0% found this document useful (0 votes)
188 views2 pages

Mstrip

Microstrip transmission lines are a planar form of transmission line that consists of a flat strip conductor suspended above a ground plane with a dielectric material in between. They allow for smaller circuit sizes than traditional transmission lines. While two dielectric materials makes closed-form analysis difficult, microstrip lines can still propagate signals down to zero frequency. Their construction also enables integration with semiconductor devices. Acceptable approximations are used to estimate characteristics like impedance. Unwanted waveguide modes present an upper frequency limit but can be restricted by choosing thin dielectric and narrow strip widths relative to the highest frequency of interest.

Uploaded by

Faise Jan
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
188 views2 pages

Mstrip

Microstrip transmission lines are a planar form of transmission line that consists of a flat strip conductor suspended above a ground plane with a dielectric material in between. They allow for smaller circuit sizes than traditional transmission lines. While two dielectric materials makes closed-form analysis difficult, microstrip lines can still propagate signals down to zero frequency. Their construction also enables integration with semiconductor devices. Acceptable approximations are used to estimate characteristics like impedance. Unwanted waveguide modes present an upper frequency limit but can be restricted by choosing thin dielectric and narrow strip widths relative to the highest frequency of interest.

Uploaded by

Faise Jan
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

EEE194RF Microstrip Transmission Lines

Microstrip Transmission Lines

As circuits have been reduced in size with integrated semiconductor electron devices, a
transmission structure was required that was compatible with circuit construction techniques to
provide guided waves over limited distances. This was realized with a planar form of single-
wire transmission line over a ground plane, called microstrip1 . Microstrip employs a flat strip
conductor suspended above a ground plane by a low-loss dielectric material. The size of the
circuit can be reduced through judicious use of a dielectric constant some 2-10 times that of free
space (or air), with a penalty that the existence of two different dielectric constants (below and
above the strip) makes the circuit difficult to analyze in closed form (and also introduces a
variability of propagation velocity with frequency that can be a limitation on some applications).
The advantages of microstrip have been well established, and it is a convenient form of
transmission line structure for probe measurements of voltage, current and waves. Microstrip
structures are also used in integrated semiconductor form, directly interconnected in microwave
integrated circuits.

W
T

Microstrip

Waves and Impedances in Microstrip

Although the presence of two dielectric regimes in microstrip precludes the strict propagation of
TEM waves, the same type of transmission-line characteristics are present, as can be seen from
the fact that microstrip can propagate energy down to zero frequency (direct current).
Microstrip construction lends itself to small structures that can carry semiconductor devices and
surface-mount lumped elements, which can be attached by automatic means.

This extreme usefulness of microstrip makes the lack of an elegant closed-form solution
acceptable, and accurate approximations based on the velocity/capacitance method described
above are used to estimate Zo and other parameters. Unwanted modes are dealt with in part
by using material with a relatively high dielectric constant, but waveguide
modes are present and represent an upper frequency limit. The effects of unwanted waveguide
modes can be restricted by choosing dielectric thickness less than λ/4 and strip width w less

1 See for example: Vendelin, G., Pavio, A., and Rohde, U., Microwave Circuit Design Using Linear and
Nonlinear Techniques, j. Wiley, 1990, pg. 37-44

-1-
EEE194RF Microstrip Transmission Lines

than λ/2 at the highest frequency of interest. Thus, for a maximum frequency of interest fmax, we
chose

c c
T< and W <
4fmax ε r 2fmax ε r

The velocity of propagation in microstrip is relatively constant with varying w/h, and Zo can be
estimated accurately using a number of methodsDownloadable software applications that
provide quick analysis of microstrip and other planar transmission lines include AppCad2 ,
Txline3 , Microstrip Calculator4 and Sonnet5 .

2 http://www.hp.com/HP-COMP/rf/hprfhelp/design/appcad.htm
3 http://www.nonlintec.com/tline.zip
4 http://www.nonlintec.com/tline.zip
5 http://www.engineers.com/software/sonnet.htm

-2-

You might also like