological approach to perception and, 463­464

inferential approach to perception and, 452­453

Amnesia, 496­498

Analogical representation, 113­114

Analogue aproach to mental imagery, 312

Analytical rationalism, 81

Animal­lesioning experiments, 275

ANOVA, 283

Aphasia, 22­23, 27, 276­277, 298

Apology (Hardy), 411

Applied experimental psychology, 437­438

Applied research, 409, 414­417

Articulatory loop, 527

Artificial grammar (AG) learning tasks, 476, 483­485, 488, 490­493, 496, 499, 502­503

Artificial intelligence (AI), 245­249, 597

Assessments of research

judging value of research results, 432­437

justifying research, 428­432

Associationism, 69­71, 577

Associative priming, 120­121

Associative thought, 577­579

Assortative mating, 676­677

  
Page 716

Astronomy, 414

Attention

dynamic model of, 533­534

implicit vs. explicit learning and, role of, 499­500

selective

in event­related potential studies, 305­307

in exemplar models, 220­222

Auditory word form system, 185

Automatic processing, 174­178, 186, 194

Automaticity, 178­180

Awareness, 177, 475, 486­489. 

See also Conscious cognition

B
Backpropagation, 256

Backward chain, 597

Baddeley and Hitch system

central executive, 527, 529­531

slave systems, 527­529, 531

Baseline condition, 313

Basic research, 409, 414­417

Bayes's theorem, 568

Behavior­genetic approach to studying individual differences

concept of individual differences and, 666

definition of terms in, 667­669

familial resemblance and, 669­671

paradigm of, 666­667

recent studies and, 691

Behavioral studies

brain studies and, strategies of, 297­298

cognition and

organization of, 296­298

understanding, 318­319

dissociations and, 296­298, 300­301

event­related potential studies and, 303­309

advantages of, 307­309

background information of, 303­305

disadvantages of, 307­309

selective attention example in, 305­307

technique of, 303­305

functional neuroimaging and, 309­316

advantages of, 314­316

background information of, 309­312

disadvantages of, 314­316

mental imagery example in, 312­314

technique of, 309­312

historical perspective of, 317­318

lesion studies and, 298­303

advantages of, 301­303

background information of, 298­299

disadvantages of, 301­303

memory systems example in, 299­301

technique of, 298­299

questions about, 295, 316­317

Behaviorism

associationism and, 71

dialectics in cognitive study and, 70­74

origins of, 70­71

Pavlovian conditioning and, 72­73

radical, 72­74

Skinner and, 73­74

Watson and, 71­72

Belief, 91, 104

Biology, 414, 478­479

Black box problem, 17­21

Book shape

ecological approach to perception and, 462­463

inferential approach to perception and, 450­451

Bounded rationality, 573­576

Brain

internal representation and, 8­9

mental activity and, 4­7, 11, 41

  
Page 717

structure and processes, 9­12

studies

dissociations and, 296­298, 300­301

event­related potential, 27, 303­309

functional neuroimaging, 309­316

historical perspective of, 317­318

lesion, 298­303

organization of cognition and, 296­298

questions about, 295, 316­317

strategy of, 297­298

understanding cognition and, 318­319

Broca's aphasia, 22­23, 27, 298

Brodmann's area, 543

C
CAI, 272

Capacity constraint, 267

Capacity­constrained activation theory

capacity constraint and, 267

modularity and, 268­272

sentence processing model and, 267­268

Categories

American Sign Language and, 226

concept and, 206

levels of, different, 225­228

parallel distributed processing models of, 224­225

term of, 206

use of, 228­232

Categorized free­recall task, 327

Cattell Culture Fair Test, 540­541

Causal laws, 91

Cause and effect relationship, 94, 99

Central executive, 527, 529­531

Chernobyl nuclear disaster, 619

Chess programs, 247­249

Christian era, dialectics in cognitive study and early, 57­60

Classical view, 207­208

Closed classes of words, 23­24

Closed system, 7­8

Coding of short­term and long­term store, 521­522

Cognition. See also Cognitive theory; Rationality; Thought

behavioral studies and

organization of, 295­298

understanding, 318­319

computational model of, 13­17

in context, 387­389

out of context, 389­392

familiarity of task and, 394­396

generality in, 232­234

intelligence and, 399­404

knowledge as context and, 396­397

organization of, 296­298

physical context and, 393

situated, 40­43

social context and, 397­398

socioemotional context and, 398­399

specificity in, 232­234

transfer ability and, 399­404

Cognitive architecture

cognitive modules and, 258­260

computer architecture vs., 249

connectionist models and, 254­257

hybrid models and, 257­258

overview of, 245

symbolic, 250­254

Cognitive illusions, 565

Cognitive modules, 258­260

Cognitive revolution, 3­4, 173

Cognitive theory

black box problem and, 17­21

computational model of, 13­17

dualism and, 4­7

in future, 43­45

information­processing systems and, 8­13, 43

language and, 21­34

computational models of, 24­30

neuropsychological studies of, 22­24

at representational level, 30­34

psycholinguistics and, 21­22

  
Page 718

Cognitive theory (cont.)

revolution in, 3­4

rule­based thought and, 12­13

science studies systems and, 7­8

three­level approach to

arguments against, 35­43

computational level, 13­21

neuroscientific level, 4­7

representational level, 8­13

summary of, 34­35

unified, 279­283

Cognitivism, 75­76

Colorado Adoption Project, 675, 688

Combined exemplar and prototype models

advantage of, 231­232

evidence for, empirical, 216­220

other methods of, 224­228

parallel distributed processing models of categorization and, 216, 224­225

rational model and, 222­224

selective attention in exemplar model and, 220­222

Commerce Business Daily (publication), 419

Committee on Behavioral and Social Sciences (NRC), 439

Committee on Human Factors (NRC), 440

Comparison processes, 339­340

Competitive chunking model, 502

Comprehension, 32­34

Computational models

algorithmic theories vs., 469­470

artificial intelligence and, 245­249

of cognition, 13­17

cognitive architecture and, 245, 249­260

cognitive modules and, 258­260

computer architecture vs., 249

connectionist models and, 254­257

hybrid models and, 257­258

overview of, 245

symbolic, 250­254

evaluating

as approach, 287­289

computational vs. verbal models and, 283­285

overview of, 245, 283

sensitivity analysis and, 286­287

of high­level cognition, 260­285

capacity­constrained activation theory and, 260­272

intelligent­tutoring systems and, 272­275

lesioning and, cognitive, 275­279

overview of, 245

unified cognitive theory and, 279­283

verbal model vs., 283­284

inferential approach to perception and, 457­458

of language, 24­30

parallel addition, 19­20

replacing computational concepts with neuroscience concepts and, 35­40

serial addition, 19

of thought, 13­17

Computer architecture, 249

Computer­assisted instruction (CAI), 272

Concept, term of, 206

Concepts, understanding, 51

Conditional response probability (CRP) function, 325

Conditioned learning, classically, 71

Conditioned proof rule, 596

Conditioned response latency (CRL) function, 326

Conditioning, 71­73

Conjunction fallacy of probability, 566

Connectionist models. See also specific types

cognitive architecture and, 254­257

parallel distributed process models and, 224

  
Page 719

in replacing computational concepts with neuroscience concepts, 37­40

response time data in human memory and, models of, 368­370

Conscious cognition. See also Awareness

automatic vs. control processing and, 174­178, 186, 194

automaticity and, 178­180

cognitive resources and, 177­178

intentionality and, 177­178

legitimation of, road to, 173­174

memory and

distinction between explicit and implicit, 180­181, 188­189

explicit, 180­181, 188­189

implicit, 180­181, 184­189

tasks, 181­184

perception and, explicit vs. implicit, 189­192

thought and, explicit vs. implicit, 192­194

unconscious processes vs. nonconscious contents and, 194­196

Conscious inessentialism, 173­174

Consciousness, metacognition and, 638­639

Constant­ratio diverging curves, 361­362

Constraints

capacity, 267

classifying, 143­146

innate vs. acquired, 146

internal vs. external, 143­144

low­level vs. high­level, 143

process vs. structure, 144­145

static vs. dynamic, 145­146

contrasting, consequences of, 146­147

domain­generality vs. domain­specificity and, 143­148, 156­157

group­theoretic, 470

inferential approach to perception and, 458, 470­471

natural, 458­459

perception and, 458, 470

a priori, 458, 470

rigidity, 470­471

term of, 141

width applicability of, 141­143, 165

Context model, 212

Context­specific reasoning examples, 395

Controlled processing, 174­177

Cowan model, 533­534

Creativity studies, 689

Criterion value, 363

Critique of Pure Reason (Kant), 100, 105

CRL function, 326

CRP function, 325

Crystallized abilities, 687­688

Culture­based measures of cognition

Binet and, 653­565

''culture­free" tests and, 645­646

Cattell Culture Fair Test, 540­541

implications of, 662­663

intelligence testing and, 645­646, 651, 653­658, 663

Kpelle culture and, 656­663

nineteenth­century beliefs about culture and, 646­649

psychology and, 649­651

testing and, 651­653

thought experiment in test construction and, 656­662

"Culture­free" tests, 645­646

Cattell Culture Fair Test, 540­541

implications of, 662­663

D
Declarative knowledge, 116, 181­182, 194

Declarative memory, 181, 300

Deduction, natural, 591, 595

Deep Blue (IBM chess program), 248­249

Demonstrative knowledge, 87

Department of Defense agencies, 418­419

Descriptive theory, 560­561

  
Page 720

Determinism, 73

Dialectics in cognitive study

concepts and, understanding, 51

historical perspective of, 52­64

Christian era, early, 57­60

dialectical progression of ideas, 52

Greece and Rome, ancient classical, 53­57

Middle Ages, 57­59

modern period, 60­64

Renaissance, 59­60

psychology and

associationism, 69­71

behaviorism, 70­74

cognitivism, 74­76

diverging perspectives of modern, 64

functionalism, 66­67

Gestalt, 74­75

philosophy and physiology merged with, 63­64

pragmatism, 67­69

structuralism, 64­66

Difficulty weights, 601

Diffusion model, 356, 366­368

Digit probe task, 548­519

Direct realism, 96

Displacement, 517

Dissociations

automatic processing and, 177­178, 186

behavioral studies and, 296­298, 300­301

doubly­dissociated tasks and, 345

functional, 344­345

memory tasks and, explicit and implicit, 183, 186

Distal stimulus, 447­448

Dizygotic (DZ) twins, 670, 683

Domain­generality (DG)

domain­specificity vs.

comments on, general, 162­163

constraints and, 143­148, 156­162

goal of, 164

human development and, 155­162, 164

human expertise and, nature of, 148­154, 164

questions about, 140­143

theoretical framework of, 138­140

thought and, 164­165

term of, 137­138

Domain­specificity (DS)

domain­generality vs.

comments on, general, 162­163

constraints and, 143­148, 156­162

goal of, 164

human development and, 155­162, 164

human expertise and, nature of, 148­154, 164

questions about, 140­143

theoretical framework of, 138­140

thought and, 164­165

term of, 137­138

Domains, 206

Dominance, genetic, 672

Doubly dissociated tasks, 345

Dual­process model of memory, 187

Dualism, 4­7, 54, 58, 62. See also Mind­body problem

Dynamic constraints, 145­146

Dynamic model of memory and attention, 533­534

DZ twins, 670, 683

E
Ease­of­learning judgments, 629

Ecological approach to perception

affordances and, 460, 467­468

Ames distorted room and, 463­464

book shape and, 462­463

described, 449

environment and, 461, 465

functionalism and, 460

geographical slant, 468­469

Gibson and, 459, 467, 470­471

higher­order units of perception and, 459

lightness perception and, 461­462

at metaphysical level, 471

optical flow and, 463, 465, 469

realism and, 469

  
Page 721

size perception and, 465­467

surface layout and, 461

Education, rationality and, 580

EEG, 27

Electroencephalography (EEG), 27

Emmert's Law, 457

Empiricism

Aristotle and, 56

epistemological, 80

methodological, 80

radical, 106

rationalism vs.

debate of, 62

essentialism and, 92­95

identity and, personal, 92­95

implications for cognitive psychology and, 103­106

intuitionism and, 95­100

issues framing, 82­85

materialism and, 86­91

nominalism and, 85­86

a priori knowledge and, 100­102

realism and, 85­86

skepticism and, 86­91

universals and, problem of, 85­86

term of, 80

Engineering, science and, 413­414

An Enquiry concerning Human Understanding (Hume), 90

Environment

gene vs. environment paradigm and, 666­667

genotype X environment interaction and, 675­676

as habitat, 461

influences of, 672­673

intelligence and, 683­684

perception of, 465

Environmentality, 677­681

Epilepsy, 299­300

Epistasis, 672

Epistemological empiricism, 80

ERP. See Event­related potential studies

Error rates, equalizing, 352

Essay Concerning Human Understanding (Locke), 86­89, 95, 100

Essays on the Intellectual Powers of Man (Reid), 98

Essays Moral, Political and Literary (Hume), 90

Essentialism, 92­95

Euler circles, 603

Evaluating models and modeling

as approach, 287­289

computational vs. verbal models and, 283­285

overview of, 245, 283

sensitivity analysis and, 286­287

Event­related potential (ERP) studies

advantages of, 307­309

background information of, 303­305

disadvantages of, 307­309

language and, 27

selective attention example in, 305­307

technique of, 303­305

Evolution, 67, 478­479

Exemplar model

advantage of, 232

categories of

concept and, 206

levels of, different, 225­228

parallel distributed processing models of, 216, 224­225

term of, 206

use of, 228­232

combined, with prototype model, 216­232

abstractions, exemplar­based, 221­222

advantage of, 231­232

evidence for, empirical, 216­220

other methods of, 224­228

parallel distributed processing models of categorization and, 224­225

rational model and, 222­224

selective attention in, 220­222

comments on, final, 216

concepts of, 206

described, 212­214, 231

disadvantage of, 232

  
Page 722

Examplar model (cont.)

domains of, 206

evidence for, 214­215

historical perspective of, 207­208

models and model classes of, 206­207

overview of, 205­206

problems with, 215­216

selective attention in, 220­222

specificity and generality in cognition and, 232­234

Exhaustive comparison process, 339­340

Experience, 80­81, 88, 101

Experimental psychology, 417­418 

applied, 437­438

Expert systems, 254, 272­273

Explicit learning. See Implicit learning, explicit learning vs.

Explicit memory, 180­181, 188­189, 332

Explicit sequence prediction, 332­334

Extensional cues, 579

External constraints, 143­144

F
Failure to transfer isomorphic reasoning, 395­396

Fallacies in reasoning, 614­619

Familial resemblance, 669­671

Familiarity of task, 394­396

Family studies, 681­682

Feeling­of­knowing judgments, 626, 630­631

Feelings of knowing (FOKs), 636­638

Field approach

in context, 387­392

out of context, 389­392, 404

familiarity of task and, 394­396

intelligence and, 399­404

knowledge as context and, 396­397

physical context, 393

social context, 397­398

socioemotional context, 398­399

three­box problem and, 385­386

transfer and, 399­404

virus problem and, 385­387

Filter theories, 175­176

Fixed list procedure, 337

Fluid abilities, 687­688

fMRI. See Functional neuroimaging

FOKs, 636­638

Forgetting, 517­520

Formal rule theories

described, 595­600

evidence for, 600­602

mental models vs., 587­591, 619­621

Formalism, 119

Forward chain, 597

Fragment­completion tests, 182­183

Free recall

categorized free­recall task and, 327

performance, 340­341

response time vs. accuracy in, 324­330

accuracy and interresponse times and, 324­327

exponential increases in inter­response times and, 328­330

semantic clustering in, 327­328

Frequency vs. probability, 579­580

Frontal lobes, working memory capacity and, 542­544

Functional dissociation, 344­345

Functional neuroimaging (fMRI)

advantages of, 314­316

background information of, 309­312

disadvantages of, 314­316

mental imagery example in, 312­314

technique of, 309­312

Functionalism, 66­67, 460

Funding for research, 418­421

G
Game­relevant events, 31

Gene vs. environment paradigm, 666­667

Gene­environment correlates, 674­675

Gene­environment effects, 673­677

General Problem Solver program, 44, 151

Generalized recognition theory, 366

Genetic influences, 672

  
Page 723

Genotype, 668

Genotype X environment interaction, 675­676

Geocentric theory, 59

Geographical slant, 468­469

Gestalt psychology, 74­75, 459­460

Graduate Record Examination, 399

Grants, research, 420

Gravity, law of, 8

Greece, dialectics in cognitive study and ancient classical, 53­57

Group­theoretic constraints, 470

Guilford's factors, 686

H
Hawaii Family Study of Cognition, 688

Head symbol, 25

Hebb rule, 369, 517

Hellocentric theory, 59

Heredity. See also Behavior­genetic approach to studying individual differences

assortative mating and, 676­677

gene­environment correlates and, 674­675

gene­environment effects and, 673­677

genetic influences and, 672

genotype X environment interaction and, 675­676

Vandenberg and, 686­687

Heritability, 677­681, 686­687

Hidden units, 257

Higgs boson, 423

High­level cognition, computational models of

capacity­constrained activation theory and, 260­272

capacity constraint, 267

modularity, 268­272

sentence processing model, 267­268

evaluating, 284­285

intelligent tutoring systems and, 272­275

lesioning and, cognitive, 275­279

overview of, 245

unified cognitive theory and, 279­283

verbal model vs., 283­284

High­level constraints, 143

Higher­order units of perception, 459

History of India (Mill), 80

Horizontally parallel curves, 359­361

Human chess experts, 247

Human development, 155­162, 164

Human expertise, nature of, 148­154, 164

Humanism, 59

Huntington's disease, 483

Hybrid models, 257­258

I
IBM chess program, 248­249

Idealism, 469

Identity, personal, 92­95

Ill­posed problems, 457­458

Imagery condition, 313

Imagery debate, 124­132

Imagery­baseline condition, 313

Imagery­perception condition, 313

Images, 113­114

Implicit knowledge, 498­499

Implicit learning

explicit learning vs.

affect and, 503­504

attention and, role of, 499­500

awareness and, 425, 486­489

development considerations and, 479­480

developmental differences and, 493­496

evolutionary biology and, 478­479

formal modes of implicit learning and, 501­503

implicit motor learning, 500­501

individual differences and, 493­496

neuroanatomical considerations and, 480­483

neuropsychological issues, 496­499

overview of, 504­505

representational form and, 489­493

  
Page 724

Implicit learning (cont.)

formal modes of, 501­503

intelligence and, 494

study of, 483­485

artificial grammar learning, 476, 483­485, 488, 490­493, 496, 499, 502­503

serial reaction time, 483, 485, 493

term of, 475

Implicit memory, 180­181, 184­189, 300­301, 332

Implicit sequence learning, 332­334

IMV, 401­402

Individual differences in cognitive abilities

behavior­genetic approach to, 666­671

concept of individual differences and, 666

definition of terms in, 667­669

familial resemblance and, 669­671

paradigm of, 666­667

recent studies and, 691

behavior­genetic research and, 677­681, 691

causes for variation and, 681­689

intelligence, 681­686, 690

specific cognitive abilities, 686­689

crystallized abilities and, 687­688

fluid abilities and, 687­688

forces in play, 672­677

environmental influences, 672­673

gene­environment effects, 673­677

genetic influences, 672

Guilford's factors and, 686

implicit vs. explicit learning and, 493­496

lesioning and, 277

observations of, 665

Thurstone's factors and, 686

understanding, 690­691

verbal vs. nonverbal abilities and, 686­687

Inference, term of, 449­450

Inferential approach to perception

ambiguity of optical information and, 451­452

Ames distorted room and, 452­453

book shape and, 450­451

computational models and, 457­458

constraints and, 458, 470­471

described, 448­449

development of, 449­450

idealism and, 469

lightness perception and, 455­456

at metaphysical level, 471

Perkins's laws and, 452, 454­455

size perception and, 456­457

Information­processing systems, 8­13, 43

Informational encapsulation, 258­260

Innate constraints, 146

Innate ideas, theory of, 95

An Inquiry into the Human Mind (Reid), 96

Instance memory, 331

Instance­based learning, 332

Intelligence (IQ)

Binet and, 653­658

Cognition and, 399­404

environment and, 683­684

Galton and, 651­652

heritability and, 686­687

implicit learning and, 494

individual differences in cognitive abilities and, 681­686, 690

testing, 645­646, 651, 653­658, 663

transfer ability and, 399­404

twin studies and, 683

Intelligent tutoring systems, 272­275

Intention, 177

Intentionality, 177­178

Interactive activation model (IAM), 255

Interactive model variable (IMV), 401­402

Internal constraints, 143­144

Internal representation, 8­9

Interresponse times (IRTs), 325­330, 335

Intuitionism, 95­100

  
Page 725

Intuitive knowledge, 87, 99

Invariant structure, 463

IQ. See Intelligence

IRTs, 325­330, 335

J
JOR task, 371

Judgment of recency (JOR) task, 371

Judgments

of confidence, 364­365

ease­of­learning, 629

feeling­of­knowing, 626, 630­631

of invalidity, 620

judgment of recency task and, 371

of learning, 626, 630

retrospective confidence, 631

K
Knowing that vs. knowing how, 181

Knowledge

as context, 396­397

declarative, 116, 181­182, 194

demonstrative, 87

effects, 396

experience and, 80­81, 101

feeling­of­knowing judgments and, 626, 630­631

forms of, 102

implicit, 498­499

intuitive, 87, 99

knowing that vs. knowing how, 181

organization of, 296­298

a posteriori, 62

a priori, 62, 100­102, 458­459

problem of, 79­80

procedural, 116, 194

reasoning process and, 612­614

representation

imagery debate and, 124­132

multiple­code theory of, 114, 116­117, 121­124, 131

nature of, 114­116

single­code theory of, 114, 116­121, 131

theories of, 113­114

understanding, 131­132

schemata of, 101­102

sensitive, 87­89, 95

thought level, 13

Korsakoff patients, 635­616

Kpelle culture, 656­663

L
Laboratory approach

in context, 387­392

out of context, 389­392, 404

familiarity of task and, 394­396

intelligence and, 399­404

knowledge as context and, 396­397

physical context, 393

social context, 397­398

socioemotional context, 398­399

three­box problem and, 385­386

transfer and, 399­404

virus problem and, 385­387

Language

Broca's aphasia, and, 22­23, 27, 298

Chomsky and, 24­27

closed classes of words and, 23­24

cognitive theory and, 21­34

computational models of, 24­30

neuropsychological studies of, 22­24

at representational level, 30­34

event­related potential studies and, 27

lexicon of, 25­26

open classes of words and, 23­24, 26

rewriting rules and, 25

semantics, 591­595

syntax

primacy of, 26

semantics vs., 591­595

Wernicke's aphasia and, 22­23

Late selection theories, 176

Law of Contradiction, 87­88

Law of effect principle, 70

LDTs, 330

Learned helplessness, 143

Learning. See also Implicit learning

artificial grammar learning tasks and, 476, 483­485

associationism and, 69

classically conditioned, 71

ease­of­learning judgments and, 629

  
Page 726

Learning (cont.)

implicit sequence, 332­334

instance­based, 332

intelligent­tutoring systems and, 272­275

judgments of, 626, 630

motor, implicit, 500­501

nonsense syllable, 41, 389

power law of, 330­332

rule­based, 332

teach­aloud technique of, 488

Lesion studies

advantages of, 301­303

animal, 275

background information of, 298­299

disadvantages of, 301­303

memory systems example in, 299­301

technique of, 298­299

Lesioning, cognitive, 275­279

Level of processing, 525

Lexical decision tasks (LDTs), 330

Lexicon of language, 25­26

Lightness perception

ecological approach to perception and, 461­462

inferential approach to perception and, 455­456

Linguistics. See Language; Psycholinguistics

Links, 118

LISP programming language, 273­275

Lockean self, 92­93

The Logic of Perception (Rock), 455

Logical errors, 589

Long­term memory, 345

Long­term store (LTS)

coding of, 521­522

described, 517

forgetting and, 517­520

serial processing and, 524

transfer ability and, 520­521, 524­525

Low­level constraints, 143

LTS. See Long­term store

Luce's Choice Rule, 209

M
M­space, 526

McClelland­Ashby model, 347

Manhattan Project, 415

Masked semantic priming, 189

Materialism, 86­91

Mathematical function, 17, 19­21

Mathematics, intellectual vs. practical motivation in, 409­413

Matter, concept of, 95

Media­temporal lobe (MTL) memory system, 185, 480­482, 497­498

Memory. See also Long­term store (LTS); Short­term store (STS); Working memory (WM)

analysis, under conditions of high accuracy

in explicit sequence prediction, 332­334

in implicit learning sequence, 332­334

preexperimental semantic representations and, 330­332

Ranschburg effect, 334­337

subspan item­recognition task and, 337­344

conscious and unconscious cognition and 

distinctions between explicit and implicit, 180­181, 188­189

explicit, 180­181, 188­189

implicit, 180­181, 184­189

tasks, 181­184, 186

declarative, 181, 300

dual­process model of, 187

dynamic model of, 533­534

explicit, 180­181, 188­189, 332

forgetting and, 517­520

implicit, 180­181, 184­189, 300­301, 332

instance, 331

long­term, 345

  
Page 727

models of response time data in human, 362­370

connectionist models and, 368­370

diffusion model and, 366­368

findings of, empirical, 362­363

signal detection theory and, 363­366

multi­store model

described, 516­517

evidence for, neuropsychological, 522­523

problems with, 523­526

working memory and, 526­527

nondeclarative, 181

primary, 526

procedural, 181, 300

reliance, rationality and, 565­567

rule, 331

short­term, 311, 345, 515­516, 541

span, 337

speed­accuracy trade­off curves in study of human, 352­356

strength, 363

systems, identifying, 299­301

transfer ability and, 520­521

Meno (Plato), 57

Mental activity. See Brain

Mental imagery, 312­314

Mental logic, 589

Mental models

described, 602­608

evidence for, 608­614

formal rule theories vs., 587­691, 619­621

judgments of invalidity and, 620

Mental Models (Johnson­Laird), 317­318

Mental representations, 114­116

Metacognition

consciousness and, 638­639

control, 632­635

in retrieval, 634­635

in self­paced acquisition, 632­634

term of, 625, 626

ease­of­learning judgments and, 629

feeling­of­knowing judgments and, 626, 630­631

judgments of learning and, 626, 630

metamemory and, 627­629

monitoring

overview of, 625­626, 628

reality, 631­632

source information, 631­632

neuropsychological correlates of, 635­638

retrospective confidence judgments and, 631

Metamemory

metacognition and, 627­629

monitoring, 627­629

term of, 627

Metaphysics (Aristotle), 82, 85

Methodological empiricism, 80

Middle Ages, dialectics in cognitive study and, 57­59

The Mind of Primitive Man (Boas), 648

Mind­body problem

alcohol and, 4­5

Aquinas and, 58

Crick and, 6­7

Descartes and, 4, 6­7, 60­61

Hippocrates and, 54

historical perspective of, 317

men's beliefs about women's desires and, 5­6

Simon and, 6

Minimal rationality, 562­563

Modal models, 174­175

Modality effect, 344

Model classes, 206­207. 

See also specific types

Models of premises, initial, 611­612

Models, specification of, 206­207. 

See also specific types

Modularity, 104, 268­272

Modus tollens proof, 596

Monism, 55, 62

Monozygotic (MZ) twins, 670, 683

Motion, Newton's laws of, 14

  
Page 728

Motivations for research

in mathematics, 409­413

personal, 421­428

how researchers decide what to research, 423­428

why people do research, 421­423

social, 428­437

judging value of research, 432­437

justifying research, 428­432

Motor learning, implicit, 500­501

MRI studies, 310. See also Functional neuroimaging (fMRI)

MTL memory system, 185, 480­482, 497­498

Multi­store model of memory

described, 516­517

evidence for, neuropsychological, 522­523

problems with, 523­526

working memory and, 526­527

Multidimensional categorization tasks, 366

Multiple Drafts Model, 178

Multiple­code theory of knowledge representation

described, 121­124

single­code theory vs., 116­117, 131

term of, 114

Multiple­model problems, 608­611

Multiplicative function, 213

MYCIN expert system, 273

MZ twins, 670, 683

N
N­ray research, 435­436

National Highway Traffic Safety Agency, 418­419

National Institutes of Health, 418­419

National Research Council (NRC), 439­440

National Science Foundation, 419

Natural assessment approach, 575­576

Negative priming, 140

Negative probe, 337

Neural nets, 587

New Essays on the Understanding (Leibniz), 100

Newtonian mechanics, 7­8, 13

Nodes, 118

Nominalism, 85­86

Nonadditive genetic effects, 672

Nonconscious contents vs. unconscious processes, 194­196

Nondeclarative memory, 181

Nonsense syllable learning, 41, 389

Nonshared environmental effects, 673

Nonterminal symbols, 25­26

Norm of study, 632

Normative theory, 558­560, 564

Noumena, 102

Novum organum (Bacon), 86­87

NRC, 439­440

O
Objective threshold point, 191

On Memory (Aristotle), 84

One­model problems, 608­611

Ontological rationalism, 81

Open classes of words, 23­24, 26

Open system, 7­8

Optical flow, 463, 465, 469

Optical information, ambiguity of, 451­452

P
Parallel addition, 19­20

Parallel distributed process (PDP) models, 216, 224­225, 531­533

Parkinson's disease, 483

Partial­report procedure, 296­297

Pascal programming language, 273;

Passive gene­environment correlation, 674

Pavlovian conditioning, 72­73

PDP models, 216, 224­225, 531­533

Perception

complexity of, 447

computational vs. algorithmic theories and, 469­470

condition, 313

distal stimulus and, 447­448

  
Page 729

ecological approach to, 459­469

affordances and, 460, 467­468

Ames distorted room and, 463­464

book shape and, 462­463

described, 449

environment and, 461, 465

functionalism and, 460

geographical slant and, 468­469

Gibson and, 459, 467, 470­471

higher­order units of perception and, 459

lightness perception and, 461­462

at metaphysical level, 471

optical flow and, 463, 465, 469

realism and, 469

size perception and, 465­467

surface layout and, 461

of environment, 465

explicit vs. implicit, 189­192

inferential approach to, 448­458

ambiguity of optical information and, 451­452

Ames distorted room and, 452­453

book shape and, 450­451.

computational models and, 457­458

constraints and, 458, 470­471

described, 448­449

development of, 449­450

idealism and, 469

lightness perception and, 455­456

at metaphysical level, 471

Perkins's laws and, 452, 454­455

size perception and, 456­457

proximal stimulus and, 447­448

questions about, 469

rigidity constraints and, 470­471

subliminal, 189

Perception­baseline condition, 313

Perceptrons, 256

Perceptual representation systems (PRSs), 185

Performance curves, 357­362

Perkins's laws, 452, 454­455

Perspective structure, 463

PET, 129, 309­310, 313

Phenomena, 102

Phenomenalism, 89

Phenotype, 667­668

Phenotypic variance, causal components of, 668­669

Philosophy, 53­57

Physical context, cognition and, 393

Physical symbol system, 14, 250

Physics (Aristotle), 84

Physiology, 53­57

PI tests, 183

Piecemeal approach, 173

Positive probe, 337

Positive tests, reliance on, 570­572

Positivistic reserve, 173, 177

Positron­emission tomography (PET), 129, 309­310, 313

Posterior Analytics (Aristotle), 84

Power law of learning, 330­332

Pragmatic dualism, 6­7, 13

Pragmatism, 67­69

Preconscious cognition, 195

Prediction, explicit sequence, 332­334

Preexperimental semantic representations, 330­332

Primacy effect, 325

Primary memory, 526

Primed condition, 359

Priming

activation view and, 187

associative, 120­121

negative, 140

performance curves and, 358­359

repetition, 191­192

semantic, 182­183

masked, 189

stimulus, 358­359

Principium Individuationis matter, 92­93

Principle of truth, 605

Proactive inhibition (PI) tests, 183

Probabilistic classification task, 497

Probability vs. frequency, 579­580

  
Page 730

Problem isomorphs, 395

Problem space, 253

Procedural knowledge, 116, 194

Procedural memory, 181, 300

Process constraints, 144­145

Process dissociation view, 177­178, 186

Production system, 250­251

Program, term of, 15

Proposal, request for research, 419­420

Propositional view of mental imagery, 312

Propositions, 113, 119, 131

Prototype model

advantage of, 229

categories of

concept and, 206

levels of, different, 225­228

parallel distributed processing models of, 216, 224­225

term of, 206

use of, 228­232

combined, with exemplar model, 216­232

abstractions, exemplar­based, 221­222

advantage of, 231­232

evidence for, empirical, 216­220

other methods of, 224­228

parallel distributed processing models of categorization and, 224­225

rational model and, 222­224

selective attention in, 220­222

concepts of, 206

described, 208­209, 229

disadvantage of, 229­230

domains of, 206

evidence for, 209­211

historical perspective of, 207­208

models and model classes of, 206­207

overview of, 205­206

problems with, 211­212

specificity and generality in cognition and, 232­234

Proximal stimulus, 447­448

PRSs, 185

Psycholinguistics, 21­22. See also Language

Psychological constraints. See Constraints

Psychology

antecedents of, Western

Christian era, early, 57­59

Greece and Rome, ancient classical, 53­57

modern period, 60­64

Renaissance, 59­60

cognitive studies and

associationism, 69­71

behaviorism, 70­74

cognitivism, 75­76

diverging perspectives of modern, 64

functionalism, 66­67

Gestalt, 74­75, 459­460

philosophy and physiology merged with, 63­64

pragmatism, 67­69

structuralism, 64­66

culture­based measures of cognition and, 649­651

experimental, 417­418

applied, 437­438

philosophy behind, 4­8

dualism, 4­7

science studies systems, 7­8

Psychophysics, 650

PSYCOP theory, 595­600, 620­621

Pure intuitions (Anschauungen), 101, 105

Pythagorean theorem, 557

R
Radical behaviorism, 72­74

Radical empiricism, 106

Random search­with­replacement model, 329

Ranschburg effect, 334­337

Rapid single visual presentation (RSVP), 29

RAT, 192­193

  
Page 731

Rational model, 222­224

Rationalism

analytical, 81

empiricism vs.

debate of, 62

essentialism and, 92­95

identity and, personal, 92­95

implications for cognitive psychology and, 103­106

intuitionism and, 95­100

issues framing, 82­85

materialism and, 86­91

nominalism and, 85­86

a priori knowledge and, 100­102

realism and, 85­86

skepticism and, 86­91

universals and, problem of, 85­86

ontological, 81

Plato and, 56, 81

teleological, 81

term of, 80­81

Rationality. See also Cognition; Thought

assessments of

limitations of, 559­561

natural, 575­576

associative thought and, 577­579

bounded, 573­576

conditioned proof rule and, 596

descriptive theory and, 560­561

deviations from ideal, 564­565

education and, 580

errors and

bounded rationality, 573­576

cognitive illusions, 565

memory, reliance on, 565­567

natural assessment approach and, 575­576

positive tests, reliance on, 570­572

reasons for, 573­576

similarity, reliance on, 567­570

value of, 563­564

visual illusions, 546­565

extensional cues and, 579

forms of, 557­559

minimal, 562­563

modus tollens proof and, 596

normative theory and, 558­560, 564

practical, 563

probability vs. frequency and, 579­580

reductio ad absurdum rule and, 596

of response, 557­559

rule­based thought and, 576­577, 580­581

term of, 557

theoretical, 563

Raven Progressive Matrices Test, 278, 540­541

Realism, 85­86, 96, 469

Reality monitoring, 631­632

Reasoning. See also Rationality

deduction and, natural, 591, 595

fallacies in, 614­619

formal rule theories and

described, 595­600

evidence for, 600­602

mental models vs., 587­591, 619­621

isomorphic, failure to transfer, 395­396

knowledge and process of, 612­614

logical errors and, 589

mental logic and, 589

mental models and

described, 602­608

evidence for, 608­614

formal rule theories vs., 587­591, 619­621

judgments of invalidity and, 620

process, 612­614

syntax vs. semantics and, 591­595

truth in, 614­619

Recall, 296­297, 518

Recall and recognition tests, 182­183

Receiver operating, characteristic (ROC) curves, 364­365

Recency effect, 325

Reductio ad absurdum rule, 596

Reductionism, 61

  
Page 732

Regulae philosophandi (Newton), 80

Remote Associate Test (RAT), 192­193

Renaissance, dialectics in cognitive study and, 59­60

Repetition priming, 191­192

Representational form, 489­493

Representations, 114, 388. 

See also specific types

Request for proposal, 419­420

Research. See also specific types

assessments of, 428­437

judging value of research results, 432­437

justifying research, 428­432

basic vs. applied, 409, 414­417

citations of, 435

cognitive research opportunities and, 438­441

comments summarizing, 441­442

contract, 420

experimental psychology, 417­418

applied, 437­438

funding for, 418­421

grants, 420

implications for cognitive, 438­441

mathematics, intellectual vs. practical motivation in, 409­413

motivations for

in mathematics, 409­413

personal, 421­428

social, 428­437

N­ray, 435­436

organizations, 420­421

poor, 435­436

proposal, request for, 419­420

science and engineering, interdependence of, 413­414

Response signal procedure (RSP), 352­353

Response time (RT), term of, 323

Response time vs. accuracy

in free recall, 324­330

accuracy and interresponse times in, 324­327

exponential increase in inter­response times and, 328­330

semantic clustering in, 327­328

judgment of recovery task, 371­372

measurement instruments and, 323­324

memory analysis and, 344­347

in explicit sequence prediction, 332­334

in implicit learning sequence, 332­334

preexperimental semantic representations and, 330­332

Ranschburg effect, 334­337

subspan item­recognition task and, 337­344

performance curves, 357­362

connectionist models and, 368­370

diffusion model and, 366­368

findings of, empirical, 362­363

models of response time data in human memory and, 362­370

signal detection theory and, 363­366

single dimension of information, 370­373

speed­accuracy trade­offs, 347­352

criticism of, 356­357

curves, 347­350, 352­356

error rates and, equalizing, 352

in human memory, 352­356

implications of observing only response times and, 348­350

quantitative interpretational difficulties and, 351­352

safe ordinal conclusions and, 350­351

task analysis and, 344­347

Response time­distance hypothesis, 365­366

Retrieval, metacognitive control in, 634­635

Retroactive inhibition (RI) tests, 183

Retrospective confidence judgments, 631

  
Page 733

Reverberatory traces, 517­518

Rewriting rules, 25

RI tests, 183

Riemannian geometry, 96­98

Rigidity constraints, 470­471

ROC curves, 364­365

Rome, dialectics in cognitive study and, 53­57

RSP, 352­353

RSVP, 29

Rule discovery task, 571­572

Rule memory, 331

Rule­based learning, 332

Rule­based thought, 12­13, 576­577, 580­581

S
SAD, 357

SAM model, 325

SAS, 529­530

SAT curves, 347­350, 352­356

The Satanic Verses (Rushdie), 30­31

Scanning model, 340

Schema, concept of, 32, 388

Schemata of knowledge, 101­102

Schneider and Detweiller model, 531­533

Science, engineering and, 413­414

Science studies systems, 7­8

Scientific law, 7

Scientific revolution, 3­4

SDT, 363­366

Search of Associative Memory (SAM) model, 325

Search set, 329

Selective attention

in event­related potential studies, 305­307

in exemplar models, 220­222

Self­paced acquisition, metacognitive control in, 632­634

Self­terminating comparison process, 339

Semantic clustering, 327­328

Semantic priming, 182­483

Semantics, syntax vs., 591­595

Sensations, elementary, 88

Sensitive knowledge, 87­89, 95

Sensitivity analysis, 286­287

Sentence Verification tasks, 330

Sentencing processing model, 267­268

Separation studies, 681­684

Serial addition, 19

Serial comparison process, 339

Serial exhaustive­scanning (SES) model, 341­342, 354­355

Serial position curve, 325

Serial processing, 524

Serial reaction time (SRT) study, 483, 485, 493

SES model, 341­342, 354­355

SES (socioeconomic status), 673, 683

Shared environmental effects, 673

Short­term memory, 311, 345, 515­516, 541

Short­term store (STS)

Atkinson and Shriffin's model of, 516­517

coding and, 521­522

forgetting and, 517­520

serial processing and, 524

transfer ability and, 520­521, 524­525

Signal detection theory (SDT), 363­366

Similarity, reliance on, 567­570

Similarity spaces, 159

Simple recurrent network (SRN), 502

Single­code theory of knowledge representation

described, 116­121

multiple­code theory vs., 116­117, 131

term of, 114

Single­memory system view, 185

Situated action, 41­42

Situated cognition, 40­43

Size perception

ecological approach to perception and, 465­467

inferential approach to perception and, 456­457

  
Page 734

Skepticism, 86­91

Slave systems, 527­529, 531

SOAR production system architecture, 281­283

Social context, cognition and, 397­398

Socioeconomic status (SES), 673, 683

Socioemotional context, cognition and, 398­399

Solid Philosophy Asserted (Sergeant), 94

Source amnesia, 632

Source information, 631

Source information monitoring, 631­632

Speed­accuracy decomposition (SAD), 357

Speed­accuracy trade­off (SAT) curves, 347­350, 352­356

Speed­accuracy trade­offs

criticism of, 356­357

curves, 347­350, 352­356

error rates and, equalizing, 352

in human memory studies, 352­356

implications of observing only response times and, 348­350

quantitative interpretational difficulties and, 351­352

safe ordinal conclusions and, 350­351

Split brain patients, 22

SRN, 502

SRT study, 483, 485, 493

Statement of work in research contract, 420

Static constraints, 145­146

Stem­completion tests, 182­183

Strength theory, 363, 365

Structural description system, 185

Structuralism, 64­66

Structure constraints, 144­145

STS. See Short­term store

Study­test lag, 363

Subconscious, 195

Subjective threshold point, 191

Subliminal perception, 189

Subspan item­recognition task, 337­344, 365­366

Subspan lists, 337

Substance dualism, 6

Supervisory attentional system (SAS), 529­530

Supraspan lists, 337

Surface layout, 461

Symbolic architecture, 250­254

Symbolic representation, 114

Syntax

primacy of, 26

semantics vs., 591­595

System architecture, 18­19

Systematic errors, 611­612, 620­621

Systems

activation­based production, 261

auditory word form, 185

closed, 7­8

expert, 254, 272­273

information­processing, 8­13

intelligent tutoring, 272­275

long­term memory, 345

medial­temporal lobe memory, 185

memory, identifying, 299­301

open, 7­8

perceptual representation, 185

physical symbol, 14

science studies, 7­8

short­term memory, 345

structural description, 185

of thought, 16­17

visual word form, 185

T
Tabula rasa (''blank slate"), 61, 88

Target stimulus, 358­359

Task analysis, using accuracy and response time data, 344­347

Teach­aloud technique, 488

Teleological rationalism, 81

Test construction, thought experiment in, 656­662

  
Page 735

Texture gradients, 466­467

Thought. See also Cognition; Rationality

associative, 577­579

computational models of, 13­17

culture and, 647­648

domain­generality vs. domain­specificity and, 164­165

experiment in test construction, 656­662

explicit vs. implicit, 192­194

knowledge level of, 13

physical level of, 13, 16

representational level of, 13­14, 16

rule­based, 12­13, 576­577, 580­581

systems of, classes of, 16­17

3CAPS (capacity­constrained concurrent activation­based production system), 261, 266, 279

Three­box problem, 385­386

Thurstone's factors, 686

Tone detection task, 519­520

Torque Project (MIT), 392

Torrance Test of Creating Thinking, 689

Transfer ability

intelligence and, 399­404

long­term store and, 520­521, 524­525

memory and, 520­521

short­term store and, 520­521, 524­525

Transfer­appropriate processing view, 186

A Treatise concerning the Principles of Human Knowledge (Berkeley), 89

A Treatise on Human Nature (Hume), 90

True forms, 85

Truth, 605, 614­619

Twenty Questions game, 281

Twin studies, 670­671, 682­683, 687

U
Unconscious cognition

automatic vs. control processing and, 174­178, 194

automaticity and, 178­180

cognitive resources and, 177­178

intentionality and, 177­178

memory and

distinction between explicit and implicit, 180­181, 188­189

explicit, 180­181, 188­189

implicit, 180­181, 184­189

tasks, 181­184

perception and, explicit vs. implicit, 189­192

thought and, explicit vs. implicit, 192­194

unconscious processes vs. nonconscious contents and, 194­196

Unconscious processes vs. nonconscious contents, 194­196

Unified cognitive theory, 279­283

Universals, problem of, 85­86

Unprimed condition, 359

Usher and McClelland model, 369

V
Value of error, 563­564

Varied list procedure, 337

Verbal Behavior (Skinner), 103

Verbal model, 283­284

Verbal scholastic aptitude scores (VSAT), 535, 54­1

Visual illusions, 564­565

Visual processing, 313­314

Visual word form system, 185

Visual­spatial sketchpad, 527

W
WAIS­R, 400, 402

Wason's rule discovery paradigm, 571­572

Wechsler Adult Intelligence Scale­Revised (WAIS­R), 400, 402

Well­posed problems, 458­459

Wernicke's aphasia, 22­23

Whole­report procedure, 296­297

Width of applicability, 141­143, 165

  
Page 736

Working memory (WM)

agrammatic aphasia and, 276

Baddeley and Hitch system, 527­531

central executive, 527, 529­531

slave systems, 527­529, 531

capacity

central executive, 534­539

frontal lobes, 542­544

Cowan model of, 533­534

measurement issues, 539­542

multi­store model of memory and, 526­527

other approaches to, 531­534

parallel distributed model of, 531­533

Schneider and Detweiller model of, 531­533

Z
Zeitgeist, 51

Zombie state, 178­180

  

You might also like