TWK2A
The Laplace transform (Section 7.1)
Solutions
1.
                         t 0 t<1
          f (t) =
                         1  t 1
                    Z1
                             st
         Lff g =         e        f (t)dt
                    0
                    Z1                    Z1
                             st                      st
               =         e        tdt +         e         dt
                    0                     1
                                     1          Z1                     Z1
                         e st t          1                 st                   st
               =                       +             e          dt +        e        dt
                          s          0   s
                                                0                      1
                         s                    st     1                      0
                   e    1                 e               e st
               =     +                                    +
                   s    s                 s          0     s                1
                   e s 1                    e   s
                                                       1    e s
               =      +                              +   +
                   s      s                 s          s     s
                         s
                 1    e
               = 2                          (s > 0)
                 s     s2
2.
                        2t + 1 0 t < 1
      f (t) =
                           0    t 1
                Z1
                            st
     Lff g =            e           f (t)dt
                0
                Z1                                          Z1
                            st                                        st
           =            e           (2t + 1)dt +                  e        0dt
                0                                           1
                    Z1                             Z1
                                    st                      st
           = 2              e            tdt +          e        dt
                    0                              0
                    0                                                         1
                                          st   1            Z1                     Z1
                                    e t            1
           = 2@                                  +                e   st
                                                                           dtA +            e   st
                                                                                                     dt
                                     s         0   s
                                                            0                      0
                                                                      !
                                     s                      st    1                    st       1
                                e              1        e                         e
           = 2                            +                                +
                                s              s        s         0               s             0
                                s                  s                      s
                    2e                    2e     2 e     1
           =                                 2
                                               + 2     +
                     s                     s    s    s   s
                                s
                    3e                    2e s 1   2
           =                                   + + 2    (s > 0)
                     s                     s2   s s
3.
                            2t 5
           f (t) = e
                   Z        1
                                         st        2t 5
          Lff g =                   e         e           dt
                        0
                                Z1
                            5                 (s+2)t
                  = e                    e             dt
                                0
                                                          1
                            5            e(s+2)t
                  = e
                                        (s + 2)           0
                            5             1
                  = e
                                        s+2
                       e 5
                  =                                (s >        2)
                      s+2
4.
                 8
                 < 0;           06t<a
         f (t) =    c;          a6t<b
                 :
                    0;          t>b
                     Z          b
                                             st
     L ff (t)g = 0 +                ce            dt + 0
                            a
                                         b
                    c               st
              =        e
                  ( s)                   a
                  c(e sa                e     sb
                                                   )
              =                                        ;            s>0
                                s
5.
                        Z    1
        2    2t
     Lft e        g =            t2 e   2t
                                             e   st
                                                      dt
                        Z0 1
                   =             t2 e   (s+2)t
                                                      dt
                         0
                                  (s+2)t         1            Z   1               (s+2)t
                         2   e                                               e
                   = t                                                2t                   dt
                                 (s + 2)       0     0                           (s + 2)
                                             (s+2)t 1                 Z      1
                                     e                                            e (s+2)t
                   = 0           2 t                                                       dt   (s >   2)
                                     (s + 2)2                 0         0         (s + 2)2
                                                       1
                            e (s+2)t
                   = 0 2
                           (s + 2)3                    0
                        2
                   =
                     (s + 2)3
6.
                                                  Z       2
                                                                   st
                             F (s) =                          4e        dt
                                                      0
                                             4 st 2
                                         =     e    0
                                             s
                                             4
                                         =      e 2s 1
                                             s
                                           4 (1 e 2s )
                                         =             ; s>0
                                                 s
7.
                                  Z
                                               st
               F (s) =                    e         sin t dt
                                      0
                                                             Z
                                      1        st                     1
                            =               e sin t                         e st cos t dt
                                      s                 0     0       s
                                          Z
                                      1
                            =     0+           e st cos t dt
                                      s 0
                                                              Z
                                       1        st                      1
                            =           2
                                             e cos t                      2
                                                                              e st ( sin t) dt
                                      s                   0     0       s
                                                                    Z
                                      1              s            1
                            =                    e         1             e st sin t dt
                                     s2                          s2 0
                                  1+e s            1
                            =          2
                                                     F (s)
                                     s            s2
                                  1+e s
          ) F (s) =                          :
                                   1 + s2
8.
               Z    1
                            st t
     F (s) =            e       e cos t dt
               Z0 1
          =             e(1     s)t
                                      cos t dt
                0
                                                       1       Z   1
                        1             (1 s)t                               1
          =                      e             cos t                               e(1       s)t
                                                                                                   ( sin t) dt
                    1       s                          0       0       1       s
                         Z 1
            0  1    1
          =      +           e(1 s)t sin t dt                                                            (s > 1)
            1  s 1 s 0
                                                   1                                Z        1
             1      1         1       (1 s)t                                                             1
          =      +                   e       sin t                                                               e(1   s)t
                                                                                                                             cos t dt
            s 1 1 s         1 s                    0                                     0           1       s
                                Z 1
             1            1
          =      +0                  e(1 s)t cos t dt
            s 1        (s 1)2 0
             1        1
          =                F (s)
            s 1 (s 1)2
      Make F (s) the subject of the equation:
              (s        1)2 + 1 F (s) = s           1
                                                   s 1          s 1
                                         F (s) =            =           ;                                 s>1
                                                 (s 1)2 + 1   s2 2s + 2
 9.
                   Z    1
                                 st
      F (s) =               e         t cos t dt
                    0
                                      1   Z 1
                        1    st                        1
             =              e t cos t                      e st (cos t t sin t) dt
                        s             0     0          s
                          Z                     Z
                        1 1 st                1 1 st
             =     0+          e cos t dt              e t sin t dt                      (s > 0)
                        s 0                   s 0
                                                             1    Z 1
                   1      s       1       1       st                        1
             =                                 e     t sin t                  e st (sin t + t cos t) dt
                   s s2 + 1       s       s                                 s
                                    Z                        0
                                                               Z 0
                      1          1 1 st                      1 1
             =               0          e sin t dt                 t cos t dt
                   s2 + 1        s2 0                       s2 0
                      1       1      1         1
             =                                    F (s)
                   s2 + 1 s2 s2 + 1            s2
      Make F (s) the subject of the equation:
                                                      s2        1    s2 1
                                (s2 + 1)F (s) =                    =
                                                    s1 + 1 s2 + 1    s2 + 1
                                                     s2 1
                                            F (s) =           ;   s>0
                                                    (s2 + 1)2
10.
                                ekt + e        kt
                                                                                1
             cosh kt =                              ) L fcosh ktg =               L ekt + L e             kt
                                                                                                               :
                                     2                                          2
      Now,
                                                        Z1                      Z1
                                          kt                        st kt
                                  L e               =           e    e dt =             e(   s+k)t
                                                                                                     dt
                                                        0                           0
                                                             ( s+k)t        1
                                                            e                           1
                                                    =                           =
                                                                s+k         0       s        k
      and
                                                           Z1                                              Z1
                                       kt                                      st           kt
                           L e                       =                 e            e            dt =               e(    s k)t
                                                                                                                                      dt
                                                           0                                               0
                                                                   ( s k)t                   1
                                                               e                                           1
                                                     =                                                =       :
                                                                       s               k     0            s+k
      Hence,
                                            1             1                         1                      1                           2s
                 L fcosh ktg =                                         +                               =
                                            2         s        k                   s+k                     2             (s           k) (s + k)
                                                     s
                                   =                           :
                                            s2            k2
11.
                                   Z   1
                                                              st
               L ff (t)g =                  f (t)edt
                                   0
                                   Z                Z                              1                                          Z       1
                                        2
                                              st                                                 st                                           st
                           =                0e dt +                                     e             cos t dt =                          e        cos t dt
                                   0                                           2                                                  2
      Now,
       Z 1                                                                          Z       1
                 st                             st                 1                                           st
             e        cos tdt =         e            sin t                                       ( se               ) sin tdt
                                                                   2
        2
                                                                   Z           1
                                                                                        2
                                                 s2                                         st
                               =            e            +s                         e             sin tdt                                 s>0
                                                                           2
                                                                                                                          Z                                     !
                                                                                                                                  1
                                                 s2                                         st                 1                                   st
                               =            e            +s                         e            cos t              +                 ( se              ) cos tdt
                                                                                                               2
                                                                                                                              2
                                                                       Z           1
                                                 s2                2                         st
                               =            e                  s                        e         cos t dt
                                                                               2
      and so                                              Z        1
                                                                                   st                                e s2
                               L ff (t)g =                                 e            cos t dt =                        :
                                                               2
                                                                                                                   1 + s2
12.
                    f (t) = t2 + 6t 3
                   Lff g = Lft2 + 6t 3g
                          = Lft2 g + 6Lftg   3Lf1g
                             2    6    3
                          = 3+ 2         :
                            s     s    s
13.
       f (t) = (2t 1)3 = (2t 1)(4t2 4t + 1) = 8t3    12t2 + 6t   1
      Lff g = 8Lft3 g 12Lft2 g + 6Lftg Lf1g
               8 3! 12 2!       6  1
             =     4       3
                              + 2
                 s       s     s   s
               48 24        6  1
             = 4        + 2      :
               s     s3    s   s
14.
                     f (t) = cos 5t + sin 2t
                    Lff g = Lfcos 5tg + Lfsin 2tg
                                s           2
                           = 2        + 2     :
                             s + 25 s + 4