0% found this document useful (0 votes)
215 views8 pages

Twk2A The Laplace Transform (Section 7.1) Solutions

1. The Laplace transform of f(t) = t for 0 < t < 1 and f(t) = 1 for t ≥ 1 is 1/(s2). 2. The Laplace transform of f(t) = 2t + 1 for 0 < t < 1 and f(t) = 0 for t ≥ 1 is 3/(s2) + 2/s. 3. The Laplace transform of f(t) = e5t for t ≥ 0 is e5/(s-2). 4. The Laplace transform of f(t) = 8 for 0 < t < a, f(t) = c for a < t < b, and f(t
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
215 views8 pages

Twk2A The Laplace Transform (Section 7.1) Solutions

1. The Laplace transform of f(t) = t for 0 < t < 1 and f(t) = 1 for t ≥ 1 is 1/(s2). 2. The Laplace transform of f(t) = 2t + 1 for 0 < t < 1 and f(t) = 0 for t ≥ 1 is 3/(s2) + 2/s. 3. The Laplace transform of f(t) = e5t for t ≥ 0 is e5/(s-2). 4. The Laplace transform of f(t) = 8 for 0 < t < a, f(t) = c for a < t < b, and f(t
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

TWK2A

The Laplace transform (Section 7.1)


Solutions
1.
t 0 t<1
f (t) =
1 t 1
Z1
st
Lff g = e f (t)dt
0
Z1 Z1
st st
= e tdt + e dt
0 1

1 Z1 Z1
e st t 1 st st
= + e dt + e dt
s 0 s
0 1
s st 1 0
e 1 e e st
= + +
s s s 0 s 1
e s 1 e s
1 e s
= + + +
s s s s s
s
1 e
= 2 (s > 0)
s s2
2.
2t + 1 0 t < 1
f (t) =
0 t 1
Z1
st
Lff g = e f (t)dt
0
Z1 Z1
st st
= e (2t + 1)dt + e 0dt
0 1
Z1 Z1
st st
= 2 e tdt + e dt
0 0
0 1
st 1 Z1 Z1
e t 1
= 2@ + e st
dtA + e st
dt
s 0 s
0 0
!
s st 1 st 1
e 1 e e
= 2 + +
s s s 0 s 0
s s s
2e 2e 2 e 1
= 2
+ 2 +
s s s s s
s
3e 2e s 1 2
= + + 2 (s > 0)
s s2 s s
3.
2t 5
f (t) = e
Z 1
st 2t 5
Lff g = e e dt
0
Z1
5 (s+2)t
= e e dt
0
1
5 e(s+2)t
= e
(s + 2) 0

5 1
= e
s+2
e 5
= (s > 2)
s+2

4.
8
< 0; 06t<a
f (t) = c; a6t<b
:
0; t>b
Z b
st
L ff (t)g = 0 + ce dt + 0
a
b
c st
= e
( s) a
c(e sa e sb
)
= ; s>0
s
5.
Z 1
2 2t
Lft e g = t2 e 2t
e st
dt
Z0 1
= t2 e (s+2)t
dt
0
(s+2)t 1 Z 1 (s+2)t
2 e e
= t 2t dt
(s + 2) 0 0 (s + 2)
(s+2)t 1 Z 1
e e (s+2)t
= 0 2 t dt (s > 2)
(s + 2)2 0 0 (s + 2)2
1
e (s+2)t
= 0 2
(s + 2)3 0
2
=
(s + 2)3

6.
Z 2
st
F (s) = 4e dt
0
4 st 2
= e 0
s
4
= e 2s 1
s
4 (1 e 2s )
= ; s>0
s
7.
Z
st
F (s) = e sin t dt
0
Z
1 st 1
= e sin t e st cos t dt
s 0 0 s
Z
1
= 0+ e st cos t dt
s 0
Z
1 st 1
= 2
e cos t 2
e st ( sin t) dt
s 0 0 s
Z
1 s 1
= e 1 e st sin t dt
s2 s2 0
1+e s 1
= 2
F (s)
s s2
1+e s
) F (s) = :
1 + s2

8.
Z 1
st t
F (s) = e e cos t dt
Z0 1
= e(1 s)t
cos t dt
0
1 Z 1
1 (1 s)t 1
= e cos t e(1 s)t
( sin t) dt
1 s 0 0 1 s
Z 1
0 1 1
= + e(1 s)t sin t dt (s > 1)
1 s 1 s 0
1 Z 1
1 1 1 (1 s)t 1
= + e sin t e(1 s)t
cos t dt
s 1 1 s 1 s 0 0 1 s
Z 1
1 1
= +0 e(1 s)t cos t dt
s 1 (s 1)2 0
1 1
= F (s)
s 1 (s 1)2
Make F (s) the subject of the equation:

(s 1)2 + 1 F (s) = s 1
s 1 s 1
F (s) = = ; s>1
(s 1)2 + 1 s2 2s + 2

9.
Z 1
st
F (s) = e t cos t dt
0
1 Z 1
1 st 1
= e t cos t e st (cos t t sin t) dt
s 0 0 s
Z Z
1 1 st 1 1 st
= 0+ e cos t dt e t sin t dt (s > 0)
s 0 s 0
1 Z 1
1 s 1 1 st 1
= e t sin t e st (sin t + t cos t) dt
s s2 + 1 s s s
Z 0
Z 0
1 1 1 st 1 1
= 0 e sin t dt t cos t dt
s2 + 1 s2 0 s2 0
1 1 1 1
= F (s)
s2 + 1 s2 s2 + 1 s2
Make F (s) the subject of the equation:
s2 1 s2 1
(s2 + 1)F (s) = =
s1 + 1 s2 + 1 s2 + 1
s2 1
F (s) = ; s>0
(s2 + 1)2

10.
ekt + e kt
1
cosh kt = ) L fcosh ktg = L ekt + L e kt
:
2 2
Now,
Z1 Z1
kt st kt
L e = e e dt = e( s+k)t
dt
0 0
( s+k)t 1
e 1
= =
s+k 0 s k
and
Z1 Z1
kt st kt
L e = e e dt = e( s k)t
dt
0 0
( s k)t 1
e 1
= = :
s k 0 s+k

Hence,

1 1 1 1 2s
L fcosh ktg = + =
2 s k s+k 2 (s k) (s + k)
s
= :
s2 k2

11.
Z 1
st
L ff (t)g = f (t)edt
0
Z Z 1 Z 1
2
st st st
= 0e dt + e cos t dt = e cos t dt
0 2 2

Now,
Z 1 Z 1
st st 1 st
e cos tdt = e sin t ( se ) sin tdt
2
2
Z 1
2

s2 st
= e +s e sin tdt s>0
2
Z !
1
s2 st 1 st
= e +s e cos t + ( se ) cos tdt
2
2
Z 1
s2 2 st
= e s e cos t dt
2

and so Z 1
st e s2
L ff (t)g = e cos t dt = :
2
1 + s2
12.

f (t) = t2 + 6t 3
Lff g = Lft2 + 6t 3g
= Lft2 g + 6Lftg 3Lf1g
2 6 3
= 3+ 2 :
s s s

13.

f (t) = (2t 1)3 = (2t 1)(4t2 4t + 1) = 8t3 12t2 + 6t 1


Lff g = 8Lft3 g 12Lft2 g + 6Lftg Lf1g
8 3! 12 2! 6 1
= 4 3
+ 2
s s s s
48 24 6 1
= 4 + 2 :
s s3 s s

14.

f (t) = cos 5t + sin 2t


Lff g = Lfcos 5tg + Lfsin 2tg
s 2
= 2 + 2 :
s + 25 s + 4

You might also like